A C^{0}-COLLOCATION-LIKE METHOD FOR ELLIPTIC EQUATIONS ON RECTANGULAR REGIONS

ZBIGNIEW LEYK ${ }^{1}$

(Received I November 1993; revised 31 May 1995)

Abstract

We describe a C^{0}-collocation-like method for solving two-dimensional elliptic Dirichlet problems on rectangular regions, using tensor products of continuous piecewise polynomials. Nodes of the Lobatto quadrature formula are taken as the points of collocation. We show that the method is stable and convergent with order $h^{r}(r \geq 1)$ in the H^{1}-norm and $h^{r+1}(r \geq 2)$ in the L^{2}-norm, if the collocation solution is a piecewise polynomial of degree not greater than r with respect to each variable. The method has an advantage over the Galerkin procedure for the same space in that no integrals need be evaluated or approximated.

1. Introduction

In this paper we define and analyze a C^{0}-collocation-like method for elliptic Dirichlet problems with variable coefficients on a rectangular domain. The method uses tensor products of continuous piecewise-polynomial spaces. The collocation points are the nodes of the Lobatto quadrature formula.

The idea of a collocation method at Gaussian points was introduced and analyzed for two-point boundary value problems by de Boor and Swartz [4]. A C^{1} finite-element collocation method was studied by Prenter and Russell [13] and Percell and Wheeler [12]. The well-known advantage of collocation finite-element methods over Galerkin finite-element methods is that the formation of the coefficients in the resulting system of equations is very fast since no integrals need be evaluated or approximated. But the smoothness of the approximate solution required by C^{1} - and C^{2}-collocation methods is higher than that required by the finite-element method for the same problems. In order to weaken the smoothness C^{0}-collocation methods have been considered, where the approximate solution is only continuous (see $[5,6,7,10,11,15]$) and $C^{0}-H^{-1}$ methods where the approximate solution is discontinuous (see [7]). The methods presented

[^0]in $[5,6,7,15]$ are combinations of the collocation methods with the finite-element method and in these methods one also has to evaluate or approximate integrals but fewer than is required in the finite-element method. The methods described in [10, 11] need not do any evaluation or approximation of integrals. The method presented in this paper is a nontrivial extension of the C^{0}-collocation-like method introduced in [10] to two-dimensional elliptic problems.

The outline of this paper is as follows. In Section 2 we formulate an elliptic Dirichlet problem in a weak form and describe a partition of a rectangle. The C^{0}-collocationlike method is defined in Section 3. In Section 4 the equivalent variational formulation of the method is introduced. The stability of the method and some auxiliary results are asserted in Section 5. The optimal order error estimates in the H^{1} and L^{2} norms are obtained in Section 6. The idea of the analysis used in Section 5 and 6 is taken from [2], but the analysis is substantially different from that used in [2] since the second partial derivatives must also be taken into consideration (not only the first partial derivatives as in the standard finite-element method). Therefore most of the auxiliary results are also new.

2. The problem and notation

The basic notation used in the paper is adopted from [2]. For any bounded open set Ω in two-dimensional space, the Sobolev space $W^{m, q}(\Omega)$ consists of functions f such that $\partial^{\alpha} f \in L^{q}(\Omega),|\alpha| \leq m$, with the norm

$$
\|f\|_{m, q, \Omega}=\left(\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{0, q, \Omega}^{q}\right)^{1 / q}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ are multi-integers, $\partial^{\alpha}=\partial_{1}^{\alpha_{1}} \partial_{2}^{\alpha_{2}}, \partial_{1}=\partial / \partial x, \partial_{2}=\partial / \partial y$ and $\|f\|_{0, q, \Omega}^{q}=\int_{\Omega}|f|^{q} d x d y$. We shall also use the seminorms $|\cdot|_{m, q, \Omega}$. If $q=2$, we shall write $H^{m}(\Omega),\|\cdot\|_{m, \Omega}$ and $|\cdot|_{m, \Omega}$ instead of $W^{m, 2}(\Omega),\|\cdot\|_{m, 2, \Omega}$ and $|\cdot|_{m, 2, \Omega}$, respectively. The Sobolev space $H^{m}(\Omega)$ is equipped with the inner product $(\cdot, \cdot)_{m, \Omega}$. $H_{0}^{1}(\Omega)$ is defined as the closure of the space $C_{0}^{\infty}(\Omega)$ in the sense of the norm $\|\cdot\|_{1, \Omega}$. The restriction of a function v to the set K is denoted by $v_{\mid K}$. Throughout the paper C (also with subscripts) will denote a generic constant with possibly different values in different contexts. The space of all polynomials in x (in y) of degree at most r restricted to the interval $K_{x}\left(K_{y}\right)$ is denoted by $P_{r}^{x}\left(K_{x}\right)$ (by $P_{r}^{y}\left(K_{y}\right)$) and $R_{r}\left(K_{x} \times K_{y}\right)=P_{r}^{x}\left(K_{x}\right) \otimes P_{r}^{y}\left(K_{y}\right), r \geq 0$. The space of all polynomials in x, y on $K \subset \mathbb{R}^{2}$ of degree at most r is denoted by $P_{r}(K)$.

We consider the Dirichlet problem

$$
\begin{align*}
L u & =f & & \text { on } \Omega \tag{2.1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}
$$

where $\Omega=\left(0, l_{1}\right) \times\left(0, l_{2}\right)$ and

$$
\begin{align*}
L u(x, y)= & -\sum_{m, l=1}^{2} \partial_{m}\left(a_{m l}(x, y) \partial_{l} u(x, y)\right) \\
& +\sum_{l=1}^{2} b_{l}(x, y) \partial_{l} u(x, y)+c(x, y) u(x, y) \tag{2.2}
\end{align*}
$$

We can rewrite the problem (2.1) in a weak form.
Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=l(v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

where

$$
a(u, v)=\int_{\Omega}\left(\sum_{m, l=1}^{2} a_{m l} \partial_{l} u \partial_{m} v+\sum_{l=1}^{2} b_{l} \partial_{l} u v+c u v\right) d x d y
$$

and

$$
l(v)=\int_{\Omega} f v d x d y
$$

We shall also consider the problem dual'to (2.3).
Find $w \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(v, w)=l(v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.4}
\end{equation*}
$$

Assume that the following conditions are satisfied.
Z1: $\quad a_{m l}, b_{l} \in C^{1}(\Omega)$ for $m, l=1,2$ and $c, f \in C(\Omega)$.
Z2: There exists a constant $a_{0}>0$ such that for each $\left(\xi_{1}, \xi_{2}, \eta\right) \in \mathbb{R}^{3}$ and $(x, y) \in \Omega$

$$
\sum_{m, l=1}^{2} a_{m l}(x, y) \xi_{m} \xi_{l}+\sum_{l=1}^{2} b_{l}(x, y) \xi_{l} \eta+c(x, y) \eta^{2} \geq a_{0} \sum_{l=1}^{2} \xi_{l}^{2}
$$

From Z 2 it follows that the coefficient matrix $\left\{a_{m l}(x, y)\right\}$ must be positive definite and $c(x, y) \geq 0$ for any $(x, y) \in \Omega$.

Under the conditions Z 1 and Z 2 there exist unique solutions to the problems (2.3) and (2.4) (see [2]). Moreover, the solutions u and w belong to $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and satisfy

$$
\begin{equation*}
\|u\|_{2, \Omega} \leq C_{1}\|f\|_{0, \Omega}, \quad\|w\|_{2, \Omega} \leq C_{2}\|f\|_{0, \Omega} \tag{2.5}
\end{equation*}
$$

where C_{1}, C_{2} are constants independent of u, w, f (see [9]).

We divide the interval $\left[0, l_{1}\right]$ into subintervals $e_{i}^{x}=\left[x_{i}, x_{i+1}\right], i=0,1, \ldots, N_{1}-1$, where

$$
0=x_{0}<x_{1}<\cdots<x_{N_{1}-1}<x_{N_{1}}=l_{1} .
$$

The interval $\left[0, l_{2}\right]$ is divided analogously into $e_{j}^{y}=\left[y_{j}, y_{j+1}\right]$. Write $e_{i j}=e_{i}^{x} \times e_{j}^{y}$.
Let $h_{1, i}=\left(x_{i+1}-x_{i}\right), h_{2, j}=\left(y_{j+1}-y_{j}\right)$ and

$$
h=\max _{k=1,2}\left(\max _{0 \leq i \leq N_{k}-1} h_{k, i}\right), \quad h_{\min }=\min _{k=1,2}\left(\min _{0 \leq i \leq N_{k}-1} h_{k, i}\right)
$$

We assume that the family of partitions is regular, that is, there exists a constant $\sigma>0$ such that $h / h_{\text {min }} \leq \sigma$, if $h \rightarrow 0$.

