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Abstract. A well-known theorem of P. Hall says that if a group G contains a
normal nilpotent subgroup N such that G/N ′ is nilpotent then G is nilpotent. We give
a similar sufficient condition for a group G to be an extension of a group of finite
exponent by a nilpotent group.
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1. Introduction. The following famous theorem is due to P. Hall [2].

THEOREM A. Let N be a normal subgroup of a group G. If both G/N ′ and N
are nilpotent, then so is G. Futhermore, the nilpotency class of G does not exceed
(c − 1) k(k + 1)

2 + k, where c and k are the classes of G/N ′ and N respectively.

Later Steward showed in [6] that actually the class of G in Theorem A is bounded
by (c − 1)(k − 1) + ck. In the present paper however we are not concerned with explicit
expressions for functions whose existence we are going to prove.

Hall’s result proved to be an extremely useful criterion for a soluble group to be
nilpotent. In particular the next theorem can be easily deduced from Theorem A.

THEOREM B. Let C be a class of groups that is closed under taking subgroups and
quotients. If all metabelian groups in C are nilpotent, then so is any soluble group in C.

In [1], Endimioni and Traustason considered the question whether the above results
remain true with “nilpotent” replaced by “torsion-by-nilpotent”. They obtained the
following analogue to Theorem B.

THEOREM C. Let C be a class of groups that is closed under taking subgroups and
quotients. If all metabelian groups in C are torsion-by-nilpotent, then so is any soluble
group in C.

The purpose of the present paper is to establish yet another analogue to Theorem B.

THEOREM 1.1. Let C be a class of groups that is closed under taking subgroups and
quotients. If any metabelian group in C is an extension of a group of finite exponent by a
nilpotent group, then so is any soluble group in C.

The above theorem is an immediate consequence of the following quantitative
result. We use the term “{a, b, c, . . .}-bounded” to mean “bounded from above by
some function of a, b, c, . . .”.
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THEOREM 1.2. Let c, d, q be positive integers. Suppose G is a soluble group with
derived length d. Assume that for any i the metabelian quotient G(i)/G(i+2) is an extension
of a group of finite exponent q by a nilpotent group of class c. Then there exist {c, d, q}-
bounded numbers f and e such that G is an extension of a group of finite exponent e by a
nilpotent group of class f .

In turn, Theorem 1.2 is deduced from the following analogue to Theorem A for
soluble groups. We write f (c, k) for the expression (c − 1) k(k + 1)

2 + k.

THEOREM 1.3. Let G be a group having a normal nilpotent of class k subgroup N
such that G/N ′ is an extension of a group of finite exponent q by a nilpotent group of
class c. Assume that γc+1(G) is soluble with derived length d. Then γf (k,c)+1(G) has finite
{c, d, k, q}-bounded exponent.

2. Preliminaries. As usual, if M, N are subgroups of a group G, the subgroup
〈[x, y]|x ∈ M, y ∈ N〉 will be denoted by [M, N]. We use the left normed notation: thus
if N1, N2, . . . , Ni are subgroups of G, then

[N1, N2, . . . , Ni] = [. . .[[N1, N2], N3], . . . , Ni].

The subgroup generated by all nth powers of elements of M will be denoted by Mn.
It follows that Mnr ≤ (Mn)r for any n, r. For positive integers d and q we define the
function e(d, q) by the rule e(d, q) = qd , if q is odd and e(d, q) = 2dqd , if q is even.

LEMMA 2.1. Let N be a soluble normal subgroup of a group G and assume that N
has derived length d. Then for any q we have [N, G]e(d,q) ≤ [Nq, G].

Proof. Without any loss of generality we can assume that [Nq, G] = 1. The claim
is true if N is abelian so we use induction on d. The induction hypothesis will be that
[N ′, G]e(d−1,q) = 1. Passing to the quotient G/[N ′, G] we can assume that N ′ ≤ Z(G), in
which case N is nilpotent of class at most 2 and so for any a ∈ N the map from N to
N ′ that takes an arbitrary element x ∈ N to [x, a] is a homomorphism whose kernel
is CN(a). Because [Nq, G] = 1, it follows that N ′ has exponent dividing q. Now the
Hall-Petrescu formula [3, III.9.4] (see also the proof of Lemma VIII.1.1 (b) in [4]) gives
us [N, G]q ≤ [Nq, G]N ′ q

2 so [N, G] has exponent dividing q if q is odd and 2q otherwise.
In either case the lemma follows. �

Having fixed d and q, for any s ≥ 1 we set es = eds−1
, where e = e(d, q).

COROLLARY 2.2. Under the hypotheses of Lemma 2.1 for any s we have

[N, G, . . . , G︸ ︷︷ ︸
s

]es ≤ [Nq, G, . . . , G︸ ︷︷ ︸
s

].

