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Abstract

We describe a C°-collocation-like method for solving two-dimensional elliptic Dirichlet
problems on rectangular regions, using tensor products of continuous piecewise polyno-
mials. Nodes of the Lobatto quadrature formula are taken as the points of collocation.
We show that the method is stable and convergent with order h'(r > 1) in the //'-norm
and hr+l(r > 2) in the L2-norm, if the collocation solution Js a piecewise polynomial
of degree not greater than r with respect to each variable. The method has an advantage
over the Galerkin procedure for the same space in that no integrals need be evaluated or
approximated.

1. Introduction

In this paper we define and analyze a C°-collocation-like method for elliptic Dirichlet
problems with variable coefficients on a rectangular domain. The method uses tensor
products of continuous piecewise-polynomial spaces. The collocation points are the
nodes of the Lobatto quadrature formula.

The idea of a collocation method at Gaussian points was introduced and analyzed
for two-point boundary value problems by de Boor and Swartz [4]. AC1 finite-element
collocation method was studied by Prenter and Russell [13] and Percell and Wheeler
[12]. The well-known advantage of collocation finite-element methods over Galerkin
finite-element methods is that the formation of the coefficients in the resulting system
of equations is very fast since no integrals need be evaluated or approximated. But the
smoothness of the approximate solution required by C1- and C2-collocation methods is
higher than that required by the finite-element method for the same problems. In order
to weaken the smoothness C°-collocation methods have been considered, where the
approximate solution is only continuous (see [5,6,7,10,11,15]) and C°-H~l methods
where the approximate solution is discontinuous (see [7]). The methods presented
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in [5, 6, 7, 15] are combinations of the collocation methods with the finite-element
method and in these methods one also has to evaluate or approximate integrals but
fewer than is required in the finite-element method. The methods described in [10,11]
need not do any evaluation or approximation of integrals. The method presented in
this paper is a nontrivial extension of the C°-collocation-like method introduced in
[10] to two-dimensional elliptic problems.

The outline of this paper is as follows. In Section 2 we formulate an elliptic Dirichlet
problem in a weak form and describe a partition of a rectangle. The C°-collocation-
like method is defined in Section 3. In Section 4 the equivalent variational formulation
of the method is introduced. The stability of the method and some auxiliary results
are asserted in Section 5. The optimal order error estimates in the H1 and L2 norms
are obtained in Section 6. The idea of the analysis used in Section 5 and 6 is taken
from [2], but the analysis is substantially different from that used in [2] since the
second partial derivatives must also be taken into consideration (not only the first
partial derivatives as in the standard finite-element method). Therefore most of the
auxiliary results are also new.

2. The problem and notation

The basic notation used in the paper is adopted from [2]. For any bounded open
set ft in two-dimensional space, the Sobolev space Wm-q (ft) consists of functions /
such that 3 " / e L«(ft), \a\ < m, with the norm

where a = (aua2) are multi-integers, d" = df'd"2, 3i = d/dx, d2 = d/dy and
H/Ho,,,n = In \f\qdxdy. We shall also use the seminorms | • |m,,,n. If q = 2, we
shalfwrite //"(ft), \\ • ||m,n and | • |m,n instead of W""'2(ft), \\ • \\mXQ and | • \m,2,n,
respectively. The Sobolev space //m(ft) is equipped with the inner product (•, -)m,n-
//o'(fi) is defined as the closure of the space C£°(£2) in the sense of the norm || • ||i,n.
The restriction of a function v to the set K is denoted by V\K. Throughout the
paper C (also with subscripts) will denote a generic constant with possibly different
values in different contexts. The space of all polynomials in x (in y) of degree at
most r restricted to the interval Kx (Ky) is denoted by Pr

x(Kx) (by Pr
y(Ky)) and

Rr(Kx x Ky) = Pr
x(Kx) ® P?(Ky), r > 0. The space of all polynomials in x, y on

K C K2 of degree at most r is denoted by Pr(K).
We consider the Dirichlet problem

Lu = f on ft,

u = 0 on 3ft,
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where Q = (0, /,) x (0, /2) and

2

Lu(x, y) = — 2_J 9m (omi(x, y)diu(x, y))

(2-2)

(JC, y)d,u(x, y) + c(x, y)u(x, y).

We can rewrite the problem (2.1) in a weak form.

