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Abstract

Estimating the case fatality ratio (CFR) for COVID-19 is an important aspect of public health.
However, calculating CFR accurately is problematic early in a novel disease outbreak, due to
uncertainties regarding the time course of disease and difficulties in diagnosis and reporting of
cases. In this work, we present a simple method for calculating the CFR using only public case
and death data over time by exploiting the correspondence between the time distributions of
cases and deaths. The time-shifted distribution (TSD) analysis generates two parameters of
interest: the delay time between reporting of cases and deaths and the CFR. These parameters
converge reliably over time once the exponential growth phase has finished. Analysis is per-
formed for early COVID-19 outbreaks in many countries, and we discuss corrections to CFR
values using excess-death and seroprevalence data to estimate the infection fatality ratio (IFR).
While CFR values range from 0.2% to 20% in different countries, estimates for IFR are mostly
around 0.5–0.8% for countries that experienced moderate outbreaks and 1–3% for severe out-
breaks. The simplicity and transparency of TSD analysis enhance its usefulness in character-
izing a new disease as well as the state of the health and reporting systems.

Introduction

The novel coronavirus SARS-CoV-2, and its attendant disease, COVID-19, first appeared in
late 2019 in Wuhan, China. Since then, studies and estimates of the transmissibility and viru-
lence of COVID-19 have abounded, with widely varying results [1–6]. Virulence is often mea-
sured using the case fatality ratio (also called case fatality rate or case fatality risk, CFR), which
is the number of deaths due to a disease as a proportion of the number of people diagnosed
with the disease. The CFR is dependent on the particular pathogen (and its mechanism of
action) and the immune response of the host, which can depend on age, sex, genetic factors
and pre-existing medical conditions. Environmental factors such as climate and health system
may also affect the CFR. Collectively, these effects can be understood within the framework of
the One Health concept [7], which integrates the full spectrum of interactions between the
pathogen, the host and the biological and social environment. In this complex adaptive system
[8], it is important to accurately quantify the CFR of a new disease to inform policy, commu-
nication and public health measures.

Calculating the CFR requires data on cases and deaths over time, either for individuals or
populations. In general, the CFR is based on diagnosed cases of disease rather than the number
of actual infections (which is difficult to measure); there may be many more infections than
reported cases, depending on the expression of symptoms and the degree of testing. The sim-
plest estimate of CFR is to divide the cumulative number of deaths by the cumulative number
of cases at a given time, known as the crude (or naïve) CFR. However, the crude CFR tends to
underestimate the CFR during an outbreak because at any given time, some of the existing
known cases will prove fatal and need to be included in the death count. This bias is
known as right-censoring and obscures the CFR of a new disease early in the course of the
outbreak, particularly before the time course of the disease is characterised. Further, even
once the distribution of times from the onset of disease to death is known, it can be difficult
to use this information to accurately correct the crude CFR. An alternative method is to use
data for closed cases only, once patients have recovered or died (e.g. [9, 10]), yet this informa-
tion is also difficult to obtain during an outbreak and may be biased towards a particular
demographic or skewed by delays in reporting of recoveries. Other biases in calculating
CFR include under-ascertainment of mild or asymptomatic cases, time lags in testing and
reporting, and the effects of intervention approach, reporting schemes, demographics and
increased mortality due to pre-existing conditions (co-morbidities) [6]. The complexity of
the CFR is well-summarised by Angelopoulos et al. [11] who write, ‘Current estimates of
the COVID-19 case fatality rate are biased for dozens of reasons, from under-testing of asymp-
tomatic cases to government misreporting’.

There are many published calculations of CFRs for COVID-19 using various datasets from
different countries and using a range of methods. In some places, initial outbreaks have now
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concluded and the final crude CFR accurately reflects the overall
ratio of reported deaths to cases. In many other places, outbreaks
are continuing. Questions remain regarding the quality of data
(including the capacity of data collection, data governance and
misclassification errors relate to diagnostic methods), methods
of calculation and even the possibility of changes in the CFR
over time [12]. These continuing uncertainties make it necessary
to improve the estimates of the CFR by refining the methods used
to calculate it. In essence, this means finding the best way to cor-
rect the crude CFR for biases due to time lags and other factors.
Most previously published studies make use of a parametrised dis-
tribution of times from onset (or hospitalisation) to death, deter-
mined from individual case data from early in the outbreak
(largely from China) [5, 13–15], which is then used in combin-
ation with statistical methods to estimate the CFR using
population-level data on cases and deaths [5, 13, 14, 16].
Various assumptions are made in these analyses, including the
form (and transferability) of the time course of cases, time lags
in reporting or testing or hospitalisation, and estimates of the pro-
portion of cases being detected. Early values of CFR obtained
using these methods range from 1% to 18%, with the highest
values obtained for China: 4–18% early in the outbreak [5, 13],
12% in Wuhan and as low as 1% outside Hubei province [14].
Values reported outside China include 1–5% for early cases in tra-
vellers [5, 13], and 1–4% in Korea [16]. CFRs have also been
shown to vary greatly with the age of the patient [5]; Goldstein
and Lee [17] found that COVID-19 mortality increases by
about 11% per year of age. This obviously limits the transferability
of parameters based on case studies, which will depend on demo-
graphic distributions. The specific data requirements and the
range of approximations and assumptions required by statistical
methods can make it difficult to interpret or rely on the results
of such analyses since biases can be obscured.

