BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 73-78.

ON THE DECOMPOSITION OF INTEGRAL LATTICES

THOMAS BIER

The purpose of this note is to record a few formulas relating the indices of various lattices and sublattices all arising from the decomposition of a euclidean space E into three mutually orthogonal subspaces $E = E_0 \perp E_1 \perp E_2$ which are rational with respect to a given lattice $\Lambda \subset E$. In the case that Λ is unimodular these formulas simplify to give very simple identities between various intersection lattices.

1.

We use the following notation: E denotes a euclidean space, $\Lambda \subset E$ any integral lattice with rank $(\Lambda) = \dim E$. $E_i \subset E$ is a rational subspace if and only if rank $(\Lambda \cap E_i) = \dim E$. Let $E = E_0 \perp E_1 \perp \ldots \perp E_n$ be a decomposition of E into mutually orthogonal euclidean rational subspaces. For any set $I \subset \{0, 1, \ldots, n\}$ we denote by $E_I = \perp E_i$ the orthogonal sum of the spaces E_i , $i \in I$. We let

(1)
$$\Delta_{I} = \Lambda \cap E_{I} , \Gamma_{I} = P_{I}(\Lambda) ,$$

Received 24 September 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

be the lattice in E_I obtaining by intersecting Λ with E_I or projecting Λ orthogonally into E_I via the map $P_I : E \rightarrow E_I$ respectively. Obviously we have $P_I(\Delta_I) = \Delta_I$, and therefore $\Delta_I \subset \Gamma_I$. We consider only n = 1 and n = 2.

2.

At first we let n = 1 and recall some well-known results (for the proofs see [1]). Let $\Lambda' \subset \Lambda \subset E$ be sublattices with rank(Λ') = dim E:

(2)
$$\Gamma_i / \Gamma_i' \simeq \Lambda / \Lambda' + \Delta_j \text{ for } \{i, j\} = \{0, 1\}$$

(3)
$$\Gamma_0/\Delta_0 \simeq \Lambda/\Delta_0 \perp \Delta_1 \simeq \Gamma_1/\Delta_1$$
.

(4)
$$[\Gamma_0:\Delta_0] = [\Lambda:\Delta_0 \bot \Delta_1] = [\Gamma_1:\Delta_1] .$$

(5)
$$\det(\Gamma_0)\det(\Delta_1) = \det(\Lambda) = \det(\Gamma_1)\det(\Delta_0)$$
.

(6)
$$[\Lambda:\Lambda'] = [\Gamma_i:\Gamma_i'] \cdot [\Delta_j:\Delta_j'] \text{ for } \{i,j\} = \{0,1\} .$$

For any lattice Λ in a fixed euclidean space we denote by $\Lambda^{\#}$ the reciprocal of Λ , that is $\Lambda^{\#} = \{e \in E \mid \le e, x > e \in \mathbb{Z} \text{ for all } x \in \Lambda\}$. We have

(7)
$$\Gamma_{i}^{\#} = \Lambda^{\#} \cap E_{i} \quad i = 0, 1,$$

(8)
$$\Gamma_i \subseteq \Delta_i^{\#}$$
 $i = 0, 1$

Applying (7) in the reciprocal case we obtain

(9)
$$P_i(\Lambda^{\#})^{\#} = \Delta_i, P_i(\Lambda^{\#}) = \Delta_i^{\#},$$

and combining this with (6) in the case $\Lambda' = \Lambda$, $\Lambda = \Lambda^{\#}$ we get

(10)
$$[\Delta_0^{\#}:\Gamma_0] \cdot [\Delta_1^{\#}:\Gamma_1] = [\Lambda^{\#}:\Lambda] .$$

In the case that Λ is unimodular, that is $\Lambda^{\#} = \Lambda$ we obtain from (10)

(11)
$$\Gamma_i = \Delta_i^{\sharp}, \ \Delta_i = \Gamma_i^{\sharp},$$

(12)
$$det(\Gamma_1) = det(\Gamma_2)$$
, $det(\Delta_1) = det(\Delta_2)$

3.

