
RESEARCH ARTICLE

Assessing Farm Efficiency Through Quantities or
Revenues and Costs: Does It Matter?

Wondmagegn Tafesse Tirkaso and Helena Hansson

Department of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden
Corresponding author: Helena Hansson; Email: Helena.Hansson@slu.se

Abstract
We examined the effect of using input and output quantities as compared with costs and revenues when
estimating farm-level efficiency scores and ranking. We used farm-level data from the 2015 Ethiopia Rural
Socioeconomic Survey (ERSS) where production inputs and outputs in quantities as well as monetary units
could be distinguished. Average technical efficiency scores of 72.2% and 68.6%, respectively, were found for
analysis based on quantities and on costs and revenues. Efficiency ranking differed significantly. Results
suggest that type of data compilation introduces bias to the efficiency assessment and that conclusions may
be unclear, which complicates policy advice.
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Introduction
Efficiency estimation is a popular way of assessing farm performance and numerous applications
exist within the agricultural economics literature. Building on a microeconomic model of the farm,
efficiency analysis is based on the estimation of an efficient isoquant or production possibility
frontier. Irrespective of approach, the efficient frontier is estimated empirically based on available
data. Following this, the position of each farm relative to the efficient frontier is assessed and
possible deviations are considered inefficiency (Coelli et al., 2005). Previous literature has not only
been interested in the level of inefficiency but also in the impact of characteristics of the farm and
farmer and/or the policy environment in which the farm exists. Common applications include an
interest in personal characteristics of the farmer (Galanopoulos et al., 2006; Puig-Junoy and
Argiles, 2004), financial management (Davidova and Latruffe, 2007), management control
(Manevska-Tasevska and Hansson, 2011; Trip et al., 2002), management routines and practices
(Labajova et al., 2016; Rougoor et al., 1998), and agricultural subsidies (Latruffe and Nauges,
2013). The literature has also suggested existence of rational inefficiency, meaning that firms
deliberately position themselves seemingly inefficiently in production possibility space because
they get something out of this that is not observable in a standard production economic
framework (Asmild, Bogetoft, and Hougaard, 2013; Bogetoft and Hougaard, 2003; Hansson,
Manevska-Tasevska, and Asmild, 2020).

Empirical efficiency estimations of agricultural production require access to data on production
features at farm level based on which production inputs and outputs can be quantified. In
applications based on farms in various European Union member states, efficiency studies are
normally based on data obtained from the nationally available farm economic surveys where
accounting data from a sample of national farmers are available. Examples include work by
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Hansson et al. (2020) and Manevska-Tasevska, Hansson, and Labajova (2017) for Sweden;
Henningsen et al. (2018) for Denmark; and Latruffe and Nauges (2013) for France. This type of
data usually originates from the Farm Accounting Data Network (FADN) as in Latruffe and
Nauges (2013) or originates from other data sources, which countries collect to feed into the
FADN. One example is the Farm Economic Surveys (FES) in Sweden as in Hansson et al. (2020)
and in Manevska-Tasevska et al. (2017), which function as the national background data for the
FADN variable construction.

These types of accounting datasets generally give access to detailed accounts in the balance
sheet and income statement of participating farmers, or to economic variables constructed from
accounting data, and to some additionally collected data such as number of hectares operated by
the farm and hours worked at the farm. They are convenient for research in the sense that they are
easily accessible to researchers, provide information that is representative of various farming
systems using standardized methods, and is well-known to many researchers.

However, while offering many benefits for researchers, accounting-based datasets are also
associated with inherent drawbacks for the construction of production economic datasets needed
for efficiency analyses. This is due to the fact that most of the variables in the datasets are
expressed in monetary terms. This means that in practice, most production inputs and outputs in
efficiency analyses are in fact only approximated using measures of production costs and
production revenues in various categories. In some regions and datasets, there exist price indices
that can be used to approximate quantities; however, the accuracy of this for individual
observations cannot be guaranteed. Considering how accounting-based datasets are compiled,
quantities of production inputs and outputs cannot be properly disentangled from prices. This
means that researchers may compare farms that use larger quantities acquired for low prices
(larger quantities of output sold for low prices) with farms that use smaller quantities acquired for
higher prices (smaller quantities of output sold for high prices) and consider them similar in terms
of input use (output production) even though they may use (produce) different quantities.
Considering the fact that higher prices normally can be taken to signal higher quality, this
becomes even more intriguing because the information cannot be used to distinguish between
observations with high-quality inputs and outputs from those with low-quality inputs and
outputs, although they are, as signaled by the quality differences, likely to operate under separate
technologies. In particular, it is common in agriculture that farmers are paid according to the
quality of their produce, for instance, the fat and protein content of their milk, or according to the
quality of their grain. Still from the accounting data, the possible quality differences highlighted by
differences in prices cannot be disentangled. Exceptions to the quantity dilemma are production
factors of the type of agricultural land and labor, which are normally expressed in hectares and
hours, respectively. However, these variables are not accompanied by information about prices
paid for those production factors or with information about their opportunity costs.

