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DIFFERENTIAL CALCULUS
IN FRECHET SPACES

DUONG NINH Due

We apply Keller's method to the study of differential calculus in

Frechet spaces and establish an inverse mapping theorem. A

special case of this theorem is similar to a theorem of Yamamuro.

Introduction

Let E and F be two Frechet spaces over the field IR of the reals.

We let L (E, F) denote the space of all continuous w-linear mappings

from £* into F .

In [/] Keller has introduced a new method in the study of the

differential calculus in locally convex spaces. He has used the topology

of simple convergence in L (E, F) in order to define the nth

derivatives. The notions of continuity of these derivatives are based on

the stronger convergence structures on L (E, F) . In this paper we shall

apply this idea to the case of Frechet spaces.

In the case of Banach spaces it is well known that the Banach fixed

point theorem plays an important role in the proof of the inverse mapping

theorem. This relies on the properties of the topology of uniform

convergence on bounded subsets.

Therefore we shall find a convergence structure on L {E, F) such

that we can use the fixed point theorems of Sadovskii [3]. In this paper
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94 Duong Mi nh Due

we shall use the degree theory of limit compact vector fields. This theory

was introduced by Sadovskii in [3].

In the case of Hausdorff measure of noncompactness (<?f. Example l.l)

our inverse mapping theorem is similar to Yamamuro's theorem in [4], but we

still cannot compare them in detail. In the case of Kuratowski measure of

noncompactness (of. Example 1.2) our theorem is clearly convenient for

application to the problems concerned with the a-ball-contractions.

This paper consists of four sections. In the first section we shall

introduce the notations and definitions of measure of noncompactness and

the topological degree of limit-compact vector fields and study the class

of M-bounded operators. The second section is devoted to defining the

convergence structures on L (E, F) and studying their properties. In the

third section we define the C -differentiable mappings, and we shall give

the inverse mapping theorem in the last section.

Throughout the paper we shall adhere to the following list of

notations.

R : the field of real numbers

C : the field of complex numbers

E, F, G : Frechet spaces over IK ( IK = R or C )

V(E), V(F) : families of all open convex balanced neighborhoods

of 0 in S, F

An = A x ... x A (n times)

A or cl A : closure of A

co A : closure of the convex hull of A

34 : boundary of A

A\B = {x (. A : x \ B)

A + B = {x+y : x d A and y 6 £}

tA = {tx : x € A]

1 : the identity mapping on E

K
2 : the family of all subsets of E .

1. Measure of noncompactness and w-bounded mappings

In this section we shall introduce the notations and definitions of

measure of noncompactness and the topological degree of limit-compact
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vector fields, and study some basic properties of A/-bounded mappings.

DEFINITION 1.1. Let P be a nonvoid set and P be the set of all

mappings of P into [0, °°] . The order, addition and multiplication are

defined on P as usual (0*00 = 0) .

Let h € P ; we shall say that h is finite if h(p) < °° for every

p in P .

DEFINITION 1.2. Let P be as in Definition 1.1, and £ be a

E
mapping of 2 into P ; then L is called a measure of noncompactness

JP
on E , if for every A, B (. 2 we have:

(M.I) L(A) = 0 if and only if A is relatively compact (that

is, its closure A is compact);

(M.2) L(A u B) = max(£(,4), L{B)) ;

(M.3) L(A+B) < L(A) + L(S) ;

(M.5) L(-A) =

(M.6) for each p Z ? and d > 0 there exists V € V(E) such

that L(V)(p) < d .

In [3] Sadovski i has given many examples of measure of noncompactness

(of. §1.2 of [3]). By Theorem 1.2.3 in [3] we have the two following

useful examples of measures of noncompactness.

EXAMPLE 1.1. Let P be a family of continuous semlnorms on E such

that P defines the topology of E . For each A € 2 and each p (. P

we write

L(A)(p) = infjthere exist A ..., A, € 2 such that

k 1
r > 0 : sup{p(x-j/) : x , z/ € A .} < r for all j and A c U ^ .

