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Abstract

This paper introduces the notion of a derived splinter. Roughly speaking, a scheme is a
derived splinter if it splits off from the coherent cohomology of any proper cover. Over
a field of characteristic 0, this condition characterises rational singularities, as suggested
by the work of Kovács. Our main theorem asserts that over a field of characteristic p,
derived splinters are the same as (underived) splinters, i.e. schemes that split off from
any finite cover. Using this result, we answer some questions of Karen Smith concerning
the extension of Serre/Kodaira-type vanishing results beyond the class of ample line
bundles in positive characteristic; these are purely projective geometric statements
independent of singularity considerations. In fact, we can prove ‘up to finite cover’
analogues in characteristic p of many vanishing theorems known in characteristic 0. All
these results fit naturally in the study of F-singularities, and are motivated by a desire
to understand the direct summand conjecture.

1. Introduction

The work presented in this paper is directly inspired by Hochster’s direct summand conjecture,
which has taunted commutative algebraists for about forty years. It says the following.

Conjecture 1.1. Every module-finite extension of a regular ring R splits as a map of R-
modules.

Hochster himself settled in 1973 the case where R contains a field [Hoc73]. The only
open case is thus arithmetic in nature, i.e. where R has mixed characteristic. The most
significant progress has been Heitmann’s 2002 work [Hei02], which settled the conjecture in
dimension 3. In the intervening years, mathematicians have uncovered an intricate web linking
Conjecture 1.1 to various seemingly unrelated problems. For example, Raynaud and Gruson
[RG71, p. 67, Question 2] asked in 1971 whether injective integral ring homomorphisms (with a
noetherian base) descend flatness, which Ohi showed in 1996 is equivalent to the direct summand
conjecture [Ohi96]. For other equivalent formulations, see [Hoc07].

The goal of this paper is to understand the severity of the direct summand condition, i.e.
to understand the constraints imposed on the geometry of Spec(R) if R is an Fp-algebra that
satisfies the conclusion of Conjecture 1.1. In order to explain our results, it is convenient to recall
the following definition.

Definition 1.2. A scheme S is called a splinter if for any finite surjective map f :X → S, the
pullback map OS → f∗OX is split in the category Coh(S) of coherent sheaves on S.
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This term was coined in [Sin99], though the idea is much older. In characteristic 0, splinters
are exactly normal schemes (see Example 2.1). On the other hand, Conjecture 1.1 may be
reformulated as the assertion that all regular affine schemes are splinters. The philosophy
informing our investigations is that the geometry of splinters is best understood by first
understanding the relationship with a suitable derived analogue, which may then be related
to geometry. Combining this idea with the ansatz that proper maps provide robust derived
analogues of finite maps, at least for coherent cohomology, leads to the following definition.

Definition 1.3. A scheme S is called a derived splinter, or simply a D-splinter, if for any proper
surjective map f :X → S, the pullback map OS → R f∗OX is split in derived category D(Coh(S))
of coherent sheaves on S.

D-splinters are, in fact, well-known to complex geometers, but under a different name: a
theorem of Kovács [Kov00] identifies D-splinters in characteristic 0 with rational singularities (the
proof given in [Kov00] is incomplete, so we provide a direct proof in Theorem 2.12). Since splinters
in characteristic 0 are precisely normal schemes, one notices immediately that splinters and
D-splinters define extremely different classes of singularities in characteristic 0. In characteristic
p > 0, however, we discover a remarkably different picture; one of the main theorems of this
paper is the following.

Theorem 1.4. A noetherian Fp-scheme S is a splinter if and only if it is a D-splinter.

The main tool used to prove Theorem 1.4 is a cohomology-annihilation result that is of
independent interest: we show that the higher cohomology of the structure sheaf on a projective
variety in characteristic p can always be killed by a finite cover. In fact, we prove the following
stronger relative statement.

Theorem 1.5. Let f :X → S be a proper morphism of noetherian Fp-schemes. Then there exists
a proper morphism g : Y → S and a finite surjective morphism π : Y →X such that the pullback
map π∗ : τ>1 R f∗OX → τ>1 R g∗OY is 0.

The proof of Theorem 1.5 is inspired by Hochster and Huneke’s theorem [HH92] on the
existence of big Cohen–Macaulay algebras in positive characteristic (and also [HL07]). The same
paper led K. Smith to ask certain questions concerning extensions of the vanishing theorems of
Serre and Kodaira beyond the ample cone (see § 7). Using our methods, we are able to answer
these questions. The negative answers are recorded in the form of counterexamples at the end
of § 7, while the affirmative answers are summarised in Theorem 1.6. We refer the reader to
Propositions 7.2 and 7.3 for more precise statements.

Theorem 1.6. Let X be a proper variety over a field k of positive characteristic, and let L be
a semiample line bundle on X. Then H i(X, L) can be killed by finite covers for i > 0. If L is big
as well, then H i(X, L−1) can be killed by finite covers for i < dim(X).

It is worthwhile to remark that the results mentioned above, in conjunction with those proven
in § 7, have applications unrelated to splinters or D-splinters: these results suggest that numerous
vanishing theorems that are true in characteristic 0 have analogues in characteristic p provided
one works ‘up to finite covers’. This idea has been pursued in much more depth in the recent
work [BST11], where ‘up to finite cover’ analogues of the Nadel vanishing have been established.
Moreover, we can also prove a weak mixed-characteristic analogue of Theorem 1.5 (see [Bha11b]),
and this analogue has surprising applications, including some in p-adic Hodge theory [Bei11].
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Derived splinters in positive characteristic

Returning to affine D-splinters, we note that in positive characteristic p, by Theorem 1.4 this
class of singularities is closely related to other classes of singularities, the so-called F-singularities,
defined using the Frobenius action. For example, locally excellent affine Q-Gorenstein splinters
are F-regular by [Sin99], which builds on the Gorenstein case of [HH94]; see also Example 2.4
below. In contrast, in mixed characteristic, our knowledge about either splinters or D-splinters
is minimal, primarily because the direct summand conjecture is unknown. For progress towards
establishing an analogue of Theorem 1.4, we refer the reader to [Bha11b].

Organisation of the paper

The purpose of § 2 is to collect some examples and non-examples of splinters and D-splinters;
the goal is to bring out the geometry underlying these definitions. In § 3 we set up notation
concerning derived categories, and also prove a lemma which allows passage from conclusions
at the level of cohomology groups to those at the level of complexes. Theorems 1.4 and 1.5 are
proven in § 4, and some refinements are proven in § 5; our method is inspired by that of [HL07]
and, owing to transitivity, by that of [HH92]. Moving to applications, we discuss some purely
algebraic applications of the preceding theorems in § 6. In § 7, we review some questions raised
by Karen Smith in the wake of [HH92], and then discuss both positive and negative answers that
we can provide; the highlights here are the ‘up to finite covers’ version of Kodaira vanishing in
Proposition 7.3 and some of the counterexamples, especially Example 7.11. Finally, in § 8 we use
Theorem 1.5 to show that the complete flag variety for GLn is a D-splinter, thereby providing
the first non-toric projective example of one.

2. Examples of splinters and D-splinters

We provide some examples of splinters and D-splinters in this section. Since the notions in
characteristic 0 are quite well understood, we focus mainly on the case of characteristic p.
Moreover, it is typically non-trivial to prove that any given ring is a splinter or D-splinter. Hence,
we freely use results from the literature or elsewhere in this paper in our proofs; we hope that
despite the resulting non-elementary nature of the examples, the reader will be convinced
that splinters and D-splinters are geometrically interesting.

First, we dispose of the characteristic 0 case.

Example 2.1 (Splinters in characteristic 0). A connected noetherian Q-scheme S is a splinter if
and only if it is normal. For the forward direction, note that the map from the disjoint union
of the irreducible components of S to S immediately shows that S is forced to be a domain
if it is a splinter. The desired claim now follows from the following ring-theoretic fact: if R
is an integral domain with a/b ∈ Frac(R) integral over R, then R→R[a/b] is not split unless
a/b ∈R. To prove this, we simply observe that if R→R[a/b] were split, then the quotient would
be a torsion-free R-module with generic rank 0, which can only happen when the quotient is
trivial.

For the converse implication, we need to show that if f :X → S is a finite surjective morphism
and S is normal and connected, then f∗ :OS → f∗OX has a section in Coh(S). After replacing
X with an irreducible component dominating S, we may assume that X is integral. Let d denote
the degree of the map induced by f at the level of function fields. Then the map (1/d) TrX/S
provides a canonical splitting for the map f∗ :OS → f∗OX (here we use the fact that the trace
map on function fields preserves integrality).
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Example 2.2 (D-splinters in characteristic 0). Let X be a variety over C. Then X is a D-splinter
if and only if X has rational singularities, i.e. if R f∗OY 'OX for some (equivalently, every)
resolution of singularities f : Y →X. This assertion is contained in [Kov00, Theorem 3]. However,
as indicated by the referee, the proof in [Kov00] is incomplete as it only tests morphisms Y →X
with connected fibres. Hence, we give a direct proof in Theorem 2.12 at the end of this section.

A splinter in positive characteristic p is subtler than its characteristic 0 avatar, as being a
splinter imposes some kind of positivity (both local and global) on the variety. In fact, in view of
Theorem 1.4, over Fp, being a splinter is equivalent to being a D-splinter, a condition that is a
priori much more restrictive. Nevertheless, large classes of examples of splinters (or, equivalently,
D-splinters) over Fp do exist, and are catalogued below. The intuition informing most of these
examples is that splinters should be analogous to rational singularities in characteristic 0.

Example 2.3 (Smooth affines are splinters). All regular affine Fp-schemes are splinters; this is
a result of Hochster (see [Hoc73]), and we record a proof of Hochster’s theorem below for the
convenience of the reader. The proof given below is cohomological in nature and different from
Hochster’s.

We first explain the idea informally. Let f : Spec(S)→ Spec(R) be a finite surjective map.
Using the fact that R is Gorenstein, an elementary duality argument will reduce us to showing
that Hd

m(R)→Hd
m(S) is injective. The kernel of this map is a Frobenius-stable proper submodule

of Hd
m(R) of finite length by an inductive argument due to Grothendieck (see [Gro68, Exposé VIII,

Théorème 2.1]). The regularity of R will then imply that this is impossible for length reasons.
Now for the details. After localising and completing, we may assume that (R,m) is a complete

regular local Fp-algebra of dimension d. By the Cohen structure theorem (see [Mat80, § 28,
Theorem 28.J and Corollary 2]), we know that R' kJx1, . . . , xdK. Since field extensions k→ L
split as k-modules, we may pass to the algebraic closure of the coefficient field to assume that k is
algebraically closed. In particular, the Frobenius map F :R→R is finite. Given a finite extension
f :R→ S, we need to show that the evaluation map evf : Hom(S, R)→Hom(R, R) is surjective.
By induction, we may assume that the cokernel coker(evf ) is supported only at the closed point
{m} ⊂ Spec(R) and so has finite length. Since R is Gorenstein, we have ωR 'R. Thus, evf can
be identified with the trace map Hom(S, ωR)→ ωR, which is dual to the canonical pullback map
Hd

m(f) :Hd
m(R)→Hd

m(S). As local duality interchanges kernels and cokernels while preserving
lengths, the kernel M := ker(Hd

m(f)) also has finite length; this kernel is also Frobenius-stable by
construction. Now consider the following diagram.