Being by large based on monetary measures of production inputs and outputs, which are
composed of quantities and prices, efficiency studies based on accounting data in practice
inevitably assess a mix between what could be considered technical efficiency (relating to the
correspondence of quantities used and produced) and allocative efficiency (relating to the
correspondence of prices paid and received). Both the technical component and the allocative
component are intervened in the final measure, making it unclear what is actually being measured.
This introduces conceptual uncertainties about what has actually been measured. Moreover, the
use of monetary variables where quantities and prices are mixed may affect the size of the
estimated efficiency scores, as well as the rankings of farms according to the scores, hence
introducing a bias to the final efficiency assessment. As a consequence, conclusions may be
unclear or even misleading, and this can complicate policy advice based on efficiency analyses.
However, based on previous research, it is not clear to which extent efficiency results may be
affected by the use of data that mixes quantities and prices to proxy production economic data.
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The purpose of this study is therefore to investigate empirically the role of data type in
efficiency estimation. We do this by evaluating and illustrating the extent to which conclusions
in terms of distributions of farms from the most to the least efficient are affected by estimation
of efficiency based on quantities of production inputs and outputs or on costs and revenues. We
base the analysis on a farm-level data set from the 2015 Ethiopia Rural Socioeconomic Survey
(ERSS) (World Bank, 2016), which by construction contains information about production
inputs and outputs in quantities as well as production input and output prices. This allows us to
estimate and compare efficiency scores based on i) quantities and ii) mostly expenses and
revenues (i.e. a variable specification similar to that allowed by the FADN and FES datasets in
Europe). In doing so, we provide empirical insights into the possible bias introduced by not
having access to production quantities and prices as is the case in most efficiency studies based
on European data.

It should be emphasized that the dataset used in this study represents a farming system that is
very different from that of most European countries. It should therefore be acknowledged that
conclusions about the magnitude of the possible problem are dependent on the dataset we use;
other datasets may indicate a smaller or larger problem. Having said that, our study makes a novel
contribution to the literature by being the first to acknowledge and provide empirical evidence
about the potential bias in efficiency estimation introduced by basing efficiency studies by large on
cost and revenue data instead of on quantity-based data and prices. In doing so, we provide a
useful basis for discussing the usefulness of using price information to calculate production factors
and outputs when such data is available and of extending current accounting-based datasets to
include also price information, which would allow for calculating input and output quantities. We
also provide a basis for a more careful discussion about what type of efficiency measures are
actually obtained from variables that are largely based on costs and revenues and thus contain
elements of both quantities and prices.

Background – exploring the problems with efficiency assessment based on
accounting data
The conceptualization of firm efficiency has long historical roots and goes back to work by Farrell
(1957). After Aigner et al. (1977) and Meeusen and van den Broeck (1977) provided the basis for
an econometric framework to estimate efficiency, and Charnes et al. (1978) provided a
nonparametric approach based on mathematical linear programing, there have been numerous
applications across scientific fields and examples include Bokusheva et al (2012) Mardani et al
(2017) and Nauges et al (2011).

The efficiency concept starts from a microeconomic model of the firm where it is assumed that the
firm uses production factors (x) to produce outputs (y), given technology T (e.g. Coelli et al., 2005).
Production factors can be obtained at price (w) and outputs sold at price (p). The efficient use of
production factors and production output can be determined from the production possibility set.
Deviations from the efficient use of production factors at a given level of production output are
considered inefficiency. The literature has suggested many reasons for inefficiency as intro-
duced above.

Three types of efficiency are generally distinguished: Technical efficiency (TE) considers the
potential inefficiency in a firm’s use of production factors given a certain level of production
output (input case) or in a firm’s production output given a certain level of production factors
(output case). Allocative efficiency (AE) considers the potential inefficiency in a firm’s
combination of production factors given factor prices (input case) or in a firm’s combination of
production outputs given the product output prices (output case). A combination of TE and AE
measures the economic (or overall) efficiency (EE) from the input or output perspective. The
literature has suggested more advanced efficiency models, including dynamic efficiency (Nemoto

Journal of Agricultural and Applied Economics 553

https://doi.org/10.1017/aae.2023.30 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.30


and Goto, 2003; Tsionas, 2006), however, it is out of the scope of this paper to review these in
detail; our focus is on demonstrating the possible impact caused on efficiency scores by the type of
data aggregation used.