For $f \in W^{m, q}\left(e_{i j}\right)$, we adopt the notation

$$
\|f\|_{m, q}=\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\|f\|_{m, q, e_{i j}}^{q}\right)^{1 / q} .
$$

If $q=2$, we shall write $\|f\|_{m}$ instead of $\|f\|_{m, 2}$.
Let $V_{r}=V_{r}^{x} \otimes V_{r}^{y}$, where V_{r}^{x} and V_{r}^{y} are finite-element spaces of the form

$$
V_{r}^{x}=\left\{v \in C\left(\left[0, l_{1}\right]\right): v_{l e_{i}^{x}} \in P_{r}^{x}\left(e_{i}^{x}\right), i=0, \ldots, N_{1}-1, v(0)=v\left(l_{1}\right)=0\right\}
$$

and

$$
V_{r}^{y}=\left\{v \in C\left(\left[0, l_{2}\right]\right): v_{l e_{j}^{y}} \in P_{r}^{y}\left(e_{j}^{y}\right), j=0, \ldots, N_{2}-1, v(0)=v\left(l_{2}\right)=0\right\}
$$

3. The C^{0}-collocation-like method

The Lobatto points $\left\{t_{i}\right\}_{i=1}^{r-1}$ on $(0,1)$ are the roots of the orthogonal Jacobi polynomial $J_{r-1}^{(1,1)}(t)=C_{r} P_{r}^{\prime}(t), t \in[0,1]$, where P_{r} is the Legendre polynomial of degree r, $P_{r}:[0,1] \longrightarrow \mathbb{R}_{\mathbb{R}}$ and C_{r} is a constant. Let $t_{0}=0, t_{r}=1$.

Introduce the affine mappings of the form

$$
F_{i}^{x}(t)=x_{i}+h_{1, i} t, \quad F_{j}^{y}(t)=y_{j}+h_{2, j} t, \quad t \in[0,1] .
$$

Denote by $\left(x_{i k}, y_{j l}\right)=\left(F_{i}^{x}\left(t_{k}\right), F_{j}^{y}\left(t_{l}\right)\right), k, l=0, \ldots, r$, the Lobatto points on the element $e_{i j}$. Note that $x_{i-1, r}=x_{i 0}=x_{i}, y_{j-1, r}=y_{j 0}=y_{j}$. Further, by

$$
\left\lfloor g \mathbf{\rrbracket}_{x}(x, y)=g(x-, y)-g\left(x_{+}, y\right)\right.
$$

and

$$
\llbracket 8 \mathbf{I}_{y}(x, y)=g(x, y-)-g\left(x, y_{+}\right)
$$

we denote the discontinuity jump of g at (x, y) in the x and y axes respectively. The weighted averages of g at a point (x, y) are denoted by

$$
\{g\}_{x}(\alpha)(x, y)=\alpha g(x-, y)+(1-\alpha) g(x+, y)
$$

and

$$
\{g\}_{y}(\beta)(x, y)=\beta g(x, y-)+(1-\beta) g\left(x, y_{+}\right)
$$

where $\alpha, \beta \in[0,1]$. Set

$$
D_{m} g(x, y)=\sum_{l=1}^{2} a_{m l}(x, y) \partial_{l} g(x, y), \quad m=1,2,(x, y) \in \Omega,
$$

the conormal derivative of g associated with the operator L.
The C^{0}-collocation-like method is defined as follows.
Find $U \in V_{r}$ such that

$$
\begin{gather*}
L U\left(x_{i k}, y_{j l}\right)=f\left(x_{i k}, y_{j l}\right), \tag{3.1}\\
w \hbar_{1, i}^{-1}\left[D_{1} U \mathbf{l}_{x}\left(x_{i}, y_{j l}\right)+\{L U\}_{x}\left(\alpha_{i}\right)\left(x_{i}, y_{j l}\right)=f\left(x_{i}, y_{j l}\right),\right. \tag{3.2}\\
\left.w \hbar_{2, i}^{-1} \llbracket D_{2} U\right]_{y}\left(x_{i k}, y_{j}\right)+\{L U\}_{y}\left(\beta_{j}\right)\left(x_{i k}, y_{j}\right)=f\left(x_{i k}, y_{j}\right), \tag{3.3}\\
\left.w \hbar_{1, i}^{-1}\left\{\llbracket D_{1} U\right]_{x}\right\}_{y}\left(\beta_{j}\right)\left(x_{i}, y_{j}\right)+w \hbar_{2, j}^{-1}\left\{\left[D_{2} U\right]_{y}\right\}_{x}\left(\alpha_{i}\right)\left(x_{i}, y_{j}\right) \tag{3.4}\\
\quad+\left\{\{L U\}_{x}\left(\alpha_{i}\right)\right\}_{y}\left(\beta_{j}\right)\left(x_{i}, y_{j}\right)=f\left(x_{i}, y_{j}\right),
\end{gather*}
$$

where $1 \leq k, l \leq r-1$ and $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$ for (3.1)(3.3) and $i=1, \ldots, N_{1}-1, j=1, \ldots, N_{2}-1$ for (3.4). Moreover, $w=r^{2}+r$, $\hbar_{1, i}=h_{1, i-1}+h_{1, i}, \hbar_{2, j}=h_{2, j-1}+h_{2, j}, \alpha_{i}=h_{1, i-1} / \hbar_{1, i}, \beta_{j}=h_{2 . j-1} / \hbar_{2, j}$.

Remark. If $r=1$, then Equations (3.1)-(3.3) vanish. If $h_{1, i}=h_{1}$ and $h_{2, j}=h_{2}$ for any i and j then $\hbar_{1, i}=2 h_{1}$ and $\hbar_{2, j}=2 h_{2}$ and $\alpha_{i}=\beta_{j}=0.5$.

In the Appendix we present another form of the system (3.1)-(3.4).

4. The variational form

We want to give an equivalent formulation of the method (3.1)-(3.4) in a variational form in order to simplify its investigation. The variational formulation uses a discrete inner product based on the Lobatto points. In this way we are able to prove existence
and uniqueness as well as obtain optimal rates of convergence for the method (3.1)(3.4). The variational formulation is not good for practical computations. Instead, the system (3.1)-(3.4) should be used.

Let $I(g)=\int_{0}^{1} g(t) d t$ and denote by $Q(g)$ the Lobatto quadrature formula on $[0,1]$ (see [3]), that is, $Q(g)=\sum_{j=0}^{r} w_{j} g\left(t_{j}\right)$. Note that $w_{0}=w_{r}=\left(r^{2}+r\right)^{-1}$. The following relation is satisfied (see [3]):

$$
\begin{equation*}
Q(g)=I(g), \quad \forall g \in P_{2 r-1}([0,1]) \tag{4.1}
\end{equation*}
$$

Let $T(g)=g(1-)-g\left(0_{+}\right)$and $I_{i}^{x}(g)=h_{1, i} I(\tilde{g}), Q_{i}^{x}(g)=h_{1, i} Q(\tilde{g}), T_{i}^{x}(g)=T(\tilde{g})$, where $\tilde{g}(t)=g\left(F_{i}^{x}(t)\right), t \in[0,1]$. Analogously we define $I_{j}^{y}(g), Q_{j}^{y}(g), T_{j}^{y}(g)$. Moreover, we define the tensor product of any two of the above functionals as follows

$$
\left(G_{1}^{x} \otimes G_{2}^{y}\right)(f)=G_{1}^{x}\left(G_{2}^{y}(f)\right)
$$

where $f=f(x, y)$ and G_{1} and G_{2} stands for I, Q or T with indices i or j.
We transform the integrals $\int_{e_{i j}} D_{k} w \partial_{k} v d x d y$ using Green's formula.
For $k=1$

$$
\begin{aligned}
\int_{e_{i j}} D_{1} w \partial_{1} v d x d y & =\int_{e_{j}^{y}}\left(\left(D_{1} w v\right)\left(x_{i+1}-, t\right)-\left(D_{1} w v\right)\left(x_{i+}, t\right)\right) d t-\int_{e_{i j}} \partial_{1} D_{1} w v d x d y \\
& =\left(T_{i}^{x} \otimes I_{j}^{y}\right)\left(D_{1} w v\right)-\left(I_{i}^{x} \otimes I_{j}^{y}\right)\left(\partial_{1} D_{1} w v\right)
\end{aligned}
$$

and for $k=2$

$$
\int_{e_{i j}} D_{2} w \partial_{2} v d x d y=\left(I_{i}^{x} \otimes T_{j}^{y}\right)\left(D_{2} w v\right)-\left(I_{i}^{x} \otimes I_{j}^{y}\right)\left(\partial_{2} D_{2} w v\right)
$$