Find u € //J (£2) such that

a(w, w) = l(v), Vu e //o'(f2), (2.3)

where
, / 2

/ I ^2 a

Jn \mj=\

2 \

a(«, v) = / I ^2 amAudmv + ^2,btdiuv + cuv I dxdy

and

l(y)= I fvdxdy.

We shall also consider the problem dual'to (2.3).

Find w € //d (Q) such that

a(v,w)=l(v), Vve//0 '(fi). (2.4)

Assume that the following conditions are satisfied.

Zl: ami,b, € C1 (£2) form,/ = l ,2andc, / e
Z2: There exists a constant a0 > 0 such that for each (£, ,^2 , r i )eR3 and (x, y) e

2

} 2c(x, y)r}2 >
m,l=\ l=\ l=\

From Z2 it follows that the coefficient matrix {amt(x, y)} must be positive definite and
c(x, y) > 0 for any (x, y) e Q.

Under the conditions Zl and Z2 there exist unique solutions to the problems (2.3)
and (2.4) (see [2]). Moreover , the solutions u and w belong to //2(S2) n HQ{Q) and
satisfy

kn < C2||/||o,n, (2-5)

where Cu C2 are constants independent of u, w, f (see [9]).
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W e d i v i d e t h e in te rva l [0 , l\] i n to s u b i n t e r v a l s e\ = [*,, * , + 1 ] , i = 0 , 1 , . . . , Ni — l,
w h e r e

0 = x0 < Xi < • • • < * # , _ ) < xNl = / , .

The interval [0, /2] is divided analogously into ej = [y>j, yJ+\]. Write eu = e] x e j .
Let ft,,, = (x,+i - *,) , /i2,,- = (v,+i - v;) and

/i = max I max hki), /inun = min I min hki) .
*=1,2 \0<i<Wt-l ' / * = l , 2 \ 0 < i < N t - l * ' J

We assume that the family of partitions is regular, that is, there exists a constant a > 0
such that h/hmin <a,ifh^>-0.

For / e Wm'q(eij), we adopt the notation

/N,-lN2-l \ ' / «

= EE
,=0 j=0

If ? = 2, we shall write |||/||m instead of |||/|||m,2.
Let Vr = Vf ® Vr

y, where V? and Vr
y are finite-element spaces of the form

Vr
x = {v€ C([0, /,]) : vleJ € P ; « ) , i = 0 , . . . , iV, - 1, w(0) = u(Z,) = 0}

and

V/ = {v€ C([0, Z2]) : ukJ e P/(eJ), y = 0 J V 2 - 1 , v(0) = u(/2) = 0}.

3. The C°-collocation-like method

The Lobatto points {f, }'lj on (0, 1) are the roots of the orthogonal Jacobi polynomial
J^l\t) = CrP'r(jt), t e [0, 1], where Pr is the Legendre polynomial of degree r,
Pr : [0,1] —y OS and Cr is a constant. Let t0 = 0, rr = 1.

Introduce the affine mappings of the form

F*(t) = x, + hut, Ff(t) = yt + h2Jt, t € [0, 1].

Denote by (xik, yji) = (F?(tk), Ff(t,)), k, I = 0 , . . . , r, the Lobatto points on the
element eis. Note that *,_!,,. = xi0 = xh yj-\,r = >7o = Jy- Further, by

lgh(x, y) = g(x-, v) - g(x+, y)

and

lgh(x' y) = s(x< y-) - s(x< y+)
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we denote the discontinuity jump of g at (x, y) in the x and y axes respectively. The
weighted averages of g at a point (x, y) are denoted by

{g)x(a)(x, y) = ocg(x-, y) + (1 - a)g(x+, y)

and

{g]y(P)(x, y) = Pg(x, y-) + (1 - P)g(x, >>+),

where a, p e [0, 1]. Set

2

Dmg(x, y) = ^2am,(x,y)dig(x, y), m = 1, 2, (*, j ) G ft,
/=i

the conormal derivative of g associated with the operator L.
The CQ-collocation-like method is defined as follows.

Find U eVr such that

(xik,yJi), (3.1)

a,)(*,, yyi) = /(**, yj/). (3-2)

{L£/},(#)(*«, 37) = / (*«, >>;), (3-3)

C . O C , , yj)

= f(xlt yj),

where 1 < k, I < r - 1 and i = 0 , . . . , V̂, - 1, j = 0 7V2 - 1 for (3.1)-
(3.3) and j = 1 , . . . , N{ - 1, j = 1 , . . . , N2 - 1 for (3.4). Moreover, w = r2 + r,
fti.i = Ai,,-_i + hu, fhj = h2j-i + h2J, a, = hu-x/hu, fa = /i2.7-i/^2.y-

REMARK. If r = 1, then Equations (3.1H3.3) vanish. If /i,, = /i, and h2J = h2 for
any i and y then l̂i(- = 2h\ and ^2^ = 2h2 and a, = fa = 0.5.