Empirical assessment of TE, AE, and EE requires access to information about firm’s use of
production factors and production of outputs in quantities, as well as information about prices
per unit of production factors and production outputs. Because this is not available for all
production factors and production outputs in most accounting-derived datasets upon which
efficiency studies are based, production factors and production outputs are proxied by
information about costs and revenues obtained by firms. In effect, this means that production
factors in many cases are considered in terms of (x * w) and production outputs in terms of (y *
p). In effect, this means measuring how well firms can transform a set of costs acquired by the
use of various production factors into a set of revenues obtained from selling a set of production
outputs. This implies that it is not possible to distinguish between inefficiency in use of
production factors from inefficiency in combination of production factors (or combinations of
production outputs). As a result, it is not possible to distinguish technical and allocative
inefficiencies from the overall economic efficiency. Furthermore, firms with different strategic
approaches are considered similar, although it would be more feasible to consider them as
operating under different technologies. In fact, it is not possible to distinguish between a firm
that uses smaller amounts of production factors, but acquired them at a higher price from a firm
that uses larger amounts of its production factors, but acquired them at a lower price. Likewise,
it is not possible to distinguish between a firm that produces (and sells) a small amount of
production output, but at a higher price per unit from a firm that produces (and sells) a larger
amount of production output but at a lower price per unit. As a result, efficiency results and
rankings of firms according to inefficiency are possibly biased.

It should be noted that in competitive markets with perfect information flows prices will be the
same for all firms. In such markets, the cost function can be derived from the production function
and the production function can be derived back again from the cost function, using the duality
between production and cost functions. The potential bias in efficiency estimation that we are
pointing to in this paper would not exist in such markets. Notably, the possible bias that we are
pointing to is dependent on the degree to which firms can affect prices through various choices. In
cases where prices are homogeneous, the possible bias in technical input and output efficiency
would be less severe; all firms encounter the same prices and differences in expenses and revenues
should indeed represent differences in the amount of production factors used and the amount of
output produced. However, in many cases, input and output prices can be affected through
possible various strategic choices such as type of employee categories and use of various contracts
to fix output prices in advance. Prices may also differ due to differences in negotiation skills, for
instance between men and women. Furthermore, prices may also vary between different regions in
the same country. However, based on common production economic data, such heterogeneity
between farms cannot be revealed and considered in efficiency studies.

Method and data
Data

To investigate the role of data in efficiency estimation, this study uses a farm-level dataset from the
2015 ERSS obtained from all regions in Ethiopia (World Bank, 2016). This data compiles a set of
information on farm household socioeconomic characteristics, crop and livestock production,
agricultural input use, community-level output and input prices, employment, farm, and non-
farm income. Specifically, through this dataset, we were able to separate quantities of production
factors and outputs and prices. In particular, we used production variables including main crop
harvest, land, labor, fertilizer use, average wage rate, and output prices to estimate the input-
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oriented technical efficiency level. Our analysis considered the village-level prices as a farm gate
price given the case that rural farmers in Ethiopia usually sell main crops in the nearby village
markets.

Summary statistics of outputs, production factors, and prices are provided in Table 1.
Production factors were specified as land, labor, and fertilizer use. The output variable was
represented by a total harvest index, which was constructed by summing the quantity of major
crops weighted by the prices. The considered crops were Barley, Maize, Millet, Sorghum, Wheat,
and Teff (Eragrostis tef). The corresponding mean value of the total harvest index is 14.65 with a
standard deviation of 241.42.

The average household landholding is around 4209 square meters (≈0.42 hectares), while labor
use represented by the number of days in a year is 46.51 days/harvest season. A similar figure was
reported in other studies (e.g., Tirkaso and Hess, 2018). The use of chemical fertilizer is relatively
small. For instance, each household uses an average of 5.56 and 6.01 kg of UREA and DAP,
respectively, on their farm during the planting season. The price level for each crop’s outputs and
inputs are also presented. Therefore, after consideration of missing values and outliers, we
retained a total of 1273 farm households in our analysis.

