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CONSTRUCTIONS PRESERVING THE ASSOCIATIVE
AND THE COMMUTATIVE LAWS
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Abstract

The associative and the commutative laws are characterized by preservation under the
construction of powers and addition of a (new) unit element. This is used to generate the varieties
defined by the two laws from two element groupoids.

Let <$ be the category of all groupoids (that is, algebras with one binary
operation) and groupoid homomorphisms. By a functional construction on
groupoids we mean a functor F from the "power category" <&' into $. We say
that a class 3if of groupoids is F-closed or closed under F if for every family
(A-)iei of groupoids of JC the groupoid F(G4,),ej) belongs to K.A set 2 of
groupoid identities will be said to be preserved under F if the variety defined by
2 is F-closed.

In this note we shall be concerned with two functional constructions — P
and ( )°—defined as follows. For every groupoid 04, + ) we define P((A, +)) to
be the groupoid (P(/4), +), where P{A) is the set of all subsets of A and
X+Y = {x+y;x <EX,y EY} for all X,YQA. If f:(A,+)-*(B,+) is a
groupoid homomorphism then we define P(f) to be the function from P(A) to
P(B) which sends X CA to its image under /. It is easily seen that P(/) is a
homomorphism from (P(A), +) to(P(B), +)and that the function P: <g->^ so
defined is a functor. We shall refer to P as the power functor. To define
( f:'S^(S let (A, +) be an arbitrary groupoid. We define ((A, +))" to be the
groupoid ((A)°, +) obtained from (A, +) by adding a new unit element 0; that
is, (A)" consists of the disjoint union of A and {0} and a +0 = 0 + a ~ a for all
a 6 (A)0. For a groupoid homomorphism (A, + )—*(B, + ) we define (/)° to be
the function from (A)0 into (B)° such that (/)° restricted to A is / and
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(/)°(0) = 0. Again it is easy to see that (f)° is a homomorphism and ( )° is a
functor. We shall refer to ( )° as the addition-of-unit functor.

The associative and the commutative laws (i.e., the identities x + (y + z) =
(x + y) + z and JC + y = y + JC) are preserved under P and ( )°, as can be verified
without difficulty. Our first theorem shows that apart from the expected case of
the identity x = x (which is preserved under all constructions on groupoids)
x + y = y + x and x + (y + x) = (x + y) + z are the only identities preserved
under our two constructions.

THEOREM 1. Let V be a variety of groupoids. Then V is closed under P
and ( )° // and only if T is one of the following four varieties:

(1) the class of all groupoids
(2) the class of all commutative groupoids
(3) the class of all semigroups
(4) the class of all commutative semigroups.

It is clear from the above theorem that the class of all commutative
semigroups may be characterized as the smallest variety of groupoids closed
under the power and the addition-of-unit functors. The following theorem gives
a sharper result.

THEOREM 2. The variety of commutative semigroups is the smallest
variety of groupoids closed under the power functor P.

Before turning to the proofs of the above two theorems we make two
remarks and give some necessary definitions.

REMARK 1. A variety V of groupoids is closed under P and ( )° if and
only if Y is closed under either of the compositions ( )°P: 'S -4 <g -^-> <g and
P( )°: CS-^<S-^<S. If we write P° = P( )° then Theorem 1 determines all the
P°-closed varietes of groupoids.

REMARK 2. The set of all varieties closed under a functional construction
F is a complete sublattice LF of the complete lattice L of all varieties of
groupoids. Theorem 1 describes LP» as the four-element Boolean lattice while
Theorem 2 determines the "zero element" of the complete lattice LP.

In the sequel we shall often denote a groupoid (A, +) simply by A.
Let X be a fixed infinite set. Let Wx denote the word groupoid (cf. Cohn

(1965)) on X. We say that a word w e Wx is linear if every "variable" JC G X
occurs at most once in w. An identity v = w will be called linear if v and w are
both linear. (For example, (x + y) + z = x + (y + z) and x + y = y + x are
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linear). An identity is called regular if every variable that occurs on one side of
it also occurs on the other.

To prove Theorem 2 we need the following result which follows from
Whitney (1974) or Bleicher, Schneider and Wilson (1973).

