ON THE DECOMPOSITION OF INTEGRAL LATTICES

Thomas Bier

Abstract

The purpose of this note is to record a few formulas relating the indices of various lattices and sublattices all arising from the decomposition of a euclidean space E into three mutually orthogonal subspaces $E=E_{0} \perp E_{1} \perp E_{2}$ which are rational with respect to a given lattice $\Lambda \subset E$. In the case that Λ is unimodular these formulas simplify to give very simple identities between various intersection lattices.

1.

We use the following notation: E denotes a euclidean space, $\Lambda \subset E$ any integral lattice with $\operatorname{rank}(\Lambda)=\operatorname{dim} E \cdot E_{i} \subset E$ is a rational subspace if and only if $\operatorname{rank}\left(\Lambda \cap E_{i}\right)=\operatorname{dim} E$. Let $E=E_{0} \perp E_{1} \perp \ldots \perp E_{n}$ be a decomposition of E into mutually orthogonal euclidean rational subspaces. For any set $I \subset\{0,1, \ldots, n\}$ we denote by $E_{I}=\underset{i \in I}{\perp} E_{i}$ the orthogonal sum of the spaces $E_{i}, i \in I$. We let
(1)

$$
\Delta_{I}=\Lambda \cap E_{I}, \Gamma_{I}=P_{I}(\mathrm{\Lambda})
$$

Received 24 September 1985.

[^0]be the lattice in E_{I} obtaining by intersecting Λ with E_{I} or
projecting Λ orthogonally into E_{I} via the map $P_{I}: E \rightarrow E_{I}$
respectively. Obviously we have $D_{I}\left(\Delta_{I}\right)=\Delta_{I}$, and therefore $\Delta_{I} \subset \Gamma_{I}$. We consider only $n=1$ and $n=2$.

2.

At first we let $n=1$ and recall some well-known results for the proofs see [1]). Let $\Lambda^{\prime} \subset \Lambda \subset E$ be sublatices with rank(Λ^{\prime}) $=\operatorname{dim} E$:

$$
\begin{equation*}
\Gamma_{i} / \Gamma_{i}^{\prime} \simeq \Lambda / \Lambda^{\prime}+\Delta_{j} \text { for }\{i, j\}=\{0,1\} . \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma_{0} / \Delta_{0} \simeq \Lambda / \Delta_{0} \perp \Delta_{1} \simeq \Gamma_{1} / \Delta_{1} . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left[\Gamma_{0}: \Delta_{0}\right]=\left[\Lambda: \Delta_{0} \perp \Delta_{1}\right]=\left[\Gamma_{1}: \Delta_{1}\right] \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{det}\left(\Gamma_{0}\right) \operatorname{det}\left(\Delta_{1}\right)=\operatorname{det}(\Lambda)=\operatorname{det}\left(\Gamma_{1}\right) \operatorname{det}\left(\Delta_{0}\right) . \tag{5}\\
{\left[\Lambda: \Lambda^{\prime}\right]=\left[\Gamma_{i}: \Gamma_{i}^{\prime}\right] \cdot\left[\Delta_{j}: \Delta_{j}^{\prime}\right] \text { for }\{i, j\}=\{0,1\} .} \tag{6}
\end{gather*}
$$

For any lattice Λ in a fixed euclidean space we denote by $\Lambda^{\#}$ the reciprocal of Λ, that is $\Lambda^{\#}=\{e \epsilon E \mid\langle e, x\rangle \in \mathbb{Z}$ for all $x \in \Lambda\}$. We have

$$
\begin{array}{ll}
\Gamma_{i}^{\#}=\Lambda^{\#} \cap E_{i} & i=0,1 \\
\Gamma_{i} \subseteq \Delta_{i}^{\#} & i=0,1 . \tag{8}
\end{array}
$$

Applying (7) in the reciprocal case we obtain

$$
\begin{equation*}
P_{i}\left(\Lambda^{\#}\right)^{\#}=\Delta_{i}, P_{i}\left(\Lambda^{\#}\right)=\Delta_{i}^{\#}, \tag{9}
\end{equation*}
$$

and combining this with (6) in the case $\Lambda^{\prime}=\Lambda, \Lambda=\Lambda^{\#}$ we get

$$
\begin{equation*}
\left[\Delta_{0}^{\#}: \Gamma_{0}\right] \cdot\left[\Delta_{1}^{\#}: \Gamma_{1}\right]=\left[\Lambda^{\#}: \Lambda\right] . \tag{10}
\end{equation*}
$$