We recall that $D_{k} w, k=1,2$, is the co-normal derivative of w associated with L. We can now rewrite the bilinear form $a(w, v)$ as

$$
\begin{equation*}
a(w, v)=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(T_{i}^{x} \otimes I_{j}^{y}\right)\left(D_{1} w v\right)+\left(I_{i}^{x} \otimes T_{j}^{y}\right)\left(D_{2} w v\right)+\left(I_{i}^{x} \otimes I_{j}^{y}\right)(L w v) \tag{4.2}
\end{equation*}
$$

Substituting in (4.2) the quadratures Q_{i}^{x} and Q_{j}^{y} for the integrals I_{i}^{x} and I_{j}^{y} respectively, we obtain the bilinear form $a_{h}(w, v)$, that is,

$$
\begin{equation*}
a_{h}(w, v)=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(T_{i}^{x} \otimes Q_{j}^{y}\right)\left(D_{1} w v\right)+\left(Q_{i}^{x} \otimes T_{j}^{y}\right)\left(D_{2} w v\right)+\left(Q_{i}^{x} \otimes Q_{j}^{y}\right)(L w v) \tag{4.3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
l_{h}(v)=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(Q_{i}^{x} \otimes Q_{j}^{y}\right)(f v) \tag{4.4}
\end{equation*}
$$

The problem
find $U \in V_{r}$ such that

$$
\begin{equation*}
a_{h}(U, V)=l_{h}(V), \quad \forall V \in V_{r} \tag{4.5}
\end{equation*}
$$

is equivalent to (3.1)-(3.4). To show this, we choose $\left\{\phi_{i k}^{x} \phi_{j l}^{y}\right\}$ as the basis functions of V_{r} satisfying

$$
\begin{gather*}
\phi_{i k}^{x} \in V_{r}^{x}, \quad \phi_{j l}^{y} \in V_{r}^{y} \tag{4.6}\\
\phi_{i k}^{x}\left(x_{m n}\right)=\delta_{i m} \delta_{k n} \tag{4.7}\\
\phi_{j l}^{y}\left(y_{m n}\right)=\delta_{j m} \delta_{l n} \tag{4.8}
\end{gather*}
$$

where $x_{m n}$ and $y_{m n}$ are grid nodes on x and y axis respectively and $\delta_{i m}$ denotes the Kronecker delta. To get (3.1)-(3.4) one should substitute the functions $\phi_{i k}^{x} \phi_{j l}^{y}$ for V in (4.5), use (4.7), (4.8) and reduce these expressions.

5. Stability of the method

In this section we prove that the method is stable. The main result of this section is that the bilinear form $a_{h}(W, V)$ is uniformly V_{r}-elliptic for sufficiently small h.

THEOREM 1. Let $a_{m l} \in W^{2, \infty}\left(e_{i j}\right), b_{l}, c \in C\left(e_{i j}\right)$ for $i=0,1, \ldots, N_{1}-1, j=$ $0,1, \ldots, N_{2}-1$, where $l, m=1,2$, and let Condition Z 2 be satisfied. Then there exist constants $\gamma \geq 0$ and $h_{0} \geq 0$ such that

$$
\begin{equation*}
\gamma\|V\|_{1, \Omega}^{2} \leq a_{h}(V, V), \quad \forall V \in V_{r} \tag{5.1}
\end{equation*}
$$

for any $h \leq h_{0}$.
Stability, and hence existence and uniqueness of the solution to (3.1)-(3.4), is a consequence of Theorem 1 .

COROLLARY 1. Let $f \in C\left(e_{i j}\right)$ for $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$, and the assumptions of Theorem 1 be satisfied. Then for any $h \leq h_{0}$

$$
\|U\|_{1, \Omega} \leq C\|f\|_{0, \infty, \Omega}
$$

where U is the unique solution to (3.1)-(3.4) and h_{0} is given in Theorem 1.
Let $\tilde{K}=[0,1] \times[0,1]$. We introduce the quadrature error functionals on $e_{i j}$

$$
E_{i j}(f)=I_{i}^{x} \otimes I_{j}^{y}(f)-Q_{i}^{x} \otimes Q_{j}^{y}(f)
$$

where $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$. To prove Theorem 1 we need several auxiliary lemmas. Here s, k and q are some parameters and n is a degree of a polynomial p.

Lemma 1. Let $2 / q<s \leq 2 r-n, q \in[1, \infty], 0 \leq k \leq n$. Assume that $f \in$ $W^{s+k, q}\left(e_{i j}\right)$. Then for any $p \in R_{n}\left(e_{i j}\right)$

$$
\begin{align*}
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}(f p)\right| & \leq C h^{s+k-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|p\|_{k, e_{i j}}, \tag{5.2}\\
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes S_{j}^{y}(f p)\right| & \leq C h^{s+k+1-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|p\|_{k, e_{i j}}, \tag{5.3}\\
\left|T_{i}^{x} \otimes\left(Q_{j}^{y}-I_{j}^{y}\right)(f p)\right| & \leq C h^{s+k-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|p\|_{k, e_{i j}}, \tag{5.4}\\
\left|S_{i}^{x} \otimes\left(Q_{j}^{y}-I_{j}^{y}\right)(f p)\right| & \leq C h^{s+k+1-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|p\|_{k, e_{j}}, \tag{5.5}\\
\left|E_{i j}(f p)\right| & \leq C h^{s+k+1-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|p\|_{k, e_{i j}}, \tag{5.6}
\end{align*}
$$

where S stands for Q or I and if $k=0$, then the norm $\|f\|_{s+k, q, e_{i j}}$ is replaced by the seminorm $|f|_{s+k, q, e_{i j}}$.

Proof. First we shall prove inequality (5.2). We have

$$
\begin{equation*}
\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}(f p)=h_{1, i}(Q-I) \otimes T(\tilde{f} \tilde{p}), \tag{5.7}
\end{equation*}
$$

where $\tilde{f}\left(\xi_{1}, \xi_{2}\right)=f\left(F_{i}^{x}\left(\xi_{1}\right), F_{j}^{y}\left(\xi_{2}\right)\right)$ and $\tilde{p}\left(\xi_{1}, \xi_{2}\right)=p\left(F_{i}^{x}\left(\xi_{1}\right), F_{j}^{y}\left(\xi_{2}\right)\right)$ for $\left(\xi_{1}, \xi_{2}\right) \in$ \tilde{K}.
I. We prove (5.2) for $k=0$. Let $G(\tilde{f})=(Q-I) \otimes T(\tilde{f} \tilde{p})$. The functional G is linear with respect to $\tilde{f} \in W^{s, q}(\tilde{K})$ and continuous for $s>2 / q,(q \in[1, \infty])$ since

$$
|G(\tilde{f})| \leq C\|\tilde{f}\|_{0, \infty, \tilde{K}}\|\tilde{p}\|_{0, \infty, \bar{K}} \leq C\|\tilde{f}\|_{s, q, \tilde{K}}\|\tilde{p}\|_{0, \tilde{K}} .
$$

In the above, the equivalence of norms in the finite-dimensional space $R_{n}(\tilde{K})$ and the inclusion $W^{s . q}(\tilde{K}) \subset L^{\infty}(\tilde{K})(s>2 / q)$ have been used (see [2]).

Since $(I-Q) \otimes T(g)=0$ for $g \in R_{s+n-1}(\tilde{K}) \subset R_{2 r-1}(\tilde{K})$ (see (4.1)), the functional G vanishes over the space $P_{s-1}(\tilde{K}) \subset R_{s-1}(\tilde{K})$. By the Bramble-Hilbert Lemma (see [1])

$$
\begin{equation*}
|G(\tilde{f})| \leq C|\tilde{f}|_{s, q, \bar{K}}\|\tilde{p}\|_{0, \tilde{K}} . \tag{5.8}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}(f p)\right|=h_{1 . i}|(Q-I) \otimes T(\tilde{f} \tilde{p})| & \leq C h|\tilde{f}|_{s, q . \tilde{K}}\|\tilde{p}\|_{0, \tilde{K}} \\
& \leq C h^{s-(2 / q)}|f|_{s, q, e_{i j}, j}\|p\|_{0, e_{i j}},
\end{aligned}
$$

where $2 / q<s \leq 2 r-n, q \in[1, \infty], 0 \leq n$.
II. We prove (5.2) for $k \geq 1$ using the method of mathematical induction with respect to k. Note that the lemma is valid for $k=0$ (see Part I of the proof). Let the lemma be true for $k=l \geq 0$. We prove that it is true for $k=l+1$. Let $p_{i j} \in P_{1}\left(e_{i j}\right)$, if $l=0$, and $p_{i j} \in P_{l}\left(e_{i j}\right)$, if $l \geq 1$, be an interpolatory polynomial of p, that is,
$p_{i j}\left(z_{i j m}\right)=p\left(z_{i j m}\right)$, where $z_{i j m}$ are different points from $e_{i j}$ with $m=1,2,3$, if $l=0$, and with $m=1, \ldots, l(l+1) / 2$, if $l \geq 1$. We have

$$
\begin{equation*}
\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}(f p)=\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}\left(f p_{i j}\right)+\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}\left(f\left(p-p_{i j}\right)\right) \tag{5.9}
\end{equation*}
$$

