SOME FRACTIONAL q-INTEGRALS AND q-DERIVATIVES \dagger

by WALEED A. AL-SALAM

(Received 18th April 1966)

1. A q-analogue of the integral $\int_{x}^{\infty} f(t) d t$ is defined by means of

$$
\begin{equation*}
\int_{x}^{\infty} f(t) d(t ; q)=x(1-q) \sum_{k=1}^{\infty} q^{-k} f\left(x q^{-k}\right) \tag{1.1}
\end{equation*}
$$

which is an inverse of the q-derivative

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x q)-f(x)}{x(q-1)} \tag{1.2}
\end{equation*}
$$

The present author (2) has recently obtained a q-analogue of a formula of Cauchy, namely,

$$
\begin{align*}
K^{-N} f(x) & =\int_{x}^{\infty} \int_{x_{N-1}}^{\infty} \ldots \int_{x_{1}}^{\infty} f(t) d(t ; q) d\left(x_{1} ; q\right) \ldots d\left(x_{N-1} ; q\right) \\
& =\frac{q^{-N(N-1) / 2}}{[N-1]!} \int_{x}^{\infty}(t-x)_{N-1} f\left(t q^{1-N}\right) d(t ; q) \tag{1.3}
\end{align*}
$$

where, for real or complex α and N a positive integer,

$$
[\alpha]=\frac{1-q^{\alpha}}{1-q},[0]!=1,[N]!=[1][2] \ldots[N]
$$

and

$$
\begin{equation*}
(t-x)_{0}=1,(t-x)_{N}=(t-x)(t-q x) \ldots\left(t-q^{N-1} x\right) \tag{1.4}
\end{equation*}
$$

We shall also use the notation

$$
(a)_{0}=1, \quad(a)_{N}=(1-a)(1-q a) \ldots\left(1-q^{N-1} a\right)
$$

The q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
\alpha \\
0
\end{array}\right]=1,\left[\begin{array}{l}
\alpha \\
k
\end{array}\right]=\frac{[\alpha][\alpha-1] \ldots[\alpha-k+1]}{[k]!}
$$

so that we have

$$
(t-x)_{N}=\sum_{k=0}^{N}(-1)^{k}\left[\begin{array}{l}
N \tag{1.5}\\
k
\end{array}\right] q^{t k(k-1) t^{N-k} x^{k} .}
$$

\dagger Dedicated to the memory of my friend E. L. Whitney.

The purpose of this note is to obtain fractional generalisation of (1.3) as well as a q-analogue of the fractional operator (3.1) of Erdélyi and Sneddon. Elsewhere we shall give similar results for fractional q-integrals based on the q-analogue of $\int_{a}^{x} f(t) d t$.

We now give a few preliminary results.
An analogue of the exponential function is

$$
\begin{equation*}
e(u)=\prod_{0}^{\infty}\left(1-u q^{n}\right)^{-1}=\sum_{n=0}^{\infty} \frac{u^{n}}{(q)_{n}} . \tag{1.6}
\end{equation*}
$$

The binomial (1.5) can be extended to non-integral values of N by means of

$$
\begin{equation*}
(x-y)_{v}=x^{\nu} \frac{e\left(q^{v} y / x\right)}{e(y / x)} \tag{1.7}
\end{equation*}
$$

In view of the known identity [(5), p. 92]

$$
\frac{e(u)}{e(a u)}=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(q)_{k}} u^{k}
$$

formula (1.7) can be written as

$$
(x-y)_{v}=x^{v} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
v \tag{1.8}\\
k
\end{array}\right] q^{ \pm k(k-1)}(y / x)^{k}
$$

From (1.7) and (1.8) we see that

$$
\begin{equation*}
(1+x)_{\alpha}\left(1+x q^{\alpha}\right)_{\beta}=(1+x)_{\alpha+\beta} \tag{1.9}
\end{equation*}
$$

so that, upon equating coefficients of x^{n}, we get

$$
\sum_{s=0}^{n}\left[\begin{array}{c}
\alpha \tag{1.10}\\
n-s
\end{array}\right]\left[\begin{array}{c}
\beta \\
s
\end{array}\right] q^{s^{2}-n s+s \alpha}=\left[\begin{array}{c}
\alpha+\beta \\
n
\end{array}\right]
$$

As a q-analogue of the gamma function we define

$$
\begin{equation*}
\Gamma_{q}(\alpha)=\frac{e\left(q^{\alpha}\right)}{e(q)(1-q)^{\alpha-1}} \quad(\alpha \neq 0,-1,-2,-3, \ldots) \tag{1.11}
\end{equation*}
$$

This function satisfies the functional equation $\Gamma_{q}(\alpha+1)=[\alpha] \Gamma_{q}(\alpha)$ and if $\alpha=n$, a positive integer, we have $\Gamma_{q}(n+1)=[n]$!.