Time-shifted distribution analysis for COVID-19 data

The time-shifted distribution (TSD) analysis method began with
an observation that the shape of the evolving time distribution
of COVID-19 cases in a given country often closely matches the
shape of the corresponding distribution of COVID-19 deaths –
simply shifted by a number of days and linearly scaled in magni-
tude. This is illustrated in Figure 1 for COVID-19 cases and
deaths in Italy (data from [18], 3-day averaged data shown); the

time-shifted relationship between case and death distributions
can be seen in both cumulative and daily tallies. We can under-
stand this shift from the perspective of the time delay between
diagnosis and death or recovery. However, the closeness of the
match reflects a much simpler apparent relationship than that
suggested or assumed by conventional analyses, which relate
deaths and cases using statistical parametric models that incorp-
orate a broad distribution of expected times between diagnosis
(or onset) and death, usually generated from case study data
(e.g. [19]).

This observation suggests that there are two parameters of
interest: the number of days separating the case and death distri-
butions (called the delay time or td), and the scaling factor
between the time-shifted case data and the death data, λ.
For the optimal value of td, there is a simple linear relation-
ship between cumulative number of deaths at time t, D(t),
and cumulative number of cases at time t− td, C(t− td), with gra-
dient λ:

D(t) = lC(t − td)

To find the optimal value for td, we test integer values from
zero to 25 days. For each value of td, we plot D(t) as a function
of C(t− td) (for all t) and perform a linear regression using
Matlab. The value of td is chosen on the basis of the lowest
root-mean-squared error in the linear regression analysis and
the value of λ is the gradient of the corresponding line.

Figure 2 contains the results of this analysis for Italy. Figure 2(a)
shows the error from the linear regression of D(t) vs. C(t− td) as a
function of delay time, with a clear minimum at 4 days. Figure 2
(b) shows D(t) vs. C(t− td) for different delay times: the optimal
value of 4 days (with linear fit shown) as well as some other rep-
resentative values, displaying the convergence of non-linear to lin-
ear relationship with optimised td. Figures 2(c) and (d) show the
excellent correlation of time-shifted and scaled case data and
death data (cumulative and daily, respectively), using a delay
time of 4 days and a linear scaling factor of 0.144. What do
these parameters represent? The delay time is presumably a meas-
ure of the delay between reporting of confirmed cases and report-
ing of COVID-19-related deaths. While 4 days seem very short
compared to current estimates of the mean delay between the
onset of COVID-19 symptoms and death (or even between hospi-
talisation and death), which is around 12–22 days with a large

Fig. 1. COVID-19 cases and deaths in Italy to end of June (2020), using 3-day averaged data: (a) cumulative cases (left-hand axis) and deaths (right-hand axis); (b)
daily cases (left-hand axis) and deaths (right-hand axis).
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variance [2, 5, 9, 13, 20], it is possible to rationalise the shorter
apparent delay on the basis of delays in testing, diagnosis and
reporting of the disease, particularly in countries where the out-
break is severe. For example, in Italy from late February, testing
was prioritised for ‘patients with more severe clinical symptoms
who were suspected of having COVID-19 and required hospital-
isation’ [21]; a subsequent delay in test results could account for
the rather short delay between reported diagnosis and death. This
shows the inherent danger in analysing such datasets using time-
delay distributions from specific case data (which presumes a
much longer delay time). Moreover, the delay time may provide
some useful information about relative conditions in various
countries.

Using a time delay of 4 days in Italy, the scaling factor of 0.144
represents the ratio of deaths to cases, or in other words, an esti-
mate for the CFR, converging towards the crude CFR with time.
The calculated CFR of 14.4% is almost identical to the crude CFR
of 14.5% at the end of June, which is a good estimate for the ‘true’
CFR at the end of the outbreak. An interesting question is, at what
point in the outbreak does the CFR calculated using the TSD ana-
lysis give a good approximation to the final value? This is

important because early estimates of CFR are vital for informing
public health decisions. Figure 3 shows the CFR calculated at vari-
ous stages of the outbreak using data available to that point.
Errors represent uncertainty in the linear regression as well as
in td. Once the value of td has stabilised (from 26 March), the pre-
dicted value of CFR is very stable, and also remarkably accurate
(14.4%), compared to the crude value of 10.3% at that time.
Even a week earlier, the calculated CFR of 16.6% is a much better
estimate than the crude estimate of 8.4%.