F ∗M

a

��

b // M

c

��
F ∗Hd

m(R) d // Hd
m(R)

The map a is injective since F ∗ is exact (by regularity of R), while the map d is an isomorphism by
the flat base-change isomorphism RΓm (R)⊗R,F R' RΓm (R) (see [BS98, § 4.3.2]). The diagram
then shows that b is also injective, and thus the length of F ∗M is bounded above by that of M .
The claim now follows from the elementary observation that F ∗ multiplies length by pd > 0.

Following the proof of Example 2.3 leads to a much larger class of splinters, defined in terms of
F-rational rings. We remind the reader that a noetherian local Fp-algebra (R,m) of dimension d
is said to be F-rational if it is Cohen–Macaulay and normal, with the property that Hd

m(R) has no
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proper Frobenius-stable submodules except 0. This is not the original definition of F-rationality,
but is equivalent to it by the work of Smith; see [Smi94, Smi97b].

Example 2.4 (F-rational Gorenstein rings are splinters). Let (R,m) be a noetherian excellent
local Fp-algebra admitting a dualising complex. Assume that R is Gorenstein. If R is F-
rational, then R is a splinter. This follows from the proof given in Example 2.3. In more detail,
we may assume without loss of generality that (R,m) is an F-rational Gorenstein complete
noetherian local ring of dimension d > 0. Given a finite extension f :R→ S, we need to verify
that evf : Hom(S, R)→R is surjective. Since R is Gorenstein, we can identify evf with the trace
map Tr : ωS 'Hom(S, ωR)→ ωR. The image Tr(ωS) is a Frobenius-stable submodule M ⊂ ωR.
Since the formation of M commutes with localisation, we know that M is generically non-zero.
Dualising, we obtain a non-zero Frobenius-stable submodule D(M) of Hd

m(R). By the definition
of F-rationality, we have D(M) =Hd

m(R), and so M = ωR.

Remark 2.5. One can show a converse to Example 2.4 as follows: any excellent splinter is F-
rational. To see this, note that the argument in Example 2.1 shows that R is normal, while
Corollary 6.4 below shows that R is Cohen–Macaulay. To show that R is F-rational, one can
then use [Smi97b, Theorem 2.6] and [Smi94, Theorem 5.4]. Together, these theorems imply that
it is enough to check that for all ideals I generated by a system of parameters, we have IS ∩R= I
for all finite extensions R→ S. The splinter property implies that IS = I ⊕Q, which easily shows
that IS ∩R= I.

We work out a special case of Example 2.4, to give an idea of the relevant geometry.

Example 2.6 (The quadric cone). We claim that R= kJx1, . . . , xnK/(
∑

i x
2
i ) is a splinter for

n> 3 provided char(k)> 2. By Example 2.4, it suffices to show that R is F-rational. By [Hun96,
Theorem 4.2], it suffices to show that R/(xn) is F-rational. Thus, we can set up an induction once
we settle the n= 3 case. This case follows from [Hoc73, Example 3]. Alternatively, in the n= 3
case, we may identify R with (completion at the origin of) the affine cone on a smooth conic
C ⊂ P2. Since C is a hypersurface, the scheme Spec(R) has an isolated hypersurface singularity
at 0, and is thus Cohen–Macaulay and normal. Moreover, identifying Spec(R)− {m} with the
total space of the complement of the 0 section in OP2(−1)|C shows that

H2
m(R)'

⊕
n∈Z

H1(C,OP2(−n)|C)'
⊕
n∈Z

H1(P1,O(2n)).

The preceding presentation is Frobenius-equivariant, where Frobenius acts on the grading on the
right by multiplying the weights by p. By inspection, it easily follows then that H2

m(R) has no
Frobenius-stable proper non-zero submodules, proving F-rationality.

Next, we show that certain quotient singularities are splinters.

Example 2.7 (Quotient singularities are often splinters). Let k be a field, and let R be a regular
k-algebra. Let G be a linearly reductive group acting on R. Then Spec(RG) is a splinter. Indeed,
the inclusion RG→R has an RG-linear section given by the Reynolds operator, and so the
splinter property of RG follows from that of R (base change a finite extension of RG to that of R).
More generally, the same argument shows that any subring A of a regular ring R that splits off
as an A-linear summand is a splinter. In particular, if G is a reductive group over C acting on an
affine algebraic C-scheme Spec(R), then almost all positive-characteristic reductions of Spec(RG)
are splinters. We prove in Corollary 6.4 that such rings are Cohen–Macaulay.
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We next list a large class of non-examples.

Example 2.8 (General-type cones are not splinters). Let X ⊂ Pn be a hypersurface of degree
d > (n+ 1) over a perfect field k of characteristic p, and let S be the affine cone on X. Then S
is not a splinter. To see this, note that as in Example 2.6 we have an identification

Hn
m(S)'

⊕
i∈Z

Hn−1(X,OX(i))

that is Frobenius-equivariant, where Frobenius acts on the right by scaling the weights by
p. Now ωX 'O(d− n− 1)|X by adjunction. One then easily computes that Hn−1(X, ωp) =
Hn−1(X, Frob∗X ωX) = 0, and thus Frob∗X :Hn−1(X, ωX)→Hn−1(X, Frob∗X ωX) has a non-
trivial kernel. It follows that Frob∗S :Hn

m(S)→Hn
m(S) also has a non-trivial kernel, and so

FrobS : S→ S is not split.

Lastly, we discuss a non-example due to Hochster: a hypersurface singularity of dimension 2
in characteristic 2 that is not a splinter. Aside from its intrinsic interest, this example is meant
to caution the reader, as the standard lift of this hypersurface to characteristic 0 has rational
singularities.

Example 2.9. Let k be a field of characteristic 2. Let S = k[u, v] be a polynomial ring, and let R=
k[u2, v2, u3 + v3] ↪→ S. Since char(k) = 2, R admits the presentation R= k[x, y, z]/(x3 + y3 + z2)
where x= u2, y = v2, and z = u3 + v3. In particular, Spec(R) is a hypersurface singularity of
dimension 2. Since the singularity is isolated, R is even normal. On the other hand, Spec(R) is
not a splinter because the natural map f : Spec(S)→ Spec(R) is a finite surjective map such
that OSpec(R)→ f∗OSpec(S) has no section: identifying sheaves with modules and applying
such a section s to u3 + v3 = u · u2 + v · v2 would give us u3 + v3 = s(u3 + v3) = s(u)u2 +
s(v)v2 ∈ (u2, v2)R, which is false. The same example can be adapted to arbitrary positive
characteristic p by setting R= k[up, vp, ua + va] for some p < a < 2p.

The examples discussed hitherto have all been affine. Requiring a projective variety X over a
positive-characteristic field k to be a splinter leads to questions of a very different flavour, as the
geometry ofX is heavily constrained. For example, Theorem 1.5 shows thatH i(X,OX) = 0 for all
i > 0. In fact, the same theorem applied to a high iterate of Frobenius shows that H i(X, L) = 0
for i > 0 whenever L is an ample line bundle. Thus, projective examples are harder to find;
nevertheless, they do exist, as we show below. We will discuss such examples further in § 8.

Example 2.10 (Toric varieties are often splinters). Any toric variety X that is projective over
an affine is a splinter. To see this, note that any such X can be obtained as a quotient U/G
(see [MS05, Theorem 10.27]), where U ⊂ An is an open subscheme and G⊂Gn

m is an algebraic
subgroup preserving U . As Gn

m is linearly reductive, so is G (see [AOV08, Proposition 2.5]). In
particular, we see that OX → π∗OU ' R π∗OU is a direct summand. The result now follows from
the fact that U is a splinter, which in turn follows from Example 2.3 and the fact that any finite
cover of U comes from a finite cover of An (by normalisation, for example).

Our last example exhibits the ubiquity of non-splinters amongst smooth projective varieties.

Example 2.11 (Projective varieties are rarely splinters). Let E be an elliptic curve over a field
k of characteristic p. We will show that E is not a splinter. Consider the multiplication-by-p map
[p] : E→ E. The induced map on H1(E,OE) is 0: one can show that [n]∗ induces multiplication
by n on H1(A,OA) for any abelian variety A. It follows that OE → [p]∗OE is not split (as the
map on H1 is not split).
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We end by giving a complete and direct proof of [Kov00, Theorem 3] as promised in
Example 2.2.

Theorem 2.12. Let S be a scheme of finite type over a field k of characteristic 0. Then S is a
D-splinter if and only if it has rational singularities.

Proof. Let us prove first that if S is a D-splinter, then S has rational singularities. By
Example 2.1, we may assume that S is normal of dimension d. By Hironaka’s theorem (see [Hir64])
or even the weaker results of Abramovich and de Jong [AdJ97], we may assume that there exists
a proper birational map f :X → S with X smooth. The natural map OS → R f∗OX has a section
by assumption. Thus, we have a diagram

OS → R f∗OX →OS

with the composite map being the identity. Applying RHom(−, ω•S) where ω•S is the dualising
complex on S (normalised so that the dualising sheaf sits in homological degree d), we obtain a
diagram

ω•S → RHom(R f∗OX , ω•S)→ ω•S

with the composite map being the identity. By Grothendieck duality, the middle term is
identified with R f∗ω

•
X where ω•X is the dualising complex on X normalised as above. Thus,

we obtain a diagram

ω•S → R f∗ω
•
X → ω•S

with the composite map being the identity. As X is smooth, ω•X ' ωX [d] where ωX = det(Ω1
X)

is the canonical bundle and d= dim(X) = dim(S). Grauert–Riemenschneider vanishing (see
[Laz04a, Theorem 4.3.9]) tells us that R f∗ωX is concentrated in degree 0. Thus, the complex
ω•S is also concentrated in degree d. In particular, S is Cohen–Macaulay with dualising
complex ωS [d], where ωS is the dualising sheaf. Moreover, the preceding diagram tells us that
we have a diagram

ωS → f∗ωX → ωS

with the composite map being the identity. As ωX is a torsion-free sheaf of generic rank 1, the
same is true of f∗ωX . In particular, it admits no non-trivial direct summands for rank reasons.
Hence, we have ωS ' f∗ωX and, therefore, ω•S ' R f∗ω

•
X . Now we have the following sequence of

canonical isomorphisms:

OS ' RHom(ω•S , ω
•
S)' RHom(R f∗ω

•
X , ω

•
S)' R f∗ RHom(ω•X , ω

•
X)' R f∗OX ,

which implies that S has rational singularities.