In the case that Λ is unimodular, that is $\Lambda^{\#}=\Lambda$ we obtain from (10)

$$
\begin{equation*}
\Gamma_{i}=\Delta_{i}^{\#}, \Delta_{i}=r_{i}^{\#}, \tag{11}
\end{equation*}
$$

(12)

$$
\operatorname{det}\left(\Gamma_{1}\right)=\operatorname{det}\left(\Gamma_{2}\right), \operatorname{det}\left(\Delta_{1}\right)=\operatorname{det}\left(\Delta_{2}\right) .
$$

3.

We now consider the case $n=2$. Then we find

$$
\begin{array}{ll}
P_{j}\left(\Gamma_{i, j}\right)=\Gamma_{j} & \text { for }\{i, j\} \subset\{0,1,2\}, \\
\Gamma_{i, j} \cap E_{i}=P_{i}\left(\Delta_{i, k}\right) & \text { for }\{i, j, k\}=\{0,1,2\}, \\
P_{i}\left(\Delta_{i, j}^{\#}\right)=\Delta_{i}^{\#} \quad \text { for }\{i, j\} \subset\{0,1,2\} . \tag{15}
\end{array}
$$

LEMMA 1. For any Zattice Λ we have

$$
\begin{equation*}
P_{j}\left(\Delta_{i, j}\right)^{\#} \supseteq P_{j}\left(\Delta_{j, k}\right) \text { for }\{i, j, k\}=\{0,1,2\} . \tag{16}
\end{equation*}
$$

In the case where Λ is unimodular we have

$$
\begin{equation*}
P_{j}\left(\Delta_{i, j}\right)^{\#}=P_{j}\left(\Delta_{j, k}\right) \tag{17}
\end{equation*}
$$

Proof. $P_{j}\left(\Delta_{i, j}\right)^{\#}=\Delta_{i, j}^{\#} \cap E_{j} \quad$ by (7) ,

$$
\supseteq \Gamma_{i, j} \cap E_{j} \quad \text { by (8) }
$$

with equality in the unimodular case by (11),

$$
=P_{j}\left(\Delta_{j, k}\right) \quad \text { by }(14)
$$

We now apply (6) in the case where $\Lambda^{\prime}=\Delta_{j, k^{\prime}} \Lambda=\Gamma_{j, k}$ and use (14) to get

$$
\begin{array}{r}
{\left[\Gamma_{j, k}: \Delta_{j, k}\right]=\left[\Gamma_{j}: P_{j}\left(\Delta_{j, k}\right)\right] \cdot\left[P_{k}\left(\Delta_{i, k}\right): \Delta_{k}\right],} \tag{18}\\
\text { for }\{i, j, k\}=\{0,1,2\} .
\end{array}
$$

We obviously have the following inclusions

$$
\begin{equation*}
\Delta_{j} \subset P_{j}\left(\Delta_{j, k}\right) \subset P_{j}\left(\Delta_{i, j}\right)^{\#} \subset \Delta_{j}^{\#} \tag{19}
\end{equation*}
$$

which yield

$$
\begin{aligned}
{\left[\Delta_{j}^{\#}: \Delta_{j}\right] } & =\left[\Delta_{j}^{\#}: P_{j}\left(\Delta_{i, j}\right)^{\#}\right] \cdot\left[P_{j}\left(\Delta_{i, j}\right)^{\#}: P_{j}\left(\Delta_{j, k}\right)\right] \cdot\left[P_{j}\left(\Delta_{j, k}\right): \Delta_{j}\right] \\
& =\left[P_{j}\left(\Delta_{i, j}\right): \Delta_{j}\right] \cdot\left[P_{j}\left(\Delta_{j, k}\right): \Delta_{j}\right] \cdot\left[P_{j}\left(\Delta_{i, j}\right)^{\#}: P_{j}\left(\Delta_{j, k}\right)\right] \\
& =\left[P_{i}\left(\Delta_{i, j}\right): \Delta_{i}\right] \cdot\left[P_{k}\left(\Delta_{j, k}\right): \Delta_{k}\right] \cdot\left[P_{j}\left(\Delta_{i, j}\right)^{\#}: P_{j}\left(\Delta_{j, k}\right)\right]
\end{aligned}
$$

where the last equality follows from (4). This implies the following "product formula with correction term":

