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THE ROLE OF SHEAR HEATING IN THE DYNAMICS OF 
LARGE ICE MASSES 
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California 90024, U .S.A.) 

ABSTRACT. Self-consistent, steady, one-dimensional, subsolidus creep models of temperature and velocity 
are calculated for constant-thickness ice sheets sliding down a bed of constant slope under their own weight. 
Surface velocities of meters per year together with ice thicknesses of hundreds of meters can be realized by 
models wherein no melting occurs only if the activation energy for shear deformation E* is relatively small; 
a value of E* of about 60.7 kJ/mol (14.5 kcal /mol) is satisfactory, but an activation energy twice as large is 
not. Models which satisfy these constraints always lie close to the critical point which separates subcritical 
solutions (surface velocity Uo and basal temperature Tb increase with ice thickness h) from supercritical ones 
(uo, Tb decrease with h). All steady states, whether subcritical or supercritical, are stable to perturbations 
of infinitesimal amplitude. However these ice layers are vulnerable to finite-amplitude frictional-heating 
instability which may be caused, for example, by sudden increases of glacier thickness. The superexponential 
growth-rates of such finite-amplitude instabilities may be responsible for the disintegration oflarge ice sheets 
in short periods of time. 

RESUME. Le role du rechauiJement dfl au cisaillement dans la dynamique des grandes masses de glace. On a calcule 
pour la temperature et la vitesse des modc'!les de f1uage coherents, stables, uni-dimensionnels, quasi-solides 
pour une epaisseur constante de glace glissant sur un lit de pente constante sous I'effet de son propre poids. 
Des vitesses de surface de quelques metres par an liees a des epaisseurs de glace de quelques centaines de 
metres ne peuvent I!tre realisees par des modc'!les sans fusion que si I'energie d'activation pour la deformation 
par cisaillement E* est relativement faible. Une valeur de E* d'environ 60, 7 kJ/mol (14,5 kcal/mol) est 
satisfaisante mais une energie d'activation double ne I'est pas. Les modeJes qui satisfont a ces contraintes 
demeurent tres proches du point critique qui separe les solutions sous-critiques (la vitesse de surface Uo et la 
temperature a la base Tb croissent avec I'epaisseur de glace h) des solutions sur-critiques (uo, Tb decroissent 
avec h). Tous les etats d'equilibre, sous-critiques ou sur-critiques sont stables pour des perturbations d'ampli­
tude infinitesimale. Cependant, ces niveaux de glace sont vulnerables a l'instabilite par rechauR'ement de 
frottement d'amplitude finie, qui peut provoquer, par exemple, un acroissement subit de l'epaisseur des 
glaciers. La vitesse de croissance superexponentielle de telles instabilites d'amplitude finie peut I!tre respons­
able de la des integration de grandes calottes glaciaires en de courtes periodes de temps. 

ZUSAMMENFASSUNG. Die RoUe der Scherwiirme in der Dynamik grosser Eismassen. FUr Eisdecken mit konstanter 
Dicke, die uber ein Bett mit konstanter Neigung unter ihrem eigenen Gewicht herabgleiten, werden in sich 
abgeschlossene, stetige, eindimensionale Kriechmodelle der Temperatur und Geschwindigkeit berechnet. 
Oberflachengeschwindigkeiten von einigen .Metern pro Jahr zusammen mit Eisdicken von mehreren hundert 
Metern konnen durch Modelle erfasst werden, in denen keine Abschmelzung auftritt, wenn nur die Aktiva­
tionsenergie fUr die Scherdeformativn E* relativ kJein ist; ein Wert E* von etwa 60,7 kJ /mol (14,5 kcal/mol) 
erfUllt diese Bedingung, eine doppeJt so grosse Aktivationsenergie dagegen nicht. Modelle, die solchen 
Einschrankungen genUgen, liegen immer nahe dem kritischen Punkt, der unterkritische Losungen (Ober­
f1achengeschwindigkeit Uo und Temperatur am Untergrund Tb wachsen mit der Eisdicke h) von Uberkritischen 
(uo, Tb nehmen mit h ab) trennt. Alle stationaren Zustande, gleichgUltig ob unter- oder uberkritisch, sind 
stabil gegenUber Storungen mit infinitesimaler Amplitude. Jedoch konnen diese Eisschichten von Instabili­
taten infolge Reibungswarme mit fin iter Amplitude betroR'en werden, die zum Beispiel durch eine plotzliche 
Zunahme der Gletscherdicke verursacht werden konnen. Die uberexponentiellen Anstiegsraten solcher 
Instabilitaten mit finiten Amplituden konnten der Grund fUr die Auflosung grosser Eisschilde in kurzen 
Zeitspannen sein. 