It appears that this simple analysis generates two parameters of
significant interest: the apparent delay between reporting of
related cases and deaths, and the CFR. The estimates of these
parameters (which can be determined unequivocally once an out-
break is concluded) can be calculated during the course of an out-
break and give a better approximation than the crude CFR. It
should be noted that such an analysis cannot be applied during
purely exponential growth, because time-shifting (horizontally)
and scaling (vertically) an exponential function are equivalent
operations, as: Aeb(t−t0) = [Ae−bt0 ]ebt = Cebt , which means that
any value of td will give an equivalent relationship between C
(t− td) and D(t) with gradient depending on td. Therefore, the

Fig. 2. Time-shifted distribution analysis for Italy: (a) root-mean-squared error in linear regression as a function of delay time, td; (b) cumulative deaths as a func-
tion of cumulative cases, time-shifted by various td values, including the optimal value of 4 days with linear regression shown; (c) overlay of cumulative deaths and
time-shifted (and scaled) cases as a function of time, using optimal td; (d) overlay of daily deaths and time-shifted (and scaled) cases as a function of time using
optimal td.
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TSD analysis is only valid once exponential growth ends and the
daily case rate is approaching (or past) its peak. Alternatively, an
estimate for td could be used, but this reduces the simplicity and
transparency of the model. We note that others have calculated an
‘adjusted’ CFR early in the COVID-19 outbreak using a related
method with an assumed value of the time delay between onset
and death (because the true value was not known): Yuan et al.
[22] chose sample values of 1, 3 and 5 days to give estimates
from 3% to 13% for Italy in early March, while Wilson et al.
[23] used 13 days to give 0.8–3.5% for China in early March.

Application of TSD analysis to SARS 2003 outbreak in Hong
Kong

To test the TSD analysis method in determining CFR in the
middle of an outbreak, and compare it to alternative methods,
we analyse data from the SARS 2003 outbreak in Hong Kong
(17 March to 11 July), obtained from the World Health
Organization [24] and 3-day averaged. Figure 4 shows the cumu-
lative and daily number of SARS cases and deaths in Hong Kong
as a function of time.

It is apparent in Figure 4 that, as for COVID-19 data in Italy,
the shapes of the distributions of cases and deaths are analogous.
TSD analysis gives the following at the end of the outbreak: delay
time is 22 days, and calculated CFR is 16.7%, close to the final
crude CFR of 17.0%. The linear fit is reasonable given the noise
in the data, as shown in Figure 5. If we perform TSD analysis seri-
ally over the course of the outbreak, reasonable estimates can be
obtained from 17 April, giving values of 12–17% (with delay
times of 17–22 days) converging on 16.7%, as shown in
Figure 6. To compare, on 17 April the crude CFR is 5.3%,
which is a significant underestimate of the true value. The delay
time of 22 days is consistent with observations that the delay
between onset and death for SARS is approximately 3 weeks
[25]. We also applied TSD analysis to SARS data for other coun-
tries, giving a calculated CFR of 15% for Singapore and Canada
(although data are noisy), and 13% for Taiwan.

We can compare these estimates of the CFR with the more
complex mathematical models of Nishiura et al. [26] and Ghani
et al. [19] for the same SARS outbreak. The simple TSD analysis
gives better predictions than both the parametric mixture model

and modified Kaplan–Meier method described by Ghani et al.
[19], which use individual case data (dates of hospitalisation
and death or discharge from hospital) to estimate CFR using stat-
istical methods. Such methods can provide earlier estimates (from
1 April, giving around 7–8% CFR) but are less accurate at this
early stage than a simple estimate of CFR from data on closed
cases (recoveries and deaths) at the same dates [19], and are
later outperformed by our simple TSD method once sufficient
data to perform the analysis are available. Further, TSD analysis
requires only publicly reported case and death data (over time),
which are easier to obtain than individual case data including
onset dates.

Similarly, the model of Nishiura et al. [26] can provide much
earlier estimates of CFR than our analysis but the accuracy of
these estimates is uncertain and depends on the assumptions
made. Their analysis requires data on the dates of onset of con-
firmed cases and the distribution of times from onset to death;
the latter, in particular, is poorly known at the start of an outbreak
of a new disease. Nishiura et al. [26] analyse the Hong Kong SARS
data by assuming a simple exponential distribution for the time
between onset and death, with a mean of 36 days (from
Donnelly et al. [25] for SARS cases in Hong Kong up to 28
April, although Donnelly used a γ distribution), and using statis-
tical sampling to predict the CFR. The fact that this model pro-
vides a reasonable prediction of CFR at a specific time (around
the end of March) is likely fortuitous, given that it involves scaling
the crude CFR by a constant factor and will therefore overestimate
the CFR at later times (as well as very early times). Further, this
method requires the use of parametrised data (the time distribu-
tion from onset to death) that are not available at the time that the
predictions are purported to be made. In fact, when Nishiura et al.
[26] apply the method to early H1N1 (swine flu) data in 2009,
they are forced to use a time distribution calculated from histor-
ical data for H1N1 (Spanish) influenza from 1918 to 1919, which
is problematic; a sensitivity analysis shows that the predicted CFR
is sensitive to the choice of distribution parameters, making this
method somewhat difficult to apply in the circumstances for
which it is proposed.