Measurement errors in surveys present a recurring challenge, resulting in significant bias in
econometric and statistical analyses. For example, data provided by farmers, including agricultural
income, input costs, and other production-related expenses, often suffer from inaccuracies due to
underreporting or overreporting. To address these potential pitfalls, the enumerators of the ERSS
underwent six training sessions before conducting the survey (World Bank, 2016). Furthermore,
competent field supervisors were assigned to oversee the survey at the field level, ensuring the

Table 1. Summary statistics for the key variables

Variable Obs. Mean Std. Dev. Min Max

Harvest index 1,265 14.65 241.42 0 8571.43

Revenue (ETB) 1,265 15,012 30,630 2000 368117

Harvest (Kilograms) 1273 674.69 666.05 20 5700

Land (Square meter) 1273 4209.08 4724.38 30.81 34,732

Labor (Number) 1273 46.51 46.67 2 403

UREA (Kilograms) 1273 5.56 13.57 0 150

DAP (Kilograms) 1273 6.01 14.44 0 150

Barley price (ETB/Kilograms) 140 27.51 26.67 12.86 160

Maize price (ETB/Kilograms) 395 26.84 26.11 11 150

Millet price (ETB/Kilograms) 59 29.99 25.06 14 145

Sorghum price (ETB/Kilograms) 314 24.56 26.00 10.67 125

Teff price (ETB/Kilograms) 211 26.52 26.32 10 160

Wheat price (ETB/Kilograms) 154 28.33 27.09 14 160

Daily wage (ETB) 1273 24.47 100.11 0.004 1500

Fertilizer price (ETB/Kilograms) 704 15.33 0.83 2 21

Household size(number) 1,271 4.65 2.42 1 12

Household head age (years) 1,272 47.11 15.33 17 99

Attend school (1= yes, 0= no) 1,272 0.425 0.49 0 1

Irrigation access (1= yes, 0= no) 1,272 0.12 0.32 0 1
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precision of the collected data. This comprehensive approach helps to minimize potential
measurement errors during the survey.

Analytical strategy

Most empirical works in production economics use the duality theorem to derive the cost function
from the corresponding production function, establishing a mathematical link by applying the
duality theorem. While this approach could provide a strong theoretical foundation for the
analysis, there are certain limitations to its applicability in our context. For example, it may not be
suitable in cases of imperfect markets, where information flow and regulatory constraints are
dominant. Agricultural markets in developing countries including Ethiopia are mostly prone to
market imperfections, where asymmetry of information, imperfect competition, externalities, and
related phenomena are common (e.g., Hoddinott, Headey, and Dereje, 2015; Osborne, 2005;
Tirkaso and Hailu, 2022). This indicates that the duality approach may not be sufficient to explain
the complexities of agricultural markets in developing countries and other imperfect market
conditions.

We approached the study objective by investigating how using data that are aggregated from
quantities and prices into costs and revenues affects the distribution of farms from the most
efficient to the least efficient. Thus, we ask if using costs and revenues instead of quantities to
construct measures of production factors leads to differences in conclusions with respect to which
specific observations are considered the more efficient and not – i.e. the ranking from the most
inefficient to the least inefficient observation. To this end, we estimated efficiency scores under
two scenarios: i) a quantity-based scenario (QBS), with production factors and outputs measured
in quantities, and ii) a cost-revenue-based scenario (CRBS) where production factors and outputs
are proxied using information about costs and revenues. All data used for the efficiency
estimations are based on information about quantities and prices, so the estimations under the
two scenarios can indeed be related and compared; based on the available information the data for
the QBS scenario is based on quantities and information for the CRBS scenario is based on
quantities multiplied with prices.

We further estimated each farms’ efficiency score by classifying the sample into whole sample,
nontraditional farms (those who use chemical fertilizers such as UREA and DAP1), and traditional
farm categories (those farmers who do not use any of the chemical fertilizers). This provides an insight
into how efficiency estimated under the two scenarios is distributed across different farm groups.

We use the nonparametric Data Envelopment Analysis (DEA) (Charnes et al., 1978) to
estimate efficiency scores of individual observations and use this to evaluate how type of data
affects conclusions about the efficiency of each observation. Our specific empirical strategy follows
the conventional radial Debreu-Farrell measure of efficiency loss (Debreu, 1951; Farrell, 1957),
which assumed that for each data point k (k = 1, : : : .,K), vector xk = (xk1, : : : ,xkN) ϵ RN

represents N inputs, vector yk = (yk1, : : : ,ykM) ϵ RM indicates M outputs. We also assumed that
under the technology representation, T, the data set (y, x) is producible by inputs:

T � f�x; y� : y are producible by xg (1)

Further, the technology set is fully characterized by its input requirement set as follows:

L�y� ≡ fx : �x; y�εTg (2)

Equation (2) indicates all the available inputs and outputs are feasible. The magnitude of
efficiency score is given by the difference between the distances of the upper boundary of the
production possibility set and the lower boundary of the input requirement. Thus, we followed the