We now estimate the first term of the right-hand side of (5.9) using (5.2) with $k=l$, $n=l$. For $2 / q<s \leq 2 r-l, q \in[1, \infty]$

$$
\begin{equation*}
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}\left(f p_{i j}\right)\right| \leq C h^{s+l-(2 / q)}\|f\|_{s+l, q, e_{i j}}\|p\|_{l, e_{i j}} \tag{5.10}
\end{equation*}
$$

We have used the following inequalities: for $l=0,1$

$$
\left\|p_{i j}\right\|_{l, e_{j}} \leq\left\|p-p_{i j}\right\|_{l, e_{i j}}+\|p\|_{l, e_{i j}} \leq C h^{2-l}|p|_{2, e_{i j}}+\|p\|_{l, e_{i j}} \leq C\|p\|_{l, e_{i j}},
$$

since $|p|_{2, e_{i j}} \leq C h^{l-2}|p|_{l, e_{i j}}$ (see [2]); for $l \geq 2$

$$
\left\|p_{i j}\right\|_{l, e_{i j}} \leq\left\|p-p_{i j}\right\|_{l, e_{i j}}+\|p\|_{l, e_{i j}} \leq C\|p\|_{l, e_{i j}}
$$

Replacing s by $s+1$ in (5.10), we get

$$
\begin{equation*}
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}\left(f p_{i j}\right)\right| \leq C h^{s+l+1-(2 / q)}\|f\|_{s+l+1, q, e_{i j}}\|p\|_{l, e_{i j}} \tag{5.11}
\end{equation*}
$$

for $-1+2 / q<s \leq 2 r-l-1$. Note that (5.11) is also valid for $2 / q<s \leq 2 r-n$, if $l+1 \leq n<2 r-2 / q$. We estimate the second term of the right-hand side of (5.9) using (5.2) with $k=l, 2 / q<s \leq 2 r-n, q \in[1, \infty], l \leq n$. We have

$$
\begin{align*}
\left|\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes T_{j}^{y}\left(f\left(p-p_{i j}\right)\right)\right| & \leq C h^{s+l-(2 / q)}\|f\|_{s+l, q, e_{i j}}\left\|p-p_{i j}\right\|_{l, e_{i j}} \\
& \leq C h^{s+l+1-(2 / q)}\|f\|_{s+l, q, e_{i j}}|p|_{l+1, e_{i j}} \tag{5.12}
\end{align*}
$$

We have used the inequalities

$$
\left\|p-p_{i j}\right\|_{0, e_{i j}} \leq C h^{2}|p|_{2, e_{i j}}
$$

and

$$
|p|_{2, e_{i j}} \leq C h^{-1}|p|_{1, e_{i j}}
$$

for $l=0$ (see [2]). Combining (5.9) with (5.11) and (5.12) yields (5.2) with $k=l+1$. Hence (5.2) is valid for any $0 \leq k<2 r-2 / q$. Analogously we estimate (5.4).

Similarly we get bounds on (5.3) and (5.5). Note that now we have one h more (compare with (5.7)), since

$$
S^{x} \otimes\left(Q^{y}-I^{y}\right)(f p)=h_{1, i} h_{2, j} S \otimes(Q-I)(\tilde{f} \tilde{p})
$$

and

$$
\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes S_{j}^{y}(f p)=h_{1, i} h_{2, j}(Q-I) \otimes S(\tilde{f} \tilde{p}),
$$

where S stands for Q or I. Combining (5.3) and (5.5) with the inequality

$$
\left.\left|E_{i j}(f p)\right| \leq\left|Q_{i}^{x} \otimes\left(Q_{j}^{y}-I_{j}^{y}\right)(f p)\right|+\mid\left(Q_{i}^{x}-I_{i}^{x}\right) \otimes I_{j}^{y}\right)(f p) \mid
$$

gives (5.6).
The following lemma will be useful in showing the equivalence of norms in V_{r}.
Lemma 2. There exists a constant $C_{0}>0$ independent of h such that for any $V \in V_{r}$

$$
\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{k=1}^{2}\left(\partial_{k} V\right)^{2}\right)\right)^{1 / 2} \geq C_{0}\|V\|_{1, \Omega} .
$$

Proof. We have

$$
\begin{aligned}
Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{k=1}^{2}\left(\partial_{k} V\right)^{2}\right) & =h_{1, i} h_{2, j} Q \otimes Q\left(h_{1, i}^{-2}\left(\partial_{1} \tilde{V}\right)^{2}+h_{2, j}^{-2}\left(\partial_{2} \tilde{V}\right)^{2}\right) \\
& \geq \sigma^{-1} Q \otimes Q\left(\sum_{k=1}^{2}\left(\partial_{k} \tilde{V}\right)^{2}\right),
\end{aligned}
$$

where $\tilde{V}\left(\xi_{1}, \xi_{2}\right)=V\left(F_{i}^{x}\left(\xi_{1}\right), F_{j}^{y}\left(\xi_{2}\right)\right)$ for $\left(\xi_{1}, \xi_{2}\right) \in \tilde{K}$.
The mapping $\tilde{V} \rightarrow\left(Q \otimes Q\left(\sum_{k=1}^{2}\left(\partial_{k} \tilde{V}\right)^{2}\right)\right)^{1 / 2}$ defines a norm in the quotient space $R_{r}(\tilde{K}) / P_{0}(\tilde{K})$. Since the mapping $\tilde{V} \rightarrow|\tilde{V}|_{1, \tilde{K}}$ is also a norm in this finitedimensional space, there exists a positive constant C_{1} such that

$$
\left(Q \otimes Q\left(\sum_{k=1}^{2}\left(\partial_{k} \tilde{V}\right)^{2}\right)\right)^{1 / 2} \geq C_{1}|\tilde{V}|_{1, \tilde{K}}, \quad \forall \tilde{V} \in R_{r}(\tilde{K}) .
$$

Hence, for any $V \in V_{r}$

$$
Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{k=1}^{2}\left(\partial_{k} V\right)^{2}\right) \geq \sigma^{-1} C_{1}^{2}|\tilde{V}|_{1, \tilde{K}}^{2} \geq C|V|_{1, e_{i j}}^{2}
$$

and

$$
\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{k=1}^{2}\left(\partial_{k} V\right)^{2}\right) \geq C|V|_{1, \Omega}^{2} .
$$

To complete the proof, notice that the seminorm $|\cdot|_{1, \Omega}$ is a norm in the space $H_{0}^{1}(\Omega)$ equivalent to the norm $\|\cdot\|_{1, \Omega}$.

Lemma 3. Let $a_{m l} \in W^{2 . \infty}\left(e_{i j}\right)$ for $i=0,1, \ldots, N_{1}-1, j=0,1, \ldots, N_{2}-1$, where $m, l=1,2$. Then for any $V \in V_{r}$

$$
\begin{equation*}
\left|\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\partial_{1}\left(D_{1} V V\right)\right)\right| \leq C_{1} h\|V\|_{1, \Omega}^{2}, \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} Q_{i}^{x} \otimes\left(I_{j}^{y}-Q_{j}^{y}\right)\left(\partial_{2}\left(D_{2} V V\right)\right)\right| \leq C_{2} h\|V\|_{1, \Omega}^{2} . \tag{5.14}
\end{equation*}
$$

Proof. We first prove (5.13). Since $W^{2, \infty}\left(e_{i j}\right) \subset C^{1}\left(e_{i j}\right)$, we can define $a_{1 l}^{0}=$ $a_{1 i}\left(x_{i}, y_{j}\right), l=1,2$, for fixed i and j. Furthermore,

$$
\begin{equation*}
\left\|a_{1 l}-a_{1 l}^{0}\right\|_{0, \infty, e_{i j}} \leq C h\left|a_{1 l}\right|_{1, \infty, e_{i j}} \tag{5.15}
\end{equation*}
$$

(see [2]). By virtue of (4.1) it follows that

$$
\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(a_{11}^{0} \partial_{1} W V\right)=0
$$

for any $W, V \in R_{r}\left(e_{i j}\right)$. Thus, we can write

$$
\begin{equation*}
\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\partial_{1}\left(a_{11} \partial_{l} V V\right)\right)=J_{1}+J_{2}+J_{3} \tag{5.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{1}=\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\partial_{1} a_{1 l} \partial_{l} V V\right) \\
& J_{2}=\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\left(a_{1 l}-a_{1 l}^{0}\right) \partial_{1} \partial_{l} V V\right) \\
& J_{3}=\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\left(a_{1 l}-a_{1 l}^{0}\right) \partial_{l} V \partial_{1} V\right)
\end{aligned}
$$

In the sequel, we shall frequently use the result

$$
\begin{equation*}
|V|_{m, q, e_{i j}} \leq C h^{l-m} h^{(2 / q)-1}|V|_{i, e_{i j}} \tag{5.17}
\end{equation*}
$$

where $V \in R_{n}\left(e_{i j}\right), q \in[1, \infty], 0 \leq l \leq m, n \geq 0$ and the constant C is independent of h, see [2, p. 140]. Also we make use of the inequality

$$
\begin{equation*}
|f w|_{m, q, e_{i j}} \leq C \sum_{l=0}^{m}|f|_{l, \infty, e_{i j}}|w|_{m-l, q, e_{i j}} \tag{5.18}
\end{equation*}
$$

where $f \in W^{m, \infty}\left(e_{i j}\right), w \in W^{m, q}\left(e_{i j}\right), m \geq 0, q \in[1, \infty]$ and C is independent of h (see [2, p. 192]).