We now consider the case n = 2. Then we find

(13)
$$P_j(\Gamma_{i,j}) = \Gamma_j$$
 for $\{i,j\} \in \{0,1,2\}$,

(14)
$$\Gamma_{i,j} \cap E_i = P_i(\Delta_{i,k}) \text{ for } \{i,j,k\} = \{0,1,2\},$$

(15)
$$P_i(\Delta_{i,j}^{\#}) = \Delta_i^{\#}$$
 for $\{i,j\} \in \{0,1,2\}$.

LEMMA 1. For any lattice Λ we have

(16)
$$P_j(\Delta_{i,j})^{\#} \ge P_j(\Delta_{j,k})$$
 for $\{i,j,k\} = \{0,1,2\}$.

In the case where Λ is unimodular we have

(17)
$$P_{j}(\Delta_{i,j})^{\#} = P_{j}(\Delta_{j,k}) .$$
Proof. $P_{j}(\Delta_{i,j})^{\#} = \Delta_{i,j}^{\#} \cap E_{j}$ by (7),

$$\supseteq \Gamma_{i,j} \cap E_{j}$$
 by (8),
with equality in

with equality in the unimodular case by (11),

$$= P_j(\Delta_{j,k}) \quad \text{by (14)}.$$

We now apply (6) in the case where $\Lambda' = \Delta_{j,k}$, $\Lambda = \Gamma_{j,k}$ and use (14) to get

(18)
$$[\Gamma_{j,k}:\Delta_{j,k}] = [\Gamma_{j}:P_{j}(\Delta_{j,k})] \cdot [P_{k}(\Delta_{i,k}):\Delta_{k}] ,$$
for $\{i,j,k\} = \{0,1,2\} .$

We obviously have the following inclusions

(19)
$$\Delta_{j} \subset P_{j}(\Delta_{j,k}) \subset P_{j}(\Delta_{i,j})^{\#} \subset \Delta_{j}^{\#},$$

which yield

$$\begin{bmatrix} \Delta_{j}^{\#} : \Delta_{j} \end{bmatrix} = \begin{bmatrix} \Delta_{j}^{\#} : P_{j} (\Delta_{i,j})^{\#} \end{bmatrix} \cdot \begin{bmatrix} P_{j} (\Delta_{i,j})^{\#} : P_{j} (\Delta_{j,k}) \end{bmatrix} \cdot \begin{bmatrix} P_{j} (\Delta_{j,k}) : \Delta_{j} \end{bmatrix}$$
$$= \begin{bmatrix} P_{j} (\Delta_{i,j}) : \Delta_{j} \end{bmatrix} \cdot \begin{bmatrix} P_{j} (\Delta_{j,k}) : \Delta_{j} \end{bmatrix} \cdot \begin{bmatrix} P_{j} (\Delta_{i,j})^{\#} : P_{j} (\Delta_{j,k}) \end{bmatrix}$$
$$= \begin{bmatrix} P_{i} (\Delta_{i,j}) : \Delta_{i} \end{bmatrix} \cdot \begin{bmatrix} P_{k} (\Delta_{j,k}) : \Delta_{k} \end{bmatrix} \cdot \begin{bmatrix} P_{j} (\Delta_{i,j})^{\#} : P_{j} (\Delta_{j,k}) \end{bmatrix}$$

where the last equality follows from (4). This implies the following "product formula with correction term":

(20)
$$[\Delta_{j}^{\sharp}:\Delta_{j}] = [P_{i}(\Delta_{i,j}):\Delta_{i}] \cdot [P_{k}(\Delta_{j,k}):\Delta_{k}] \cdot [P_{j}(\Delta_{i,j})^{\sharp}:P_{j}(\Delta_{j,k})],$$

where $\{i, j, k\} = \{0, 1, 2\}$. In the case that Λ is unimodular this implies by (17)

(21)
$$[\Delta_{j}^{\sharp}:\Delta_{j}] = [P_{i}(\Delta_{i,j}):\Delta_{i}] \cdot [P_{k}(\Delta_{j,k}):\Delta_{k}],$$

for
$$\{i, j, k\} = \{0, 1, 2\}$$
.