1UREA and DAP are common fertilizers in Ethiopia where UREA constitutes mix of nitrogen, phosphorus, and potassium.
Similarly, DAP (di-ammonium phosphate) mainly includes nitrogen and phosphorus nutrients.
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input-oriented radial efficiency measurement approach that represents how much input
quantities be proportionally decreased without changing the output quantity set, L(y).
Consequently, empirically estimable radial Debreu – Farrell input-based measure of technical
efficiency can be obtained by solving the linear programing problem for each data point k
(k = 1, : : : , K) as follows:

RMi
k� yk; xk; y; xjCRS� � max N�1XN

N�1

λn : �λ1xk1; . . . ; λNykN� ɛ L�y�; λn � 0; n � 1; . . . ;N

( )
(3)

where y is K × M matrix of available data on outputs and x is K × N matrix of available data on
inputs. Based on equation (3), the radial measure expands all M outputs yk= (yk1, : : : , ykM) (N
inputs xk = (xk1, : : : ,xkN)) proportionally until the frontier is reached for each data point (yk, xk).
The assumption regarding global technology is crucial in DEA estimation as the efficiency scores
are sensitive to the underlying assumption. We first followed a constant return to scale technology
(CRS) assumption and later econometrically tested whether the underlying assumption is
appropriate or not. In the case where the CRS is not feasible, we rely on the variable return to scale
technology (VRS) assumption.

Results
We present DEA estimates based on different sample classifications, i.e., the whole sample,
nontraditional, and traditional farms.2 We group those farmers using chemical fertilizers such as
nitrogen and phosphorus as nontraditional farms, while the others are considered traditional. This
classification allows us to examine the technical efficiency within each group. However, it should
be noted that the technical efficiency scores cannot be directly compared across the groups, since
the magnitude of the estimated scores is always impacted by the sample size; thus the individual
efficiency scores within each group should only be interpreted in relation to the particular efficient
frontier in focus. We presented estimates based on both CRS and VRS technology assumptions. In
the case of CRS, we assumed for the production technology, this is equivalent to switching from
output to input-oriented efficiency, while for variable VRS assumption, this one-to-one
correspondence does not hold (Badunenko and Tauchmann, 2018).

Variable return to scale (VRS)

In the QBS, where we base the efficiency estimates on quantities of production factors and
produced products (summarized into an index to allow for single output variable), our estimate
for the whole sample shows an average technical efficiency score of 68.4% (Table 2). However,
using the CRBS and basing the efficiency estimates on costs and revenues as proxy variables for
quantities, provides an efficiency score of 72.2%. Similarly, the DEA estimates for nontraditional
farmers show variation in the efficiency score with an average efficiency score of 68.9% under the
QBS; whereas the average efficiency score amounts to 73.5% under the CRBS when price
information is not considered and efficiency is instead based on expenses and revenues. There is
also a difference in the average efficiency scores of traditional farmers when comparing scores
based on quantities (the QBS) on the one hand and revenues and expenses on the other hand (the
CRBS) (67.8% and 71.1%, respectively).

It can also be noted that the average efficiency score for nontraditional farmers is higher than
that of the traditional farmers. This could be linked to the fact that nontraditional farmers utilize

2We base our analysis on the input-oriented DEA efficiency scores. For comparison, summary statistics of estimates based
on the output-oriented DEA efficiency scores, and on the stochastic frontier analysis efficiency scores can be found in the
Appendix.
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chemical fertilizers and other chemical compounds to increase farm yield, while the traditional
farmers mainly use natural fertilizers such as manure and compost on their farms. We further
examined whether there is statistically significant difference in the estimated technical efficiency
score under the QBS and CRBS specifications. This was confirmed for all groups (p-values

Table 2. Summary of DEA estimates by farm category under VRS

Sample Category Variable Obs. Mean Std. Dev. Min Max

Whole sample CRBS average TE score 1,265 0.722 0.136 0.353 1

QBS average TE score 1,265 0.684 0.182 0.048 1

Traditional farmers CRBS average TE score 910 0.717 0.137 0.368 1

QBS average TE score 910 0.678 0.184 0.056 1

Nontraditional farmers CRBS average TE score 355 0.735 0.131 0.353 1

QBS average TE score 355 0.689 0.177 0.048 1

T-test for statistical difference (CRBS vs QBS)

Sample category Test-Stat. P-value

Whole sample 8.506 0.000

Traditional farmers 7.237 0.000

Nontraditional farmers 5.246 0.000

Note: CRBS refers to TE scores estimated from expenses and revenues; QBS refers to TE scores estimated from quantities of production
factors and output as calculated using available price information.