Using (5.17), (5.18) and (5.3) with $f=\left(\partial_{1} a_{1 t}\right) V, p=\partial_{l} V, s=1, k=0, n=r$, $q=\infty$, we estimate the first term of the right-hand side of (5.16) as

$$
\begin{equation*}
\left|J_{1}\right| \leq C h^{2}\left|\partial_{1} a_{1 l} V\right|_{1, \infty, e_{i j}}\left\|\partial_{l} V\right\|_{0, e_{i j}} \leq C h\left\|a_{11}\right\|_{2, \infty, e_{i j}}\|V\|_{1, e_{i j}}^{2} \tag{5.19}
\end{equation*}
$$

We now get a bound on the second term of the right-hand side of (5.16) using (5.15), (5.17), (5.18) and (5.3) with $f=\left(a_{1 l}-a_{1 l}^{0}\right) V, p=\partial_{1} \partial_{l} V, s=2, k=0, q=\infty$, where $n=r, r \geq 2$, if $l=1$, or $n=r-1, r \geq 1$, if $l=2$. This yields

$$
\begin{align*}
\left|J_{2}\right| & \leq C h^{3}\left|\left(a_{1 l}-a_{1 l}^{0}\right) V\right|_{2, \infty, e_{i j}}\left\|\partial_{1} \partial_{l} V\right\|_{0, e_{i j}} \\
& \leq C h^{3}\left(\left|a_{1 l}-a_{1 l}^{0}\right|_{0, \infty, e_{i j}}|V|_{2, \infty, e_{i j}}+\left|a_{1 l}\right|_{1, \infty, e_{i j}}|V|_{1, \infty, e_{i j}}+\left|a_{1 l}\right|_{2, \infty, e_{i j}}|V|_{0, \infty, e_{i j}}\right)|V|_{2, e_{i j}} \\
& \leq C h^{3}\left(C h\left|a_{1 l}\right|_{1, \infty, e_{i j}} C h^{-1}|V|_{1, \infty, e_{i j}}+\left\|a_{1 l}\right\|_{2, \infty, e_{i j}}\|V\|_{1, \infty, e_{i j}}\right) C h^{-1}|V|_{1, e_{i j}} \\
& \leq C h^{2}\left\|a_{1 l}\right\|_{2, \infty, e_{i j}}\|V\|_{1, e_{i j}}^{2} \tag{5.20}
\end{align*}
$$

Note that if $r=1, l=1$, the inequality (5.20) is valid, since in this case $\partial_{1}^{2} V=0$ and hence $J_{2}=0$.

Finally, we estimate the third term of the right-hand side of (5.16) using (5.15), (5.18), (5.17) and (5.3) with $f=\left(a_{1 l}-a_{1 l}^{0}\right) \partial_{l} V, p=\partial_{1} V, s=1, k=0, n=r$ and $q=\infty$. The result is

$$
\begin{align*}
\left|J_{3}\right| & \leq C h^{2}\left(\left|a_{1 l}-a_{1 l}\right|_{0, \infty, e_{i j}}\left\|\partial_{l} V\right\|_{1, \infty, e_{i j}}+\left|a_{1 l}\right|_{1, \infty, e_{i j}}\left|\partial_{l} V\right|_{0, \infty, e_{i j}}\right)\left\|\partial_{1} V\right\|_{0, e_{i j}} \\
& \leq C h^{2}\left(C h\left|a_{1 l}\right|_{1, \infty, e_{i j}} C h^{-1}|V|_{1, \infty, e_{i j}}+\left|a_{1 l}\right|_{1, \infty, e_{i j}}|V|_{1, \infty, e_{i j}}\right)|V|_{1, e_{i j}} \\
& \leq C h^{2}\left|a_{1 l}\right|_{1, \infty, e_{i j}}|V|_{1, e_{i j}}^{2} \tag{5.21}
\end{align*}
$$

Using the definition of D_{1} and combining (5.16) with (5.19), (5.20) and (5.21), we derive (5.13) with C_{1} independent of h (but dependent on $a_{1 l}, l=1,2$). Analogously we prove (5.14).

We are now in a position to prove Theorem 1.
Proof of Theorem 1. We shall use the equalities $T_{i}^{x}(f)=I_{i}^{x}\left(\partial_{1} f\right), T_{j}^{y}(f)=$ $I_{j}^{y}\left(\partial_{2} f\right)$ and $\partial_{m}\left(D_{m} V\right) V=\partial_{m}\left(\left(D_{m} V\right) V\right)-D_{m} V \partial_{m} V$ for $m=1,2$.

The bilinear form $a_{h}(V, V)$ (see (4.3)) can be rewritten as

$$
\begin{align*}
a_{h}(V, V)= & \sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(I_{i}^{x} \otimes Q_{j}^{y}\left(\partial_{1}\left(D_{1} V V\right)\right)\right. \\
& +Q_{i}^{x} \otimes I_{j}^{y}\left(\partial_{2}\left(D_{2} V V\right)\right)-Q_{i}^{x} \otimes Q_{j}^{y}\left(\partial_{1}\left(D_{1} V V\right)\right)-Q_{i}^{x} \otimes Q_{j}^{y}\left(\partial_{2}\left(D_{2} V V\right)\right) \\
& \left.+Q_{i}^{x} \otimes Q_{j}^{y}\left(D_{1} V \partial_{1} V+D_{2} V \partial_{2} V\right)+Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{l=1}^{2} b_{l} \partial_{l} V V+c V^{2}\right)\right) \\
= & J_{1}+J_{2}+J_{3} \tag{5.22}
\end{align*}
$$

where

$$
\begin{aligned}
& J_{1}=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes Q_{j}^{y}\left(\partial_{1}\left(D_{1} V V\right)\right), \\
& J_{2}=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} Q_{i}^{x} \otimes\left(I_{j}^{y}-Q_{j}^{y}\right)\left(\partial_{2}\left(D_{2} V V\right)\right) \\
& J_{3}=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{m, l=1}^{2} a_{m l} \partial_{l} V \partial_{m} V+\sum_{l=1}^{2} b_{l} \partial_{l} V V+c V^{2}\right)
\end{aligned}
$$

Using condition Z 2 and Lemma 2 gives

$$
\begin{equation*}
J_{3} \geq \sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} a_{0} Q_{i}^{x} \otimes Q_{j}^{y}\left(\sum_{l=1}^{2}\left(\partial_{l} V\right)^{2}\right) \geq a_{0} C_{0}\|V\|_{1, \Omega}^{2}=C_{3}\|V\|_{1, \Omega}^{2} \tag{5.23}
\end{equation*}
$$

To obtain (5.1), it suffices to use the equality (5.22) and the inequalities (5.13), (5.14) and (5.23). Indeed, taking $h_{0}=0.5 C_{3}\left(C_{1}+C_{2}\right)^{-1}$, we get for $h \leq h_{0}$

$$
\begin{aligned}
a_{h}(V, V) & \geq-C_{1} h\|V\|_{1, \Omega}^{2}-C_{2} h\|V\|_{1, \Omega}^{2}+C_{3}\|V\|_{1, \Omega}^{2} \\
& \geq\left(-\left(C_{1}+C_{2}\right) h_{0}+C_{3}\right)\|V\|_{1, \Omega}^{2} \geq 0.5 C_{3}\|V\|_{1, \Omega}^{2}
\end{aligned}
$$

REMARK. If $a_{11}(x, y)$ and $a_{2 l}(x, y), l=1,2$, are functions independent of x and y respectively, then (5.1) is valid for any $h \geq 0$, since J_{1} and J_{2} vanish (as a consequence of (4.1)).

6. Error estimates

In this section we prove that the C^{0}-collocation method has the optimal rate of convergence in $H^{1}(\Omega)$ and $L^{2}(\Omega)$ norms for sufficiently small h.