In the Appendix we present another form of the system (3.1)-(3.4).

4. The vanational form

We want to give an equivalent formulation of the method (3.1)—(3.4) in a variational
form in order to simplify its investigation. The variational formulation uses a discrete
inner product based on the Lobatto points. In this way we are able to prove existence
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and uniqueness as well as obtain optimal rates of convergence for the method (3.1)-
(3.4). The variational formulation is not good for practical computations. Instead, the
system (3.1)—(3.4) should be used.

Let I(g) — Jo g(t)dt and denote by Q(g) the Lobatto quadrature formula on
[0, 1] (see [3]), that is, Q(g) = ^ = o v>jg(tj). Note that w0 = wr = (r2 + r)"1. The
following relation is satisfied (see [3]):

Q(g) = Hg), VgeP2r_,([0, 1]). (4.1)

Let T(g) = g(l-) - g(0+) and I?(g) = hul(g), Q*(g) = huQ(g), T*(g) = T(g),
where g(t) = g(F*(t)), t e [0, 1]. Analogously we define I]{g), Q](.g), T/(g).
Moreover, we define the tensor product of any two of the above functionals as follows

where / = f(x, y) and G\ and G2 stands for / , Q or T with indices i or j .
We transform the integrals fe Dkwdkv dxdy using Green's formula.

For k = 1

/ D\wdxvdxdy = I ((Diwv)(xi+l~, t) - (Dtwv)(xi+, t)) dt - I
Je,j Je] Jen

= (Tf ® l]){Dxwv) - (If (8) //)0,D,u>w)

and for k = 2

f)(D2wv) - (If ® IJ)
Jen

D2wd2vdxdy = (If ® Tf)(D2wv) - (If ® IJ)(d2D2wv).

We recall that Dkw, k = 1, 2, is the co-normal derivative of w associated with L. We
can now rewrite the bilinear form a(w, v) as

N,-l N2-l

a(w, v) =J2 J2(Ti*®I?)(Diwv) + (I*®TJ
y)(D2wv) + (I*®l])(Lwv). (4.2)

i=0 ;=0

Substituting in (4.2) the quadratures Q1 and Qy for the integrals If and Ij respectively,
we obtain the bilinear form ah(w, v), that is,

N,-\ N2-\

ah(w, v)=J2 J2^^Q^DiWv) + ^Q'^Tjy)iD2Wv) + iQ^QyJ)(Lwv)- ( 4 3 )

Similarly
N,-lN2-\

i=0 j=0

The problem
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find U € Vr such that

ah(U,V) = lh(V), WeVr, (4.5)

is equivalent to (3.1M34). To show this, we choose {4>?k<pji} as the basis functions of
Vr satisfying

#teVr*, tf,eV>, (4.6)

*£(*«„) = SimSkn, (4.7)

#/(*.») = M'» . (4-8)

where xmn and ymn are grid nodes on x and y axis respectively and Sim denotes the
Kronecker delta. To get (3.1M3.4) one should substitute the functions <pfk4>J, for V in
(4.5), use (4.7), (4.8) and reduce these expressions.

5. Stability of the method

In this section we prove that the method is stable. The main result of this section
is that the bilinear form ah(W, V) is uniformly Vr-elliptic for sufficiently small h.

THEOREM 1. Let am, e W2°°(e,v), b,, c e C(eu) for i = 0, 1 , . . . , N{ - 1, j =
0, 1, . . . , Â2 — 1, where l,m = 1,2, and let Condition Z2 be satisfied. Then there
exist constants y > 0 and h0 > 0 such that

Y\\V\\ln<ah(V, V), VV6Vr, (5.1)

for any h < h0.

Stability, and hence existence and uniqueness of the solution to (3.1)-(3.4), is a
consequence of Theorem 1.

COROLLARY 1. Let f € C(eu) for i = 0,..., Nx - 1, j = 0,..., N2 - 1, and the
assumptions of Theorem 1 be satisfied. Then for any h < h0

\\U\\i,a < C||/||o.oo.n,

where U is the unique solution to (3.1)—(3.4) and ho is given in Theorem 1.