TE score under VRS (the whole sample)

CRBS model; ______ QBS model

TE score under VRS (traditional farms)

CRBS model; ______ QBS model

TE score under VRS (non-traditional farms)
_ . _ . _

_ . _ . _ _ . _ . _

 CRBS model;  ______ QBS model

Figure 1. TE distributions for CRBS and QBS under variable return to scale assumption.
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<0.000). The distributions of efficiency scores for each sample group are presented in Figure 1.
The plots for CRBS and QBS under each sample category show variation with a right-skewed half-
normal distribution.

Constant return to scale (CRS)

In the case of CRS assumption, the DEA estimate shows a considerably lower technical efficiency
score (Table 3). For instance, under the QBS, the average whole-sample technical efficiency score
is 66.2% when based on quantities of production factors and output; using expenses and revenues,
under the CRBS, the average technical efficiency score amounts to 65.8%. The corresponding
average figures for the nontraditional farmers are 56% and 61.8%, respectively. For the case of
traditional farms, the corresponding efficiency score is 46.5% and 45.9%, respectively. We also
tested whether there is a statistical difference in the estimated technical efficiency score between
CRBS and QBS specifications. The difference was not significant for the whole sample and for the
traditional farms, but for the nontraditional farmers, the difference was significant at general levels
of significance.

The distributions of technical efficiency scores under CRS assumption are illustrated in
Figure 2. Accordingly, each sample category shows a variation, but dispersedly distributed for the
whole and nontraditional farms. The distribution for the traditional farms shows a normal
distribution for both CRBS and QBS specifications.

Statistical inference on VRS vs CRS assumption

Conclusions are sensitive to assumption about VRS or CRS technology; thus statistical inference
on the assumptions are crucial for the continued analysis. We started the statistical inference by
examining the appropriate bootstrapping technique to determine the return to scale. This allows
to evade sample selection bias as the individual efficiency score is calculated with respect to the
estimated frontier line rather than the actual frontier (Kneip et al, 2008; Simar and Wilson, 1998,
2002). Therefore, smoothed homogenous bootstrapping technique can be used if the calculated
technical efficiency scores are independent of the mix of inputs. If not, the heterogeneous

Table 3. Summary of DEA estimates by farm category under CRS

Sample Group Variable Obs Mean Std. Dev. Min Max

Whole sample CRBS average TE score 1,265 0.662 0.165 0.258 1

QBS average TE score 1,265 0.658 0.191 0.049 1

Traditional farmers CRBS average TE score 910 0.465 0.130 0.209 1

QBS average TE score 910 0.459 0.160 0.0317 1

Nontraditional farmers CRBS average TE score 355 0.560 0.173 0.258 1

QBS average TE score 355 0.618 0.199 0.0487 1

T-test for statistical difference (CRBS vs QBS)

Sample category Test-Stat. P-value

Whole sample 0.774 0.439

Traditional farmers 1.557 0.120

Nontraditional farmers −5.298 0.000

Note: CRBM refers to TE scores estimated from expenses and revenues; PBM refers to TE scores estimated from quantities of production
factors and output as calculated using available price information.
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bootstrapping technique should be applied. The null hypothesis is that the radial Debreu-Farrell
input-based measures of technical efficiency scores are independent. Rejecting the null hypothesis
favors the use of homogenous bootstrap in measuring the technical efficiency score under each
technology assumption. Conversely, failing to reject the null hypothesis favors the use of the
heterogeneous bootstrapping technique.

The corresponding bootstrap tests for CRS and VRS models are presented in Table 3. We run
999 bootstrap replications while computing the test statistics for each model. In all cases, the null
hypothesis is rejected at 1% significance level implying the technical efficiency scores are not
independent of the mix of inputs under the specified technology assumption (Table 4). Hence,
rejecting the null hypothesis favors applicability of homogenous bootstrapping technique in the
remaining parts of the analysis.

Once the proper bootstrapping technique is identified, selecting the correct technology
assumption is crucial in DEA analysis as the corresponding efficiency score is highly sensitive to
the assumption. This is observed in our estimate that there is a considerable variation in the
average farmers’ technical efficiency score under VRS and CRS assumptions in both the CRBS
and QBS-based estimates (Tables 2 and 3). In order to select a theoretically consistent efficiency
score, a nonparametric test for the appropriate return to scale needs to be done by comparing
the distributions in relation to the optimal scale points, i.e., where the CRS and VRS frontiers
coincided (e.g., see Simar and Wilson, 2002). Accordingly, the null hypothesis that technology is
globally CRS versus the alternative hypothesis that technology is globally VRS is tested. The
corresponding test results reject the null hypothesis (p-value <0.000) backing the VRS
technology assumption in all models. Table 5 presents returns to scale test statistics for
each model.