For the reverse implication, suppose that S is a k-variety with rational singularities,
i.e. there exists a resolution f :X → S such that OS ' R f∗OX . Let g : Y → S be a proper
surjective morphism. We need to show that OS → R g∗OY has a section. By Chow’s lemma,
we can assume that Y is projective. By repeatedly cutting Y by suitable hyperplane sections, we
may assume that g is generically finite. By the Raynaud–Gruson flattening theorem (see [RG71,
Théorème 5.2.2]) or a simple Hilbert scheme argument, we can find a diagram as follows.

Y ′′ //

h
��

Y

g

��
Y ′

b // S
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Here b is a normalised blowup of S, h is the strict transform of g along b, and h is finite flat. As we
are in characteristic 0 and Y ′ is normal, OY ′ → h∗OY ′′ ' R h∗OY ′′ has a section coming from the
trace map. Thus, to show that OS → R g∗OY has a section, it suffices to show that OS → R b∗OY ′
has a section. In other words, we may assume that g is a modification. By Hironaka’s theorem
or Abramovich and de Jong’s results as above, we may even assume that Y is smooth. The rest
now follows by a standard argument (see [KM98, Theorem 5.10]) showing that the definition of
rational singularities is independent of the choice of resolution. 2

3. A fact about derived categories

The purpose of this section is to record some notation and a basic result about triangulated
categories for later use. As a general reference for triangulated categories and t-structures, we
suggest [BBD82]. For the convenience of the reader, we first recall some notation regarding
truncations.

Notation 3.1. Let D be a triangulated category with a t-structure given by a pair (D>0,D60)
of full subcategories satisfying the usual axioms. For each integer n, we let D>n =D>0[−n]
(respectively, D6n =D60[−n]); this can be thought of as the full subcategory spanned by objects
with cohomology only in degree at least (respectively, at most) n. Moreover, there exist truncation
functors: for each integer n, there exist endofunctors τ6n and τ>n of D which are retractions of D
onto the full subcategories D6n and D>n. We let τ>n = τ>n+1 and τ<n = τ6n−1. These truncation
functors are not exact, but they sit in an exact triangle τ6n→ id→ τ>n→ τ6n[1]. Moreover, they
satisfy the adjunctions

HomD6n(K, τ6nL)'HomD(K, τ6nL)'HomD(K, L) for K ∈ D6n and L ∈ D

and, dually,

HomD>n(τ>nK, L)'HomD(τ>nK, L)'HomD(K, L) for K ∈ D and L ∈ D>n.

These adjunctions can be remembered as algebraic analogues of the fact that all maps X → Y
are nullhomotopic if X is an n-connected CW complex and Y is an (n− 1)-truncated one.

Let us fix a triangulated category D, with a t-structure (D>0,D60). The main question that
arises repeatedly in the following is: given a morphism f :K→ L in D such that H∗(f) = 0, when
can we conclude that f = 0? As the non-trivial extension Z/2→ Z/2[1] in the derived category
D(Ab) of abelian groups shows, the short answer is ‘not always’. To understand this phenomenon
better, fix a test object M ∈ D, and consider the associated map of abelian groups

Hom(M, f) : Hom(M, K)→Hom(M, L).

The chosen t-structure gives rise to a functorial filtration on the morphism spaces of D (via the
filtration by cohomology groups of the target). Thus, the preceding map is a filtered map of
filtered abelian groups. The assumption that H∗(f) = 0 implies that this filtered map induces
the 0 map on the associated graded pieces. In other words, f moves the filtration one level down.
This simple analysis suggests that under certain boundedness hypotheses, we may be able to
salvage an implication of the form ‘H∗(f) = 0⇒ f = 0’ at the expense of iterating a map like f
a few times. This idea is formalised in the next lemma.

Lemma 3.2. Let D be a triangulated category with t-structure (D>0,D60) whose heart
is A. Assume that for a fixed integer d > 0, we are given objects K1, . . . , Kd+1 ∈ D[1,d] and
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maps fi :Ki→Ki+1 such thatHd+1−i(fi) = 0 for all i. Then the composite map fd ◦ · · · ◦ f2 ◦ f1 :
K1→Kd is the 0 map.

Proof. Consider the exact triangle

τ6d−1K2→K2→Hd(K2)[−d]→ τ6d−1K2[1].

Applying HomD(K1,−) and using the formula

HomD(K1, H
d(K2)[−d]) = HomD>d(τ>dK1, H

d(K2)[−d])
= HomD>d(H

d(K1)[−d], Hd(K2)[−d])
= HomA(Hd(K1), Hd(K2))

(coming from adjunction), we see that the map K1→Hd(K2)[−d] factors through Hd(f1) and
is thus 0 by hypothesis. We may therefore choose a (non-unique) factorisation of f1 of the
form K1→ τ6d−1K2→K2. The same method shows that the morphism τ6d−iKi+1→ τ6d−iKi+2

factors through τ6d−(i+1)Ki+2. Thus we obtain the following diagram of morphisms.

K1

��

K1

f1
��

τ6d−1K2 //

��

K2

f2
��. . . //

��

. . .

fd
��

τ60Kd+1
// Kd+1

As Kd+1 ∈D>1(A), we see that τ60Kd+1 = 0. Thus, the composite vertical morphism on the left
is 0, which implies that the one on the right is 0 as well. 2

4. The main theorem

This section is dedicated to the proof of Theorems 1.5 and 1.4. In fact, the bulk of the work
involves proving Theorem 1.5, as Theorem 1.4 follows fairly easily. The proof given here draws
on ideas going back to Hochster and Huneke’s work [HH92] on big Cohen–Macaulay algebras in
positive characteristic. We begin with a rather elementary result on extending covers of schemes.

Proposition 4.1. Fix a noetherian scheme X. Given an open dense subscheme U →X and
a finite (surjective) morphism f : V → U , there exists a finite (surjective) morphism f : V →X
such that fU is isomorphic to f . Given a Zariski-open cover U = {ji : Ui→X} with a finite
index set and finite (surjective) morphisms fi : Vi→ Ui, there exists a finite (surjective) morphism
f : Z→X such that fUi factors through fi. The same claims hold if ‘finite (surjective)’ is replaced
by ‘proper (surjective)’.

Proof. We first explain how to deal with the claims for finite morphisms. For the first part,
Zariski’s main theorem [Gro66, Théorème 8.12.6] applied to the morphism V →X gives a
factorisation V ↪→W →X where V ↪→W is an open immersion and W →X is a finite morphism.
The scheme-theoretic closure V of V in W provides the required compactification as finite
morphisms are closed.
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For the second part, by the first part we may extend each ji ◦ fi : Vi→X to a finite surjective
morphism fi : Vi→X such that fi restricts to fi over Ui ↪→X. Setting W to be the fibre product
over X of all the Vi is then seen to solve the problem.

To deal with the case of proper (surjective) morphisms instead of finite (surjective) ones, we
repeat the same argument as above but replace the reference to Zariski’s main theorem by one
to Nagata’s compactification theorem (see [Con07, Theorem 4.1]). 2

Next, we present the primary ingredient in our proof of Theorem 1.5: a general technique for
constructing covers to annihilate coherent cohomology of Fp-schemes under suitable finiteness
assumptions. The method of construction is inspired by [HL07]. In fact, our key contribution is
the observation that a suitable reformulation of the ideas of [HL07] apply in the relative setting
of a proper morphism, rather than simply to a proper variety.

Proposition 4.2. Let X be a noetherian Fp-scheme with H0(X,OX) finite over a ring A. Given
an A-finite Frobenius-stable submodule M ⊂H i(X,OX) for i > 0, there exists a finite surjective
morphism π : Y →X such that π∗(M) = 0.

Proof. We first explain the idea informally. As M is A-finite, it suffices to work one cohomology
class at a time. If m ∈M , then the Frobenius stability of M gives us a monic additive polynomial
g(Xp) such that g(m) = 0 where Xp acts by Frobenius. After adjoining gth roots of certain local
functions representing a coboundary, we can promote the preceding equation in cohomology
to an equation of cocycles, i.e. we find g(m) = 0 where m is a cocycle of local functions that
represents m and the displayed equality is an equality of functions on the nose, not simply
up to coboundaries. Since g is monic, such functions are forced to be globally defined (after
normalisation), and this gives the desired result; the details follow.

Fix a finite affine open cover U = {Ui} of X, and consider the cosimplicial A-algebra
C•(U ,OX) as a model for the A-algebra R Γ(X,OX). The Frobenius action Frob∗X :
R Γ(X,OX)→ R Γ(X,OX) is modelled by the actual Frobenius map Xp : x 7→ xp on each term.
This gives C•(U ,OX) the structure of an A{Xp}-module, where A{Xp} is the non-commutative
polynomial ring on one generator Xp over A satisfying the relation rpXp =Xpr (see [Lau96,
§ 1.1] for more details on this ring). In more concrete terms, at the level of cohomology we see
the following: for each polynomial g ∈A{Xp}, classes α, β ∈H i(X,OX), and a scalar r ∈A, we
have g(α+ β) = g(α) + g(β) and g(rα) = rpg(α).