INTRODUCTION 

The subsolidus creep of ice is a major process controlling the flow of glaciers and the shape 
of large ice sheets (Paterson, 1969 ; Sugden and John, 1976). The velocity and temperature 
fields in the ice are strongly coupled because the strain-rate of subsolidus creep depends on the 
exponential of the inverse absolute temperature, while shear in the flow field produces heat 
by viscous dissipation. Such strong non-linear coupling results in non-uniqueness in the 
steady solutions and finite-amplitude thermal instabilities of the ice flows. In this paper we 
use simple, one-dimensional models both to investigate the multiple steady states of deforming 
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ice sheets and their stability. This multiplicity of steady-state solutions and the issue of 
stability are also encountered in areas of solid-earth geophysics (Melosh, 1976; Yuen and 
Schubert, 1977; Schubert and Yuen, 1978), plasma physics (Dobrott and others, 1977), 
chemical reactors (Aris, 1975), and chemical physics (Procaccia and Ross, 1977). The review 
by Clarke and others (1977) summarizes the previous work on this glaciological problem. 
A recent paper by Cary and others (1979) also deals with glacier stability. We consider here 
only the gravitational sliding of a constant-thickness ice sheet with no ablation or accumula­
tion since this situation lends itself to a rigorous, self-consistent, analytic determination of 
temperature and velocity. 

THEORETICAL MODEL 

We consider a horizontally infinite sheet of ice with constant thickness h on a surface 
inclined at angle ex with respect to the horizontal. The base of the ice sheet is aty = 0, the 
surface is at y = h. The ice deforms under its own weight and creeps down-slope, in the 
x-direction, with a steady velocity u. The velocity of the ice sheet parallel to its bed u is a 
function only of the coordinate normal to the bed y. There is no motion either perpendicular 
to the basal plane or in the direction normal to x andy. Accordingly, our simplified, one­
dimensional, gravitational-sliding model does not include effects of ablation or accumulation 
of ice, processes responsible for the overall material balance of large ice masses (Paterson, 
1969). 

Consistent with our steady, one-dimensional model, the temperature T in the ice sheet 
is assumed to depend on y only. Geothermal heat entering the base of the ice sheet and 
frictional heat generated by the shearing motion of the ice contribute to warming the ice above 
its surface temperature To. One of our primary objectives in this paper is to assess the impor­
tance offrictional heating in raising the temperature of the ice and facilitating its deformation. 
Thus we concentrate on the construction of self-consistent temperature and velocity profiles 
albeit with a simplified model which cannot account for many of the other physical processes 
known to influence glacial motions. 

The equations governing the temperature and creep of the ice are 

d7" 
dy +pg sin ex = 0, (I) 

d2 T 7"2 
k-+-=o, dyz f.L 

du 
7"-11-­- dy' 

1 (E*) 
f.L = 2A7"2 exp RT . 

In the force balance equation ( I) where inertial terms have been neglected, 7" is the shear 
stress parallel to the base of the ice sheet (defined in Equation (3) in terms of the viscosity f.L 
and the velocity gradient), p is the density of the ice, g is the acceleration of gravity, and g sin ex 
is the gravitational force per unit mass parallel to the basal plane. The temperature equation 
(2) expresses a balance between heat conduction perpendicular to the basal plane (k is the 
thermal conductivity of ice) and frictional heating. The formula for the viscosity given in 
Equation (4) assumes a power-law dependence between strain-rate and stress (strain-rate et:. 7"3 

(Weertman, 1973)); the creep of ice is also a thermally activated process with activation 
energy E* (A is a material constant which depends strongly on the particular deformation 
mechanism and R is the universal gas constant) (Hobbs, 1974). 
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Equation (I) can be integrated directly with the result 

T = pg(h-y) sin IX, 

197 

(5) 

where we have assumed T = 0 at the surface. The shear stress increases linearly with depth 
below the surface of the ice, reaching the maximum value pgh sin IX at the base. By substituting 
for viscosity and shear stress from Equations (4) and (5), we can rewrite the temperature 
equation as 

dzT 2A (-E*) 
df +7: (pg sin 1X)4(h-y)4 exp RT = o. (6) 

Equation (6) is solved subject to the boundary conditions 

T = To ony = h, 

dT 
-k dy = qb ony = 0, 

where qb is the heat flux entering the base of the ice sheet. 
Once T is determined from Equations (6) to (8), the velocity profile in the ice sheet can 

be found by integrating 

~ (-E*) dy = 2A[pg(y-h) sin 1X)3 exp RT ' (9) 

subject to the condition 

u = 0 ony = o. (10) 

The velocity we find from Equations (9) and (10) pertains only to the sub solidus creep of the 
ice sheet; a constant basal slip velocity can be superimposed on the entire creep velocity 
profile. 