THEOREM 2. Assume that $f \in W^{s, q}\left(e_{i j}\right), u \in H^{s+2}\left(e_{i j}\right) \cap H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for $i=$ $0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$, where $2 / q<s \leq r, r \geq 1, q \geq 2$. Let the assumptions of Theorem 1 be satisfied.

Then for any $h \leq h_{0}$

$$
\|u-U\|_{1, \Omega} \leq C h^{s}\left(\|u\|_{s+2}+\|f\|_{s, q}\right),
$$

where u and U are the solutions to (2.3) and (3.1)-(3.4) respectively, f is as in (2.1) and h_{0} is given in Theorem 1.

To get an error estimate in the L^{2}-norm, we apply the inequality

$$
\begin{align*}
\|u-U\|_{0 . \Omega} \leq \sup _{g \in L^{2}(\Omega)}\|g\|_{0, \Omega}^{-1}(& \inf _{V \in V_{r}}\left(C\|u-U\|_{1 . \Omega}\|w-V\|_{1, \Omega}\right. \\
& \left.\left.+\left|a(U, V)-a_{h}(U, V)\right|+\left|l(V)-l_{h}(V)\right|\right)\right) \tag{6.1}
\end{align*}
$$

(see [2, p. 203]), where w is the solution to (2.4) with $l(w)=\int_{\Omega} g v d x d y$, and u and U are the solutions to (2.3) and (3.1)-(3.4) respectively.

THEOREM 3. Assume that $f \in W^{s+1, q}\left(e_{i j}\right), u \in H^{r}\left(e_{i j}\right) \cap H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for $i=$ $0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$, where $2 / q<s \leq r, \tilde{s}=\max (s+2,4), r \geq 2$, $q \geq 2$. Let the assumptions of Theorem 1 be satisfied.

Then for any $h \leq h_{0}$

$$
\|u-U\|_{0, \Omega} \leq C h^{s+1}\left(\|u\|_{\tilde{s}}+\|f\|_{s+1, q}\right)
$$

where u, U are the solutions to (2.3) and (3.1)-(3.4) respectively.
To prove Theorems 2 and 3 some lemmas are required.
LEMMA 4. Let $a_{m l} \in W^{s+k, \infty}\left(e_{i j}\right), b_{l}, c \in W^{s+k-1, \infty}\left(e_{i j}\right)$ for $i=0, \ldots, N_{1}-1$, $j=0, \ldots, N_{2}-1$, where $m, l=1,2$ and $1 \leq s, k \leq r$. Then for any $W, V \in V_{r}$

$$
\begin{align*}
& \left|a(W, V)-a_{h}(W, V)\right| \leq C h^{s+k-1}\|W\|_{s+k+1}\|V\|_{k}, \tag{6.2}\\
& \left|a(W, V)-a_{h}(W, V)\right| \leq C h^{s+k-1}\|V\|_{s+k}\|W\|_{k+1} \tag{6.3}
\end{align*}
$$

Proof. We can write (see (4.2) and (4.3))

$$
\begin{align*}
a(W, V)-a_{h}(W, V)=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}(& \sum_{l=1}^{2}\left(J_{1, l}^{(i, j)}+J_{2, l}^{(i, j)}\right)+\sum_{m, l=1}^{2}\left(J_{3, m, l}^{(i, j)}+J_{4, m, l}^{(i, j)}\right) \\
& \left.+\sum_{l=1}^{2} J_{5, l}^{(i, j)}+J_{6}^{(i, j)}\right) \tag{6.4}
\end{align*}
$$

where $J_{1, l}^{(i, j)}=T_{i}^{x} \otimes\left(I_{j}^{y}-Q_{j}^{y}\right)\left(a_{1 l} \partial_{1} W V\right), J_{2, l}^{(i, j)}=\left(I_{i}^{x}-Q_{i}^{x}\right) \otimes T_{j}^{y}\left(a_{21} \partial_{l} W V\right)$, $J_{3}^{(i, j)}=E_{i j}\left(-\partial_{m} a_{m l} \partial_{l} W V\right), J_{4, m, l}^{(i, j)}=E_{i j}\left(-a_{m l} \partial_{m} \partial_{l} W V\right), J_{5, l}^{(i, j)}=E_{i j}\left(b_{l} \partial_{l} W V\right)$, $J_{6}^{(i, j)}=E_{i j}(c W V)$. We estimate each term of the above equality for fixed i, j using (5.17), (5.18) and Lemma 1 with $n=r, q=\infty$. Thus, from (5.4) it follows that

$$
\left|J_{1, l}^{(i, j)}\right| \leq C h^{s+k}\left\|a_{1 l} \partial_{l} W\right\|_{s+k, \infty, e_{i j}}\|V\|_{k, e_{i j}} \leq C h^{s+k-1}\left\|a_{1 l}\right\|_{s+k, \infty, e_{i j}}\|W\|_{s+k+1, e_{i j}}\|V\|_{k, e_{i j}}
$$

for $l=1,2$, and

$$
\left|J_{1, i}^{(i, j)}\right| \leq C h^{s+k}\left\|a_{1 l} V\right\|_{s+k, \infty, e_{i j}}\left\|\partial_{l} W\right\|_{k, e_{i j}} \leq C h^{s+k-1}\left\|a_{11}\right\|_{s+k, \infty, e_{i j}}\|V\|_{s+k}\|W\|_{k+1, e_{i j}}
$$

for $l=1,2$, where $1 \leq s \leq r, r \geq k$.
Similarly we estimate $J_{2, l}^{(i, j)}$. Further on, using (5.17), (5.18) and (5.6) with $n=r$, $q=\infty$ and $k-1$ instead of k we obtain

$$
\begin{aligned}
\left|J_{3, m, l}^{(i, j)}\right| & \leq C h^{s+k}\left\|\partial_{m} a_{1 l} \partial_{l} W\right\|_{s+k-1, \infty, e_{i j}}\|V\|_{k-1, e_{i j}} \\
& \leq C h^{s+k-1}\left\|a_{m l}\right\|_{s+k, \infty, e_{i j}}\|W\|_{s+k, e_{i j}}\|V\|_{k-1, e_{i j}}, \quad m, l=1,2
\end{aligned}
$$

and

$$
\begin{aligned}
\left|J_{3, m, l}^{(i, j)}\right| & \leq C h^{s+k}\left\|\partial_{m} a_{m l} V\right\|_{s+k-1, \infty, e_{i j}}\left\|\partial_{l} W\right\|_{k-1, e_{i j}} \\
& \leq C h^{s+k-1}\left\|a_{m l}\right\|_{s+k, \infty, e_{i j}}\|V\|_{s+k-1, e_{i j}}\|W\|_{k, e_{i j}}, \quad m, l=1,2,
\end{aligned}
$$

where $1 \leq s \leq r, r \geq k-1 \geq 0$.
Similarly we estimate $J_{4, m, l}^{(i, j)}, J_{5, l}^{(i, j)}$ and $J_{6}^{(i, j)}, m, l=1,2$. To complete the proof of (6.2) combine (6.4) with the above estimates using the Cauchy-Schwarz inequality.

Analogously we prove (6.3).

LEMMA 5. Let $u \in H^{\tilde{s}}\left(e_{i j}\right) \cap H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ for $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$, where $0 \leq s \leq r+3$ and $\tilde{s}=\max (s, 2)$. Then

$$
\left\|U_{I}\right\|_{s} \leq C\|u\|_{\bar{s}},
$$

where $U_{I} \in V_{r}$ is a V_{r}-interpolant of the function u.
Proof. Observe that $H^{2}(\Omega) \subset C(\Omega)$, so U_{l} is well defined. We first prove the inequality ($s=r+l$)

$$
\begin{equation*}
\left|U_{l}\right|_{r+l, e_{i j}} \leq c|u|_{r+l, e_{i j}} \tag{6.5}
\end{equation*}
$$

for fixed i, j, where C is a constant independent of h and $l=2,3$. Since $U_{I \mid e_{i j}} \in$ $R_{r}\left(e_{i j}\right)$, then

$$
\begin{align*}
\left|U_{I}\right|_{r+l, e_{i j}}^{2} & =\int_{e_{i j}} \sum_{k=l}^{r}\left(\partial_{1}^{k} \partial_{2}^{r+l-k} U_{I}\right)^{2} d x d y \\
& \leq 2 \int_{e_{i j}} \sum_{k=l}^{r}\left(\partial_{1}^{k} \partial_{2}^{r+l-k}\left(u-U_{I}\right)\right)^{2} d x d y+2 \int_{e_{i j}} \sum_{k=l}^{r}\left(\partial_{1}^{k} \partial_{2}^{r+l-k} u\right)^{2} d x d y \tag{6.6}
\end{align*}
$$

Let $G_{k}(u)=\int_{e_{i j}} \partial_{1}^{k} \partial_{2}^{r+l-k}\left(u-U_{I}\right) f_{k} d x d y$, where $f_{k} \in L^{2}\left(e_{i j}\right), k=l, \ldots, r$, and $\tilde{G}_{k}(\tilde{u})=\int_{\tilde{K}} \partial_{1}^{k} \partial_{2}^{r+l-k}\left(\tilde{u}-\tilde{U}_{I}\right) \tilde{f}_{k} d \xi_{1} d \xi_{2}$, where $\tilde{w}\left(\xi_{1}, \xi_{2}\right)=w\left(F_{i}^{x}\left(\xi_{1}\right), F_{j}^{y}\left(\xi_{2}\right)\right)$. The symbol w stands for u, U_{l} or $f_{k}, k=l, \ldots, r$.