The A-finiteness of the Frobenius-stable module M ensures that for any class m ∈M there
exists a monic polynomial g ∈A{Xp} such that g(m) = 0. If we pick representatives in C•(U ,OX)
for this equation, we obtain an equation in Ci(U ,OX) of the form

g(m̃) = d(n)

where m̃ ∈ Ci(U ,OX) is a cocycle lifting m and n ∈ Ci−1(U ,OX). As g is a monic equation, we can
find a finite surjective morphism π′ : Y ′→X such that n= g(n′) for some n′ ∈ Ci(U ×X Y ′,OY ′).
For example, we could do the following: for each component nj of n (where j is a multi-index),
the scheme Vj = Spec(O(Uj)[T ]/(g(T )− nj)) is a quasi-finite X-scheme such that the equation
g(n′) = n admits a solution in H0(Vj ,OVj ). Using Proposition 4.1, we find Y ′ and n′ with
the desired properties. The additivity of Frobenius now tells us that we obtain an equation
in Ci(U ×X Y ′,OY ′) of the form

g(m̃− d(n′)) = 0.
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The monicity of g implies that the components of m̃− d(n′) are integral over A. Setting Y to be
an irreducible component of Y ′ ×Spec(A) Spec(A[T ]/(g(T ))) that dominates Y ′ under the natural
map, we find a finite surjective morphism Y → Y ′. The pullback of m̃− d(n′) in Ci(U ×X Y,OY )
is a vector of local functions whose components satisfy the monic polynomial g over A. As Y is
integral and H0(Y,OY ) already contains roots of g, it follows that these functions are globally
defined. Thus, they lie in the image of the natural map H0(Y,OY )→C•(U ×X Y,OY ) where
H0(Y,OY ) is viewed as a constant cosimplicial algebra. As the complex underlying the former
cosimplicial algebra has cohomology only in degree 0, it follows that m̃− d(n′) is a coboundary,
which then implies that m̃ is a coboundary on Y ; this shows that Y satisfies the required
conditions. 2

Remark 4.3. One may wonder whether Proposition 4.2 can be refined to show the existence
of generically separable finite surjective maps that kill the relevant cohomology groups. In the
local algebra setting, one can indeed do so by [SS12, Theorem 1.3]. Globally, however, requiring
separability is too strong. For example, if X is a smooth projective variety over a perfect field
k with α ∈H1(X,OX) being a non-zero class killed by FrobX , then for any finite surjective
generically separable map π : Y →X one has π∗α 6= 0; see [Mum67, Lemma 5] for a proof.

Remark 4.4. Proposition 4.2 was proven above by mimicking the cocycle-theoretic methods
of [HL07]. It is also possible to give more conceptual proofs of this result. We refer the reader
to [Bha11a] for a proof based on general results on finite flat group schemes; see also [Bha11b]
for a geometric proof based on curve fibrations, which has the advantage of generalising to mixed
characteristic.

A corollary of Proposition 4.2 and the finiteness properties enjoyed by proper morphisms is
the following.

Corollary 4.5. Let f :X → S be proper with S a noetherian affine Fp-scheme. Then there
exists a finite surjective morphism π : Y →X such that π∗ :H i(X,OX)→H i(Y,OY ) is 0 for
i > 0.

Proof. The properness implies that H i(X,OX) is a finite H0(X,OX)-module and that
H i(X,OX) = 0 for i sufficiently large (see [Gro61, Corollaire 3.2.3]). Proposition 4.2 then finishes
the proof. 2

We will now finish the proof of Theorem 1.5. To pass from the conclusion of Corollary 4.5 to
the general statement of Theorem 1.5, the obvious strategy is to cover S with affines, construct
covers that work over the affines, and take the normalisation of X in the fibre product of all of
these. When carried out, this process produces a finite cover π : Y →X such that, with g = f ◦ π,
the maps Rif∗OX →Rig∗OY are 0 for i > 0. This is not quite enough to prove the theorem: a map
in D(Coh(S)) that induces the 0 map on cohomology sheaves is not necessarily zero. However,
with the boundedness conditions enforced by properness, a sufficiently high iteration of this
process turns out to be enough.

Proof of Theorem 1.5. Fix a finite affine covering U = {Ui} of S, and denote X ×S Ui by Xi.
Using Corollary 4.5, we can find finite surjective maps φi : Zi→Xi such that the induced map
Hj(Xi,OXi)→Hj(Zi,OZi) is 0 for each j > 0. Using Proposition 4.1, we may find a finite
surjective morphism φ : Z→X such that φUi factors through φi. This implies that Rj f∗OX →
Rj(f ◦ φ)∗OZ is 0 for each j (as vanishing is a local statement on S). Iterating this construction
dim(X) times and using Lemma 3.2, we obtain a proper S-scheme g : Y → S and a finite
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surjective S-morphism π : Y →X such the natural pullback map π∗ : τ>1 R f∗OX → τ>1 R g∗OY
is 0, thereby proving the theorem. 2

Finally, having proven Theorem 1.5, we point out how Theorem 1.4 follows.

Proof of Theorem 1.4. It is clear that all D-splinters are also splinters. Conversely, let S be
splinter over Fp, and let f :X → S be a proper surjective morphism. By Theorem 1.5, there
exists a finite surjective morphism π : Y →X such that, with g = f ◦ π, the pullback map
τ>1 R f∗OX → τ>1 R g∗OY is 0. By applying Hom(R f∗OX ,−) to the exact triangle

g∗OY → R g∗OY → τ>1 R g∗OY → g∗OY [1]

we see that the natural pullback map R f∗OX → R g∗OY factors through g∗OY → R g∗OY ; choose
some factorisation s : R f∗OX → g∗OY . As g : Y → S is a proper surjective morphism, the algebra
g∗OY is a coherent sheaf of algebras corresponding to the structure sheaf of a finite surjective
morphism. By assumption, the natural map OS → g∗OY has a splitting s, and thus the map s ◦ t
splits OS → R f∗OX . 2

5. Some refinements

Roughly speaking, Theorem 1.5 says that proper morphisms and finite morphisms behave very
similarly ‘in the limit’, at least as far as coherent sheaf cohomology is concerned. In the following
proposition, we formalise this intuition, extract a kind of ‘converse’ to this statement, and work
with non-trivial coefficients. These results will be useful later when we prove vanishing results.

Proposition 5.1. Let S be a noetherian Fp-scheme, and let f :X → S be a proper surjective
morphism. Then we can find a diagram

Y
π //

a

��

g

  AA
AA

AA
AA

X

f

��
S′

h // S

with π and h being finite surjective maps such that for each locally free sheaf M on S and all
i> 0, we have that:

(i) the morphism h∗ :H i(S,M)→H i(S′, h∗M) factors through f∗ :H i(S,M)→H i(X, f∗M);

(ii) the morphism π∗ :H i(X, f∗M)→H i(Y, g∗M) factors through a∗ :H i(S′, h∗M)→
H i(Y, g∗M).

Proof. Theorem 1.5 gives a finite surjective morphism π : Y →X such that, with g = f ◦ π, we
have a map s and the following diagram.

OS //

��

g∗OY

��
R f∗OX //

s
88rrrrrrrrrr

R g∗OY

We claim that this diagram commutes. The triangle based at R g∗OY commutes by construction.
To see that the triangle based at OS commutes, it suffices to show that Hom(OS , g∗OY )→
Hom(OS , R g∗OY ) is injective. This injectivity (and, in fact, bijectivity) follows from adjunction
for τ60. Thus, the preceding diagram is a commutative diagram in D(Coh(S)). Applying −⊗M,
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setting S′ to be the Stein factorisation of Y → S, and using the projection formula now gives
the desired result. 2

We have not strived to find the most general setting for Theorem 1.5. For example, one can
easily extend the theorem to algebraic spaces or even Deligne–Mumford stacks. On the other
hand, the properness hypothesis seems essential, as the example below shows. In fact, the key
property needed is that the relative cohomology classes of the structure sheaf for f :X → S are
annihilated by a monic polynomial in Frobenius. We do not know whether there is a better
characterisation of this class of maps.

Example 5.2. Fix a base field k. Let X = A2 and U = A2 − {0}. The quotient map U → U/Gm =
P1 gives a natural identification H1(U,OU ) =

⊕
i∈Z H

1(P1,O(i)). We claim that the non-zero
classes in this group cannot be killed by a finite cover of U . To see this, note that one may
view H1(U,OU ) as the local cohomology group H2

{0}(X,OU ) =H2
m(R), where R= k[x, y] is

the coordinate ring of X and m = (x, y) is the maximal ideal corresponding to the origin.
Given a finite surjective morphism π : Y → U , we may normalise X in π to obtain a finite
surjective morphism π : Y →X which realises π as the fibre over U . As before, the cohomology
group H1(Y,OY ) can be viewed as H2

Y \Y (Y ,OY ), which in turn may be viewed as H2
m(S)

where S is the coordinate ring of Y considered as an R-module in the natural way. Under
these identifications, the pullback map H1(U,OU )→H1(Y,OY ) corresponds to the morphism
H2

m(R)→H2
m(S) induced by the inclusion R→ S coming from π. By Example 2.3, the inclusion

R→ S is a direct summand as an R-module map; alternatively, one can show this property
directly by proving that S is a locally free R-module thanks to the Auslander–Buschsbaum
formula. In particular, the map H2

m(R)→H2
m(S) is injective, which shows that the non-zero

classes in H1(U,OU ) persist after passage to finite covers.

6. Application: a result in commutative algebra

We discuss some applications of Proposition 4.2 to commutative algebra, some of which are
implicit in [HL07]. The first result we want to dicuss is an analogue of Proposition 4.2 for local
cohomology.

Proposition 6.1. Let (R,m) be an excellent local noetherian Fp-algebra such that R is finite
over some ring A. For any A-finite Frobenius-stable submodule M ∈H i

m(R) with i> 1, there
exists a finite surjective morphism f : Spec(S)→ Spec(R) such that f∗(M) = 0.

Proof. Since R is excellent, we may pass to the normalisation and assume that R is normal.
In particular, H i

m(R) = 0 for i= 0, 1. For i > 1, we have an Frobenius-equivariant identification
δ :H i−1(U,OU )'H i

m(R), where U = Spec(R)− {m} is the punctured spectrum of R. Since i > 1,
Proposition 4.2 gives us a finite surjective morphism f : V → U such that f∗(δ−1(M)) = 0. Setting
S to be the normalisation of R in V is then easily seen to do the job. 2

Next, we dualise Proposition 6.1 to obtain a global result in terms of dualising sheaves.

Proposition 6.2. Let X be an excellent noetherian local Fp-scheme of dimension d. Assume
that X admits a dualising complex. Then there exists a finite surjective morphism π : Y →X
with τ>−d(Trπ) = 0; here Trπ : π∗ω•Y → ω•X is the trace map.

Proof. Let X = Spec(R), and fix an integer i > 0. We will prove by induction on the dimension
d= dim(X) that there exists a finite surjective morphism π′ : Y ′→X such that H−d+i(Trπ′) = 0;
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this is enough by virtue of Lemma 3.2 and the fact that the dualising complexes appearing
have bounded amplitude. We may assume that d > 0, as there is nothing to prove when the
dimension is 0. By passing to irreducible components, we may even assume that X is integral.
For each non-maximal p ∈ Spec(R), we can inductively find a finite morphism πp : Yp→ Spec(Rp)
such that H−dRp+i(Trπp) is the 0 map. By duality formalism, the R-module H−d+i(ω•R) localises
to H−dRp+i(ω•Rp

) at p. Hence, the normalisation πp : Yp→X induces the 0 map on H−d+i(Trπ)
when localised at p. Upon finding such a cover for each non-maximal prime p in the finite set of
associated primes ofH−d+i(ω•R) and normalisingX in the fibre product of the resulting collection,
we find a cover π : Y →X such that H−d+i(Trπ) has an image supported only at the closed
point. Setting Y = Spec(S), duality tells us that the image M of Hd−i

m (R)→Hd−i
m (S) is a finite-

length Frobenius-stable R-submodule. Proposition 6.1 then allows us to find a finite surjective
morphism g : Spec(T )→ Spec(S) such that g∗(M) = 0. It follows that the composite map
π′ : Spec(T )→ Spec(R) induces the 0 map on Hd−i

m (R). By duality, we see that H−d+i(Trπ′) = 0
as desired. 2

Remark 6.3. Proposition 6.2 is also true when X is a finite-type k-scheme for some field k of
characteristic p; the proof given above works since vanishing of a map of sheaves is a local
statement.