The procedure described above is straightforward if h is considered known a priori. 
However, the nature of the solutions is such that an alternate approach is useful from a 
computational point of view. In this alternative scheme we specify the surface velocity uo, i.e. 

u = Uo on y = h, (I I) 
resulting in four conditions (Equations (7), (8), (10), and ( I I») to be satisfied by our coupled 
first- and second-order differential equations (Equations (6) and (9». The additional 
condition allows determination of h. Thus, one can specify h and compute Uo from Equations 
(6) to (10), or one can specify Uo and compute h from Equations (6) to (I I). We will see that 
Uo is a multiple-valued function of h whereas h is a single-valued function of uo. This charac­
teristic of the solutions makes it easier, computationally, to choose Uo and determine h rather 
than vice-versa. The surface velocity Uo is actually the change in velocity across the ice sheet 
due to subsolidus deformation. The actual surface velocity of an ice sheet could be consider­
ably larger due to basal slip. 

If our problem were cast into dimensionless form, then uJuo and TJTo would be universal 
functions ofy/h depending only on the four dimensionless parameters 

E* qbh A (pgh sin IX) 3 h A (pgh sin 1X)4 hz 

RTo' kTo' Uo kTo 

Thus we can write 

. {E* qbh Ahz(pgh sin 1X)4} 
Uo = Ah(pgh sm IX) 3 F RTo' kTo ' kTo . 

If Tb is the basal temperature (Tb = T (y = 0)), then we can also write 

Tb = {qbh E* AhZ(pgh sin 1X)4} 
To F k To ' R To ' k To . 
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These relations allow the numerical results presented later in the paper to be extended to 
sets of parameter values we have not considered. In presenting our results in the following 
sections, we will use the dimensional quantities as the ones most readily understandable to the 
glaciologist. 

PARAMETER VALUES AND METHOD OF INTEGRATION 

The physical constants used in most of our calculations are summarized in Table I. The 
rheological parameters E* and A are taken from Clarke and others (1977). Since these values 
are derived from single-crystal measurements (Weertman, 1973), we will vary both E* and A 
in order to investigate the possibility of placing constraints on the creep properties of poly­
crystalline ice in a natural environment. The value of To is characteristic of the cold environs 
of Antarctica; we also consider To = 250 K which is a typical value for temperate glaciers 
(Paterson, 1969). The basal heat-flow value should be characteristic of continental shield 
regions (Roy and others, 1972). We also use both smaller (q b = 20.9 mWjm2) and larger 
(qb = 62.7 m W jm2) values of basal heat flux to study the effects of variations in this boundary­
condition parameter. For the purposes of emphasizing the effects of viscous dissipation, we 
have taken a large value of Cl(, 33.5°. We have also considered smaller values of Cl(, IS° and 5°. 
These values may be found in valley glaciers or near margins of large ice sheets (Sugden and 
John, 1976). We will show later how our results can be scaled to even smaller Cl(. 

TABLE 1. PHYSICAL PARAMETER VALUES 

Activation energy, E* 
Density, p 
Thermal conductivity, k 
Thermal diffusivity, K 

Flow-law constant (for n = 3), A 
Power law index, n 
Surface temperature, To 
Basal geothermal flux, qb 
Basal slope, a 

60.7 kJ mol-I 
goo kg m-3 

2.51 W m-I K-I 
1.33 X 10-6 m' S-I 

8.75 X 10-13 m6 N-3 S- I 

3 
218 K 
41.8 mW m-' 
33.5

0 

Equations (6) and (9) with the associated boundary conditions, Equations (7), (8), (10), 

and ( I I ), constitute a two-point, non-linear boundary-value problem. The numerical 
solution is obtained by downward integration (fourth-order Runge- Kutta method) from 
y = h, with guesses for dTjdy aty = h and the value of h. These quantities are iteratively 
adjusted by the Newton-Raphson method until the two boundary conditions, Equations 
(8) and (10), are satisfied aty = o. To facilitate the efficient convergence of the numerical 
solution, we integrated the temperature equation fromy = h to the extremely small depth at 
which T increased by at most o. I K without including the viscous dissipation term. At these 
small depths we also took u = uo. At greater depths, the complete equations were integrated. 
The solutions were acceptable only when the values of dTjdy (y = h) and h were unaffected 
by decreasing the size of integration steps, usually chosen to be O( 10-3 h). 