In comparison, the TSD analysis is both transparent and
straightforward to implement, using only publicly available data
and no assumptions, and can provide a reasonably early estimate
(once exponential growth has sufficiently slowed) of CFR that
converges to the ‘true’ value. If the value of the time delay is
approximately known early in the outbreak, this could be used
to constrain the fitting procedure, but as observed already, it is
difficult either to know the time delay between onset and death
or to apply it to the time delay between reporting of cases and
deaths.

Time-shifted distribution analysis of international COVID-19
data

TSD analysis was performed on COVID-19 data from an exten-
sive range of countries, using datasets from Johns Hopkins
Center for Systems Science and Engineering [18], cross-checked
and supplemented with data from Worldometers.com and
3-day averaged. For most countries (as for Italy), the analysis
results in a robust linear fit and provides a stable estimate for
CFR and delay time. These data are shown in Table 1, organised
by region (Europe, Middle East, Asia, Oceania, North/Central
America, South America, Africa) and then by CFR (decreasing).
The corresponding plots of cases and deaths for each country

Fig. 3. Calculated case fatality ratio (using TSD analysis) for COVID-19 in Italy (2020)
as a function of time during an outbreak, alongside the crude CFR.
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are included in Appendix 1, to demonstrate the astonishing cor-
relation between case and death time profiles over a huge range of
locations and outbreak characteristics. For some countries, either
the data are insufficiently resolved (e.g. still in exponential growth
or very low numbers) or too noisy or unreliable for rigorous ana-
lysis. For other countries, the linear correlation is not robust and
varies over time; notable examples are Sweden, Brazil and the
USA, which are discussed in the following section. For countries
listed in Table 1, most analyses use data up until the end of May,
which is generally representative of the initial outbreak; for some
countries with later outbreaks, later end dates are used. In many
countries, more recent outbreaks have had dramatically different
CFR values to initial outbreaks (due largely to improved testing
rates); these can be analysed independently by selecting the
time frame studied, but values presented here are for the initial
outbreak in each country.

The most notable result is the huge range in both delay times
and calculated CFR estimates over different countries: from 0 to
24 days’ delay and from <1% to 20% CFR. The highest ratios
are calculated in Western Europe (up to 20%), followed by
North America (up to 15%), South America (up to 10%),
Africa (up to 7%), and lowest in the Middle East, Asia and
Oceania (up to 5%). It is problematic to draw conclusions
about relative COVID-19 virulence by comparing CFR values
between countries, because of vast differences in testing and
reporting regimes – in particular, the under-reporting of cases
(including mild or asymptomatic cases) due to inadequate testing,
but also differences in the classification or recognition of
COVID-19-related deaths. However, it is instructive to calculate
in this way, for any given country, the proportion of detected
cases that are currently proving fatal, for the purposes of public
health management and planning. For comparison, Mazumder
et al. [10] calculated CFRs for a range of countries using recovery
and death data from closed cases. They analysed 11 countries with
high outcome rates and sufficient progression in the outbreak for
analysis (at the end of April), but many of their calculated CFR
values are much higher than our estimates – for example, esti-
mated CFR above 30% for Italy, France and the USA at the end
of April – probably due to delays in recovery reporting, whereas
estimated CFR values for Germany, China and South Korea
match ours. The TSD analysis provides more reliable estimates
for a broader range of countries, due to the greater availability
of death and case data over recovery data.

The differences in delay times are also startling, ranging from 0
to 24 days with no clear pattern. This delay between reported
cases and deaths may be informative regarding the state of report-
ing or testing in a country but it is difficult to interpret. The mean
delay between the onset of symptoms and death has been esti-
mated at 12–22 days using case data [2, 5, 9, 13, 15, 20], but
there are also delays between the onset of symptoms and testing,
between testing and reporting of results, and in reporting of
deaths. For example, in Sweden, a mean delay of 5 days between
the onset of symptoms and the ‘statistical date’ of a reported case
(including 1 day from test to statistic) was reported [9]. In some
countries, tests are only administered to the sickest patients (many
days after onset), and in others, test results can take up to a few
weeks. We note that for Australia and New Zealand, where case
numbers have been low and testing extensive and rapid, the cal-
culated time delay is more than 10 days, whereas many of the
harder-hit countries in western Europe and North America
have much shorter calculated time delays.