An analogue of Gauss' theorem for the sum of hypergeometric functions is [(5), p. 97]

$$
\begin{equation*}
{ }_{2} \phi_{1}\left[b, q^{-n} ; d ; q\right]=\sum_{k=0}^{n} \frac{\left(q^{-n}\right)_{k}(b)_{k}}{(q)_{k}(d)_{k}} q^{k}=\frac{(d / b)_{n}}{(d)_{n}} b^{n} \tag{1.12}
\end{equation*}
$$

In the following we shall assume that $0<q<1$ and that the functions under consideration are such that the series in (1.1) is absolutely convergent. In particular this implies that $\lim _{x=\infty} f(x)=0$.
2. We are now in position to define the fractional generalisation of (1.3). We put, for arbitrary $v \neq 0,-1,-2, \ldots$,

$$
\begin{align*}
K_{q}^{-v} f(x) & =\frac{q^{-\frac{1}{2} v(v-1)}}{\Gamma_{q}(v)} \int_{x}^{\infty}(t-x)_{v-1} f\left(t q^{1-v}\right) d(t ; q) \\
K_{q}^{0} f(x) & =f(x) \tag{2.1}
\end{align*}
$$

This is a q-analogue of the Weyl fractional integral

$$
K^{-v} f(x)=\frac{1}{\Gamma(v)} \int_{x}^{\infty}(t-x)^{v-1} f(t) d t
$$

When $v=n$, a positive integer, formula (2.1) reduces to (1.3). On the other hand formula (2.1) can be written as

$$
K_{q}^{-v} f(x)=q^{-\frac{t}{z} v(v+1)} x^{v}(1-q)^{v} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{c}
-v \tag{2.3}\\
k
\end{array}\right] q^{\ddagger k(k-1)} f\left(x q^{-v-k}\right) .
$$

This formula is now valid for all v and, in fact, when $v=-n$ a negative integer, (2.3) reduces to

$$
K_{q}^{n} f(x)=x^{-n}(1-q)^{-n} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \tag{2.4}\\
k
\end{array}\right] q^{\frac{1}{2 k(k-1)-\operatorname{tn}(n-1)} f\left(x q^{n-k}\right)}
$$

which is a well-known formula (4) for $(-1)^{n} D_{q}^{n} f(x)$.
It follows immediately from the definition (2.1) that

$$
K_{q}^{\alpha}\left(c_{1} f_{1}+c_{2} f_{2}\right)=c_{1} K_{\psi}^{\alpha} f_{1}+c_{2} K_{q}^{\alpha} f_{2}
$$

We now proceed to prove that

$$
\begin{equation*}
K_{q}^{\alpha} \cdot K_{q}^{\beta} f(x)=K_{q}^{\alpha+\beta} f(x) \tag{2.5}
\end{equation*}
$$

valid for all α and β.
To prove (2.5) we have by means of (2.3)

$$
\begin{aligned}
& K_{q}^{\alpha} \cdot K_{q}^{\beta} f(x)= K_{q}^{\alpha}\left\{q^{-\frac{1}{2} \beta(\beta-1)} x^{-\beta}(1-q)^{-\beta} \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{l}
\beta \\
k
\end{array}\right] q^{\frac{1}{2}(k-1)} f\left(x q^{\beta-k}\right)\right\} \\
&= q^{-\frac{1}{2} \alpha(\alpha-1)-\frac{1}{2} \beta(\beta-1)}(1-q)^{-\alpha-\beta} x^{-\alpha} \sum_{r=0}^{\infty}(-1)^{r}\left[\begin{array}{l}
\alpha \\
r
\end{array}\right] q^{\frac{1}{2 r(r-1)}} \\
& \cdot \sum_{k=0}^{\infty}(-1)^{k}\left[\begin{array}{l}
\beta \\
k
\end{array}\right] q^{\frac{1 k}{2 k(k-1)}\left(x q^{\alpha-r}\right)^{-\beta} f\left(x q^{\alpha+\beta-k-r}\right)} \\
&=q^{-\frac{1}{2} \alpha(\alpha-1)-\frac{1}{2} \beta(\beta-1)-\alpha \beta}(1-q)^{-\alpha-\beta} \sum_{n=0}^{\infty}(-1)^{n} q^{\frac{1}{2} n(n-1)} f\left(x q^{\alpha+\beta-n}\right) \\
& \cdot x^{-\alpha-\beta} \cdot \sum_{r=0}^{n}\left[\begin{array}{l}
\alpha \\
r
\end{array}\right]\left[\begin{array}{c}
\beta \\
n-r
\end{array}\right] q^{r^{2}-n r+r \beta} .
\end{aligned}
$$

