SEQUENCES BY NUMBER OF w-RISES

BY
MORTON ABRAMSON

An m-permutation of n, repetitions allowed, is an m-sequence

$$
\begin{equation*}
e_{1}, e_{2}, \ldots, e_{m} \quad e_{i} \in\{1,2, \ldots, n\} . \tag{1}
\end{equation*}
$$

A w-rise is a pair $\left(e_{i}, e_{i+1}\right)$ such that $e_{i+1}-e_{i} \geq w>0$. In this note we find an expression for $T_{k, w}(n, m)$, the number of m-sequences having precisely $k w$-rises. The case $w=1$ is given in [1] [2]. Also, when $w=1$ we give the number when each of the integers $1,2, \ldots, r$ must appear at least once. Throughout we take $\binom{n}{k}=0$ for $n<0$ except where noted in (6).
In a sequence (1), let $P(i)$ be the property that $e_{i+1}-e_{i} \geq w$. There are a total of $m-1$ such properties. For each subset S of $Z_{m-1}=\{1,2, \ldots, m-1\}$, let $A(S)$ be the number of sequences which have all of the properties $P(i)$ for $i \in S$ (and possibly others), and let

$$
\begin{equation*}
s(r)=\sum A(S) \tag{2}
\end{equation*}
$$

where the summation extends over all subsets of order r. Thus, by the principle of inclusion and exclusion we find that

$$
\begin{equation*}
T_{k, w}(n, m)=\sum_{i=0}^{m-1-k}(-1)^{i}\binom{k+i}{k} s(k+i) \quad(0 \leq k \leq m-1 ; 1 \leq w \leq n-1) \tag{3}
\end{equation*}
$$

Hence, in order to evaluate $T_{k, v}(n, m)$, it is only necessary to evaluate $A(S)$.
Let S be a subset of Z_{m-1} of order r. We associate a composition (b_{1}, \ldots, b_{m-r}) of m with S as follows. If $i \in S$, we place i and $i+1$ in the same subset of Z_{m}; otherwise i is in a subset by itself. This obviouslygives a set partition $B_{1} \cup \cdots \cup B_{m-r}$ of Z_{m} and we set $b_{j}=\left|B_{j}\right|(1 \leq j \leq m-r)$. For example, if $m=9$ and $S=\{2,5,6\}$, then we have $\{1\} \cup\{2,3\} \cup\{4\} \cup\{5,6,7\} \cup\{8\} \cup\{9\}$ and $1+2+1+3+1+1=$ 9. Now, the sequence of elements indexed by elements of a subset B_{j} must form an incerasing sequence whose terms differ by at least w. Since there are [4, expression (23)]

$$
\binom{n-(k-1)(w-1)}{k}
$$

sequences $1 \leq x_{1}<x_{2}<\cdots<x_{k} \leq n$ which satisfy $x_{i+1}-x_{i} \geq w$ (such a sequence is equivalent to a sequence of $k 1$'s and $n-k 0$'s with every pair of 1 's separated
by at least $w-10$'s), we have shown that

$$
\begin{equation*}
A(S)=\prod_{j=1}^{m-r}\binom{n-\left(b_{j}-1\right)(w-1)}{b_{j}} \tag{4}
\end{equation*}
$$

Since the composition $\left(b_{1}, b_{2}, \ldots, b_{m-r}\right)$ determines the set S, we get by (2) and (4),

$$
\begin{align*}
s(r)= & \sum_{b_{1}+\cdots+b_{m-r}=m}\binom{n-(w-1)\left(b_{1}-1\right)}{b_{1} \geq 1} \tag{5}\\
& \times\binom{ n-(w-1)\left(b_{2}-1\right)}{b_{2}} \cdots\binom{n-(w-1)\left(b_{m-r}-1\right)}{b_{m-r}}
\end{align*}
$$

For the case $w=1$, expression (5) is simplified by using the generating function

$$
\begin{aligned}
& \sum_{m b_{1}+\cdots+b_{p}=m}^{b_{i}>0}< \\
&\binom{n}{b_{1}} \cdots\binom{n}{b_{p}} x^{m}
\end{aligned}=\left[(1+x)^{n}-1\right]^{p} .
$$

Simplifying in (3) $(0 \leq k \leq m-1)$,

$$
\begin{align*}
T_{k, 1}(n, m) & =\sum_{j=1}^{m-k}(-1)^{m-k-j}\binom{n j}{m} \sum_{i=0}^{m-k-j}\binom{k+i}{k}\binom{m-k-i}{j} \tag{6}\\
& =\sum_{j=1}^{m-k}(-1)^{m-k-j}\binom{n j}{m}\binom{m+1}{m-k-j} \\
& =\sum_{i=0}^{m-k-1}(-1)^{i}\binom{m+1}{i}\binom{n(m-k-i)}{m}
\end{align*}
$$

$\left(\right.$ and using [3, identity (3.150)] and $\left.\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}\right)$

$$
\begin{aligned}
& =-\sum_{i=m-k}^{m+1}(-1)^{i}\binom{m+1}{i}\binom{n(m-k-i)}{m} \\
& =\sum_{j=0}^{k+1}(-1)^{j}\binom{m+1}{j}\binom{n(k+1-j)+m-1}{m},
\end{aligned}
$$

[1, p. 356, e_{1} is counted as an initial rise] and [2, p. 1091].
We now give the number of sequences (1) with precisely $k 1$-rises and with each of the integers $1,2, \ldots, r$ appearing at least once. These are the sequences counted by $T_{k, 1}(n, m)$ but satisfying none of the properties, "integer i does not appear", $i=1,2, \ldots, r$. Hence, using the sieve formula the number is

$$
\begin{gathered}
\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} T_{k, 1}(n-i, m) \quad(1 \leq r \leq n) \\
=\sum_{j=0}^{k+1}(-1)^{j}\binom{m+1}{j} \sum_{i=0}^{r}(-1)^{i}\binom{r}{i}\binom{m-1+(n-i)(k+1-j)}{m} .
\end{gathered}
$$

In the case $m=r$, using [3, identity (3.150)], we obtain the familiar Eulerian number

$$
\sum_{j=0}^{k+1}(-1)^{j}\binom{m+1}{j}(k+1-j)^{m}
$$

which counts the number of permutations of $1,2, \ldots, m$ with precisely k rises [5, pp. 216-19].

References

1. L. Carlitz, D. P. Roselle and R. A. Scoville, Permutations and sequences with repetitions by number of increases, J. Comb. Theory 1 (1966), pp. 350-374.
2. J. F. Dillon and D. P. Roselle, Simon Newcomb's problem, SIAM J. Appl. Math. 17 (1969), pp. 1086-1093.
3. H. W. Gould, Combinatorial Identities, West Virginia University, Morgantown, West Virginia, 1972.
4. W. O. J. Moser and Morton Abramson, Enumeration of Combinations with restricted differences and cospan, J. Comb. Theory 7 (1969), pp. 162-170.
5. J. Riordan, An introduction to combinatorial analysis, J. Wiley, New York, 1958.

York University
Toronto, Ontario
Canada