Spain is an interesting case. Until 12 August, TSD analysis
using Spanish data from the Worldometer website [27] gave a
stable CFR of 10% with a delay time of 1 day. On that day, data
were ‘adjusted retrospectively by national authorities: case counts
adjusted from 2 February to 11 August and death counts adjusted
from 26 April to 11 August’ according to the World Health
Organisation (WHO) [28]. Using the revised data, the TSD ana-
lysis provided an even more robust fit; the CFR was almost
unchanged at 11% but the delay time was increased to 14 days.
This means that early data from Spain, which were erratic,
reflected a much shorter delay between reported cases and deaths.
In fact, the death data were largely unaffected by the August revi-
sion, but the dates of reported cases had shifted nearly 2 weeks
earlier, presumably to better capture the onset time. This shows
that a short delay time can reflect late reporting of cases, due
either to testing late in the progress of the disease (well after
onset) or delays in providing test results (or both). This may
explain the short delay times for the UK, Italy, the Netherlands
and the USA, as well as many other countries (e.g. 0 days’ delay
in Mexico). For countries that demonstrated reliable contact-tracing
and testing regimes, such as Australia, New Zealand and Germany,
delay times are close to 14 days, similar to the revised Spain data
and consistent with the estimated time course of fatal disease.

An important conclusion from this analysis concerns the perils
in calculating the CFR using established time distributions from

Fig. 4. SARS cases and deaths in Hong Kong (2003), using 3-day averaged data: (a) cumulative cases (left-hand axis) and deaths (right-hand axis); (b) daily cases
(left-hand axis) and deaths (right-hand axis).
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onset to death obtained from case studies, as is common. The
beauty of this simple method is its transparency – nothing is
assumed and the data are enabled to speak for themselves, and
can therefore give us information that we might not expect, rather
than merely reflecting our assumptions.

Another benefit of TSD analysis is that it provides near-term
predictive capacity for numbers of deaths, using the linear rela-
tionship between deaths and time-shifted cases. This predictive
capacity is intrinsically linked to the delay time, and hence has
the greatest utility when the delay time is significant. Figure 7
shows an example of this capacity for the second phase of the
COVID-19 outbreak in France from August. Using parameters
calculated from TSD analysis for August to mid-October,
reported case data can be time-shifted and linearly scaled to pre-
dict daily deaths for France for the next 3 weeks. This is useful for
public health planning and managing public expectations, as well
as decision-making regarding the implementation of restrictions.
Figure 7 also shows a sensitivity analysis for the same dataset,
using a fixed delay time of 15 days (dashed line; CFR = 0.7%)

Fig. 5. Time-shifted distribution analysis of SARS (2003) data for Hong Kong: (a) root-mean-squared error in linear regression as a function of delay time, td; (b)
linear regression for cumulative number of deaths as a function of cumulative number of cases (time-shifted by optimal td); (c) overlay of cumulative deaths and
time-shifted (and scaled) cases as a function of time, using optimal td; (d) overlay of daily deaths and time-shifted (and scaled) cases as a function of time, using
optimal td.

Fig. 6. Calculated case fatality ratio (using TSD analysis) for SARS in Hong Kong
(2003) as a function of time during an outbreak, alongside the crude CFR.
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Table 1. Case fatality ratio values and delay times calculated using time-shifted
distribution analysis for a range of countries (initial outbreak), ordered by
region and by CFR

Country CFR (%)
Delay time

(days) End date

Europe

France 20 7 31 May

Belgium 17 6 31 May

UK 16 3 31 May

Italy 14 4 31 May

Hungary 14 8 31 May

Netherlands 13 4 31 May

Sweden 13 5 31 May

Spain 11 14 31 May

Romania 7 6 31 May

Ireland 7 7 31 May

Slovenia 7 15 31 May

Bulgaria 6 7 31 May

North
Macedonia

6 8 31 May

Greece 6 8 31 May

Poland 6 8 16 May

Switzerland 6 11 31 May

Denmark 5 4 31 May

Finland 5 9 30 June

Germany 5 13 31 May

Croatia 5 18 31 May

Portugal 4 7 31 May

Czechia 4 11 31 May

Austria 4 13 31 May

Estonia 4 13 31 May

Moldova 3 0 31 July

Ukraine 3 4 31 May

Norway 3 13 31 May

Luxembourg 2.6 10 31 May

Latvia 2.6 23 31 May

Serbia 2.1 1 31 May

Armenia 2.0 7 31 July

Russia 1.8 14 31 July

Azerbaijan 1.5 6 31 July

Middle East

Iraq 5 5 16 July

Egypt 5 8 31 July

Afghanistan 3 10-17 31 July

Turkey 2.8 3 31 May

Israel 1.6 10 31 May

Saudi Arabia 1.2 14 31 July

(Continued )

Table 1. (Continued.)

