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Abstract. We derive the temperature and density structure of the ac­
cretion disk of the dwarf nova U Gem in quiescence from 3D radiative line 
and continuum transport calculations of a differentially rotating disk. 

1. Introduction 

It is not yet understood how high temperature emission lines like He I and low 
temperature emission lines like Call occur with similar profile shapes in accre­
tion disks of quiescent dwarf novae. In this study, we fit the orbital mean of the 
optical spectrum of U Gem by varying the density and temperature distribution 
of the disk in terms of radial power-laws. 

2. Observations 

Time resolved spectra of double peaked emission lines from the quiescent ac­
cretion disk of U Gem were taken during 6 nights in Feb 1990 with the Inter­
mediate Dispersion Spectrograph at the Isaac Newton Telescope on La Palma. 
The IPCS detector was used to cover wavelength ranges A3770 — A4282A and 
A4250 - A4750A and a CCD detector was used to cover A6520 - A6720A. The 
instrumental resolution of 30 km s _ 1 is much smaller than the Doppler broad­
ening due to the orbital motion in the accretion disk. Two nights were devoted 
to each wavelength region, and on each night the observations covered roughly 
a full binary orbit of the system. The He I emission lines did not exhibit an 
s-curve. The spectra were averaged to obtain the mean spectrum under analysis 
(Fig. 1). 
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Figure 1. Continuum-subtracted and orbital averaged optical spec­
trum of U Gem during quiescence and model fit of the most prominent 
emission lines. 

3. Model assumptions 

We assume a Keplerian disk (Vrot ~ i ? - ? ) . For a given electron temperature 

Te(R) = ToR'k, (1) 

intrinsic isotropic velocity disturbance VA, and an initial baryonic density dis­
tribution 

( ~z* N{R,Z) = N0R~mexp 
\2H*{R,T,Vfi) 

(2) 

we solved the equation of hydrostatic equilibrium together with the ionisation 
balance. The resulting hydrostatic structure was used as input to a modified 
version of the three dimensional spatially implicit radiative transfer method 
(Adam 1991; Hummel 1994) in order to calculate the line and the continuum 
radiation of the accretion disk under the additional assumption that LTE governs 
the occupation numbers. Calculations were done on a grid consisting of 60 X 
60 X 60 spatial gridpoints which enclose a region of 2Rd x 2Rd X 4H(Rd) with 
a spectral resolution of AA = 2 A. 

Since we only account for light from the accretion disk itself, continuum-
subtracted spectra were used for comparison between observation and theory. 
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Figure 2. Radial (a) and vertical (b) distribution of the most abun­
dant ionisation stages. From top to bottom: HII (—), electron density 
Ne (o), Hel (•••), Hell (•••), HI (—), Calll ( — ) and Call ( — ) 

4. Multi Parameter Fits 

Fundamental stellar parameters for U Gem were taken from the literature, as 
Mwd = O.57M0 (Friend et al. 1994), i = 70° (Zhang & Robinson 1987), Rwd = 
5 x 10s cm (Panek k Holm 1984), while Rd = 50Rwd is derived from the peak 
separation. 

Up to 5 parameters were varied using the downhill simplex method (Press 
et al. 1992). These were iVo and m for the density, T0 and k for the electron 
temperature and VA- The nominal distance of D = 80 pc (Marsh et al. 1990) 
was varied by up to 15% for a fine scaling of the intensity. The fitting procedure 
was performed several times with different initial parameters in order to confirm 
or reject the global character of the minimum in x2 • 

5. Results 

The best fit spectrum (Fig. 1) is found for a rather isothermal accretion disk 
with T0 = 14 160 K, k = 0.070, a steep density gradient of m = 2.36, and for 
which VA — 1 Mach has been kept constant. The disk surface density S(i?) 
decreases with R (Fig. 3). The minimum of x2 = 5.18 is found at a distance of 
D - 68 pc. 

The quiescent disk is optically thin in the continuum at A = 5 000 A for a 
pole-on view (Fig. 3). The model disk is completely ionized (Fig. 2) and because 
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Figure 3. Radial run of the surface density £(ii) (—) and the con­
tinuum optical depth TC(R) at A = 5 000 A (—) 

of the flat temperature distribution, the density distribution in the disk controls 
the ionisation fraction distribution of Ca and He. 

The remaining broad emission wings in Ha, H/3, and H7 are presumably 
due to Stark broadening. 
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Discussion 

J. Smak: The helium lines come predominantly from the hot spot area (the 
S-wave). 

K. Home: In this U.Gem data set, the S-wave from the gas stream is absent, 
so the Hel emission is from the disk. 

J. Smak: The temperature cannot be that high since (a) for dwarf novae at 
quiescence we have observational estimates of T ~ 4000 — 6000 K. (b) at tem­
peratures T > 10000 K the thermal instability would develop (leading to an 
outburst). 

W. Hummel: Remember that this gas is optically thin, so that Te// ~ Tgas x r, 
and so even with Tgas ~ 13000 K, we have Tejj < 7000 K, consistent with the 
disk being in the quiescent state. 
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