J 1 ^J

where inf 4> = °° .

Then L is a measure of noncompactness on E and is called the

V-Hausdorff measure of noncompaotness on E .

EXAMPLE 1.2. Let E be a Frechet space and d be a translation
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invariant metric on E such that d is compatible with the topology of E

and lx : d(0, x) < r} is convex and balanced for every r > 0 . For each

V
A In 2 we write

L{A) = inf-Uhere exist A . . . , A, € 2 such that

I
r > 0 : sup{d(x, !/) : x, j/ € A .} < r for all j and ̂  c U A. .

3 JJ
Then L is a measure of noncompactness on E and is called the

d-Kuratowski measure of noncompaotness on E . If E is a Banach space

and d{x, y) = \\x-y\\ , where II II is the norm on E , L is called the

norm-Kuratowski measure of noncompaotness on E .

Throughout this paper we assume that there exist a fixed set P and

the given measures of noncompactness L, M, N on E, F, G respectively,

as in Definition 1.2.

DEFINITION 1.3. Let A € 2E and / be a mapping of A into F

and B c A ; we write

k(L, M, B, f) = inf{k > 0 : M[f(C)) 5 kL(C) for every C c B) .

If M[f(A)) is finite, / is called a M-bounded mapping on 4 .

REMARK I.I. Let D be a nonvoid open subset of E and / be a

continuous I-bounded mapping of D into E such that

k(L, L, D, f) < k < 1 .

Let A be the limit range of f on D (of. Definition 1.1.3 in

[3]). By definition, A = ̂  f(A n D) . Thus by (W.h), (M.2) and

Definition 1.3, we have

(1.1) HA) = L[f(A n D)) £ kL(A n D) S &L(i4) .

Because L(/(D)) is finite and h[f{A n D)) 5 L(/(D)) , from (l.l) it

follows that L(f(A n ~D)} and LU) are finite and L(A) < feL(4) . But

k < 1 ; it follows that L(/l) = 0 . Then, by (M.l), A is compact.

Therefore, by Definition 1.1.3 in [3], / is a limit-compact mapping on

Let q i E\(I-f)( D) and put f (x) = f(x) + q for every x € D .
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Because f (A) c f(A) + {q} for every A € 2 , by properties of measure

of noncompactness we see that f is a continuous L-bounded mapping on D

and k[L, L, D, f ) < k < 1 . Therefore f also is a limit-compact

mapping on D and for every x € 3D , / (x) # a; .

Let R = E ; by Definition 3.1.1* of [3] , the rotation of (l-f ) on

D with respect to R i s defined and denoted by y\I-f , D) •

We shall write deg(I-f, D, q) = y[l-f , o) and deg(J-f, 0, <?) is

called the topologioal degree of (I-/) at q on D . By the results in

§3-0 and §3.2 of [3], we have the following properties of the topological

degree:

(D.I) if q € D , then deg(I, D, q) = 1 ;

(D.2) if &eg(I-q, D, q) + 0 there exists x € D such that

(l-/)(x) = q ;

(D.3) if D. , ..., D, are pairwise disjoint open subsets of D

such that q € E\(l-f)D \ U D. , we have

k
deg(J-/, 0, q) = Y, deg(l-/, D., q) ;

1 J

(D.lt) let F be a continuous mapping of [0, l] x £) into ff

such that

(i) there exists a positive number k < 1 such that

L(F([0, 1] x S)) 5 kL(B) for every B c D ,

(ii) i(F([0, 1] x D)) is finite;

let q € £\{x-F(i, x) : (t, x) € [0, l] x W) ; then

deg(l-F(0, •), D, q) = deg(j-F(l, • ) , D, q) .

The properties (D.l), (D.2) and (D.3) follow directly from Theorems

3.0.8, 3.2.6 and 3-2.5 in [3] respectively. Let F and q be as in

(D.h); we put
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F {t, x) = F{t, x) + q f o r e v e r y (t, x) € [ 0 , l ] * 0 .