Country CFR (%)
Delay time

(days) End date

Kuwait 0.8 2 30 June

Oman 0.6 6 31 July

Qatar 0.17 21 31 July

Asia

Japan 5 14 30 June

China 4 6 31 March

India 3 0 31 May

South Korea 2.4 18 30 June

Pakistan 2.1 2 31 July

Thailand 1.9 9 31 May

Malaysia 1.7 2 31 May

Taiwan 1.5 4-5 31 May

Bangladesh 1.3 1 31 July

Oceania

New Zealand 1.5 17 30 June

Australia 1.4 12 31 May

North/Central America

Mexico 11 0 31 August

Canada 9 10 30 June

USA 7 4 31 May

Guatemala 4 0 31 August

Cuba 4 4 31 May

Panama 3 2 31 May

South America

Ecuador 10 12 31 May

Bolivia 5 7 31 August

Brazil 3 0 31 August

Colombia 3 0 31 August

Peru 3 5 30 June

Chile 3 18 31 August

Argentina 2.4 7 31 August

Venezuela 0.8 0 31 August

French Guiana 0.7 12 30 September

Africa

Sudan 7 4 31 July

Tunisia 4 3 31 May

Senegal 2.3 14 30 September

Nigeria 2.3 0 31 July

South Africa 2.4 14 30 September

Ethiopia 1.6 0 30 September

Mayotte 1.3 1-2 31 May

Gabon 0.7 0 31 August

Guinea 0.6 3 31 August
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and 25 days (dotted line; CFR = 1.0%). The similarity between the
three lines shows that predictions are not very sensitive to the delay
time, even though the predicted CFR changes with the delay time.

Estimating the infection fatality ratio from the CFR

We are interested not only in the versatility and simplicity of this
method, but also in what conclusions may be drawn from the
parameters calculated – namely, the CFR and the delay time.
Reported CFR values for COVID-19 vary widely, but the best cur-
rent estimates of the true infection fatality ratio (IFR; taking into
account all infections including undiagnosed and asymptomatic)
are around 0.6–0.7% [4, 6] based on cruise ship and population
serology data. The very high CFR values calculated for many
European countries, in particular, are probably vastly inflated
due to the inadequate testing and overwhelmed health systems
in these countries, which result in the underestimation of case
numbers. However, it is an oversimplification to assume that
this is the only relevant factor that differs between countries,
since we know that demographics and health systems (among
other things) can also affect survival probability. Such an assump-
tion has been used in various studies, in order to compare the
effectiveness of different countries’ reporting systems and to cor-
rect case numbers [4, 29]. However, by assuming that the IFR is
identical everywhere at all times, valuable information is lost
and conclusions may be misleading.

In this study, we estimate the IFR from the CFR for a subset of
countries using seroprevalence data (to correct case numbers) and
excess death data (to correct death numbers). Along similar lines,
Ioannidis [30] previously estimated the IFR for various countries
using seroprevalence data and cumulative reported deaths at a
corresponding date, although this does not account for either
excess deaths or the relationship between cases and deaths over
time; in fact, using seroprevalence and death data alone reintro-
duces the issue of the unknown time delay between cases and
deaths, which must be approximated. We note that studies from
very early in the pandemic provided initial estimates for the
true prevalence of COVID-19 in specific places; a spatiotemporal
transmission model applied to Wuhan [31] gave a prevalence

factor of seven in January (published mid-March), and a statis-
tical analysis study of testing data in the USA [32] estimated a
prevalence factor of nine in April (published in May). These
early prevalence studies can be useful in roughly correcting the
CFR to estimate the IFR before rigorous seroprevalence data are
available. We also note that, while excess mortality may not exclu-
sively represent COVID-19 deaths, it is a more comprehensive
and reliable measure than reported deaths alone [33], especially
for comparative purposes.

In Australia, case numbers have been generally low (especially
before June) and testing rates high. It is unlikely that there have
been appreciable unreported COVID-related deaths [34].
However, even with robust testing, many cases will be undiag-
nosed, especially asymptomatic cases, which could constitute
half of all infections [35]. A recent seroprevalence study of elective
surgery patients in four states [36] estimated that the number of
true infections was around 5–10 times the number of reported
cases, although the authors state that the study cohort may not
reflect the general population (older individuals overrepresented).
This prevalence ratio gives an approximate IFR for Australia of
0.1–0.3%. Note that before June, most of Australia’s COVID-19
cases were returned travellers, which may affect the age distribu-
tion and baseline health of cases compared to the general popu-
lation. New Zealand, Taiwan and Thailand are similarly
circumstanced and have very similar CFR values, which are
expected to reflect similar IFR values to Australia. Singapore,
with its extremely low fatalities and extensive testing, did not
return a robust result from TSD analysis; nonetheless, the crude
CFR of 0.07% at the end of May is likely a lower bound for the
IFR.