We have the estimate $\left|G_{k}(u)\right| \leq C h^{-r-l+2}\left|\tilde{G}_{k}(\tilde{u})\right|$. The functional \tilde{G}_{k} is linear with respect to $\tilde{u} \in H^{r+l}(\tilde{K})$ and continuous, since

$$
\left|\tilde{G}_{k}(\tilde{u})\right| \leq\left(\|\tilde{u}\|_{r+l, \tilde{K}}+C\|\tilde{u}\|_{0, \infty, \tilde{K}}\right)\|\tilde{f}\|_{0, \tilde{K}} \leq C_{k}\|\tilde{u}\|_{r+l, \tilde{K}}\left\|\tilde{f}_{k}\right\|_{0, \bar{K}}
$$

Above we have used the inequality $\left\|\tilde{U}_{I}\right\|_{r+l, \tilde{K}} \leq C\|\tilde{u}\|_{0, \infty, \tilde{K}} \leq C\|\tilde{u}\|_{r+l, \tilde{K}}$ and the inclusion $H^{r+l}(\tilde{K}) \subset C(\tilde{K})$.

Now we show that the functional \tilde{G}_{k} vanishes over the space $P_{r+l-1}(\tilde{K})$. If $\tilde{u}\left(\xi_{1}, \xi_{2}\right)=\xi_{1}^{m} \xi_{2}^{n}$ and $0 \leq m, n \leq r$, then $\tilde{U}_{I}\left(\xi_{1}, \xi_{2}\right)=\xi_{1}^{m} \xi_{2}^{n}$ and thus $\tilde{G}_{k}(\tilde{u})=0$.

If $u\left(\xi_{1}, \xi_{2}\right)=\xi_{1}^{r+l-1-n} \xi_{2}^{n}, n=0, \ldots, l-2$, then $\tilde{U}_{l}\left(\xi_{1}, \xi_{2}\right)=p_{r}^{(1, l, n)}\left(\xi_{1}\right)+$ $p_{r}^{(2, l, n)}\left(\xi_{1}\right) \xi_{2}^{n}$, where $p_{r}^{(m, l, n)} \in P_{r}([0,1]), m=1,2$. Hence $\partial_{1}^{k} \partial_{2}^{r+l-k}\left(\tilde{u}-\tilde{U}_{I}\right)=0$ for $k=l, \ldots, r$ and $\tilde{G}_{k}(\tilde{u})=0$.

In a similar way we obtain that $\tilde{G}_{k}(\tilde{u})=0$, if $\tilde{u}\left(\xi_{1}, \xi_{2}\right)=\xi_{2}^{r+l-1-n} \xi_{1}^{n}, n=0, \ldots, l-$ 2. From the above equalities it follows that $\tilde{G}_{k}(\tilde{u})=0$ for $\tilde{u} \in P_{r+l-1}(\tilde{K})$. By the Bramble-Hilbert Lemma (see [1])

$$
\left|\tilde{G}_{k}(\tilde{u})\right| \leq C_{k}|\tilde{u}|_{r+l, \bar{k}}\left\|\tilde{f}_{k}\right\|_{0, \tilde{K}}, \quad k=l, \ldots, r
$$

and hence

$$
\left|G_{k}(u)\right| \leq C h^{-r-l+2}|\tilde{u}|_{r+l, \tilde{K}}\left\|\tilde{f}_{k}\right\|_{0, \tilde{K}} \leq C|u|_{r+l, e_{i j}}\left\|f_{k}\right\|_{0, e_{i j}}
$$

Taking $f_{k}=\partial_{1}^{k} \partial_{2}^{r+l-k}\left(u-U_{l}\right) \in L^{2}\left(e_{i j}\right), k=l, \ldots, r$, yields

$$
\left\|f_{k}\right\|_{0, e_{i j}}^{2} \leq C|u|_{r+l, e_{i j}}\left\|f_{k}\right\|_{0, e_{i j}}
$$

that is,

$$
\left\|\partial_{1}^{k} \partial_{2}^{r+l-k}\left(u-U_{I}\right)\right\|_{0, e_{i j}} \leq C|u|_{r+l, e_{i j}}
$$

Combining (6.6) with the above inequalities produces (6.5).
For $2 \leq s \leq r+1$ we have

$$
\begin{equation*}
\left|U_{I}\right|_{s, e_{i j}} \leq\left|u-U_{I}\right|_{s, e_{i j}}+|u|_{s, e_{i j}} \leq C|u|_{s, e_{i j}} \tag{6.7}
\end{equation*}
$$

and for $s=0,1$

$$
\begin{equation*}
\left|U_{I}\right|_{s, e_{i j}} \leq\left|u-U_{I}\right|_{s, e_{i j}}+|u|_{s, e_{i j}} \leq C\|u\|_{2, e_{i j}} \tag{6.8}
\end{equation*}
$$

(see [2, pp. 122-124]).
The conclusion follows from the estimates (6.5), (6.7), (6.8) and the CauchySchwarz inequality.

Lemma 6. Let $f \in W^{s+k, q}\left(e_{i j}\right)$ for $i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$, where $2 / q<s \leq r, q \geq 2, r \geq k \geq 0$. Then for any $V \in V_{r}$

$$
\left|l(V)-l_{h}(V)\right| \leq C h^{s+k}\|f\|_{s+k, q}\|V\|_{k} .
$$

Proof. By (2.3) and (4.4)

$$
l(V)-l_{h}(V)=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} E_{i j}(f v)
$$

Using (5.6) with $n=r$ and the Hölder inequality (see [2, p. 200]) we have for any $V \in V_{r}$ and $q \geq 2$

$$
\begin{aligned}
\mid l(V) & -l_{h}(V) \mid \leq \sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} C h^{s+k+1-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|V\|_{k, e_{i j}} \\
& \leq C h^{s+k}\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} h^{1-(2 / q)}\|f\|_{s+k, q, e_{i j}}\|V\|_{k, e_{i j}}\right) \\
& \leq C h^{s+k}\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} h^{2}\right)^{(1 / 2-(1 / q))}\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\|f\|_{s+k, q, e_{i j}}^{q}\right)^{1 / q}\left(\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1}\|V\|_{k, e_{i j}}^{2}\right)^{1 / 2} \\
& \leq C h^{s+k}\|f\|_{s+k, q}\|V\|_{k} .
\end{aligned}
$$

We can now prove Theorem 2.
Proof of Theorem 2. Let U_{I} be a V_{r}-interpolant of the function u. Applying the interpolation error estimates (see $[2,14]$) we note that -

$$
\begin{equation*}
\left\|u-U_{I}\right\|_{1, \Omega} \leq C h^{s}\|u\|_{s+1} \tag{6.9}
\end{equation*}
$$

where $2 / q<s \leq r$. Using the first Strang Lemma (see [2, p. 186]), (6.2) with $k=1$, Lemma 5, Lemma 6 with $k=0$ and the estimate (6.9) we obtain

$$
\begin{aligned}
\|u-U\|_{1, \Omega} & \leq C\left\|u-U_{I}\right\|_{1, \Omega}+C \sup _{V \in V_{r}} \frac{\left|a\left(U_{I}, V\right)-a_{h}\left(U_{I}, V\right)\right|}{\|V\|_{1, \Omega}}+C \sup _{V \in V_{r}} \frac{\left|l(V)-l_{h}(V)\right|}{\|V\|_{1, \Omega}} \\
& \leq C h^{s}\|u\|_{s+1}+C h^{s}\left\|U_{I}\right\|_{s+2}+C h^{s}\|f\|_{s, q} \\
& \leq C h^{s}\left(\|u\|_{s+2}+\|f\|_{s, q}\right),
\end{aligned}
$$

which completes the proof.

Finally, we prove Theorem 3.