Proof. This is straightforward by induction on s. �
LEMMA 2.3. Let N be a normal subgroup of a group G. Let c, k be positive integers.

Set s = s(c, k) = k(c − 1) + 1. Then we have

[N, . . . , N︸ ︷︷ ︸
k

G, . . . , G︸ ︷︷ ︸
s

] ≤ [[N, G, . . . , G︸ ︷︷ ︸
c

], N, . . . , N︸ ︷︷ ︸
k−1

].
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Proof. We can assume that [[N, G, . . . , G︸ ︷︷ ︸
c

], N, . . . , N︸ ︷︷ ︸
k−1

] = 1. In that case, of course,

[N, . . . , N︸ ︷︷ ︸
m

, [N, G, . . . , G︸ ︷︷ ︸
c

], N, . . . , N︸ ︷︷ ︸
k−1−m

] = 1 for any m = 0, 1, . . . , k − 1. Now write

[N, . . . , N︸ ︷︷ ︸
k

G, . . . , G︸ ︷︷ ︸
s

] ≤
∏

j1+···+jk=s

[[N, G, . . . , G︸ ︷︷ ︸
j1

], . . . , [N, G, . . . , G︸ ︷︷ ︸
jk

]].

This follows easily from equations (8) in [5, p. 117]. We notice that the number s is
big enough to ensure that at least one of the ji is bigger than or equal to c. Since
[N, . . . , N︸ ︷︷ ︸

m

, [N, G, . . . , G︸ ︷︷ ︸
c

], N, . . . , N︸ ︷︷ ︸
k−1−m

] = 1 for any m = 0, 1, . . . , k − 1, we derive that

[N, . . . , N︸ ︷︷ ︸
k

G, . . . , G︸ ︷︷ ︸
s

] = 1, as required. �

3. Main Results. Now we are in a position to prove our main results. Since
Theorem 1.1 is immediate from Theorem 1.2, it is sufficient to provide the proofs of
Theorem 1.2 and Theorem 1.3. We let f (c, k) stand for (c − 1) k(k + 1)

2 + k and s = s(c, k)
have the same meaning as in Lemma 2.3.

Proof of Theorem 1.3. We use induction on k. Set H = γf (k−1,c)+1(G). The
induction hypothesis is that the theorem holds if G is replaced by G/γk(N). In
other words, we assume that there exists a {c, d, k, q}-bounded number a such that
Ha ≤ γk(N). Set b = ads(k,c)

. We will show that γf (k,c)+1(G) has exponent dividing bek−1.
We have

(γf (k,c)+1(G))bek−1 ≤ ([H, G, . . . , G︸ ︷︷ ︸
s

]b)ek−1 .

Notice that 2.2 shows that

[H, G, . . . , G︸ ︷︷ ︸
s

]b ≤ [Ha, G, . . . , G︸ ︷︷ ︸
s

]

so we write

([H, G, . . . , G︸ ︷︷ ︸
s

]b)ek−1 ≤ [Ha, G, . . . , G︸ ︷︷ ︸
s

]ek−1 .

Using that Ha ≤ γk(N), we obtain

[Ha, G, . . . , G︸ ︷︷ ︸
s

]ek−1 ≤ [γk(N), G, . . . , G︸ ︷︷ ︸
s

]ek−1 .

Now Lemma 2.3 yields

[γk(N), G, . . . , G︸ ︷︷ ︸
s

]ek−1 ≤ [γc+1(G), N, . . . , N︸ ︷︷ ︸
k−1

]ek−1 .

By 2.2 the latter expression is contained in [(γc+1(G))q, N, . . . , N︸ ︷︷ ︸
k−1

] while (γc+1(G))q ≤
[N, N] by the hypothesis. Finally we write

[(γc+1(G))q, N, . . . , N︸ ︷︷ ︸
k−1

] ≤ [N, N, N, . . . , N︸ ︷︷ ︸
k−1

] = γk+1(N) = 1.

Thus, we have shown that (γf (k,c)+1(G))bek−1 = 1, as required. �
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Proof of Theorem 1.2. Since G′ has derived length d − 1, we can assume by
induction on d that there exist {c, d, q}-bounded numbers k0 and e0 such that G′ is an
extension of a group of finite exponent e0 by a nilpotent group of class k0. In particular,
γk0+1(G′) has exponent dividing e0. Passing to the quotient-group G/γk0+1(G′) we can
assume without any loss of generality that G′ is nilpotent of class at most k0. By the
hypothesis γc+1(G/G′′) has exponent dividing q. So, applying Theorem 1.3 with N = G′,
we obtain that γf (k0,c)+1(G) has finite {c, d, q}-bounded exponent. �
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