The USA is an interesting case study. The TSD analysis is
problematic because the relationship between cases and deaths
changes over time, causing a mismatch between case and death
distributions and a downward drift in both CFR and delay
time. This may be due to incomplete data, or changes in testing
or reporting over time, which can affect both delay time and
case numbers. Alternatively, the CFR may be truly changing
over time, due to changes in treatment approach or in the demo-
graphics (or location) of COVID-19 cases [12]. In the USA, there
is also heterogeneity between states. To demonstrate, we present
the TSD analysis for the USA in Figure 8, and for the state of
New Jersey (which has the highest mortality rate in the USA) in
Figure 9. For the USA as a whole, there is clear variation over
time in the relationship between time-shifted case and death
data, demonstrated in both the poor linear fit and the mismatch
in distribution profiles. If we scrutinise individual state data, some
US states (including New Jersey, Illinois, Massachusetts, New
Mexico, Ohio and Pennsylvania) manifest a very reliable TSD
analysis, but others do not (e.g. California, North Carolina,
Oklahoma and Texas). Data from New Jersey (Fig. 9) give a stable
CFR around 8–9%, comparable to New York, Massachusetts and
Pennsylvania, while Ohio gives 7% and Illinois and New Mexico
give 5%.

One potential reason for the mismatch of case and death data
in the USA as a whole (and many of its states) is the under-
reporting of cases due to the low level of testing, which varies
over time. One measure of the adequacy of testing is the share
of daily COVID-19 tests that return a positive result, known as
the positive test rate (PTR). The WHO has suggested a PTR of
around 3–12% (or less) as a benchmark of adequate testing
[37]. In the USA, the PTR reached maximum levels in April,
with values between 18% and 22% from 1 to 21 April [37],

Fig. 7. Application of TSD analysis to predict deaths over time based on case data,
delay time and CFR in France from August. Solid line shows the prediction using
3-day averaged case data up to 16 October, shifted (20 days) and linearly scaled
using the CFR (0.8%). Dashed and dotted lines show a sensitivity analysis assuming
fixed delay times of 15 and 25 days, respectively.
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which is the region of greatest discrepancy between case and death
profiles in the initial outbreak, as seen in Figure 8. We would
expect that such a high PTR indicates that case numbers during
this time are greatly underestimated, which may explain the
poor fit from TSD analysis and the high CFR. Similar effects
are seen in data from Sweden and Brazil, which also had low
and variable testing rates and high PTR. Recent seroprevalence
studies in many states of the USA from March to May [38] sug-
gest that there were at least 11 times as many infections as
reported cases before the end of May. Excess death data indicate
that COVID-related deaths may be higher than reported by a fac-
tor of 1.4 for the same period [39]. Using these correction factors
for the CFR, the estimated IFR for the USA is 1.0% or below. For
comparison, a Worldometers calculation estimated an IFR of
1.4% in New York City in May [27], using a prevalence ratio of
10 from an early antibody study [40, 41].

In Europe, many of the most affected countries have very high
CFRs, often combined with relatively short delay times. For some
of these countries, seroprevalence studies provide the estimates of
the degree of undercounting of cases during the initial outbreak
[42–50], which can be utilised along with excess death data [39]

to estimate the IFR. These IFR values are shown in Table 2
along with the correction factors used. Some of the seroprevalence
data are preliminary, including studies of Germany, Sweden and
Italy, and others are for specific regions of the country and may
not be representative. Nonetheless, the estimated IFR values are
reasonable: Switzerland and Germany are around 0.6%, above
Australia and below Sweden and the USA at around 0.8%;
Belgium, UK and Spain are between 1% and 2%; and Italy higher
at around 3%. Ioannidis [30] also calculated the IFR for many of
these countries using seroprevalence studies, but using only
single-time seroprevalence and death data with an assumed
delay time (generally a week after the midpoint of the seropreva-
lence survey); these are also shown in Table 2 and are broadly
consistent with our values except where excess deaths are signifi-
cant (e.g. Spain). Our value for Germany is somewhat higher but
we expect that it is more reliable, using the scaling factor for cases
[42] with our calculated CFR rather than the absolute number of
deaths at a certain date in the German town of Gangelt [30],
which is very low and reflects a date early in the German outbreak.

Although the calculated IFR values are only approximate and
subject to revision, it is conceivable that higher IFR values may

Fig. 8. Time-shifted distribution analysis for the USA at the end of August: (a) root-mean-squared error in linear regression as a function of delay time, td; (b) linear
regression for cumulative number of deaths as a function of cumulative number of cases (time-shifted by optimal td); (c) overlay of cumulative deaths and time-
shifted (and scaled) cases as a function of time, using optimal td; (d) overlay of daily deaths and time-shifted (and scaled) cases as a function of time, using optimal
td. Note the mismatch between distributions of death and cases.
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Fig. 9. Time-shifted distribution analysis for New Jersey: (a) root-mean-squared error in linear regression as a function of delay time, td; (b) linear regression for
cumulative number of deaths as a function of cumulative number of cases (time-shifted by optimal td); (c) overlay of cumulative deaths and time-shifted (and
scaled) cases as a function of time, using optimal td; (d) overlay of daily deaths and time-shifted (and scaled) cases as a function of time, using optimal td.