Using Proposition 6.2, we discover that splinters are automatically Cohen–Macaulay.

Corollary 6.4. Let (R,m) be an excellent noetherian local Fp-algebra that is a splinter.
Assume that R admits a dualising complex. Then R is a normal Cohen–Macaulay domain.

Proof. The normality of R follows from the argument in Example 2.1. To verify that R is
Cohen–Macaulay, it suffices to show that ω•R is concentrated in degree d where d= dim(R),
i.e. that H−d+k(ω•R) = 0 for k > 0. By Proposition 6.2, we can find a finite surjective morphism
π : Spec(S)→ Spec(R) such that H−d+k(Trπ) = 0, where Trπ : π∗ω•S → ω•R. Since R is a splinter,
the inclusion R→ S is a direct summand. Applying RHom(−, ω•R), we see that the trace map
Trπ is the projection onto a summand. Hence, the assumption that H−d+k(Trπ) = 0 implies that
H−d+k(ω•R) = 0, as desired. 2

Remark 6.5. One key ingredient in the proof of Proposition 6.2 is the good behaviour of local
cohomology and dualising sheaves with respect to localisation. This behaviour seems to have first
been observed by Grothendieck in [Gro68, Exposé VIII, Théorème 2.1], where it is used to show
the following: a noetherian local ring (R,m) of dimension d that is Cohen–Macaulay outside the
closed point and admits a dualising complex has the property that H i

m(R) has finite length for
i < d. This argument can also be found in the main theorem of [HL07].

7. Application: a question of Karen Smith

The main result of Hochster and Huneke’s work [HH92] is a result in commutative algebra. While
geometrising it in [Smi97c], Smith arrived at the following question (see [Smi97a]).

Question 7.1. Let X be a projective variety over a field k of characteristic p, and let L be a
‘weakly positive’ line bundle on X. For any n ∈ Z and any 0< i < dim(X), does there exist a
finite surjective morphism π : Y →X such that H i(X, L⊗n)→H i(Y, π∗L⊗n) is 0?

Using the algebraic result of Hochster and Huneke [HH92], one can show that if we take
‘weakly positive’ to mean ample, then Question 7.1 has an affirmative answer (see Remark 7.4).
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Smith had originally hoped that ‘weakly positive’ could be taken to mean nef. We give some
examples to show that this cannot be the case. However, first, we prove some positive results
using the theorems above.

Positive results
We first examine Question 7.1 in the case of positive twists. It is clear that being ample is a
sufficiently positive condition for the required vanishing: Frobenius twisting can be realised by
pulling back along a finite morphism and has the effect of changing L by L⊗p, and then Serre
vanishing does the job. One naturally wonders whether the result passes to the closure of the
ample cone, i.e. the nef cone. We show in Example 7.11 that this is not the case: there exist
non-torsion degree 0 line bundles on surfaces whose middle cohomology cannot be killed by finite
covers. On the other hand, Corollary 4.5 coupled with the fact that torsion line bundles can be
replaced with O on passage to a finite cover ensures that Question 7.1 has a positive answer
for torsion line bundles. The necessity of the non-torsion requirement and the observation that
torsion line bundles are semiample suggests the following proposition.

Proposition 7.2. Let X be a proper variety over a field of characteristic p, and let L be a
semiample line bundle on X. For any i > 0, there exists a finite surjective morphism π : Y →X
such that the induced map H i(X, L)→H i(Y, π∗L) is 0.

Proof. As L is a semiample bundle, there exists some positive integer m such that L⊗m is
globally generated. If we fix a basis s1, . . . , sk for H0(X, L⊗m), then the cyclic covering trick
(see [Laz04a, Proposition 4.1.3]) ensures that there is a finite flat cover π : X̃ →X such that
π∗(si) admits an mth root in H0(X̃, π∗L) and, consequently, π∗L is globally generated. In
particular, as semiamplitude is preserved under pullbacks, we may replace X with X̃ and
assume that L arises as the pullback of an ample bundleM under a proper surjective morphism
f :X → S. Furthermore, once f :X → S is fixed, to show the required vanishing statement,
we may always replace L by L⊗pj for j� 0 because the Frobenius morphism FrobX :X →X is
finite surjective with Frob∗X L= L⊗p. Now the projection formula for f implies that R f∗(L⊗p

j
) =

R f∗OX ⊗L
SM⊗p

j
. Using Theorem 1.5, we may find a finite surjective morphism π : Y →X such

that, with g = f ◦ π, we have a factorisation R f∗(L⊗p
j
)→ g∗f

∗(L⊗pj )→ R g∗π
∗(L⊗pj ) of the

natural map π∗ : R f∗(L⊗p
j
)→ R g∗π

∗(L⊗pj ). Applying H i(S,−) to the composite morphism
gives us the desired morphism. Thus, to show the required statement, it suffices to show that
H i(S, g∗π∗(L⊗p

j
)) = 0 for j� 0. By the projection formula, we have

H i(S, g∗π∗(L⊗p
j
)) =H i(S, g∗g∗(M⊗p

j
)) =H i(S, g∗OY ⊗M⊗p

j
).

As M is ample, this group vanishes by Serre vanishing for j� 0, as required. 2

Based on Proposition 7.2, one might expect that semiamplitude is a positive enough property
for Question 7.1 to have an affirmative answer in the case of negative twists as well. We show in
Example 7.12 that this is not true; the key feature of that example is that the semiample line
bundle defines a map that is not generically finite. In fact, this feature is essentially the only
obstruction: if L is both semiample and big, then Question 7.1 has an affirmative answer even
for negative twists of L.

Proposition 7.3. Let X be a proper variety over a field of characteristic p, and let L be
a semiample and big line bundle on X. For any i < dim(X), we can find a finite surjective
morphism π : Y →X such that the induced map H i(X, L−1)→H i(Y, π∗L−1) is 0.
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Proof. We first describe the idea informally. Using Proposition 5.1 and arguments similar to
those in the proof of Proposition 7.2, we will reduce to the case that L is actually ample on X.
In this case, we give a direct proof using Proposition 6.2; the details follow.

Fix an integer i < dim(X). As L is big, there is nothing to show for i= 0, and thus we may
assume i > 0. As in the proof of Proposition 7.2, at the expense of replacing X by a finite flat
cover, we may assume that L arises as the pullback of an ample line bundle M under a proper
surjective morphism f :X → S. As bigness is preserved under passage to finite flat covers, we
may continue to assume that L is big. In particular, the map f is forced to be an alteration. By
Proposition 5.1, we can find a diagram

Y
π //

a

��

g

  AA
AA

AA
AA

X

f

��
S′

h // S

with π and h finite surjective such that we have a factorisation H i(X, L−1) s→H i(S′, h∗M−1) a∗→
H i(Y, π∗L−1) of π∗ for some map s. Moreover, given a finite cover b : S′′→ S, we can form the
following diagram.

Y ×S′ S′′
pr1 //

pr2
��

Y
g

��@@
@@

@@
@@

a

��

π // X

f

��
S′′

b // S′
h // S

This means that, at the level of cohomology, we have a commutative diagram as follows.

H i(X, L−1)
(π◦pr1)∗ //

s

��

H i(Y ×S′ S′′, (π ◦ pr1)∗L−1)

H i(S′, h∗M−1) b∗ // H i(S′′, b∗h∗M−1)

pr∗2

OO

Thus, it suffices to show that H i(S′, h∗M−1) can be killed by finite covers of S′. As h is a finite
morphism, the bundle h∗M is ample. That f was an alteration forces dim(S′) = dim(X) and,
therefore, 0< i < dim(S′). In other words, we are reduced to verifying the claim in the theorem
under the additional assumption that L is ample.

As we are free to replace X by a Frobenius twist (which increases the positivity of L), we may
assume that L has the property that Hj(X, L ⊗ ωX) = 0 for all j > 0, where ωX is the dualising
sheaf on X. Now choose a finite surjective morphism π : Y →X satisfying the conclusion of
Proposition 6.2. With d= dim(X), the trace map induces the following morphism of triangles in
Db(Coh(X)).

π∗ωY [d] //

a

��

π∗ω
•
Y

//

b
��

s
zz

τ>−dπ∗ω
•
Y

//

c=0
��

π∗ωY [d+ 1]

��
ωX [d] // ω•X // τ>−dω

•
X

// ωX [d+ 1]
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Here s is a map whose existence is ensured by the equation c= 0 (but s is not necessarily unique).
Tensoring this diagram with L, using the flatness of L, and using the projection formula gives
us the following morphism of triangles.

π∗(ωY ⊗ π∗L)[d] //

aL
��

π∗(ω•Y ⊗ π∗L) //

bL
��

sLuu

τ>−dπ∗(ω•Y ⊗ π∗L) //

cL=0

��

π∗(ωY ⊗ π∗L)[d+ 1]

��
ωX ⊗ L[d] // ω•X ⊗ L // τ>−dω

•
X ⊗ L // ωX ⊗ L[d+ 1]

The commutativity of the above diagram and existence of sL shows that for any integer i, the
image of the natural trace map

H−i(bL) :H−i(Y, ω•Y ⊗ π∗L)→H−i(X, ω•X ⊗ L)

lies in the image of the natural map

Hd−i(X, ωX ⊗ L) =H−i(X, ωX ⊗ L[d])→H−i(X, ω•X ⊗ L).

Now choose i such that 0< i < d. By assumption, the source of the preceding map is then trivial.
Hence, we find that the map H−i(bL) is also 0. Dualising, it follows that

π∗ :H i(X, L−1)→H i(Y, π∗L−1)

is trivial, as desired. 2

Remark 7.4. Consider the special case of Proposition 7.3 when L is ample. We treated this case
directly in the second half of the proof above using Proposition 6.2. It is possible to replace
this part of the proof by a reference to [HH92, Theorem 1.2], the main geometric theorem of
that paper. We have not adopted this approach as we feel that the proof given above using
Proposition 6.2 is cleaner than the algebraic approach of [HH92], which involves developing a
theory of graded integral closures (see [HH92, § 4]) and reducing to a local algebra theorem.