PROFILES OF TEMPERATURE, VELOCITY, AND VISCOSITY 

We show two examples of how temperature, velocity, and viscosity vary with position 
in the ice sheet. Figure I is for E* = 60.7 kJ jmol (14.5 kcal jmol) and Figure 2 is for 
E* = 125.5 kJ jmol (30 kcal jmol). In both cases To is 218 K, qb is 41.8 mWjm2 
(1.0 fLcal jcm2 s), and Cl( = 33'5°. Other parameter values are given in the figure captions. 
We will see later that the case with low activation energy is an example of a subcritical state 
while the case with high activation energy represents a supercritical state. The former is 
characterized by little shear heating and only a small temperature increase through the ice; 
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Fig. I. D epth profiles of temperature T , velocity u, and effective viscosity fL. The parameter values are those given in Table 1. 
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Fig. 2 . T, u, and fL versus depth in the ice sheet. The parameter values are those given in Table I except for E* which has the 
high value 125.5 kJ/mol (30 kcal/mol ). The dolled lille is the depth profile of the melting temperature taken from Sugden 
and John (1976). 
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the temperature profile is essentially linear. In the latter case, frictional heating is more 
important as can be seen by the curvature in the temperature profile near the base of the ice 
sheet. Thus, the isothermal approximation (Nye, 1957) is quite valid for the subcritical 
situation. The overall temperature increase in the supercritical case is substantial and 
approximately the lower 60% of the sheet is at temperatures above the melting point of ice 
(melting temperature versus depth is shown by the dotted line). The ice sheet is only about 
110 m thick in the subcritical case whereas it is about 1.9 km thick in the supercritical case. 

The surface velocities for both values of E* are identical, Uo = 1 m/year. However, for the 
smaller value of E* the shear occurs over about the lower 70% of the ice sheet whereas for the 
higher value of E*, the shear is confined to about the lower 25 % of the ice sheet. The velocity 
profile of Nye (1957) is qualitatively similar in appearance to the one for the lower activation 
energy. There are large variations in viscosity throughout the ice layer. For the sub critical 
case, /L decreases by more than two orders of magnitude over the lower 90% of the ice sheet 
while for the supercritical case the decrease is eleven orders! Since the surface shear stress is 
zero, the effective viscosity as defined by Equation (4) is infinite at the surface. Near the 
surface where there exist crevasses the deformation cannot be described by a viscous model. 

-~ ..s 
=f' 

100 

10-2 

10-BL-,;-____ ...l.L, ____ ---'-;;--'---_...L----' 

10.2 10-' 100 10' 
THICKNESS (km) 

Fig. 3. Surface velocity Uo versus ice thickness h. Except for the values of E* which are indicated on the figure, all parameters 
have the values given in Table I. The results can be extended to arbitrary ex following the discussion in the text. 
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Thus the mathematical singularity in the surface viscosity has no physical significance. The 
much larger viscosity variation between the near-surface and the base of the ice sheet in the 
supercritical case is the result of the relatively large value of E* for this case. 

SURFACE VELOCITY, BASAL TEMPERATURE, AND ICE THICKNESS 

The overall character of an ice sheet is well described by giving its thickness h, surface 
velocity uo, and basal temperature Tb = T (y = 0) for the many different environmental 
circumstances under which the ice sheet can exist. The environmental parameters include 
surface temperature To, basal slope 0(, and basal heat flux qb. In addition, it is of interest to 
describe how these basic characteristics of ice sheets depend on the rheological properties of 
the ice. 

Figures 3 and 4 show how h, uo, and Tb vary with creep activation energy for T o = 218 K, 
0( = 33.5°, and qb = 41.8 mWjm2 ( I fJ-cal/cm2 s). Uo and Tb are seen to be double-valued 
functions of h in the range of uo, h considered. This multiplicity of steady solutions is well 
known in both fluid dynamical (Joseph, 1964) and chemical engineering (Gavis and Laurence, 
1968) literature. Clarke and others (1977) have shown that there are in fact three possible 
values of Tb for certain ice-sheet thicknesses. They integrated the temperature equation 
only and discussed the solutions in terms of the multiplicity of values of the surface temperature 
gradient. It is important to simultaneously integrate the rheological equation and consider 
the multiplicity of values of the surface velocity. As an observable, Uo can place useful con­
straints on dynamical models of glaciers. It is equally important to consider the multiplicity 
of Tb values since subsolidus deformation models are meaningful only when the temperature 
rise through the ice does not lead to melting. 