The inner sum in the right-hand side can be evaluated by means of (1.10). We get

$$
\begin{aligned}
& K_{q}^{\alpha} K_{q}^{\beta} f(x)=q^{-\frac{1}{2}(\alpha+\beta)(\alpha+\beta-1)}(1-q)^{-\alpha-\beta} x^{-\alpha-\beta} \\
&=K_{q=0}^{\alpha+\beta}(-1)^{n}\left[\begin{array}{c}
\alpha+\beta \\
n
\end{array}\right] q^{\frac{1}{2 n(n-1)} f\left(x q^{\alpha+\beta-n}\right)} \\
& \quad \text { E.M.S. }-K
\end{aligned}
$$

3. Erdélyi and Sneddon (3) defined the fractional operator

$$
\begin{equation*}
K^{\eta, \alpha} f(x)=\frac{x^{\eta}}{\Gamma(\alpha)} \int_{x}^{\infty}(y-x)^{\alpha-1} y^{-\alpha-\eta} f(y) d y \tag{3.1}
\end{equation*}
$$

A q-analogue of this is

$$
\begin{equation*}
K_{q}^{\eta, \alpha} f(x)=\frac{q^{-\eta} x^{\eta}}{\Gamma_{q}(\alpha)} \int_{x}^{\infty}(y-x)_{\alpha-1} y^{-\eta-a} f\left(y q^{1-\alpha}\right) d(y ; \cdot q) \tag{3.2}
\end{equation*}
$$

where $\alpha \neq 0,-1,-2, \ldots$ This formula can also be written as

$$
\begin{equation*}
K_{q}^{\eta, \alpha} f(x)=\frac{1-q}{\Gamma_{q}(\alpha)} \sum_{k=0}^{\infty} q^{k \eta}\left(1-q^{k+1}\right)_{\alpha-1} f\left(x q^{-\alpha-k}\right) \tag{3.3}
\end{equation*}
$$

By means of (1.7) and (1.10) we can write

$$
K_{q}^{\eta, \alpha} f(x)=(1-q)^{\alpha} \sum_{k=0}^{\infty}(-1)^{k} q^{k(\eta+\alpha)+\frac{1}{2} k(k+1)}\left[\begin{array}{r}
-\alpha \tag{3.4}\\
k
\end{array}\right] f\left(x q^{-\alpha-k}\right)
$$

Formula (3.4) is valid for all α and may be taken as a continuation of (3.1).
If $\alpha=-N$, a negative integer, we get

$$
K_{q}^{\eta,-N} f(x)=(1-q)^{-N} \sum_{k=0}^{N}(-1)^{k} q^{k(\eta-N)+\frac{1}{2} k(k-1)}\left[\begin{array}{l}
N \\
k
\end{array}\right] f\left(x q^{N-k}\right)
$$

Comparing this with (2.5) we see that

$$
\begin{equation*}
K_{q}^{\eta,-N} f(x)=(-1)^{N} q^{-\frac{1}{2} N(N-\eta+1)} x^{\eta} D_{q}^{N}\left\{x^{-\eta+N} f(x)\right\} \tag{3.5}
\end{equation*}
$$

Let us consider the expression

$$
D_{q}^{N}\left\{x^{-\eta-\alpha} K_{q}^{\eta, \alpha+N} f(x)\right\}
$$

If we substitute for $K_{q}^{\eta, \alpha+N} f(x)$ from (3.4) and then q-differentiate the resulting expression N times by means of (2.5) we obtain, using formula (1.10),

$$
\begin{equation*}
K_{q}^{\eta, \alpha} f(x)=(-1)^{N} q^{\frac{1}{2} N(N+\eta+\alpha-1)} x^{\eta+N+\alpha} D_{q}^{N}\left\{x^{-\eta-\alpha} K_{q}^{\eta, \alpha+N}\right\} . \tag{3.6}
\end{equation*}
$$