On the other hand we have the inclusions

(22)
$$\Delta_{j} \subset P_{j}(\Delta_{i,j}) \subset \Gamma_{j},$$

which can be used as above, together with (18), to give

(23)
$$\frac{\begin{bmatrix} \Gamma_i : \Delta_i \end{bmatrix}}{\begin{bmatrix} \Gamma_j : \Delta_j \end{bmatrix}} = \frac{\begin{bmatrix} P_i (\Delta_i, k) : \Delta_i \end{bmatrix}}{\begin{bmatrix} P_j (\Delta_j, k) : \Delta_j \end{bmatrix}} \text{ for } \{i, j, k\} = \{0, 1, 2\}.$$

Using (10) with $\Lambda = \Delta_{i,j}$ we find

(24)
$$[\Delta_{i,j}^{\sharp}:\Delta_{i,j}] = [\Delta_{i}^{\sharp}:P_{i}(\Delta_{i,j})] \cdot [\Delta_{j}^{\sharp}:P_{j}(\Delta_{i,j})] .$$

By using (24) and (23) we find

(25)
$$[P_{i}(\Delta_{i,j})^{\#}:P_{i}(\Delta_{i,k})] = \frac{[\Delta_{i,j}^{\#}:\Delta_{i,j}]}{[\Delta_{j}^{\#}:\Delta_{j}]} \cdot \frac{[\Gamma_{j}:\Delta_{j}]}{[\Gamma_{k}:\Delta_{k}]} ,$$

which we can substitute into (20) to obtain

(26)
$$[P_{j}(\Delta_{i,j}):\Delta_{j}] \cdot [P_{k}(\Delta_{i,k}):\Delta_{k}] = \frac{[\Delta_{i}^{\#}:\Delta_{i}][\Delta_{j}^{\#}:\Delta_{j}]}{[\Delta_{i,j}^{\#}:\Delta_{i,j}]} \cdot \frac{[\Gamma_{k}:\Delta_{k}]}{[\Gamma_{j}:\Delta_{j}]}$$

Note that in the unimodular case (26) reduces to (21). By (6) with $\Lambda = \Delta_{i,j}^{\#}$, $\Lambda' = \Delta_{i,j}$, we obtain

$$[\Delta_{i,j}^{\sharp}:\Delta_{i,j}] = [\Delta_{i,j}^{\sharp}\cap E_i:\Delta_{i,j}\cap E_i] \cdot [P_j(\Delta_{i,j}^{\sharp}):P_j(\Delta_{i,j})],$$

so we get

(27)
$$[\Delta_{i,j}^{\#}:\Delta_{i,j}] = [P_i(\Delta_{i,j})^{\#}:\Delta_i] \cdot [\Delta_{i,j}^{\#}:\Delta_{i,j} + (E_i \cap \Delta_{i,j}^{\#})]$$
 by (7), (2)

 $[\Delta_{i,j}^{\#}:\Delta_{i,j}^{+}(E_{i}\cap\Delta_{i,j}^{\#})]$ we have the following But for the expression product formula

(28)
$$[\Delta_{i,j}^{\sharp}:\Delta_{i,j}] = [\Delta_{i,j}^{\sharp}:\Delta_{i,j} + (E_j \cap \Delta_{i,j}^{\sharp})][\Delta_{i,j}^{\sharp}:\Delta_{i,j} + (E_i \cap \Delta_{i,j}^{\sharp})] ,$$

which combined with (27) gives

(29)
$$[\Delta_{i,j}^{\sharp}:\Delta_{i,j}+(E_{j}\cap\Delta_{i,j}^{\sharp})] = [P_{i}(\Delta_{i,j})^{\sharp}:P_{i}(\Delta_{i,k})][P_{i}(\Delta_{i,k}):\Delta_{i}] .$$