Arguing as above we can show that F is a limit-compact mapping on

[0, l] x ~D . Then, by Theorem 3.2.2 in [3], we have (D.U).

Now we shall establish some basic properties of M-bounded mappings.

PROPOSITION 1.1. Let A i 2E , B € 2F , f and g be two mappings

of A into B j and h be a mapping of B into G . Suppose that

k(L, M, A, f), k(L, M, A, g) and k(M, N, B, h) are finite. Then we have

(i) k(L, M, A, f+g) 5 k(L, M, A, f) + k(.L, M, A, g) ;

(ii) k(L, N, A, h ° f) S k(L, M, A, f)k(M, N, B, h) ;

(iii) if f is M-bounded or h is N-bounded then h ° f is

N-bounded;

(iv) if E = F = G , k(L, L, A, f) < 1 3 and f is

L-bounded: and suppose that (i-f) is a one-to-one

mapping of A onto B and h = (l-f) ; then

k(L, L, B, h) 5 (l-k(L, L, A, f))'1 ;

(v) let A, B, f and h be as in (iv). Suppose that A is

closed and f is continuous on A . Then h is

continuous on B .

Proof. Because (f+g)(C) c f(C) + g(C) and n[h o f(C)) £ kL[f{C))

for every C d 2. and every k > k(M, N, B, h) , we have (i) and (ii).

Since N[h o f(A)) 5 min{N[h(B)) , k(M, N, B, h)M[f{A)}) , we have

(iii).

Let k 6 ]k{L, L, A, f), l[ , D be a subset of B and we put

D = h(D) . Because (I-f) [D ) = D we have D c D + f{o) . Then

L{D ) S L{D) + L(/(Z?1)) 2 L(D) + fei(D1) . Hence it follows that

(1.2) L[h(D)) = L[DX) S ^

Therefore k(L, L, B, h) 5 —•=- , which completes the proof of (iv) .
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Now l e t {y .} be a sequence converging to y in B . Put
3

D = {y .} v {y} . Then D i s compact and D = h(D) = (I- /)~1(O) i s
3 -*-

closed.

Because L{D) = 0 , by (1.2), L[D ) = 0 . Hence it follows that D

is compact. Put x. = h [y.) and let x be an adherent point of {x.} ;
3 3 3

that is, x is the limit of a subsequence of {x.} . By the continuity of
3

f , (I-f)(x) = y . But (I-f) is one-to-one: it follows that {x.} has
3

an unique adherent point x , which is its limit. It is clear that
h{y) = x . Therefore h is continuous at y . Then h is continuous on

B . II

PROPOSITION 1.2. Let f be a mapping of [0, l] x [o, l] x A into

F , where A (. 2 . Suppose that:

(a) f(t, •) is M-bounded on A for every t € [0, l] x [o, l] ;

(b) there exists a real number k such that k[L, M, A, f(t, •))

is in [0, k[ for every t € [0, l] x [o, l] ;

(a) for each U € V(F) there exists d > 0 , such that for every

s, t € [0, 1] x [o, 1] and \\s-t\\ < d , and for every x € A

we have

(f(t, x)-f(s, x)) € U .

Then we have

(i) M(f{[0, 1] x [o, 1] x A)) is finite,

(ii) M[f([0, 1] x [o, 1] x B)) 5 kL{B) for every B e A ,

(iii) for each x € A let g{x) be the Riemann integral

f1 f1

f(t, s, x)dtds .

•IQ JO

Then g is M-bounded on A and

k{L, M, A, g) 2 k .

Proof. Let B lie a subset of A , let U € V(F) , then by condition

(c) there exist t , ..., t. in [0, l] x [o, l] such that
X K.

https://doi.org/10.1017/S0004972700007474 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007474


I 00 Duong Mi nh Due

k
f([0, 1] x [o, 1] x B) c U /({*.} x B) + U .