Remark 7.5. Proposition 7.3 can be viewed as a version of Kodaira vanishing in characteristic
p up to finite covers. A more natural proof would involve using the results of Deligne and
Illusie [DI87]. To implement such a proof, one needs to know that any variety over a field k of
characteristic p admits a proper surjective map from one that lifts to W2(k). Unfortunately, we
do not know whether this is true.

Remark 7.6. The results proven in this subsection were used in [BST11] to obtain a unified
description of test and multiplier ideals via alterations.

Counterexamples

This subsection is dedicated to providing the examples promised earlier. The most important
examples here are Examples 7.12 and 7.13. The former shows that the middle cohomology of
the inverse of a semiample line bundle on a smooth projective variety cannot always be killed
by finite covers, while the latter shows that the middle cohomology of a nef and big line bundle
on a smooth projective variety cannot be killed by finite covers; the latter answers negatively a
question asked in [Smi97a].

We start off by constructing a degree 0 line bundle on a singular stable curve whose
cohomology cannot be killed by Frobenius; we will later use this to construct the smooth examples
promised above.
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Example 7.7. Let k be a perfect field of characteristic p. Let E be an elliptic curve over k
with identity z ∈ E(k), and let L be a degree 0 line bundle on E that is not p-power torsion
(assumed to exist). Let C = E tz E be the stable genus 2 curve obtained by glueing E to
itself at z, and let M∈ Pic(C) be the line bundle obtained by glueing L over each copy
of E to itself using the identity isomorphism L|z ' L|z. Then we claim that H1(C,M) is
a one-dimensional k-vector space, and that FrobeC : C→ C induces an isomorphism Frobe,∗C :
H1(C,M)→H1(C,Mpe) for each e > 0. To verify these claims, note that we have an exact
triangle

R Γ(C,M)→ R Γ(E, L)⊕ R Γ(E, L)→ R Γ(z, L|z)

where, with an abuse of notation, z denotes the reduced subscheme structure on the point z.
Since L is chosen to be not p-power torsion, we have R Γ(E, L)' R Γ(E, Lpe) = 0 for each e > 0.
Hence, the triangle above (and a similar one for the Frobenius pullback) degenerates to give the
following diagram.

H0(z, L|z)
' //

Frobe,∗z
��

H1(C,M)

Frobe,∗C
��

H0(z, Lpe |z)
' // H1(C,Mpe)

The left vertical map is an isomorphism (it is s 7→ s⊗p
e

on sections), and thus so is the right
vertical one. Note that this construction can be adapted to work for arbitrary genera by glueing
in more copies of E.

We need a lemma on the existence of certain curves and line bundles in positive characteristic.

Lemma 7.8. Fix a prime p and a number g > 2. There exists a field k of characteristic p, a
smooth projective geometrically connected curve C/k of genus g, and a degree 0 line bundle M
on C such that:

(i) for each integer e > 0, the Frobenius map FrobeC : C→ C induces an injective map Frobe,∗C :
H1(C,M)→H1(C,Mpe);

(ii) for each integer e > 0, the line bundle M−pe does not occur as a subsheaf of any quotient
of h∗OC′ for any finite étale cover h : C ′→ C.

Proof. Our proof is indirect; we use the existence of a smooth moduli space of stable
curves (see [DM69]) coupled with Example 7.7. Let Mg(BGm) denote the stack over Fp
parametrising pairs (C,M) where C is a stable genus g curve and M is a degree 0 line bundle
on C. This stack is smooth (of dimension 4g − 4) by deformation theory: stable curves have
unobstructed deformations by [Ill05, Corollary 5.32], and line bundles on any proper curve
are unobstructed as H2(C,OC) = 0. Let π : X →Mg(BGm) be a smooth cover by a smooth
Fp-scheme. We will show that each of the conditions required in the lemma is (separately)
satisfied by the image in Mg(BGm) of a very general point of X ; this is enough to prove
the lemma, as a very general subset of X contains points that map to (C,M) with C
smooth.
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For the first condition, let (π : C → X ,N ) be the data representing π, and consider the usual
diagram below.

C

π

��

FrobC

""

Frobπ

��3
33

33
33

33
33

33

C(1)

π(1)

��

FrobX // C
π

��
X

FrobX // X

The relative Frobenius map Frobπ induces a morphism a : R1 π
(1)
∗ Frob∗X N → R1 π∗(N )⊗p. Let

U ⊂X be the open subscheme where the formation of Ri π∗N and Ri π∗(N⊗p) commutes with
base change. The fibre of a over a point x ∈ U(K) mapping to π(x) = [(C,M)] ∈Mg(K) (for any
ring K) is given by the Frobenius pullback map Frob∗K H i(C,M)→H i(C,Mp). By surjectivity
of π, there is a point x0 ∈ U(k0) such that π(x0) ∈Mg(X) corresponds to a pair (C0,M0)
constructed as in Example 7.7. In particular, U is non-empty. Moreover, since ax0 is injective
(by Example 7.7), semicontinuity ensures that ker(a)|V = 0 for some non-empty open V ⊂ U .
Doing the same for higher Frobenius twists and then intersecting, we see that images under π of
very general points on X satisfy the first condition above.

For the second condition, note that for each finite étale cover h : C ′→ C, the bundle h∗OC′ is
a semistable degree 0 vector bundle: this can be checked after finite étale base change on C, but
then it is clear as C ′ splits completely over some finite étale cover. As the category of semistable
vector bundles of degree 0 is an artinian and noetherian k-linear abelian category, only finitely
many degree 0 line bundles occur as subsheaves of quotients of h∗OC′ in a given finite étale cover
h : C ′→ C. There are only countably many possibilities for such h by the finite generation of
π1,ét(C), so there are only countably many possibilities for degree 0 line bundles that occur as
subsheaves of quotients of h∗OC′ as h varies over all finite étale covers h : C ′→ C. Thus, for
any smooth projective curve C, a very general degree 0 line bundle M will satisfy the second
condition. In particular, a very general point of X will satisfy the second condition. 2

We now arrive at the key example of this section.

Example 7.9. We will show that for a pair (C,M) satisfying the conditions of Lemma 7.8,
the group H1(C,M) cannot be killed by finite covers; the proof uses the Harder–Narasimhan
filtration for vector bundles on a curve (see [Laz04b, § 6.4.A]).

Assume, towards a contradiction, that there exists a finite surjective map f : C ′→ C such that
f∗ :H1(C,M)→H1(C ′, f∗M) has a non-zero kernel. By replacing C ′ with a cover if necessary,
we may assume that C ′ is normal and that the extension of function fields induced by f is
normal. By taking invariants at the level of function fields, we can factor f as C ′ a→ C

b→ C with
a generically étale and b a power of Frobenius (see [Har77, Proposition IV.2.5]). Our assumptions
on M imply that b∗ :H1(C,M)→H1(C, b∗M) is injective, and hence a∗ :H1(C, b∗M)→
H1(C ′, f∗M) must have a kernel. Now consider the exact sequence

0→OC → a∗OC′ →Q→ 0

where Q is defined to be the quotient. Tensoring with b∗M and taking cohomology, we see
that if H1(C, b∗M)→H1(C ′, f∗M) has a kernel, then H0(b∗M⊗Q) 6= 0 or, equivalently,
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that M−pe = b∗M−1 occurs as a subsheaf of Q. We will show that this contradicts the second
property of Lemma 7.8.

Since a is generically étale, a theorem of Lazarsfeld [PS00, Appendix, Proposition A] implies
that Q∨ is a nef vector bundle; the result in [PS00] is stated in characteristic 0, but this
assumption is only used to ensure generic separability. The bundle a∗OC′ therefore has non-
positive degree (as it is an extension of the antinef vector bundle Q by OC). This implies that
the maximal slope occurring in the Harder–Narasimhan filtration for a∗OC′ is 0. Since OC is a
subbundle of a∗OC′ of maximal degree, we have an induced exact sequence of semistable degree 0
vector bundles

0→OC → Fil0(a∗OC′)→ Fil0(Q)→ 0

where Fil0(E) denotes the piece of the Harder–Narasimhan filtration with slope greater than
or equal to 0. We showed above that M−pe occurs as a subsheaf of Q. Since M−pe has slope
0, it also occurs as a subsheaf of Fil0(Q). Hence, M−pe occurs as a subsheaf of a quotient of
Fil0(a∗OC′). On the other hand, the algebra structure on a∗OC′ descends to give an algebra
structure on Fil0(a∗OC′), so the latter corresponds to the structure sheaf of some finite cover
h :D→ C ′′ factoring the map a. Since a is generically étale, the same is true of h. By construction,
we also have deg(h∗OD) = 0. The Reimann–Hurwitz and Riemann–Roch theorems then show
that h is finite étale. Thus, the line bundle M−pe occurs as a subsheaf of a quotient of h∗OD
for h :D→ C finite étale, which contradicts the assumptions on the pair (C,M), finishing
the proof.

Remark 7.10. Example 7.9 requires one to work with very general line bundles and hence does
not answer the following question: does the conclusion of Proposition 7.2 hold for nef line bundles
if the base field is Fp? The strategy of Example 7.9 cannot work: any degree 0 line bundle M
on a curve C over Fp is torsion since Pic0(C) is torsion, and hence H1(C,M) can be killed by
Proposition 7.2. This question has now been answered negatively by Adrian Langer in [Lan11]
using the examples in [Tot09].

Using Example 7.9, we can easily produce an example of a nef line bundle L on a surface
X whose middle cohomology cannot be killed by passage to finite covers. In fact, the bundle
constructed has degree 0 and can thus be viewed as the inverse of a nef bundle as well; this
dual perspective negatively answers Question 7.1 for the case of positive or negative twists when
‘weakly positive’ is taken to mean nef.

Example 7.11. Let (C,M) be as in Example 7.9. Then L=M�OC = pr∗1M is a nef line bundle
on X = C × C with pr∗1 :H1(C,M) '→H1(X, pr∗1M) =H1(X, L). We claim that there does not
exist a finite surjective morphism π : Y →X inducing the 0 map π∗ :H1(X, L)→H1(Y, π∗L).
If π were such a map, then choosing a multisection of pr1 ◦ π and normalising it gives a finite
flat morphism f : C ′→ C inducing the 0 map on H1(C,M). However, as shown in Example 7.9,
this cannot happen.

Our next example is of a semiample line bundle L on a surface X such that the middle
cohomology of L−1 cannot be killed by finite covers. Thus, it negatively answers Question 7.1
in the case of negative twists when ‘weakly positive’ is taken to mean even semiample, not just
nef.