We now prove that

$$
\begin{equation*}
K_{q}^{\eta, \alpha} K_{q}^{\eta+\alpha, \beta} f(x)=K_{q}^{\eta, \alpha+\beta} f(x), \tag{3.7}
\end{equation*}
$$

valid for all η, α, β.
The left-hand side is

$$
\frac{e(q) e(q)(1-q)^{\alpha+\beta}}{e\left(q^{\alpha}\right) e\left(q^{\beta}\right)} \sum_{s=0}^{\infty} q^{s n} f\left(x q^{-\alpha-\beta-s}\right) \sum_{k=0}^{s} q^{k \alpha}\left(1-q^{k+1}\right)_{\beta-1}\left(1-q^{s+1-k}\right)_{\alpha-1}
$$

The inside sum is equal to

$$
q^{\alpha} \frac{e\left(q^{\beta}\right) e\left(q^{s+\alpha-1}\right)}{e(q) e\left(q^{5}\right)}{ }_{2} \phi_{1}\left(q^{1-s}, q ; q^{2-s-\alpha} ; q\right) .
$$

This expression, by (1.12), is equal to

$$
q^{\alpha} \frac{e\left(q^{\beta}\right) e\left(q^{\alpha}\right) e\left(q^{\alpha+\beta+s-1}\right)}{e(q) e\left(q^{\alpha+\beta}\right) e\left(q^{s}\right)}=q^{\alpha} \frac{\Gamma_{q}(\alpha) \Gamma_{q}(\beta)}{\Gamma_{q}(\alpha+\beta)}\left(1-q^{s}\right)_{\alpha+\beta-1} .
$$

We thus get

$$
\begin{aligned}
K_{q}^{\eta, \alpha} K_{q}^{\eta+\alpha, \beta} f(x) & =\frac{1-q}{\Gamma_{q}(\alpha+\beta)} \sum_{s=0}^{\infty} q^{s n}\left(1-q^{s+1}\right)_{\alpha+\beta-1} f\left(x q^{-\alpha-\beta-s}\right) \\
& =K_{q}^{\eta, \alpha+\beta} f(x) .
\end{aligned}
$$

This completes the proof of (3.7).
From (3.7) it follows that

$$
\begin{equation*}
\left\{K_{q}^{\eta, \alpha}\right\}^{-1} f(x)=K_{q}^{\eta+\alpha,-\alpha} f(x) \tag{3.8}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
K_{q}^{\eta, a}\left\{x^{\beta} f(x)\right\}=x^{\beta} q^{(1-\alpha) \beta} K_{q}^{\eta-\beta, \alpha} f(x) . \tag{3.9}
\end{equation*}
$$

The relationship between the two fractional operators we defined above is

$$
\begin{equation*}
K_{q}^{\eta, \alpha} f(x)=x^{\eta} q^{-\frac{1}{2} \alpha(\alpha-1)-\alpha \eta} K_{q}^{-\alpha}\left\{x^{-\eta-\alpha} f(x)\right\} \tag{3.10}
\end{equation*}
$$

4. We give now a short table of transform pairs. Because of (3.10) we shall give only those involving the operator $K_{q}^{\eta, \alpha}$.

We first recall that

$$
{ }_{r} \phi_{s}\left(a_{1}, a_{2}, \ldots, a_{r} ; b_{1}, b_{2}, \ldots, b_{s} ; x\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{r}\right)_{k}}{(q)_{k}\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{s}\right)_{k}} x^{k}
$$

and that

$$
\frac{\Gamma_{q}(\mu)}{\Gamma_{q}(\mu+\alpha)}=(1-q)^{\alpha} \prod_{s=0}^{\infty} \frac{1-q^{\mu+\alpha+s}}{1-q^{\mu+s}} .
$$

For brevity we shall write the left-hand side. We shall also write $f(x) \rightarrow g(x)$ instead of $K_{q}^{\eta, \alpha} f(x)=g(x)$.