$$
\begin{equation*}
\left[\Delta_{j}^{\#}: \Delta_{j}\right]=\left[P_{i}\left(\Delta_{i, j}\right): \Delta_{i}\right] \cdot\left[P_{k}\left(\Delta_{j, k}\right): \Delta_{k}\right] \cdot\left[P_{j}\left(\Delta_{i, j}\right)^{\#}: P_{j}\left(\Delta_{j, k}\right)\right], \tag{20}
\end{equation*}
$$

where $\{i, j, k\}=\{0,1,2\}$. In the case that Λ is unimodular this implies by (17)

$$
\begin{gather*}
{\left[\Delta_{j}^{\#}: \Delta_{j}\right]=\left[P_{i}\left(\Delta_{i, j}\right): \Delta_{i}\right] \cdot\left[P_{k}\left(\Delta_{j, k}\right): \Delta_{k}\right]} \tag{21}\\
\text { for }\{i, j, k\}=\{0,1,2\} .
\end{gather*}
$$

On the other hand we have the inclusions

$$
\begin{equation*}
\Delta_{j} \subset P_{j}\left(\Delta_{i, j}\right) \subset \Gamma_{j} \tag{22}
\end{equation*}
$$

which can be used as above, together with (18), to give

$$
\begin{equation*}
\frac{\left[\Gamma_{i}: \Delta_{i}\right]}{\left[\Gamma_{j}: \Delta_{j}\right]}=\frac{\left[P_{i}\left(\Delta_{i, k}\right): \Delta_{i}\right]}{\left[P_{j}\left(\Delta_{j, k}\right): \Delta_{j}\right]} \text { for }\{i, j, k\}=\{0,1,2\} . \tag{23}
\end{equation*}
$$

Using (10) with $\Lambda=\Delta_{i, j}$ we find

$$
\begin{equation*}
\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]=\left[\Delta_{i}^{\#}: P_{i}\left(\Delta_{i, j}\right)\right] \cdot\left[\Delta_{j}^{\#}: P_{j}\left(\Delta_{i, j}\right)\right] \tag{24}
\end{equation*}
$$

By using (24) and (23) we find

$$
\begin{equation*}
\left[P_{i}\left(\Delta_{i, j}\right)^{\#}: P_{i}\left(\Delta_{i, k}\right)\right]=\frac{\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]}{\left[\Delta_{j}^{\#}: \Delta_{j}\right]} \cdot \frac{\left[\Gamma_{j}: \Delta_{j}\right]}{\left[\Gamma_{k}: \Delta_{k}\right]}, \tag{25}
\end{equation*}
$$

which we can substitute into (20) to obtain

$$
\begin{equation*}
\left[P_{j}\left(\Delta_{i, j}\right): \Delta_{j}\right] \cdot\left[P_{k}\left(\Delta_{i, k}\right): \Delta_{k}\right]=\frac{\left[\Delta_{i}^{\#}: \Delta_{i}\right]\left[\Delta_{j}^{\#}: \Delta_{j}\right]}{\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]} \cdot \frac{\left[\Gamma_{k}: \Delta_{k}\right]}{\left[\Gamma_{j}: \Delta_{j}\right]} \tag{26}
\end{equation*}
$$

Note that in the unimodular case (26) reduces to (21).
By (6) with $\Lambda=\Delta_{i, j}^{\#}, \Lambda^{\prime}=\Delta_{i, j}$ we obtain

$$
\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]=\left[\Delta_{i, j}^{\#} \cap E_{i}: \Delta_{i, j} \cap E_{i}\right] \cdot\left[P_{j}\left(\Delta_{i, j}^{\#}\right): P_{j}\left(\Delta_{i, j}\right)\right]
$$

so we get
(27) $\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]=\left[P_{i}\left(\Delta_{i, j}\right)^{\#}: \Delta_{i}\right] \cdot\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{i} \cdot \Delta_{i, j}^{\#}\right)\right]$ by (7), (2) .