1400nr--~----------'---------------'---------------, 

1200 

1000 

800 

400 

\ 
\ 
\ 
\ 
\ 

200,~==========~~========~==--------J 
~ ~ ~ ~ 

THICKNESS (km) 

Fig. 4. Basal temperature T b as a func tion qf ice thickness h. The dotted line is the temperature at which melting occurs at the 
base of an ice sheet of thickness h. Parameter values are those given in Table I except for the indicated values of E*. The 
results can be extended to arbitrary '" following the discussion in the text. 
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The critical values uo*, h*, and Tb*, h* are the points on Figures 3 and 4 which separate 
the curves into two branches. On the upper or supercritical branch, Uo and Tb decrease with 
increasing h, while on the lower or subcritical branch, Uo and Tb increase with increasing h. 
There is a third branch on which Uo and Tb also increase with h, but along this branch Uo 
and Tb are so large that the solutions are not physically meaningful. If we ignore this third 
branch, then there is a maximum steady thickness, namely h*, that can be attained by an ice 
sheet creeping down-slope under its own weight. The existence of a critical thickness h* 
opens the possibility of instability when, for example, a sudden climatic deterioration lasting 
say O ( 102) years, produces a layer of ice thicker than h*. We discuss the stability of these 
one-dimensional, steady subsolidus creep models in a later section. 

The solutions which lie along the subcritical branch far from the critical point represent 
states in which there is relatively little shear deformation and relatively little heating by 
frictional dissipation. In these cases, the temperature profile in the ice is essentially linear 

and 

(15) 

In addition, qbh/kTo is much smaller than unity under these circumstances and the basal 
temperature is only slightly higher than the surface temperature. With qbh/kTo ~ I and 
T given by Equation (12), one can obtain an approximate formula for Uo by integrating 
Equation (9); the result is 

where 

( 
E* )(exp 8 3 exp 0 6 exp 8 6 6 exp 8) 

u = 2A (pgh sin 0:) 3 exp --- ------+--+-----
o R To 8 02 83 04 84 ' 

Only for those states lying near the critical point or on the supercritical branch does 
frictional dissipation contribute substantially toward heating the ice. Figure 4 shows that the 
basal temperatures of most of the supercritical states exceed the melting point of ice while 
those of most of the subcritical states lie below the melting point. However, for the low 
activation energies E* = 60.7 kJ/mol (14.5 kcal /mol) and E* = 94.1 kJ/mol (22.5 kcal/mol) 
there are supercritical states which do not entail any melting of the ice, while for the high 
activation energies E* = 125.5 kJ/mol (30 kcal/mol) and E* = 156.9 kJ /mol (37.5 kcal/mol) 
there are subcritical states which involve melting. For these same high activation energies, 
Uo for the subcritical states does not exceed about 10-2 m /year (Fig. 3). Even for E* = 94.1 
kJ /mol, uo* is only about 10-1 m /year. Only for the lowest activation energy is it possible 
for the subcritical states to achieve surface velocities of several meters per year. However, for 
E* = 60.7 kJ /mol, h* is only about 150 m. 

In summary, for the values of surface temperature, basal slope, basal heat flux, and rheo­
logical parameters used in Figures 3 and 4, there are no subcritical states (or supercritical 
ones for that matter) which simultaneously satisfy the requirements of no melting, surface 
velocities of the order of meters per year, and ice thicknesses of hundreds of meters, at the two 
highest values of E* considered. These requirements can only be met by supercritical solutions 
for E* = 94.1 kJ /mol. For E* = 60.7 kJ /mol, all of the above requirements can be satisfied 
by a limited number of subcritical and supercritical states; however, these states lie very close 
to the critical point making them vulnerable to frictional-heating instability by finite­
amplitude perturbations. Clarke and others (1977) have argued that the supercritical states 
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are not attainable by real glaciers. Our stability analysis, which we discuss later, indi'cates 
that the supercritical states, if they exist, are at least stable to small amplitude perturbations. 

Can the above conclusions be modified by using different values of qb, To, A, or CI.? 
Figures 5 and 6 show how variations in A affect Uo and Tb for the smallest and largest values 
of E* used in the previous figures. Changing A by six orders of magnitude has little effect on 
the graph of Uo versus h at the high activation energy. At the low value of E*, however, a 
decrease in A by three orders of magnitude reduces uo* by about a factor of ten while it 
increases h* to about 400 m. An increase in A by three orders of magnitude at the low value 
of E* increases uo* by about an order of magnitude but it decreases h* to only about 50 m. 
The surface velocity requirement is facilitated by an increase in A while the thickness require­
ment is aided by a decrease in A. These wide variations in A do not alter the fact that there 
are supercritical states at the low value of E* which do not involve melting while there are 
subcritical states at the high value of E* which are molten. 

E* (kJ/mol)= 125.5 

10'B~ ____ --,--;-___ --,,-,-::--,-_-,-__ -, 
10.2 10" Kf 10' 

THICKNESS (km) 

Fig. 5. Surface velocity Uo versus ice thickness h. The figure illustrates the effects oJ variations in the rheological parameter A 
which had the value given in Table I . This value waj both increased and decreased by a Jactor of 103 to generate the curves 
shown. Aside Jrom the values specified in the figure, all parameters had the values given in T able I. The results can be 
extended to arbitrary ex. following the discussion in the text . 
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Fig. 6. Effects of rheological parameter variations on the relation between the basal temperature Tb and ice thickness h. The 
melting point is indicated by the dotted curve. Parameter values are given in Figure 6. The results can be extended to 
arbitrary "following the discussion in the text. 