$$
\begin{gather*}
x^{\lambda} \rightarrow q^{-\alpha \lambda} \frac{\Gamma_{q}(\eta-\lambda)}{\Gamma_{q}(\eta-\lambda+\alpha)} x^{\lambda} \tag{4.1}\\
x^{\lambda+N} \rightarrow q^{-\alpha \lambda} \frac{\Gamma_{q}(\eta-\lambda)}{\Gamma_{q}(\eta-\lambda+\alpha)} \frac{\left(q^{1-\eta-\alpha+\lambda}\right)_{N}}{\left(q^{1-\eta+\lambda}\right)_{N}} x^{\lambda+N}(N, \text { a positive integer }) . \tag{4.2}\\
x^{\eta+\alpha}(x+b)_{\lambda} \rightarrow x^{\eta} q^{-\alpha(\eta+\lambda+\alpha)} \frac{\Gamma_{q}(-\alpha-\lambda)}{\Gamma_{q}(-\lambda)}(x+b)_{\lambda+\alpha} \tag{4.3}\\
x^{-\lambda+\eta} e(c / x) \rightarrow x^{(\eta-\lambda)} q^{\alpha(\lambda-\eta)} \frac{\Gamma_{q}(\lambda)}{\Gamma_{q}(\lambda+\alpha)}{ }_{1} \phi_{1}\left(q^{\lambda} ; q^{\lambda+\alpha} ; c q^{\alpha} / x\right) \tag{4.4}\\
x^{\mu+\eta-1} e(x) \rightarrow x^{\mu+\eta-1} q^{-\alpha(\mu+\eta-1)} \frac{\Gamma_{q}(1-\mu)}{\Gamma_{q}(1-\mu+\alpha)}{ }_{1} \phi_{1}\left(q^{\mu-\alpha} ; q^{\mu} ; x\right) . \tag{4.5}
\end{gather*}
$$

$$
\begin{align*}
& x^{\mu+\eta-1}(b+x)_{v} \rightarrow b^{v} x^{\mu+\eta-1} \frac{\Gamma_{q}(1-\mu)}{\Gamma_{q}(1+\alpha-\mu)}{ }_{2} \phi_{1}\left(q^{-v}, q^{\mu-\alpha} ; q^{\mu} ; x q^{v} / b\right) . \tag{4.6}\\
& x^{\eta-v-1}(b+x)_{v} \rightarrow b^{-\alpha} x^{\eta-v-1} q^{\alpha(1-\eta-v)} \frac{\Gamma_{q}(v+1)}{\Gamma_{q}(v+\alpha+1)}\left(b q^{\alpha}+x\right)_{z+v} \quad(v \neq 0) . \tag{4.7}\\
& x^{\lambda+\eta-1}{ }_{2} \phi_{1}\left(q^{a}, q^{b} ; q^{c} ; x\right) \\
& \rightarrow x^{\lambda+\eta-1} q^{-\alpha(\lambda+\eta-1)} \frac{\Gamma_{q}(1-\lambda)}{\Gamma_{q}(1+\alpha-\lambda)^{3} \phi_{2}\left(q^{a}, q^{b}, q^{\lambda-\alpha} ; q^{\lambda}, q^{c} ; x\right)} \tag{4.8}
\end{align*}
$$

Formula (4.8) reduces, when $\lambda=a, \alpha=-n$ or when $\lambda=c+\alpha, \alpha=-n$, to formulae of Agarwal (1). Formula (4.8) can be extended further so that the left-hand side involves a ${ }_{s} \phi_{s-1}$ and the right-hand side a ${ }_{s+1} \phi_{s}$.

We now illustrate an application of the above formulae. We have from (1.9) and (1.8)

$$
\sum_{k=0}^{\infty} \frac{\left(q^{-v}\right)_{k}}{(q)_{k}} q^{k(v+\lambda)} x^{\mu+k}(1+x)_{\lambda}=x^{\mu}(1+x)_{\lambda+\nu} .
$$

Now applying (4.6) we get

$$
\begin{aligned}
&{ }_{2} \phi_{1}\left(q^{-\lambda-v}, q^{\alpha} ; q^{\mu} ; x q^{\lambda+v}\right)= \sum_{k=0}^{\infty} \frac{\left(q^{-v}\right)_{k}\left(q^{\alpha}\right)_{k}}{(q)_{k}\left(q^{\mu}\right)_{k}} q^{k(\lambda+v)} \\
& \quad \cdot{ }_{2} \phi_{1}\left(q^{-\lambda}, q^{\alpha+k}, q^{\mu+k} ; x q^{\mu+k}\right)
\end{aligned}
$$

REFERENCES

(1) R. P. Agarwal, Associated basic hypergeometric series, Proc. Glasgow Math. Assoc. 1 (1952-53), 182-184.
(2) W. A. Al-Salam, q-analogues of Cauchy's formula, Proc. Amer. Math. Soc. 17 (1966), 616-621.
(3) A. Erdélyi and I. N. Sneddon, Fractional integration and dual integral equations, Canad. J. Math. 14 (1962), 685-693.
(4) W. Hahn, Uber die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen, Math. Nachr. 3 (1950), 257-294.
(5) L. J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, 1966).

University of Alberta