Let K = [0, 1] x [0, 1]. We introduce the quadrature error functionals on e,;

£ , , ( / ) = it9 / / ( / ) - Q- ® Qyj{f),

where i = 0,..., N\ — \, j = 0,..., N2 — \. To prove Theorem 1 we need several
auxiliary lemmas. Here s, k and q are some parameters and n is a degree of a
polynomial p.
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LEMMA 1. Let 2/q < s < 2r — n, q G [1, oo], 0 < k < n. Assume that f G
W'^Heij). Then forany p€ Rn(eu)

\(Q- ~ I-) ® T/(fp)\ < Chs+k-W\\f\\s+k,q,eiJ\\p\\k.eiJ,

KQf - /,*) ® S]{fp)\ < CAi + t + I- ( 2 /«) | | / | | 1 + t . , . ,J |p| |^

\T* ® (Qyj - I])(fp)\ < CA'+*-°/')||/||I+*.,,€|/\\p\\k,eii,

\Sf <8> (Qyj - / /

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

where S stands for Q or I and ifk = 0, then the norm ||/||i+t,9,flJ is replaced by the
seminorm |/!,+*,,,,,.,..

PROOF. First we shall prove inequality (5.2). We have

(Q- - I-) ® Tf(fp) = hu(Q - I) ® T(Jp),

where/(f,,|2) = /(^*(§i), F/(|2

(5.7)

fe) €

I. We prove (5.2) for k = 0. Let G(/) = (g - /) ® r ( / p ) . The functional G is
linear with respect to / € Ws'q(K) and continuous for 5 > 2/q, (q G [1, oo]) since

* <

In the above, the equivalence of norms in the finite-dimensional space Rn(K) and the
inclusion WS"(K) C L°°(K) (s > 2/q) have been used (see [2]).

Since (I-Q)®T(g) = Oforg G Rs+n^{K) c R2r-\(K) (see (4.1)), the functional
G vanishes over the space Ps-i(K) c RS-\(K). By the Bramble-Hilbert Lemma (see
[1])

Hence

KG? - 1- T/(fp)\ = hu\(Q - /) (8) r ( / p ) | <

<

where 2/q < s < 2r - n, q G [1, oo], 0 < n.
II. We prove (5.2) for k > 1 using the method of mathematical induction with

respect to k. Note that the lemma is valid for k = 0 (see Part I of the proof). Let the
lemma be true for k = / > 0. We prove that it is true for k = / + 1. Let pu € Pi (e,7),
if / = 0, and pij G /'/(e,;), if / > 1, be an interpolatory polynomial of p, that is,
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Pij(Zijm) = p(Zijm), where zijm are different points from eu with m — 1, 2, 3, if / = 0,
and with m = 1,...,/(/ + l)/2, if / > 1. We have

(Q*-ID®T?(fp) = (Q';-in®T/(fPij) + (Q*-I*)®Tf(f(p-Pij)). (5.9)

We now estimate the first term of the right-hand side of (5.9) using (5.2) with k — I,
n - l . For 2/q < s <2r -l,q <= [1, oo]

KG? " I-) ® T/(fPij)\ < Chs+l-^\\f\\s+l,q,eij \\p\\Uir (5.10)

We have used the following inequalities: for / = 0, 1

llPylli.*,, < \\P ~ Puh.e.j + \\p\he,, < Ch2~'\p\2,eiJ + llpll,,,.. < Cllpll,,,,,

since \p\2,eij < Ch'-2\p\,,eiJ (see [2]); for / > 2

WPuhe.j < Wp-Puke, + UPWUJ < C\\ph,eir

Replacing s by s + 1 in (5.10), we get

- If) ® T/(fpu)\ < Ch1+l+l-^\\f\\s+l+u,eii \\p\\,,eij (5.11)

f o r - 1 +2/q < s < 2r - I - 1. Note that (5.11) is also valid for 2/q < s <2r -n,
ifl+l<n<2r — 2/q. We estimate the second term of the right-hand side of (5.9)
using (5.2) with k = I, 2/q < s < 2r - n, q € [1, oo], / < n. We have

Tf(f(p - A ,)) | < Chs+l-^\\f\\s+Lq,eij\\p - pu\\LeiJ

<Chs+M-<-2"»\\f\\s+l,q,eij\p\l+Ueij.
(5.12)

We have used the inequalities

HP-Polio,^ < Ch2\P\2,ei.

and

for/ = 0(see[2]). Combining(5.9)with(5.11)and(5.12)yields(5.2)withk = l + l.
Hence (5.2) is valid for any 0 < k < 2r — 2/q. Analogously we estimate (5.4).