TE score under CRS (the whole sample)

_ . _ . _ CRBS model;  ______ QBS model
TE score under CRS (the traditional farms)

_ . _ . _ CRBS model;  ______ QBS model

TE score under CRS (the non-traditional farms)
_ . _ . _ CRBS model; ______ QBS model

Figure 2. TE distributions for CRBS and QBS under constant return to scale assumption.
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Statistical inference on rankings of observations according to efficiency scores

We further tested whether there is equality in quantity and revenue and cost-based TE scores in
terms of rankings of observations according to efficiency scores. Following the testing procedure
by Wilcoxon (1945) and Wilson (2003), we used the Wilcoxon signed-rank test to examine the
probable equality of efficiency score from quantity and price-based models. Accordingly, the null
hypothesis of equality in CRBS and QBS-based TE score is rejected (p-value <0.01) in all models
(Table 6). This suggests that using aggregated data based on costs and revenues in DEA analysis
can thus affect the distribution of farms from the most to the least efficient ones.

Conclusions
This study investigated the role of data type in efficiency estimation and evaluated the extent to
which conclusions in terms of the distribution of farms from the most efficient to the least efficient
are affected if the efficiency estimation is based on quantities of inputs and outputs or on
approximations of quantities using costs and revenues. By using farm-level data from Ethiopia, we

Table 4. Tests for independence

Models

CRBS QBS

Test-Stat. P-value Test-Stat. P-value

Whole sample 1.127 0.000 1.054 0.000

Traditional farmers 1.556 0.000 1.060 0.000

Nontraditional farmers 1.245 0.000 1.060 0.000

Note: CRBM refers to TE scores estimated from expenses and revenues; PBM refers to TE scores estimated from quantities of production
factors and output as calculated using available price information.

Table 5. Tests for return to scale

Models Hypothesis Test-Stat. P-value

CRBS

Whole sample H0: Technology is globally CRS 0.290 0.000

H1: Technology is globally VRS

Traditional farmers H0: Technology is globally CRS 0.245 0.000

H1: Technology is globally VRS

Nontraditional farmers H0: Technology is globally CRS 0.980 0.000

H1: Technology is globally VRS

QBS

Whole sample H0: Technology is globally CRS 0.280 0.000

H1: Technology is globally VRS

Traditional farmers H0: Technology is globally CRS 0. 600 0.000

H1: Technology is globally VRS

Nontraditional farmers H0: Technology is globally CRS 0.775 0.000

H1: Technology is globally VRS

Note: CRBS refers to TE scores estimated from expenses and revenues; QBS refers to TE scores estimated from quantities of production
factors and output as calculated using available price information.
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found that relying on quantities of production inputs and outputs or on costs and revenues data
provides different efficiency scores and significantly affects the ranking of farms in terms of
efficiency. Our study introduces novel insights to the literature by being the first to highlight the
possible problems with using cost and revenue data to proxy production factors and outputs in
efficiency studies.

Our estimates for the whole sample based on quantities of production factors and outputs yield
an average technical efficiency score of 68.4%. However, disregarding the prices and instead basing
the efficiency estimates directly on expenses and revenues as proxy variables for quantities,
provides an efficiency score of 72.2%. Estimates for nontraditional farmers specifically show
variation in the efficiency level with an average efficiency score of 68.9% under the QBS; whereas
the average efficiency score amount to 73.5% when expenses and revenues are used to proxy
production factors and outputs. For traditional farms, the average efficiency scores amount to
71.7% under QBS and 67.8% when basing the efficiency scores on expenses and revenues.
Statistical tests of differences in distribution from the most to the least efficient farms confirm that
distributions differ in all three considered groups.

Taken together, our findings point to that relying on aggregated data could affect the
distribution of farms’ efficiency scores. This has implications for subsequent analysis of, e.g.,
patterns of inefficiency and determinants of inefficiency, and thereby for advice and policy
recommendations based on efficiency studies. This also has implications for future research in
similar settings and based on similar types of data as in this study; such analysis should use price
information to calculate quantities of production factors and outputs instead of using costs and
revenues to proxy those quantities. While the dataset used in this study represents farming
systems in Ethiopia, which are very different from those of most European countries, findings can
also have implications for efficiency studies based on accounting data, which is the case for much
efficiency studies based on European farming systems. For efficiency research based on
accounting data, it is important to be aware of the possible bias introduced to the efficiency
analysis by basing it on cost and revenue data instead of on price and quantity data. Both the
possible mix between economic and technical efficiency that arises from using cost and revenue
data and the possible impact of policy recommendations due to possible biased efficiency scores
should be addressed. Conclusions about the direction and magnitude of the possible bias are
dependent on the dataset we use; other datasets may indicate a smaller or larger magnitude. Future
research will have an important role in continuing this line of research by collecting data on prices
and quantities also for other types of case study farming systems; especially those where efficiency
studies are generally based on accounting data. It would also be interesting in future research to
pay explicit attention to what type of markets data are taken from; in particular, the extent to
which markets are likely to not be competitive and to compare results across datasets representing
different types of markets. In all those ways, future research would provide an important basis for
discussing a possible extension of accounting-based data sources for farm-level analysis to include
also price information.