THEOREM 3. A variety is P-closed if and only if is definable by a set of
regular, linear identities.

PROOF OF THEOREM 2. / / i ; ( JC, , • • • ,*„) = H>(JC, , • • • ,*„) is a regular linear

identity then under the associat ive and the commutat ive laws it reduces to

(x, + • • • +xn) = (x, + • • - + xn). Hence every commutat ive semigroup satisfies

every regular, linear identity. In view of Theorem 3, this proves Theorem 2.

We now give some lemmas directed towards the proof of Theorem 1.

Let v(Xi,-- - , * „ ) £ Wx. Then v{x,,-- • ,*„-, ,0) is an element of (Wx)°. It is

immediate that if n > l and v properly involves x,, ••• ,*„ then

v(x,, • • • ,*„-, ,0) G Wx. Also if v(xu • • -,xn) is linear then so is v(xu • • - . J C - ^ O ) .

The following lemma hardly needs any proof.

LEMMA 1. A necessary and sufficient condition for a variety Y to be

( )°-closed is that if v(x,,- -,xn) = w(x,, • • -,xn) is an identity of Y and

v(xl,---,xn-l,O)e\Vx then w(x,, • • • ,*„_,,())£ Wx and v(x,, • • -,xn ,,0) =

w(x,, • • •, jcn_i,0) is an identity of Y.

COROLLARY 1. Every identity of a ( )°-closed variety is regular.

LEMMA 2. Let v(xt, • • -,*„) = w(x,, • • -,*„) be a regular linear identity

such that the variables x,, • • -,xn occur in the order x,, • • -,xn both in v and w.

Then:

(2.1) The associative law (x + y) + z = x + (y + z) implies v = w.

(2.2) If v = w is an identity of a ( )"-closed variety V and v, w are distinct
then {x + y) + z = x + (y + z) is also an identity of V.

PROOF. The first part (2.1) of the lemma is fairly clear. For the second part
we use induction on the number n of variables occurring in v - w. If n = 1 then
regularity and linearity of v = w implies that v, w are identical variables. Hence
the required result (2.2) is true vacuously. Let n > 1 so that we can write
v = v, + i>2,w = H>, + w2 for some (linear) words v,,v2,w,,w2E. Wx- Let v,w be
distinct and let v = w be an identity of Y. If vx,wl involve the same variables
then so do v2,w2 and by setting all the variables in v2 equal to 0 and using
Lemma 1 we see that t>i = w, is a regular linear identity of Y. Similarly, v2 = w2

is also an identity of Y and since v, + v2,w, + w2 are distinct therefore either
vt,w,, or v2,w2 are distinct. We can thus use the induction hypothesis to
conclude that (x + y) + z = x + (y + z) is an identity of Y.
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Let now one of v,,w, (say, v,) involve a variable (say, x,) which does not
occur in w,. Then n > i > 1 and if we substitute 0 for all the variables of v = w
except xuxt,xn then we must get (x, + x,) + xn = x, + (JC, +*„). This proves the
lemma.

We write a regular linear identity—as indeed we can—in the form
u(x1? • • -,xn) = w(x1w, • • •,*/<„>), where / is a permutation on {1, • • -, n} and the
variables x, ,--- ,xn occur in v in the order x,,---,xn and in w in the order
•*><i>> • • •,xfln).

LEMMA 3. Let v(x,, • • -,*„) = w(xf0), • • \Jtf(n>) be a regular, linear identity
of a ( )°-closed variety Y. Then:

(3.1) ///(i) / i for some i, 1 g i S n, then x + y = y + x is an identity of Y.

(3.2) Either v = w is deducible from x + y = y M- x or (x + y) + z =
x +{y + z) is an identity of V.

PROOF. Let i be the smallest integer such that 1 i i g n and/(i) ^ i. Then
/(i) > i. Substituting 0 for all the variables in v = w except X,,JC/(,, we must have
x, + xIU) = xfU) + Xi, which gives (3.1), by Lemma 1.