Similarly we get bounds on (5.3) and (5.5). Note that now we have one h more
(compare with (5.7)), since

Sx ® (0y - Iy)(fp) = huh2JS ® (Q -
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and

(G? - / ' ) ® Sj(fp) = h,jh2,j(Q - / ) ® S ( / P ) ,

where 5 stands for Q or / . Combining (5.3) and (5.5) with the inequality

\Eu(fP)\ < |Qf ® (GJ - //)(/p)| + l«2* - /*) ® //)(//>)!

gives (5.6).

The following lemma will be useful in showing the equivalence of norms in Vr.

LEMMA 2. There exists a constant Co > 0 independent ofh such that for any V e Vr

/N,-\N2-1 / 2 \ \ 1 / 2

(
\,=o y=o \*=i

PROOF. We have

G

where V(f,, ?2) = V(^*(|,), ^ / & ) ) for ($,,£) e

The mapping V ->• f G <8> G fet=i(9*^)2)) defines a norm in the quotient

space Rr(K)/P0(K). Since the mapping V -> |V|, ^ is also a norm in this finite-
dimensional space, there exists a positive constant C\ such that

Hence, for any V e Vr

of ® G;

and

i=o ;=o \k=i I

To complete the proof, notice that the seminorm | • |i,n is a norm in the space //0'
equivalent to the norm || • |h,n.
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LEMMA 3. Letaml e W2oo(eu)fori = 0, 1 , . . . , N{ - 1, j = 0, 1 , . . . , N2 - 1, where
m,l = 1, 2. Then for any V 6 Vr

,-l N2-l

i=0 7=0
(5.13)

and

/=o y=o
(5.14)

PROOF. We first prove (5.13). Since W2oo(e,7) c C\eu), we can define a°u =
ou(Xi, yj), I = 1,2, for fixed / and j . Furthermore,

\\au -a°||o,oo,e,7 <

(see [2]). By virtue of (4.1) it follows that

for any W, V G Rr(ejj). Thus, we can write

(/,* - Q1) ® ej(3.(ai/

where

(5.15)

(5.16)

= (/,* - Q-) ® GJ ((a./ - a?;)3i3i VV) ,

= {it - Q-) ® e ; ((«»- a°u)d, vdx v).

In the sequel, we shall frequently use the result

(5.17)

where V e Rn(eu), q e [1, oo], 0 < I < m, n > 0 and the constant C is independent
of h, see [2, p. 140]. Also we make use of the inequality

(5.18)
/=0

where / € Wmoofey), u; e
(see [2, p. 192]).

, m >0,q e[l, oo] and C is independent of h
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Using (5.17), (5.18) and (5.3) with / = (3,a,,) V, p = d, V, s = 1, k = 0, n = r,
q = oo, we estimate the first term of the right-hand side of (5.16) as

I-AI < C/I
2|a,a1/V|1,oo,,,||a;V||0,,, < C/i| |a1 / | |2,0O,,, | |V||^, (5.19)

We now get a bound on the second term of the right-hand side of (5.16) using (5.15),
(5.17), (5.18) and (5.3) with / = (a,, - a°u)V, p = 3,3, V, s = 2, k = 0, q = oo,
where n = r, r > 2, if / = 1, or n = r - 1, r > 1, if / = 2. This yields

\h\< CA31(a,, - a,i°) Vb.00.^ ||9,8, V||o..w

< Ch3 (|aw - a ° |0,oc,e,v IV|2>0Oi^ + \au\Uoo,euIV\,,«,,,„ + \auh,*,,,,, IV|0>oo,ew) | V\UlJ

< Ch3 (ChWuU^jCh-1]V\Uoo,eiJ + ||a,,||2.oo.eJI VH..0O..J Ch~x\V\Ui.
2 ^ . . (5.20)

Note that if r = 1, / = 1, the inequality (5.20) is valid, since in this case 3,2 V = 0 and
hence J2 = 0.

Finally, we estimate the third term of the right-hand side of (5.16) using (5.15),
(5.18), (5.17) and (5.3) with / = (a,, - a?,)9/V, p = 3, V, s = 1, k = 0, n = r and
q = oo. The result is

< Ch2(\au -al (
0 |o,0o,

< Ch2(Ch\al,U,ooAjCh-l\VU,eo,eiJ
2 \ l e t j . (5.21)

Using the definition of A and combining (5.16) with (5.19), (5.20) and (5.21), we
derive (5.13) with C\ independent of h (but dependent on au, I = 1,2). Analogously
we prove (5.14).