Example 7.12. Consider the bundle L=O(2)�O = pr∗1 O(2) on X = P1 × P1 over a field k.
This is a semiample bundle with H1(X, L−1) =H1(P1,O(−2))⊗H0(P1,OP1) = k. We claim

1776

https://doi.org/10.1112/S0010437X12000309 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000309


Derived splinters in positive characteristic

that there is no finite surjective morphism g : Y →X inducing the 0 map H1(X, L−1)→
H1(Y, π∗L−1). If there were such a map g, then pr1 ◦ g : Y → P1 is an alteration inducing the 0
map on H1(P1,O(−2)). Choosing a multisection of pr1 ◦ g and normalising it gives a finite flat
morphism f : C→ P1 inducing the 0 map on H1(P1,O(−2)). However, this cannot happen: the
morphism of exact sequences

0 // O(−2) //

��

O //

��

O0 ⊕O∞ //

��

0

0 // f∗f
∗O(−2) // f∗O // f∗Of−1(0) ⊕ f∗Of−1(∞) // 0

gives us the following morphism of exact sequences.

k =H0(P1,OP1) � � //

'
��

H0(P1,O0 ⊕O∞) a // //

b
��

H1(P1,O(−2)) = k

d
��

k =H0(C,OC) � � c // H0(C,Of−1(0) ⊕Of−1(∞)) // H1(C, f∗O(−2))

The surjectivity of a gives dim(H0(P1,O0 ⊕O∞)) = 2, while the injectivity of b ensures that
dim(im(b)) = 2. As dim(im(c)) = 1, it follows that im(b) strictly contains im(c); therefore
dim(im(d)) = 1, which is what we wanted.

Finally, we conclude by giving an example showing that the conclusion of Proposition 7.2
fails for nef and big line bundles.

Example 7.13. Let (C,M) be as in Example 7.9, and let L be an ample line bundle on C. Let
E = L ⊕M, let X = P(E), and let π :X → C be the natural projection. With Oπ(1) denoting
the Serre line bundle on X, we will show that:

– the line bundle Oπ(1) is nef;

– the line bundle Oπ(1) is big;

– the group H1(X,Oπ(1)) is non-zero and cannot be annihilated by finite covers of X.

We will first verify that Oπ(1) is nef. Using the Barton–Kleiman criterion (see [Laz04b,
Proposition 6.1.18]), it suffices to show that for any quotient E �N with N invertible, we must
have deg(N )> 0. This claim follows from the formula

Hom(E ,N ) = Hom(L,N )⊕Hom(M,N )

and the fact that neither L nor M admits a map to a line bundle with negative degree.

We now verify bigness of Oπ(1). By definition, this amounts to showing that h0(X,Oπ(n))
grows quadratically in n (we follow the usual convention that h0(X, F) = dim(H0(X, F)) for a
coherent sheaf F on X). Standard calculations about projective space bundles show that

π∗Oπ(n)' R π∗Oπ(n)' Symn(E)

for n > 0. The Leray spectral sequence for π then gives us that

H0(X,Oπ(n)) =H0(C, Symn(E)) =H0
(
C,

⊕
i+j=n

Li ⊗Mj
)
.

1777

https://doi.org/10.1112/S0010437X12000309 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000309


B. Bhatt

Since L is ample andM has degree 0, the Riemann–Roch estimate tells us that H0(C, Li ⊗Mj)
grows like i (for big enough i). Hence we find

h0(X,Oπ(n)) =
∑
i+j=n

h0(C, Li ⊗Mj)∼ 1 + 2 + · · ·+ n=
n(n− 1)

2
,

thereby verifying the bigness of O(1).

It remains to check the cohomology-annihilation claim. The Leray spectral sequence shows
that

H1(X,Oπ(1)) =H1(C, E) =H1(C, L)⊕H1(C,M).

In particular, this group is non-zero since the second factor is non-zero. Moreover, the natural
projection E �M defines a section s : C→X of π such that s∗Oπ(1)'M. Hence, we find that
s∗ induces a map H1(X,Oπ(1))→H1(C,M) which is simply the projection on the second factor
under the preceding isomorphism. In particular, if there were a finite cover π : Y →X such that
π∗(H1(X,Oπ(1)) = 0, then upon restricting Y to s : C→X we would obtain a finite cover of C
annihilating H1(C,M), contradicting what we proved in Example 7.9.

Question 7.14. The examples given above do not answer the following question: given a smooth
projective variety X and a nef and big line bundle L, can the group H i(X, L−1) be killed by
finite covers of X for 0< i < dim(X)? If L is assumed to be semiample, then Proposition 7.3
provides a positive answer. If the bigness condition is dropped, then Example 7.11 provides a
negative answer. A positive answer to this question would give an ‘up to finite covers’ analogue
of Kawamata–Viehweg vanishing, and would be quite useful for applications.

8. Application: some more global examples of D-splinters

The goal of this section is to show that the complete flag variety for an algebraic group group G
is a D-splinter. When G= GLn, we give a direct proof in § 8.1 relying on the results of § 5; this
provides the first non-toric example of a projective variety that is a D-splinter in this paper. For
general G, we give a proof in § 8.2 using the results of [SS10, LRT06]; the latter was suggested
to us by the referee.

8.1 The general linear group

Our goal is to show that the variety of complete flags in a vector space is a splinter. We begin
by recording an elementary criterion to test when a finite morphism is ‘split’.

Lemma 8.1. Let X be a Gorenstein projective scheme of equidimension n over a field k, and let
π : Y →X be a proper morphism. Then the existence of a section of OX → R π∗OY is equivalent
to the injectivity of Hn(X, ωX)→Hn(Y, π∗ωX).

Proof. By the projection formula and the flatness of ωX , we have Hn(Y, π∗ωX) =Hn(X, ωX ⊗
R π∗OY ). Thus, the injectivity of Hn(X, ωX)→Hn(Y, π∗ωX) is equivalent to the injectivity of

Hn(X, ωX)→Hn(X, ωX ⊗ R π∗OY ).

This map is the map on Hn induced by the natural map ωX → ωX ⊗ R π∗OY . Serre duality tells
us that this injectivity is equivalent to the surjectivity of

Hom(R π∗OY ⊗ ωX , ωX)→Hom(ωX , ωX).
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Since ωX is invertible, the preceding surjectivity is equivalent to the surjectivity of

(π∗)∨ = ev1 : Hom(R π∗OY ,OX)→Hom(OX ,OX)

induced by the natural map OX → R π∗OY . On the other hand, the surjectivity of this map is
also clearly equivalent to OX → R π∗OY admitting a section; the claim follows. 2

Next, we discuss a criterion that allows us to propagate the splinter condition from a
subvariety to the entire variety. The criterion is formulated in terms of the existence of nice
resolutions of dualising sheaves.

Proposition 8.2. Let X be a Gorenstein projective variety of equidimension n over a field k
of positive characteristic p. Let i : Z ↪→X be a closed equidimensional subvariety that is itself
Gorenstein, and let c be the codimension dim(X)− dim(Z). Assume that there exists a resolution
of ωZ of the form

[ωX = Ec→Ec−1→ · · · → E0]' ωZ
where, for each 06 i < c, the sheaf Ei is an iterated extension of inverses of semiample and big
line bundles. If Z is a splinter, so is X.

The assumption on Ei (for 06 i < c) means that Ei admits a finite filtration with associated
graded pieces given by inverses of semiample and big line bundles L−1

i,j . This implies that
Hk(X, Ei) admits a finite filtration with associated graded pieces contained in Hk(Li,j) for any k.

Proof. Let α ∈Hn−c(X, ωZ)'Hn−c(Z, ωZ) be a generator (under Serre duality). Let f : Y →X
be an alteration. By the assumption on Z, we know that f∗(α) is not zero in Hn−c(Y, f∗ωZ). The
pullback Lf∗α ∈Hn−c(Y, Lf∗ωZ) also has to be non-zero by the natural map Lf∗ωZ → f∗ωZ .
Note that this holds for any alteration f : Y →X; this observation will be applied later in the
proof to a different map.

Pulling back the given resolution for ωZ to Y , we obtain a resolution

[f∗ωX = f∗Ec→ f∗Ec−1→ · · · → f∗E0]' Lf∗ωZ .

The hypercohomology spectral sequence associated to the stupid filtration of this complex takes
the form

E1,q
p (Y →X) :Hq(Y, f∗Ep)⇒Hq−p(Y, Lf∗ωZ).

We will trace the behaviour of the class Lf∗α ∈Hn−c(Y, Lf∗ωZ) through the spectral sequence.
The terms contributing to this group in the spectral sequence are Hq(Y, f∗Ep) with q − p= n− c.
Since dim(Y ) = n, the contributing terms Hq(Y, f∗Ep) have q < n whenever p < c. We will first
show, by applying Proposition 7.3, that these numerics imply that Lf∗α has to be non-zero in
Hn(Y, f∗E0), and then we will explain why this is enough to prove the claim.

Since the bundles Ei are assumed to be iterated extensions of inverses of semiample and big
line bundles for i < c, the same is true for the pullbacks f∗Ei. Proposition 7.3 then produces
a finite surjective morphism g : Y ′→ Y such that Hj(Y, f∗Ei)→Hj(Y ′, g∗f∗Ei) is 0 for j < n
(and i < c still). Since we know that L(f ◦ g)∗α is non-zero by the earlier argument, the image
of Lf∗α also has to be non-zero in Hn(Y, f∗E0) =Hn(Y, f∗ωX) under the natural coboundary
map Hn−c(Y, Lf∗ωZ)→Hn(Y, f∗ωX).

Now note that we also have a analogous spectral sequence

E1,q
p (X →X) :Hq(X, Ep)⇒Hq−p(X, ωZ)

1779

https://doi.org/10.1112/S0010437X12000309 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000309


B. Bhatt

and a morphism of spectral sequences E1,q
p (X →X)→ E1,q

p (Y →X) by pulling back classes.
This gives rise to the following commutative square.

k 'Hn−c(X, ωZ)
δX //

a

��

Hn(X, ωX)' k

b
��

Hn−c(Y, Lf∗ωZ)
δY // Hn(Y, f∗ωX)

We have just verified that δY ◦ a is non-zero and, hence, injective. By a diagram chase, δX is
injective and, hence, bijective. Another chase then implies that b is injective. By Proposition 8.1,
we are done. 2

Remark 8.3. Consider the special case of Proposition 8.2 where all the line bundles occurring in
the Ei are antiample. Since X is Gorenstein, one may be tempted to say that the given proof of
Proposition 8.2 goes through without using Proposition 7.3 as we can simply use Frobenius to
kill cohomology after dualising. However, this is false: we applied Proposition 7.3 to finite covers
Y →X rather than to X itself, and there is no reason we can suppose that Y is Gorenstein. If
we alter Y to a Gorenstein (or even regular) scheme, then we lose ampleness and are once again
in a position where we need to use Proposition 7.3.