Figures 7 and 8 illustrate the influence of qb on the critical points. Even a variation in 
basal heat flux by a factor of three has little effect on the parameters uo*, Tb*, and h* at 
E* = 60.7 kJ Imol. At twice this value of the activation energy, the same variation in qb still 
produces very small changes in uo* and Tb*. However, the changes in h* are more substantial. 
Increasing qb leads to a reduction in h*, an increase in Tb*, and an increase in uo*' 

Surface temperature variations are investigated in Figures 9 and 10. A higher surface 
temperature characteristic of a temperate glacier produces somewhat larger values of Uo * and 
Tb*, and a smaller value of h*. Even with a warm surface temperature, there are still super­
critical states (for E* = 60.7 kJ Imol) that involve no melting and subcritical states (for 
E* = 125.5 kJ /mol) that do. 

Effects of basal slope variations are shown in Figures II and 12. A decrease in C( results in 
little change in either uo* or Tb*. However, h* increases substantially with decreasing c(. 

The thickness constraint becomes much easier to meet for E* = 60.7 kJ Imol at slope angles 
less than ten degrees. 

Our numerical results can be extended to glaciologically relevant small values of C( of 
order 1

0 as follows. Consider the diagrams of Uo versus h. Since the subcritical states involve 
relatively little frictional heating, the dependence of Uo on C( is essentially given by 

Uo et::. sin3 C( 

(see either Equation (12) or (16)) . The validity of this dependence can be verified in Figure 
I I; the subcritical states for fixed E* and h lie along parallel lines shifted vertically with 
respect to each other according to Uo ex; sin3 c(. This dependence can be used to extend the 
subcritical results of Figures 3, 5, 7, 9, and I I to arbitrarily small c(. The basal temperature 
of the subcritical states is essentially independent of C( (see Equation (15) or Figure 12). 
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Fig. 7. Influence of basal heat flux qb on the relation between surface velocity Uo and ice thickness h. Parameters not specified in 
the figure are given in Table I . The curve for qb = 41.8 m W/m2 and E* = 60.7 kl/mol lies in the darkened region. 
The results can be extended to arbitrary IXfollowing the discussion in the text. 
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Fig. 8. Basal temperature Tb versus ice thickness h for variations in qb. Parameters are given in Table I if not specified on 

the figure. The curve for qb = 41.8 m W /m2, E* = 60.7 kl/mol is in the darkened region. The results can be extmded 
to arbitrary IX following the discussion in the text . 
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Fig. 9. Effects of surface temperature T o on the relation between surface velocity Uo and ice thickness h. Parameten not given 
in the figure are in T able I . The results can be extended to arbitrary ex. following the discussion in the text. 

Since the supercritical states are dominated by frictional heating, the dimensionless 
parameter qbh jkTo has relatively little influence on Equations (12) and (13) . This can be seen 
in Figures 7 and S which show the effects of varying qb on the Uo versus h and Tb versus h 
characteristics of the basic states. Given the r elative unimportance of this dimensionless ratio, 
it is clear from Equation (12) that if we scale h according to 

h et:. (sin IX)-!, 

and Uo according to 

Uo et:. (sin IX)!, 

then we can determine the relation between Uo and h for supercritical states for arbitrarily 
small IX. If this relation is of the approximate form 

log Uo = m log h+ K, ( IS) 
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Fig. 1 0. Influence of surface temperature To on basal temperature Tb and ice thickness h. The dotted curve is the melting point 

curve. Parameters are the same as in Figure 9. The results can be extended to arbitrary rxfollowing the discussion in the text. 

for given cx and other parameters, then the relation corresponding to another value of ex, ex' 
say, is 

(2m+l) (Sin cx' ) log uo' = m log h' + K+ -- log - .- . 
3 sm ex 

The validity of Equation (19) for the supercritical states can be verified from the results of 
Figure 1 I. From Equation (13), it can be seen that if we scale h according to 

h oc (sin cx) -~, 

then Tb for the supercritical states is uncha nged so long as basal heating is relatively un­
important. The validity of this result can be verified in Figure 12 . 

By rescaling the subcritical and supercritical states according to the above, one can 
estimate how uo*, h*, and Tb* change with variations in ex. 

T he overall conclusions we reached after examining F igures 3 and 4 are essentially 
unaltered by our exploration of variations in qb, To, A, and cx. In the next section we discuss 
the stability of these steady solutions. 