We are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. We shall use the equalities Tt*(f) = I?(d\f), Tf(f) =
If (%/) and 3m(Dm V) V = 3m «Dm V) V) - Dm Vdm V for m = 1, 2.

The bilinear form ah(V, V) (see (4.3)) can be rewritten as

N,-\Ni-\ I

ah(V, V) = J2 J2 [if ® ;

))

(5.22)
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where

i - l N2-l

J2J2
i=0 j=O

J2H
1=0 ]=O

1=0 j=0 \m,l=l 1=1

Using condition Z2 and Lemma 2 gives

W1-1 w 2 - i / 2

...,. (5.23)
i=0 j=0 \l=l )

To obtain (5.1), it suffices to use the equality (5.22) and the inequalities (5.13), (5.14)
and (5.23). Indeed, taking h0 = O.5C3(C, + C2)~\ we get for h < h0

ah(V, V) > -CM V||2 n - C2h\\Vflsl + C3|| V | | 2
n

1,SJ > O . j ^ 3 | | r M l Q> (-(C, + C2)h0 + C3) || V||2 0 > 0.5C3|| V||2fi.

REMARK. If au(x, y) and a^ix, y), I = 1,2, are functions independent of x and v
respectively, then (5.1) is valid for any h > 0, since 7, and J2 vanish (as a consequence
of (4.1)).

6. Error estimates

In this section we prove that the C°-collocation method has the optimal rate of
convergence in Hl(Q) and L2(S2) norms for sufficiently small h.

THEOREM 2. Assume that f € Ws«(eu), u e Hs+2(eu) n H2(fi) D Hj(Q) for i =
0,...,Nl-l,j=0,...,N2-l, where 2/q < s < r, r > 1, q > 2. Let the
assumptions of Theorem 1 be satisfied.

Then for any h < h0

where u and U are the solutions to (2.3) and (3.1)—(3.4) respectively, f is as in (2.1)
and h0 is given in Theorem 1.
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To get an error estimate in the L2-norm, we apply the inequality

- t f | k n < sup o (

+ \a(U, V) - ah(U, V)\ + \l(V) -
(6.1)

(see [2, p. 203]), where w is the solution to (2.4) with l(w) = fn gv dxdy, and u and
U are the solutions to (2.3) and (3.1)-(3.4) respectively.

THEOREM 3. Assume that f € Ws+iq(eu), u € H~s(eu) D H2(Q) (1 //o'(f2) for i =
• 0,..., Ni - I, j = 0,..., N2 - I, where 2/q < s < r, s = max(s + 2, 4), r > 2,
q > 2. Let the assumptions of Theorem 1 be satisfied.

Then for any h < ho

where u, U are the solutions to (2.3) and (3.1)-(3.4) respectively.

To prove Theorems 2 and 3 some lemmas are required.

LEMMA 4. Let aml e Ws+k-°°(eu), b,,c € Ws+k-x°°(eu) for i = 0 , . . . , W, - 1,
j =0,...,N2-l, where m, I = 1, 2 and 1 < s, k < r. Then for any W, V € Vr

\a(W, V) -ah(W, V)\ < Cft'+*-1|W|I.Ht+1|V|t, (6.2)

\a(W, V) -ah(W, V)\ < Chs+k~l\iV||U||W%+1. (6.3)

PROOF. We can write (see (4.2) and (4.3))

N,-\ N2-l I 2

a(W, V) - ah(W, V) = J2J2(T, (J™ + J™) + E
,=o ;=o \ /=i m,/=i

(6-4)

where J«f = T* <g> (// - Qyj)(jaudiWV),

J?J) = Eij(-dmamlB,y/V)t J^, = Eiji- f ^
y6

0;) = Ejj(cWV). We estimate each term of the above equality for fixed i, j
using (5.17), (5.18) and Lemma 1 with n = r, q = oo. Thus, from (5.4) it follows
that

\J?f\ < Chs+k\\aud,WW^^. ^
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for/ = 1,2, and