Remark 8.4. The assumptions in Proposition 8.2 are extremely strong. Consider the case where
Z ↪→X is a divisor. The natural resolution (and, in fact, the only possible one) to consider is

[ωX → ωX(Z)]' ωZ .

The assumptions of Proposition 8.2 will be satisfied precisely when ω−1
X (−Z) is semiample and

big. This implies that ω−1
X is also big. In particular, X is birationally Fano.

Proposition 8.2 looks slightly bizarre at first glance. However, it is a useful argument in
inductive proofs. Here is a typical application.

Proposition 8.5. Let V be a vector space of dimension d over a field k, and let Flag(V ) be
the moduli space of complete flags (0 = F0 ⊂ F1 ⊂ · · · Fd−1 ⊂ Fd = V ) in V . Then Flag(V ) is a
D-splinter.

Proof. We work by induction on the dimension d. The case d= 0 being trivial, we may assume
that Flag(W ) is a splinter for any vector space W of dimension at most d− 1. If we let
P(V ) denote the projective space of hyperplanes in V , then there is a natural morphism
π : Flag(V )→ P(V ) given by sending a complete flag (0 = F0 ⊂ F1 ⊂ · · · Fd−1 ⊂ Fd = V ) to the
hyperplane (Fd−1 ⊂ V ). The morphism π can easily be checked to be projective and smooth. Let
W ⊂ V be a fixed hyperplane, and let b ∈ P(V )(k) be the corresponding point. The fibre π−1(b)
is identified with Flag(W ). We will apply Proposition 8.2 with Z = Flag(W ) and X = Flag(V )
to get the desired result.

The structure sheaf κ(b) of the point b : Spec(k) ↪→ P(V ) can be realised as the zero locus
of a section of O(1)⊕(d−1) by thinking of b as the intersection of (d− 1) hyperplanes in general
position. This gives us a Koszul resolution

[O(−(d− 1))' ∧d−1(O(−1)⊕(d−1))→ · · · →O(−1)⊕(d−1)→O]' κ(b).

Twisting by O(−1), we find a resolution

[ωP(V )→Md−2→ · · · →M1→M0]' κ(b)
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with each Mi being a direct sum of inverses of ample line bundles with degrees between 1 and
d− 2. Pulling this data back along π, we find a resolution

[π∗ωP(V )→ π∗Md−2→ · · · → π∗M1→ π∗M0]' π∗κ(b) =OZ .

Twisting by the relative dualising sheaf ωπ, we find

[ωπ ⊗ π∗ωP(V )→ ωπ ⊗ π∗Md−2→ · · · → ωπ ⊗ π∗M1→ ωπ ⊗ π∗M0]' ωπ|Z .

Since π is smooth, we make the identifications ωX ' ωπ ⊗ π∗ωP(V ) and ωZ ' ωπ|Z . Thus, we
obtain a resolution

[ωX → ωπ ⊗ π∗Md−2→ · · · → ωπ ⊗ π∗M1→ ωπ ⊗ π∗M0]' ωZ

withMi as above. Standard calculations with flag varieties (see Lemma 8.6) now show that the
terms ωπ ⊗ π∗Mi are direct sums of inverses of semiample and big line bundles. In particular,
this resolution has the form required in Propositon 8.2. Hence, we win by induction. 2

We needed to calculate the positivity of certain natural line bundles on the flag variety in
Proposition 8.5. Since we were unable to find a satisfactory reference, we carry out the calculation
here.

Lemma 8.6. Let V be an n-dimensional vector space over a field k, and let π : Flag(V )→ P(V )
be the natural morphism. For all i > 0 and all n, the line bundles ωπ ⊗ π∗O(−i) are inverses of
semiample and big line bundles.

Proof. For n= 2, the map π is an isomorphism, and the claim is obvious. Assume n> 3. Let

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V ⊗OFlag(V )

be the universal flag on Flag(V ) with dim(Vi) = i. For each i> 1, let Li = Vi/Vi−1 be the
associated line bundle. The tangent bundle of Flag(V ) admits a filtration whose pieces are
of the form

Hom(Vi, Li+1)' V∨i ⊗ Li+1

for 16 i6 n− 1. This filtration gives us the formula

ω−1
Flag(V ) '

n−1⊗
i=1

(det(Vi)−1 ⊗ det(Li+1)i).

Since each Vi is filtered with pieces of the form Lj for 16 j 6 i, we find that

ω−1
Flag(V ) '

n−1⊗
i=1

(L−1
1 ⊗ L

−1
2 ⊗ · · · ⊗ L

−1
i ⊗ L

i
i+1).

Collecting terms, we find that

ω−1
Flag(V ) '

(n−1⊗
i=1

L2i−n
i

)
⊗ Ln−1

n .

The inverse Mj of the line bundle ωπ ⊗ π∗O(−j) can be written as

Mj ' ω−1
π ⊗ π∗O(j)' ω−1

Flag(V ) ⊗ π
∗(ωP(V ) ⊗O(j)).
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Using the formula for ω−1
Flag(V ) that we arrived at earlier and the fact that π is defined by the

tautological quotient OFlag(V ) ⊗ V � Ln, we can simplify the preceding formula to get

Mj '
(n−1⊗
i=1

L2i−n
i

)
⊗ Ln−1

n ⊗ L−n+j
n '

(n−1⊗
i=1

L2i−n
i

)
⊗ Lj−1

n .

Our goal is to show thatMj is semiample and big for j > 0. Being the pullback of a very ample
line bundle, the factor Lj−1

n is semiample and effective for j > 0. Hence, it suffices to show that

N :=
2i−n⊗
i=1

L2i−n
i

is semiample and big. Since we have assumed that n> 3, the centre c= b(n− 1)/2c is strictly
positive. We may then write

N '
c⊗

k=1

(Ln−k ⊗ L−1
k )⊗(n−2k).

Schubert calculus (see [Ful97, § 10.2, Proposition 3]) tells us that the line bundles La ⊗ L−1
b are

ample when a > b. In particular, all the factors in the preceding factorisation of N are ample.
Since c> 1, this factorisation is also non-empty. It follows then that N is an ample line bundle,
as desired. 2

Remark 8.7. Proposition 8.5 can be improved slightly to say that ωπ ⊗ π∗O(−i) is actually the
inverse of an ample line bundle. This claim follows directly from the homogeneity of Flag(V ).
Indeed, let L be a semiample and big line bundle on a projective variety X that is homogeneous
for a connected group G. Let f :X → PN denote the map defined by a suitably large power of L.
If L were not ample, then there would be a proper curve C ⊂X that is contracted by f . By
the rigidity lemma (see [MFK94, Proposition 6.1]), the same is true for any curve algebraically
equivalent to C. However, since X is homogeneous, translates of C under G actually cover X.
Since G is connected, all translates of C are algebraically equivalent to C. It follows then that
dim(im(f))< dim(X), contradicting the bigness of L.

As a corollary, we obtain a further family of examples; this will be generalised in
Corollary 8.10.

Corollary 8.8. Let V be a finite-dimensional vector space, and let X be a partial Flag variety
for V . Then X is a splinter. In particular, all Grassmannians Gr(k, n) are splinters.

Proof. There is a natural morphism π : Flag(V )→X given by remembering the corresponding
flag. It can be checked that π is a smooth projective morphism whose fibres are iterated fibrations
of projective spaces. In particular, R π∗OFlag(V ) ' π∗OFlag(V ) 'OX . The claim for X now follows
from that for Flag(V ) proven in Proposition 8.5. 2

8.2 Arbitrary groups

Following a suggestion of the referee, we now turn to the flag varieties of arbitrary groups. The
results in this section subsume those of § 8.1 but are more dependent on the literature. We
first show that globally F-regular projective varieties are splinters; see [SS10] for the relevant
definitions.
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Proposition 8.9. Let X be a projective variety over a field k of characteristic p. If X is globally
F-regular, then X is a D-splinter.

Proof. Let L denote an ample line bundle on X, and let S =
⊕

i>0 H
0(X, Li) denote the

corresponding section ring with m⊂ S the ideal of elements of strictly positive degree. Then
Spec(S) can be viewed as an affine cone over X, and the punctured spectrum U = Spec(S)− {m}
is the total space of Gm-torsor π : L−1 − 0(X)→X; here 0(X)⊂ L−1 denotes the 0 section.
By [SS10, Proposition 5.3(1)], the ring S is globally F-regular. It is well-known that this forces S
to be a splinter (this can be proven by a variant of the argument in Example 2.3, for example).
Since a finite cover of U extends to one of S (by normalisation, for example), U is also a splinter.
The structure map OX → π∗OU splits (as it does for any Gm-torsor), so it follows that X is a
splinter, as required. 2

We can now show the promised result on flag varieties.

Corollary 8.10. Let G be a geometrically reductive algebraic group over a field k of
characteristic p, and let P ⊂B be a parabolic. Then G/P is a splinter.

Proof. We explain the idea first. As a first step, one uses that π :G/B→G/P satisfies
R π∗OG/B 'OG/P to reduce to the case where P =B. Next, one reduces to showing that the
Bott–Samelson variety X for G (see [BS55]) is a splinter: the reason is that X admits a proper
birational map π :X →G/B satisfying OG/B ' R π∗OX . The claim for X is shown by proving
that X is globally F-regular and using Proposition 8.9. Instead of reproducing this work here,
we refer to [LRT06, Theorem 2.2] for a proof that G/P is globally F-regular. 2

Acknowledgements

The contents of this paper were a part of the author’s doctoral dissertation written under the
guidance of Aise Johan de Jong. In particular, the author is grateful to de Jong for suggesting
some of the questions addressed in this paper, and for generously sharing ideas about the content.
In addition, the author would like to thank Karl Schwede and, especially, Anurag Singh for many
conversations about derived splinters. The material in § 7 owes a debt to Adrian Langer: he
suggested improvements and corrections, and also solved a problem raised in an earlier draft of
this paper. Special thanks are due to the anonymous referee for suggesting many improvements
to the mathematics and the exposition. In particular, Theorem 2.12 is included at the referee’s
behest, while § 8.2 is entirely due to the referee’s comments on a previous draft.

References

AdJ97 D. Abramovich and A. J. de Jong, Smoothness, semistability, and toroidal geometry, J. Algebraic
Geom. 6 (1997), 789–801; MR 1487237(99b:14016).

AOV08 D. Abramovich, M. Olsson and A. Vistoli, Tame stacks in positive characteristic, Ann. Inst.
Fourier (Grenoble) 58 (2008), 1057–1091; MR 2427954(2009c:14002).

Bei11 A. Beilinson, p-adic periods and the derived de Rham cohomology, Preprint (2011),
arXiv:1102.1294.
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