Table 6. Wilcoxon signed-rank test for quantity versus price-based TE scores

Negative Ranks Positive Ranks Test Statistics

Models N Mean rank Sum rank N Mean rank Sum rank Z-stat. P-value

Whole sample 572 400,371 327,005 691 400,371 473,737 5.645 0.000

Traditional farmers 409 209,534 170,599 504 209,534 248,468 4.869 0.000

Nontraditional farmers 147 30,713 23,039 203 30,713 38,386 4.051 0.000

Note: CRBM refers to TE scores estimated from expenses and revenues; PBM refers to TE scores estimated from quantities of production
factors and output as calculated using available price information.
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Appendix

Table A1. Summary of output-oriented DEA estimates by farmer category under CRS

Sample category Variable Obs. Mean Std. Dev. Min Max

Whole sample CRBS average TE score 1,265 0.662 0.165 0.258 1

QBS average TE score 1,265 0.658 0.191 0.049 1

Traditional farmers CRBS average TE score 920 0.465 0.130 0.209 1

QBS average TE score 920 0.460 0.159 0.032 1

Nontraditional farmers CRBs average TE score 345 0.564 0.174 0.258 1

QBS average TE score 345 0.614 0.200 0.049 1

Table A2. Summary of output-oriented DEA estimates by farmer category under VRS

Sample category Variable Obs. Mean Std. Dev. Min Max

Whole sample CRBS average TE score 1,265 0.208 0.451 1 1.813

QBS average TE score 1,265 0.100 0.331 1 1.770

Traditional farmers CRBS average TE score 920 0.973 0.433 1 1.889

QBS average TE score 920 0.966 0.446 1 1.892

Nontraditional farmers CRBs average TE score 345 0.611 0.587 1 1.744

QBS average TE score 345 0.292 0.510 1 1.719
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Table A3. Stochastic frontier estimates by farmer category

Variables

Whole sample Traditional farmers Nontraditional farmers

CRBS QBS CRBS QBS CRBS QBS

Total labor (number) 0.246*** 0.071 0.087*** 0.258*** 0.179*** 0.241***

0.031 0.244 0.000 0.031 0.000 0.031

Farmland (meter square) 0.240*** 0.244*** 0.212*** 0.246*** 0.466*** 0.240***

0.023 0.033 0.000 0.022 0.004 0.022

Urea use (kgs) 0.086*** 0.065* 0.010*** 0.087***

0.033 0.035 0.000 0.033

DAP use (kgs) −0.008 −0.001 −0.041*** −0.006

0.031 0.386 0.060 0.030

Household size(number) 0.161** 0.17 0.177*** 0.071 0.296*** 0.162**

0.071 0.32 0.001 0.876*** 0.010 0.071

Household head age (years) 0.878*** −0.059 −0.060*** 0.063 −0.070*** 0.859***

0.07 0.078 0.001 0.096 0.002 0.063

Attend school (1= yes, 0= no) 0.058 0.509 0.418*** 0.068 0.342*** 0.072

0.068 1.512 0.001 −0.104 0.020 0.068

Irrigation access (1= yes, 0= no) 0.107 0.033 0.072*** 0.097 0.062*** 0.097

0.097 1.474 0.001 0.000 0.097

� −1.534* 0.798*** 0.611*** −1.291*** −0.239** −1.190***

0.818 0.127 0.065 0.487 0.11 0.395

V� 0.006 −24.991 −29.782 −0.04 −29.738 −0.09

0.171 16.453 241.48 0.132 72.177 0.122

Mean TE 0.64 0.44 0.61 0.45 0.60 0.42

Observations 1271 1271 941 1271 330 1271

Note: Continuous variables are in logarithm. ∗∗∗ p< 0.01, ∗∗ p< 0.05, ∗ p< 0.1. The traditional farmers do not use modern fertilizers (Urea
and Dap).
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