1 °
T h u s , b y ( M . 2 ) , ( M . 3 ) a n d ( M . 6 ) , i t f o l l o w s t h a t f o r e a c h pi.? a n d

d > 0 , t h e r e e x i s t t , . . . , t, i n [ 0 , l ] * [ o , l ] s u c h t h a t

M[f([O, 1] x [ 0 , 1 ] x B))(p) 2 max [M[f[{t.} * B ) ) ( p ) ) + d .

Hence it follows from (a) and fW that (i) and (£i/> hold.

Let B a A ; we have #(B) cco/([0, l] x [o, l] x B) . Thus, by

(i) , rii;, (M.2), and (M.U), we have (Hi). II

PROPOSITION 1.3. Let V € V(E) and f be a continuous linear

mapping of E into E . Assume that

(a) f is L-bounded on V and k(L, L, V, f) < 1 3

(b) f(V) c lv .

Then we have

(i) (l-f)(v) 3 $V ,

(ii) (I-f) is a homeomorphism of E onto E ,

(Hi) k{L, L, 17, (I-f)"1) S [X-HL, L, V, f))'1 .

Proof. (i) For each (t, x) i [0, l] x 7 we put

F(t, x) = tf(x) .

Then for every A ci V we see that F([0, l] x A) is contained in

co"(/(/I) u {0}) . Let H ]fe(£, L, V, f), l[ ; then, by fa;,

£ F([0, 1] x v) is finite and

L[F{[0, 1] x /J)) 5 fcL(i4) for each AcV.

On the other hand, for each q t ̂ V and x € V , by f W , we see that

for each t (. [0, l] , q + F(£, x) £ |7 . But 17 is contained in K .

Hence it follows that for every (t, x) belonging in [0, l] x 3f we have

(1.3) x - F(t, x) * q .

Then by (D.U) and (D.l) we have

deg(J-/, V, q) = deg(j-F(l, • ) , V, q) = deg(j-F(0, • ) , V, q)

= deg(J, V, q) = 1 .
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Then by (D.2) there exists x € V such that (I-f)(x) = q .

Therefore (I-f)(V) i> \~V .

(ii) We shall show that (I-f) is one-to-one. Indeed let x € E

such that (x-f(x)) = (2-/)(x) = 0 ; hence (I-f)(tx) = 0 for every real

number t . Put A = Rr ; by (1.3), 4 <~> W = 0 . Then A c V and

/(i/) = y for every y t A ; hence fU) = A . But, by (a), L[f{A)) is

finite and

(l.Jt) L(A) = L(/U)) < kL(A) .

It follows that L{A) is finite. Because fc < 1 , (l.U) implies that

L{A) = 0 and A is relatively compact. Hence it follows that x = 0 ,

which implies that (I-f) is one-to-one. Wow, by (i) and by Proposition

1.1, (I-f) is a homeomorphism of E onto E .

(iii) By Proposition 1.1 we have (iii). //

Let / be a toplinear isomorphism of E onto F , that is

/ € L(E, F) and f"1 € L(F, E) , / i s said to be bibounded if there

exist V € K(E) and W € F(F) such that M[f(V)), L{f~1(W)) ,

k(L, M, V, f} and k{M, L, W, f1) are finite. Let H(E, F) denote the

set of all bibounded toplinear isomorphisms of E onto F .

PROPOSITION 1.4. Let g € H(E, F) , V € V(E) . Then there exist

U € V(F) and r > 0 such that for each continuous linear mapping h of

E into F which satisfies the following conditions,

(a) h is M-bounded on V and h(V) c u ,

(b) k(L, M, V, h) < r ,

we have

(i) (g-h)(V) ̂ U,

(ii) (g-h) € H(E, F) 3

(iii) k{M, L, U, (g-h)'1} 2 2k[M, L, U, g~X) .

Proof. Let U £ V(F) be such that k[M, L, ~U, g'1) is finite and

g~X(v) is contained in \v , and let r € ]o, j(l+k[M, L, V, g'1))'1^ •

Now if h satisfies conditions (a) and (b), we have
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(a1) g~ oh is L-bounded on V and k{L, L, V, g~ o h] < i ,

(b<) [g'1 ° h)(v) c lv .