. \j['f\ < CAI+t||fl,/V||J+4,oo,eJ|3/H'||t,e(/ < Ch'+k-l\\al,\\,+k.0O.eJV\\,+k\\W\\k+1,eiJ

for I = 1,2, where 1 < s < r, r > k.
Similarly we estimate J^. Further on, using (5.17), (5.18) and (5.6) with n = r,

q = oo and k — 1 instead of & we obtain

I - O < Ch-*\\dmalldlV/\\.+k-i.Oo.*ll\\V\\k-i.eil

< C^+*-'\\aml\\s+kt0O,ei.\\W\\s+k,ei.|| V|U_U,, m, / = 1, 2

and

IIdmam l V | | m _ I i 0 0 > e ( / 1

*-1 | |am # 11,-Ht.oo.^ IIV | | ,+*_,.ev I IWlU.^ , m , I = 1, 2 ,

w h e r e I < s <r, r > k - l > 0 .
Similarly we estimate 74

('m
;),, j£jj) and y6

(l'7), /n, / = 1, 2. To complete the proof of
(6.2) combine (6.4) with the above estimates using the Cauchy-Schwarz inequality.

Analogously we prove (6.3).

LEMMA 5. Letu G H~s(eu)nH2(n)nH*(n)fori =0,..., Ni-1, j = 0,..., N2-l,
where 0 < s < r + 3 and s = max(i, 2). Then

where U/ € Vr is a Vr-interpolant of the function u.

PROOF. Observe that H2(Q) c C(fi), so U, is well defined. We first prove the
inequality (s = r + /)

\U,\r+,,eii <c\u\r+lAj (6.5)

for fixed i, j , where C is a constant independent of /i and I = 2,3. Since f//|̂  €
Rr(eu), then

< 2 f ^(3f32
r + '-*(« - U,))2dxdy + 2 f J^^dr

2
+'~ku)2 dxdy.

J'H k=l Je,j k=l (6.6)
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Let G*(«) = fei, 3*32
r+'-*(M - U,)fkdxdy, where fk e L2(e,,), A = / , . . . , r, and

Gt(fi) = A 3f32
r+'-*(« - U,)fkd^d^, where «>($,,&) = u ^ ' G O , F / f e ) ) . The

symbol u> stands for u, U, or /*, k = / , . . . , r.
We have the estimate | G * ( K ) | < C7rr-'+2|G*(M)|. The functional Gk is linear with

respect to u € Hr+l(K) and continuous, since

(HfilU* + C||5||0,00,if)||/||o.ie < Ct||M||r+i,je||/t||o,if.

Above we have used the inequality ||C//||r+/,^ < C||M||0iOO>Jf < C| |« | | r + / j and the
inclusion Hr+'(K) c C(K).

Now we show that the functional Gk vanishes over the space Pr+t-\(K). If
«(§!,&) = fim?2 and 0 < m, n < r, then £//(£,,&) = ^m?2 ^ d m u s G*(M) = 0.

If n($,,£2) = ft'-"-1-"^", n = 0 / - 2, then £/,(f,,fe) = /><M'n)(£i) +
pR'-")^,)^", where p<m/n) € Pr([0, 1]), m = 1,2. Hence 3f32

r+'-*(M - t//) = 0
for fc = / , . . . , r and Gt(ii) = 0.

In a similar way we obtain that Gk{u) = 0, if «(£,, £2) = ?2+/"1~"^"'n = ° *~
2. From the above equalities it follows that Gk(u) = 0 for u € Pr+i-i(K). By the
Bramble-Hilbert Lemma (see [1])

C^| r + u | | /*l lo,K> it = / , . . . ,

and hence

\Gk(u)\ < Ch-r-'+2\u\r+lj\\fk\\oJ < C|« | r + u , | |

T a k i n g fk = 3f 32
r+'-*(M - f / , ) € L 2 ( e y ) , k = l,...,r, y i e l d s

IIAIlt,,. <
that is,

Combining (6.6) with the above inequalities produces (6.5).
For 2 < J < r + 1 we have

\U,\s.eij <\u- £ / ,U , + \u\s,eii < C | u U , , (6.7)

and for s = 0, 1

. (6-8)

(see [2, pp. 122-124]).
The conclusion follows from the estimates (6.5), (6.7), (6.8) and the Cauchy-

Schwarz inequality.
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LEMMA 6. Let f e Ws+k'q (eu) for i = 0 , . . . , Nt - 1, ; = 0 , . . . , Af2 - 1,
2/q < s < r, q > 2, r > k > 0. Then for any V e Vr

\KV)-ih(V)\<chs+k\u\l+kJWik.