To prove (3.2) we use induction on n. If n = 1 then v = w is identical with
x = x and hence deducible from x + y = y + x. Let n > 1 and assume (3.2) for
all identities with less than n variables. Clearly, we can write v = v, + v2,
w = w, + w2. If Wi,w>i involve the same variables then, as in the proof of Lemma2
(2.2), we obtain the regular, linear identities u, = w, and v2

= w2 of V. If the
associative law does not hold for the groupoids of V then the induction
hypothesis implies that v, = w,,v2

= w2 are deducible from JC + y = y + x, which
shows that v = w is also deducible from x + y = y + x.

We thus need to consider the case when one of vuw, (say, v,) involves a
variable (say, x,) not occurring in the other. I f / ( I) ^ 1 then, by (3.1), we can use
commutativity to bring x, to the left most position in w. Hence we can assume
/(I) = 1 and therefore 1 < i < n. Substituting 0 for all of the variables Xi, • • -,xn

in v = w except x,,xitxn we must have (x,+ xO + xn = x , + (x ,+x n ) or
(x, + Xj) + xn = Xi + (xn +x,) as identities of V. In the case of (x, + x,) + xn =
Xi + (xn+xf) we have commutativity, by (3.1) (or by setting x , = 0 ) . But
commutativity and (x, + x,) + xn = x, + (xn +x,) imply associativity. This
proves (3.2) and the lemma.

PROOF OF THEOREM 1. If Y is one of the four varieties (l)-(4) mentioned
in the theorem then, as already noted, Y is closed under P and ( )°.

Assume that Y is closed under P and ( )°. Then, by Theorem 3, Y is
denned h> the set S of all regular, linear identities of Y. Four cases arise:
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(I) Every identity in 2 is of the form v = v. In this case V is the variety (1) of
all groupoids.

(II) In the notation of Lemma 3 every identity in 2 is of the form
v(x,, • • -,xn) = w(xfu), • • -,*/<„>), where / is the identity permutation on
{1, • • - ,n}. Moreover, there is an identity v = w in 2 such that v, w are distinct.
In this case, by (2.1) and (2.2) of Lemma 2, V is the variety (3) of all
semigroups.
(III) There is an identity v(x,, ••• ,*„)= w(xfa), • • -,xf(n)) in 2 , where / is not
the identity permutation, but 2 does not contain the associative law. In this
case, by Lemma 3, T is the variety (2) of commutative groupoids.
(IV) There is an identity v(x,,- • -,xn) = w(xf(», • • -,A:/(n) in 2 such tha t / is not
the identity permutation on {l,---,n-} and at the same time 2 contains the
associative law. In this case V is contained in, and hence by Theorem 2, equal
to the variety (4) of commutative semigroups.

AN APPLICATION. '

Let X be a class of groupoids. By S(X), H(X), Y\(X) we denote
respectively the classes of all subgroupoids, all homomorphic images and all
cartesian products of groupoids in X. By P(X) we denote the image of X under
P while [Xf will denote the closure of X under ( )°. Let So, S-, Go, G. be the
groupoids on the two element set {a,b} defined as follows:

So is the two element semilattice

S+ is the semigroup satisfying xy = x' identically,

Go is the groupoid with: a2 = b, b2 = a, ab = ba = a

G+ is the groupoid with: a2 = b, b2 = a, ab -a, ba = b.

As an application of Theorems 1, 2 we now have

THEOREM 4. The four varieties (l)-(4) of Theorem 1 are respectively given
by: HSUP ILP([G+]°), HSUP IIP([Go]0), HSUP UP([S+]°), HSUPTlPiSo).

PROOF. We need Corollary 2 of Shafaat (to appear) which states that
HSUPUP(X) is the P-closed variety generated by X. Also, it is easily verified
that HSH([X]°) is the ( )°-closed variety generated by X and hence that
V = HSUP ILP([G+]°) is the P°-closed variety generated by the groupoid G+.
By Theorem 1, V must be one of the four varieties (l)-(4). Since, however, G.
is neither associative nor commutative therefore V must be the variety (1) of
all groupoids. The proof for the other varieties is similar.

Finally I should like to thank Professor W. S. Hatcher for bringing
Theorem 3 to my notice.
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