Table 2. Estimated IFR from CFR (calculated in this work), using scaling factors from seroprevalence and excess death data

Country
CFR

[this work]

Scaling factors

IFR estimate
[this work] IFR from Ioannidisa [30]Deaths (excess) [39] Cases (prevalence)

Australia 1.4 1.0 5–10 [36] 0.1–0.3

Switzerland 6 1.0 10–12 [43] 0.5–0.6 0.45

Germany 5 0.8 5–7 [42] 0.5–0.8 0.28

Sweden 13 1.2 17–21 [44] 0.7–0.9 0.71

USAb 7 1.4 9–13 [38] 0.7–1.0 0.65

Belgium 17 1.0 13–15 [46] 1.1–1.3 1.09

UK 15 1.3 14–15 [45] 1.3–1.4

Spain 11 1.5 9–12 [47, 48] 1.3–1.8 1.15

Italy 14 1.5 6–7 [49, 50] 3.0–3.5

aIFR from Ioannidis [30] uses seroprevalence and concomitant deaths at a single time point.
bUSA value is a weighted mean of six states.
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reflect higher fatality ratios in particular places at particular times,
due to overwhelmed health systems in hard-hit areas or specific
demographics or baseline health of affected populations. For
example, it is reasonable to conclude that in Lombardy, Italy,
the older population and overwhelmed health system caused a
higher fatality ratio compared to other places. In fact, the differ-
ence in age distribution of cases between Italy and Australia up
to the end of May (using data from [51] and [52]) can alone
account for a factor of three in the IFR. Therefore, while differ-
ences in testing and reporting between different countries
undoubtedly account for much of the variation in IFR between
countries, we neither expect nor find that IFR is the same for all
COVID-19 outbreaks. Country-specific factors that influence IFR
and differ between countries include testing and reporting, age
demographics [53], health-care systems and treatments [12], mask-
wearing and other behaviours, climate and culture, transport infra-
structure and community mobility [54], genetic factors or preva-
lence of particular antibodies that affect immune response [55].

There is some evidence that the IFR might be decreasing over
time in some countries, especially those experiencing a ‘second
wave’. This is observed, for example, in the data for the USA in
Figure 8, demonstrated in the increasing mismatch in case and
death distributions later in the outbreak. We can use the TSD ana-
lysis to analyse the latter part of the outbreak (from July to
September), giving a CFR of 1.5–1.7% and a delay time of 2–3
weeks. Similar analyses for individual states of the USA give stable
CFR values from 1.1% to 2.3% with delay times between 4 and 24
days, with a mean of 1.6% CFR and 17 days’ delay over states with
robust fits. This later CFR is far lower than the value of 7% calcu-
lated early in the outbreak. We observe similar effects in various
other countries post-July including Japan (reduced to 1.1% and 22
days’ delay) and Spain, France and Portugal (all reduced to 0.8–
1.3%, 12–29 days’ delay). These values are all similar and may reflect
a reasonable estimate for CFR when testing is adequate; we would still
expect the IFR to be lower by a factor of at least two due to undiag-
nosed and asymptomatic cases. A decrease in CFR over time may
also indicate a change in the demographics of the case load or
improvements in treatment or even an increasing time delay between
reported cases and deaths, perhaps due to earlier diagnosis.

Conclusion

The TSD analysis is a straightforward way to predict CFR over
time, using only publicly available data on cases and deaths and
requiring no assumptions or parametrisations regarding the pro-
gress of the illness. The beauty of this method is in its transpar-
ency and simplicity; the lack of assumptions allows more to be
gained from the data, including trends that may be unexpected
or changing over time. This analysis method has particular utility
early in an outbreak, once sufficient data are available for a robust
fit (beyond the exponential growth phase). Without the benefit of
hindsight, the TSD-calculated values for CFR and time delay
between cases and deaths can shed light on the virulence of a dis-
ease and on the conditions that a particular country may be
facing. Excess death data (where available) may be used to correct
death data, while PTRs and other indicators or models of testing
adequacy can often give an early rough idea of the true prevalence
relative to reported case numbers. These data can be used to inter-
pret the CFR calculated using TSD analysis early in an outbreak,
and to approximate the IFR.

Our estimates of IFR range from 0.3% to 3%, with higher
values observed for countries that experienced more severe

outbreaks, perhaps reflecting the negative influence of over-
whelmed health systems and the spread of disease to more vulner-
able populations. The calculated time delay is also potentially
informative; for example, the 1-day delay calculated from early
data in Spain reflects the breakdown of testing and reporting sys-
tems at that time, whereas the revised delay time of 14 days shows
the recovery of the system and the likely delay between case diag-
nosis and death. In this way, TSD analysis of data from a particu-
lar place at a particular time can give useful local information on
the progression of an outbreak to inform public health planning
and policy.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821001436
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