PROOF. By (2.3) and (4.4)

N,-\ N2-l

i=0 7=0

Using (5.6) with n = r and the Holder inequality (see [2, p. 200]) we have for any
V e Vr and q > 2

-h{V)\ <
/=o y=o

,=0 y=0

( )
\ ,=0 y=0 / \ i=0 7=0 / \ «=0 7=0

s+k\\<Chs+k\\\f\\\s+kJ\V\h.

We can now prove Theorem 2.

PROOF OF THEOREM 2. Let U, be a Vr-interpolant of the function u. Applying the
interpolation error estimates (see [2, 14]) we note that .

ll«-*/ill..n<CA'|K||,+1, (6.9)

where 2/q < s <r. Using the first Strang Lemma (see [2, p. 186]), (6.2) with k = 1,
Lemma 5, Lemma 6 with k = 0 and the estimate (6.9) we obtain

V)\ , „hCsup

< Chs\iu\\\s+i + C A ' B I / , ^ + Ch

which completes the proof.

Finally, we prove Theorem 3.
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PROOF OF THEOREM 3. Let W, e Vi and U, € Vr be interpolants of w and u respect-
ively. From the interpolation error estimate and (2.5) it follows that

llw - W,\U.a < Ch\\w\\2,a < Ch\\g\\0,n (6.10)

and

HW/lli.n < \\W, - u>||2.n + ||w||2.s2 < C||tu||2.o < C||*||0.a. (6.11)

We now estimate |||{/13 for r > 2. By the triangle inequality

Wh<W-Uih + lUifo- (6-12)

By (5.17)

W - U,\h < Ch~2\\U - U,h,a. (6.13)

The triangle inequality yields

lit/ - I//Ili.a < \\U - u\U,a + \\u - £//Ht.o. (6.14)

Theorem 2 and (6.9) (s = 2) imply

\\U - U,h,a < Ch2q\u\U + Ill/Ill^). (6-15)

Note that (see Lemma 5)

ll|£//lll3<C|||«|||3. (6.16)

Combining (6.12) with (6.13), (6.15) and (6.16) yields

|t/| | |3<C(|«|||4 + ll/llk,). (6.17)

By (6.3) with k = 2, 1 < s < r, r > 2,

\a(U, W,)\ - ah(U, W,)\ < Chs+'l\W,h\W\h, (6.18)

since W, € Vx and lW,l,+2 = Wih- Setting W, instead of V in (6.1) and using
(6.1), Theorem 2, (6.10), (6.18), (6.11), Lemma 6 with k = 1 and (6.17) produces

II" - tf||o.n < sup HsIloUC*1 (IMU2 + Ill/Ilk,) Ch\\g\\o.a

where 2/q <s<r,r>2,q>2,s = max(s + 2, 4).
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Appendix

We present another form of the system (3.1)—(3.4). The idea is similar to that in the
finite-element method. First we generate local matrices fc,, and local right-hand sides
gij on elements e,v, i = 0 , . . . , N\ — 1, j = 0 , . . . , N2 — 1. Then we extend them to
the whole region Q, obtaining the matrices £,; and the vectors gu. Next we assemble
the matrices to create a global matrix K and the vectors to create a global right-hand
side G, that is,

Ni-l N2-i

* = ££*.,.
(=0 j=0

N,-) N2-\

i=0 j=0

Let the solution U of the system (3.1)—(3.4) be represented as

N i - l N2-l r

" = E E £ "«••''#*#"
,=o ;=o k,i=o

where 4>-k and </>/, are defined in (4.6)-(4.8). Denote the vector 0 = {£/,*,,/}. Then 0
is the solution of the system of equations

KU = G.

The local system of equations on any element e,; is as follows:

LU(xik,yji) = f(xik,yji),

e^(x)wDlU(x, yjl) + huLU(x, yjl) = huf(x, >>,-,),

ef(y)wD2U(xik, y) + h2JLU(xik, y) = h2Jf(.xik, y),

efWhijwDiUix, y)+eJ(y)h],iwD2U(x, y)+hlJh2,jLU(x, y) = huh2Jf(x, y),

where 1 < k, I < r — l,x = xi+0Tx = xi+l-,y = yj+ory = yJ+i-and^1
jr(x,+) = —1,

e*(xi+i-) = 1, 6j(yj+) = - 1 , ej(yj+i-) = 1. The above system defines the local
matrix kjj and local right-hand side g,;.

Another approach is to use the tensor product of one-dimensional operators (see
[8]).
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