Equation (29) together with the following equation

(30)
$$\frac{\left[P_{i}(\Delta_{i,j})^{\#}:P_{i}(\Delta_{i,k})\right]}{\left[P_{j}(\Delta_{i,j})^{\#}:P_{j}(\Delta_{j,k})\right]} = \frac{\left[\Delta_{i}^{\#}:\Gamma_{i}\right]}{\left[\Delta_{j}^{\#}:\Gamma_{j}\right]} ,$$

which easily follows from (25), implies

$$(31) \quad [\Delta_k^{\#}:\Gamma_k] \cdot [\Delta_i^{\#}, j:\Delta_i, j^+(E_j \cap \Delta_i^{\#}, j)] = [\Delta_i^{\#}:\Gamma_i][\Delta_j^{\#}, k:\Delta_j, k^+(E_j \cap \Delta_j^{\#}, k)] .$$

Analogously to (23) we find

...

(32)
$$\frac{\begin{bmatrix}\Delta_{i}^{\#}:\Delta_{j}\end{bmatrix}}{\begin{bmatrix}\Delta_{j}^{\#}:\Delta_{j}\end{bmatrix}} = \frac{\begin{bmatrix}\Delta_{i,k}^{\#}:\Delta_{i,k}^{+}(E_{k}\cap\Delta_{i,k}^{\#})\end{bmatrix}}{\begin{bmatrix}\Delta_{j,k}^{\#}:\Delta_{j,k}^{+}(E_{k}\cap\Delta_{j,k}^{\#})\end{bmatrix}}$$

Finally we note

(33)
$$\frac{\left[\Delta_{i}^{\#}:\Delta_{i}\right]\left[\Delta_{j}^{\#}:\Delta_{j}\right]}{\left[\Delta_{i,j}^{\#}:\Delta_{i,j}\right]} = \left[P_{i}\left(\Delta_{i,j}\right):\Delta_{i}\right]^{2} = \left[P_{j}\left(\Delta_{i,j}\right):\Delta_{j}\right]^{2}$$

4.

We now assume that Λ is unimodular. Then we have (11) and (17) and all the above computations simplify. We let

$$\phi_{0} = \begin{bmatrix} \Delta_{1,2} : \Delta_{1} \bot \Delta_{2} \end{bmatrix},$$

$$\phi_{1} = \begin{bmatrix} \Delta_{0,2} : \Delta_{0} \bot \Delta_{2} \end{bmatrix},$$

$$\phi_{2} = \begin{bmatrix} \Delta_{0,1} : \Delta_{0} \bot \Delta_{1} \end{bmatrix},$$

and by (4), (11), (17), (29), (31) we find

Thomas Bier

(35)
$$\phi_{i} = [P_{j}(\Delta_{j,k}):\Delta_{j}] = [P_{k}(\Delta_{j,k}):\Delta_{k}],$$

(36)
$$\phi_i = [\Gamma_j : P_j(\Delta_{i,j})] = [\Gamma_k : P_k(\Delta_{i,k})],$$

$$(37) \qquad \phi_i \approx [\Gamma_{i,j}:\Delta_{i,j}+(E_i\cap\Gamma_{i,j})] = [\Gamma_{i,k}:\Delta_{i,k}+(E_i\cap\Gamma_{i,k})] .$$

The product formulas all become equal to

(38)
$$[\Delta_{i}^{\#}:\Delta_{i}] = \phi_{j} \cdot \phi_{k} \text{ for } \{i,j,k\} = \{0,1,2\} .$$

In the case that E_0 is spanned by the vector $(1, ..., 1) \in \mathbb{R}^n = E$, (38) gives a set of three formulas, one of which was previously proved in [1].

References

[1] Th. Bier, "A product formula for Euler's totient", Bull. London Math. Soc. (to appear).

Department of Mathematics National University of Singapore Kent Ridge Singapore 0511

78