PROOF OF THEOREM 3. Let $W_{I} \in V_{1}$ and $U_{I} \in V_{r}$ be interpolants of w and u respectively. From the interpolation error estimate and (2.5) it follows that

$$
\begin{equation*}
\left\|w-W_{I}\right\|_{1, \Omega} \leq C h\|w\|_{2, \Omega} \leq C h\|g\|_{0, \Omega} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|W_{I}\right\|_{1, \Omega} \leq\left\|W_{I}-w\right\|_{2, \Omega}+\|w\|_{2, \Omega} \leq C\|w\|_{2, \Omega} \leq C\|g\|_{0, \Omega} \tag{6.11}
\end{equation*}
$$

We now estimate $\|U\|_{3}$ for $r \geq 2$. By the triangle inequality

$$
\begin{equation*}
\|U\|_{3} \leq\left\|U-U_{I}\right\|_{3}+\left\|U_{I}\right\|_{3} . \tag{6.12}
\end{equation*}
$$

By (5.17)

$$
\begin{equation*}
\left\|U-U_{I}\right\|_{3} \leq C h^{-2}\left\|U-U_{I}\right\|_{1, \Omega} \tag{6.13}
\end{equation*}
$$

The triangle inequality yields

$$
\begin{equation*}
\left\|U-U_{I}\right\|_{1, \Omega} \leq\|U-u\|_{1, \Omega}+\left\|u-U_{I}\right\|_{1, \Omega} \tag{6.14}
\end{equation*}
$$

Theorem 2 and (6.9) ($s=2$) imply

$$
\begin{equation*}
\left\|U-U_{I}\right\|_{1, \Omega} \leq C h^{2}\left(\|u\|_{4}+\|f\|_{2, q}\right) \tag{6.15}
\end{equation*}
$$

Note that (see Lemma 5)

$$
\begin{equation*}
\left\|U_{I}\right\|_{3} \leq C\|u\|_{3} \tag{6.16}
\end{equation*}
$$

Combining (6.12) with (6.13), (6.15) and (6.16) yields

$$
\begin{equation*}
\|U\|_{3} \leq C\left(\|u\|_{4}+\|f\|_{2, q}\right) \tag{6.17}
\end{equation*}
$$

By (6.3) with $k=2,1 \leq s \leq r, r \geq 2$,

$$
\begin{equation*}
\left|a\left(U, W_{I}\right)\right|-a_{h}\left(U, W_{I}\right) \mid \leq C h^{s+1}\left\|W_{I}\right\|_{2}\| \| U \|_{3}, \tag{6.18}
\end{equation*}
$$

since $W_{I} \in V_{1}$ and $\left\|W_{I}\right\|_{s+2}=\left\|W_{I}\right\|_{2}$. Setting W_{I} instead of V in (6.1) and using (6.1), Theorem 2, (6.10), (6.18), (6.11), Lemma 6 with $k=1$ and (6.17) produces

$$
\begin{aligned}
&\|u-U\|_{0, \Omega} \leq \sup _{g \in L^{2}(\Omega)}\|g\|_{0, \Omega}^{-1}\left(C h^{s}\left(\|u\|_{s+2}+\|f\|_{s, q}\right) C h\|g\|_{0, \Omega}\right. \\
&\left.\quad+C h^{s+1}\|U\|_{3}\|g\|_{0, \Omega}+C h^{s+1}\|f\|_{s+1, q}\|g\|_{0, \Omega}\right) \\
& \leq C h^{s+1}\left(\|u\|_{s}+\|f\|_{s+1, q}\right),
\end{aligned}
$$

where $2 / q<s \leq r, r \geq 2, q \geq 2, \tilde{s}=\max (s+2,4)$.

Appendix

We present another form of the system (3.1)-(3.4). The idea is similar to that in the finite-element method. First we generate local matrices $k_{i j}$ and local right-hand sides $g_{i j}$ on elements $e_{i j}, i=0, \ldots, N_{1}-1, j=0, \ldots, N_{2}-1$. Then we extend them to the whole region Ω, obtaining the matrices $\tilde{k}_{i j}$ and the vectors $\tilde{g}_{i j}$. Next we assemble the matrices to create a global matrix K and the vectors to create a global right-hand side G, that is,

$$
\begin{aligned}
K & =\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} \tilde{k}_{i j} \\
G & =\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} \tilde{g}_{i j}
\end{aligned}
$$

Let the solution U of the system (3.1)-(3.4) be represented as

$$
U=\sum_{i=0}^{N_{1}-1} \sum_{j=0}^{N_{2}-1} \sum_{k, l=0}^{r} U_{i k, j l} \phi_{i k}^{x} \phi_{j l}^{y}
$$

where $\phi_{i k}^{x}$ and $\phi_{j l}^{y}$ are defined in (4.6)-(4.8). Denote the vector $\bar{U}=\left\{U_{i k, j l}\right\}$. Then \bar{U} is the solution of the system of equations

$$
K \bar{U}=G
$$

The local system of equations on any element $e_{i j}$ is as follows:

$$
\begin{gathered}
L U\left(x_{i k}, y_{j l}\right)=f\left(x_{i k}, y_{j l}\right) \\
\theta_{i}^{x}(x) w D_{1} U\left(x, y_{j l}\right)+h_{1, i} L U\left(x, y_{j l}\right)=h_{1, i} f\left(x, y_{j l}\right) \\
\theta_{j}^{y}(y) w D_{2} U\left(x_{i k}, y\right)+h_{2, j} L U\left(x_{i k}, y\right)=h_{2, j} f\left(x_{i k}, y\right), \\
\theta_{i}^{x}(x) h_{2, j} w D_{1} U(x, y)+\theta_{j}^{y}(y) h_{1, i} w D_{2} U(x, y)+h_{1, i} h_{2, j} L U(x, y)=h_{1, i} h_{2, j} f(x, y),
\end{gathered}
$$

where $1 \leq k, l \leq r-1, x=x_{i}+$ or $x=x_{i+1^{-}}, y=y_{j}+$ or $y=y_{j+1^{-}}$and $\theta_{i}^{x}\left(x_{i+}\right)=-1$, $\theta_{i}^{x}\left(x_{i+1^{-}}\right)=1, \theta_{j}^{y}\left(y_{j+}\right)=-1, \theta_{j}^{y}\left(y_{j+1^{-}}\right)=1$. The above system defines the local matrix $k_{i j}$ and local right-hand side $g_{i j}$.

Another approach is to use the tensor product of one-dimensional operators (see [8]).

References

[1] J. H. Bramble and S. R. Hilbert, "Estimation of linear functional on Sobolev spaces with application to Fourier transforms and spline interpolation", SIAM J. Numer. Anal. 7 (1970) 113-124.
[2] P. Ciarlet, The finite element method for elliptic problems (North-Holland, Amsterdam, 1978).
[3] P. J. Davis and P. Rabinowitz, Methods of numerical integration (Academic Press, New York, 1975).
[4] C. de Boor and B. Swartz, "Collocation at Gaussian points", SIAM J. Numer. Anal. 10 (1973) 582-606.
[5] J. C. Díaz, "A collocation-Galerkin method for the two point boundary value problem using continuous piecewise polynomial spaces", SIAM J. Numer. Anal. 14 (1977) 844-858.
[6] J. C. Díaz, "A collocation-Galerkin method for Poisson equation on rectangular regions", Math. Comput. 33 (1979) 77-84.
[7] R. Dunn and M. F. Wheeler, "Some collocation-Galerkin methods for two-point boundary value problems", SIAM J. Numer. Anal. 13 (1976) 720-733.
[8] W. R. Dyksen, "Tensor product generalized ADI methods for separable elliptic problems", SIAM J. Numer. Anal. 1 (1987) 59-76.
[9] O. A. Ladyzhenskaia and N. N. Ural'ceva, Linear and quasi-linear equations of elliptic type, (in Russian) (Nauka, Moscow, 1964).
[10] Z. Leyk, "A C C^{0}-collocation-like method for two-point boundary value problems", Numer. Math. 49 (1986) 39-53.
[11] Z. Leyk, " C^{0}-collocation-like methods at Radau points for two-point boundary value problems", in Numerical Methods (eds. D. Greenspan and P. Rozsa), (North-Holland, 1988), 287-305.
[12] P. Percell and M. F. Wheeler, "A C^{\prime} finite element collocation method for elliptic equations", SIAM J. Numer. Anal. 17 (1980) 605-622.
[13] P. M. Prenter and R. D. Russell, "Orthogonal collocation for elliptic partial differential equations", SIAM J. Numer. Anal. 13 (1976) 923-939.
[14] G. Strang and G. J. Fix, An analysis of the finite element method (Prentice-Hall, Englewood Cliffs, 1973).
[15] M. F. Wheeler, "A C^{0}-collocation-finite element method for two point boundary value problems and one space dimensional parabolic problems", SIAM J. Numer. Anal. 14 (1977) 71-90.

[^0]: ${ }^{1}$ SMS, Australian National University, Canberra, ACT 0200, Australia
 (C) Australian Mathematical Society, 1997, Serial-fee code 0334-2700/96