STABILITY OF STEADY SOLUTIONS 

We have conducted both one-dimensional and two-dimensional stability analyses of a 
number of our supercritical steady solutions . In the one-dimensional analysis, the tempera­
ture perturbation equation is identical to the one employed by Clarke and others (1977) 
(their equation (23)) . We solved this equation using the numerical methods d escribed in 
Yuen and Schubert (1977). The smallest eigenvalue of the second-order system is identified by 
the absence of interior nodal points of the associated eigenfunction. The equations and boun­
dary conditions for the two-dimensional perturbations are given in the Appendix. 
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Fig. I I. Effects of basal slope et variations on surface velocity and ice thickness. Unspecified parameters are listed in Table 1. 
The results can be extended to arbitrary et following the discussion in the text. 

In all the cases examined by both types of stability analysis we found no unstable modes. 
Table II summarizes the minimum decay times of one-dimensional and two-dimensional 
disturbances for E* = 125.5 kJ /mol, cc = 33 .5°, and qb = 41.8 mW/m 2 • Decay times 
decrease with a decrease in cc since there is less viscous dissipation for smaller 0(. As one 
approaches the critical point on the supercritical branch, the decay times of the infinitesimal 

TABLE 11. MINIMUM DECAY TIME (year) OF INFINITESIMAL DISTURBANCES· 

uo One-dimensional Two-dimensional 
m/year year year 

8 x 104 23·4 5.8 
8 x 103 134.6 39.2 

625 700.8 224.0 
75 2 580.5 967.5 
10 5 190.1 2387.5 

• Two-dimensional disturbances have a horizontal wavelength twice 
the ice thickness. E* = 125.5 kJ/mol, et = 33.5°, qb = 41.8 mW/m2. 
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disturbances increase to values comparable to the characteristic lifetimes of large ice masses 
(Lliboutry, 1964-65, Tom. 2). Even though linear analyses predict stability, finite-amplitude 
effects can be destabilizing especially near the critical point (J oseph, 1976). 

1200~~--~-----r--~r----------------'-----------------' 

1000 

400 

THICKNESS (km) 
Fig. 12. Relations between basal temperature Tb and ice thickness hfor different basal slopes ex. The dotted curve is the melting­

point curve. Parameters are the same as in Figure 11. The results can be extended to arbitrary rx following the discussion 
in the text. 

SUMMARY AND CONCLUSIONS 

Previous models of the gravitational sliding of ice sheets have all been isothermal in 
character. The velocity and temperature fields were not derived in a self-consistent manner 
which accounted for the coupling of these fields via the dependence of viscosity on temperature 
and via frictional heating. In this paper we have concentrated on developing a self-consistent 
thermomechanical subsolidus model of gravitationally sliding ice sheets and exploring how the 
basic structures depend on the rheological and environmental parameters. Future calculations 
should incorporate the important processes of ablation and accumulation which we have not 
accounted for. 

We have found from our numerical experiments with the rheological and environmental 
parameters that in order to satisfy all the constraints on surface velocity, ice thickness, and 
melting, activation energies larger than about 100 kJ/mol can be ruled out for both temperate 
and extremely cold conditions. The creep activation energy of polycrystalline ice has not 
been measured at low temperatures (Hobbs, 1974). Our results thus provide useful informa­
tion on the flow law of polycrystalline ice at all temperatures and in particular at T < 230 K. 

Our linear stability analyses demonstrate that all steady states along both the subcritical 
and supercritical branches are stable. Since we have not investigated the initial-value 
problem for the evolution of ice sheets, we cannot address the question of what evolutionary 
paths can be taken to reach the supercritical branch. 
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From numerical calculations for the onset of thermal runaways (Gruntfest, 1963; Griggs 
and Baker, 1969; Fujii and Uyeda, 1974), one can readily observe that runaway systems do 
not grow in a simple exponential manner. Rather, for thicknesses which are slightly (c. 10%) 
in excess of the critical value for times lasting at least a hundred years, super-exponential 
growth rates are attained within a few tenths of the characteristic thermal diffusion time. 
Thus, the linear analysis of Clarke and others (1977) predicts overly conservative growth 
times for thermal runaways which are caused by a finite change in ice thickness maintained 
for an indefinite period of time. This is also apparent from the asymptotic analyses of Kassoy 
(1975, 1977) for the different time scales present in the initiation and subsequent growth of 
chemical explosions. Thus, we need to re-evaluate the temporal evolution of shear-heating 
instabilities in ice sheets triggered by finite-amplitude perturbations with realistic time 
histories (Sugden and John, 1976). Certain time histories for glacier development may lead 
to the disintegration of large ice sheets (Weertman, 196 I), an event having serious climato­
logical and other consequences. 
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APPENDIX 