But for the expression $\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{i} \cap \Delta_{i, j}^{\#}\right)\right]$ we have the following product formula

$$
\begin{equation*}
\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]=\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{j} \cap \Delta_{i, j}^{\#}\right)\right]\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{i} \cap \Delta_{i, j}^{\#}\right)\right], \tag{28}
\end{equation*}
$$

which combined with (27) gives

$$
\begin{equation*}
\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{j} \cap \Delta_{i, j}^{\#}\right)\right]=\left[P_{i}\left(\Delta_{i, j}\right)^{\#}: P_{i}\left(\Delta_{i, k}\right)\right]\left[P_{i}\left(\Delta_{i, k}\right): \Delta_{i}\right] \tag{29}
\end{equation*}
$$

Equation (29) together with the following equation
(30)

$$
\frac{\left[P_{i}\left(\Delta_{i, j}\right)^{\#}: P_{i}\left(\Delta_{i, k}\right)\right]}{\left[P_{j}\left(\Delta_{i, j}\right)^{\#}: P_{j}\left(\Delta_{j, k}\right)\right]}=\frac{\left[\Delta_{i}^{\#}: \Gamma_{i}\right]}{\left[\Delta_{j}^{\#}: \Gamma_{j}\right]},
$$

which easily follows from (25), implies

$$
\begin{equation*}
\left[\Delta_{k}^{\#}: \Gamma_{k}\right] \cdot\left[\Delta_{i, j}^{\#}: \Delta_{i, j}+\left(E_{j}^{n} \Delta_{i, j}^{\#}\right)\right]=\left[\Delta_{i}^{\#}: \Gamma_{i}\right]\left[\Delta_{j, k}^{\#}: \Delta_{j, k}+\left(E_{j}^{n} \Delta_{j, k}^{\#}\right)\right] \tag{31}
\end{equation*}
$$

Analogously to (23) we find

$$
\begin{equation*}
\frac{\left[\Delta_{i}^{\#}: \Delta_{i}\right]}{\left[\Delta_{j}^{\#}: \Delta_{j}\right]}=\frac{\left[\Delta_{i, k}^{\#}: \Delta_{i, k}+\left(E_{k} n \Delta_{i, k}^{\#}\right)\right]}{\left[\Delta_{j, k}^{\#}: \Delta_{j, k}+\left(E_{k} n \Delta_{j, k}^{\#}\right)\right]} \tag{32}
\end{equation*}
$$

Finally we note

$$
\begin{equation*}
\frac{\left[\Delta_{i}^{\#}: \Delta_{i}\right]\left[\Delta_{j}^{\#}: \Delta_{j}\right]}{\left[\Delta_{i, j}^{\#}: \Delta_{i, j}\right]}=\left[P_{i}\left(\Delta_{i, j}\right): \Delta_{i}\right]^{2}=\left[P_{j}\left(\Delta_{i, j}\right): \Delta_{j}\right]^{2} \tag{33}
\end{equation*}
$$

4.

We now assume that Λ is unimodular. Then we have (11) and (17) and all the above computations simplify. We let

$$
\begin{align*}
& \phi_{0}=\left[\Delta_{1,2}: \Delta_{1} \perp \Delta_{2}\right], \\
& \phi_{1}=\left[\Delta_{0,2}: \Delta_{0} \perp \Delta_{2}\right], \tag{34}\\
& \phi_{2}=\left[\Delta_{0,1}: \Delta_{0} \perp \Delta_{1}\right],
\end{align*}
$$

and by (4), (11), (17), (29), (31) we find

$$
\begin{equation*}
\phi_{i}=\left[P_{j}\left(\Delta_{j, k}\right): \Delta_{j}\right]=\left[P_{k}\left(\Delta_{j, k}\right): \Delta_{k}\right], \tag{35}
\end{equation*}
$$

(37)

$$
\begin{equation*}
\phi_{i}=\left[\Gamma_{i, j}: \Delta_{i, j}+\left(E_{i} \cap \Gamma_{i, j}\right)\right]=\left[\Gamma_{i, k}: \Delta_{i, k}+\left(E_{i} \cap \Gamma_{i, k}\right)\right] . \tag{37}
\end{equation*}
$$

The product formulas all become equal to

$$
\begin{equation*}
\left[\Delta_{i}^{\#}: \Delta_{i}\right]=\phi_{j} \cdot \phi_{k} \text { for } \quad\{i, j, k\}=\{0,1,2\} \tag{38}
\end{equation*}
$$

In the case that E_{0} is spanned by the vector (1, ..,1) $\varepsilon \mathbb{R}^{n}=E$, (38) gives a set of three formulas, one of which was previously proved in [1].

References

[1] Th. Bier, "A product formula for Euler's totient", BuZl. London Math. Soc. (to appear).

Department of Mathematics
National University of Singapore
Kent Ridge
Singapore 0511

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