EQUATIONS FOR TWO-DIMENSIONAL STABILITY ANALYSIS 

The equations for two-dimensional disturbances h ave already been derived by Yuen and Schubert (1979) 
in their study of frictional-heating stability of shear flows in the Earth's upper mantle. H ere we discuss only the 
modifications to those equations arising from the different rheologies of mantle rocks and ice and the linear 
dependence of the basic state shear stress on depth in ice sheets. The eq uation for the temperature perturbation 
is identical to equation (20) ofYuen and Schubert ( 1979). The perturbation momentum equation for the complex 
amplitude of the vertical velocity fluctuation 6 is 

d2e 2 d", d3iJ (I d' ", ) d'v ( '72 
d"') dO ( '7' d'''') - + -=--+ -=- + 2(1 - 2n),.,' - + 2(1-2n) -:-- - + '7' + -:-- 6+ 

dy' /-' dy dy3 /-' dy' dy' I-' dy dy /-' df 

+i'7E*~d'T + 2i'7(E* ~_ 2E*dT~)dT+ i (6E*dfi(dT)' _ 2E*dfid'T+ 
RT'dy dy' T ",RT dy RT' dy dy dy '7 RT'dy dy RT3 dy dy' 

'72E* dfi 4£* df d T) 
+ RT' dy - RT3", dy dy T = o. (A.I) 

T denotes the complex amplitude of the temperature perturbation and '7 is the horizontal wavenumber of the 
disturbance ('7 = 27r/ >., >. is the horizontal wavelength). The over bar refers to steady-state quantities. 

Since there is no viscous deformation in the top portions of the slab, only temperature fluctuations can exist 
there. We integrate the complete perturbation momentum and temperature equations downward from a depth 
where ice begins to creep. The boundary condition for the temperature perturbation at this elastic-viscous 
interface (y = h- ~) is 

where 

dT 
dy = y coth (y(h-m T, 

( 
iP'7C)l 

Y = '7'-- , 
K 

(A.2 ) 

K is the thermal diffusivity of ice and C is the complex wave velocity of the disturbance. We have also imposed the 
boundary conditions of zero shear stress and zero vertical velocity at this interface. For further details concerning 
the equations, boundary conditions, and solution methods, the reader is referred to Yuen and Schubert (1979). 
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DISCUSSION 

G. K. C. CLARKE: Your suggestion that a finite (non-linear) perturbation analysis might yield 
explosively-fast growth rates for the perturbation is an interesting one. In our work on creep 
instability using linear perturbation analysis (Clarke and others, 1977) we tended to discount 
the importance of creep instability in triggering surges of cold glaciers because we found 
growth times which were too large to explain surge periodicities of 20-50 years. If your 
speculation proves true then the question is re-opened. 

D. A. YUEN: Yes, we would like to investigate the issue of "the fizzle or the..bang" of thermal 
instabilities when both finite-amplitude perturbations and the length of such perturbation are 
considered. The possible temporal coupling between the "run-away" time scale and the 
length of the excitation, such as by a sudden climatic change, is interesting. We hope to 
provide some quantitative results of this endeavour in the near future. 
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W. D. HIBLER Ill: How do you use the initial-value-problem approach to obtain multiple 
steady states. It seems that for the same initial values the time evolution should always be the 
same. 

YUEN: We have solved a steady-state boundary-value problem by taking the time derivative 
of the temperature to be zero. To obtain multiple steady-state states from an initial-value 
approach, one must explore the space of initial conditions such that the multiplicity is achieved 
in the steady state. 

W. F. BunD: What happens when your model reaches melting point? Does it just develop the 
properties of "temperate" ice? 

YUEN: Our model does not include the transition of rheologies between a subsolidus and liquid 
state. At such a transition the flow field would probably be no longer one-dimensional in 
character and must be modelled appropriately by a set of two-phase fluid equations, as both 
phases co-exist at this stage. 

J. W. GLEN: I am not perturbed by the fact that you found both of your solutions were stable 
-if they were not we could hardly expect the unstable ones to be observed. With both stable 
we can have two kinds of flow, just as in hydraulic flow in a channel, and what we need to 
know is the kind of kick required to move from one to the other-the glacier equivalent of a 
Russell wave. 

YUE:-.1: I am glad that you appreciated the fact that linear stability sometimes predicts stable 
results. There are cases in fluid mechanics such as the Hagen-Poiseuille, plane Couette flows, 
where finite-amplitude effects are destabilizing. This fact is commonly associated with the 
"snap-like" transitions associated with secondary bifurcation of shear flows, very much unlike 
their convective counterparts. 

https://doi.org/10.3189/S002214300001474X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300001474X