By Proposition 1.3 i t follows that [J- [g o hjj is a homeomorphism

of E onto E and

and

k[L, L, i 7 , [l-[g~X o h))'1) 5 [l-k[L, L, 7, g'1 o h))'1 < 2 .

Because (g-h) = g o (j-(^~ ° ^)) i ve have (i) , (ii) and (Hi). / /

2. The topology on B"(E, F)

In this section we shall define the topology on B (E, F) and study

its basic properties.

DEFINITION 2.1. Let Bn{E, F) denote the set of all continuous

n-linear mappings 2" of FT into F satisfying the following conditions;

(B.I) there exists V € V(E) such that for each W € V(F) we

can find U € V(E) such that rfP""1 x v) c V ;

(B.2) there exists V € F(E) and a positive real number k

such that for every y t V , T(y, •) is /̂ -bounded on

V and sup{k(i, W, 7, T{y, •)) : y € 71"1} < fe .

For each T € Sn(£', F) and each V € V(F) we put

k{n, L, M, V, T) = sup{fc(L, M5 V, T(y, •)):«/€ T""
1} .

DEFINITION 2.2. Let r e s"(ff, F) ; then T is said to be totally

symmetrical if ^(x^.^, ..., ̂ n j ) = ̂ (x̂ ,̂ ..., x^) for every

(x , . .., x ) £ F and every permutation / of {l, . . . , « } .

We put
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Ln[E, F) = {T d ̂ {E, F) : T is totally symmetrical} .

If n = 1 we write L{E, F) instead of LX(E, F) .

REMARK 2.1. Let E and F be two Banach spaces, || || and || || '

be the norms on E and F , L and M be the norm-Kuratowski measures of

noncompactness on E and F {of. Example 1.2) and V = {x € E : \\x\\ < l} .

Let T be a continuous n-linear mapping of E onto F , then there

exists a positive real number k such that

(2.1) \\T{xlt . . . . x n ) | | ' < kll^H . . . \\xj for a l l x ^ . . . , xn € E .

It is clear that T satisfies (B.l) and (B.2); thus T € Bn{E, F) .

We have just proved that a(E, F) is the set of all continuous n-linear

mapping of E into F in the case of Banach spaces.

DEFINITION 2.3. For each V € V(E) , U € V(F) , f € fl"(£, F) and

k > 0 , we let B(n, V, U, k) denote the set of all T belonging in

B{E, F) and satisfying the following conditions:

(i) T, V and k satisfy the conditions (B.l) and (B.2);

(ii) there exists W € V(F) . such that T^1) + We U .

We put

B(n, f, V, U, k) = f + B{n, V, U, k) .

In the case n = 1 we write B(V, U, k) and B(f, V, U, k) instead

of B(l, V, U, k) and B(l, f, V, U, k) .

REMARK 2.2. Let V € V(E) , U, W, U" € V(F) , r, s > 0 and

g € B(n, V, U, r) such that g^) + U" <= U . Then it is clear that

B[n, V, U n U', min(r, s)) c B(n, V, U, r) n B(n, V, U', s) ,

B{n, g, V, \U", r-k(n, L, M, V, g)) c B(n, V, U, r) .

DEFINITION 2.4. By the foregoing remark there exists an unique

topology on s"(B, F) such that {B(n, f, V, U, k) : U € V(F), k > 0} is

a basis of neighborhoods of / in this topology. We denote this topology

by xv . If n = 1 , we write T^ instead of T
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Let rip, n denote the topology induced by Ty n °n L (E, F) .

REMARK 2.3. The notions and the topology defined in Definitions 2.1

and 2.3 are not symmetrical with respect to coordinates x ..., x of

E . But our aim is the study of the differentiability. In this problem

all mappings are in L (E, F) and for each T € L (E, F) the notions in

Definition 2.1 become symmetrical with respect to coordinates x , ..., x

of E . We also have the symmetry of Av •

REMARK 2.4. We assume that E, F, L, M, V are as in Remark 2.1. By

(2.1) we can show that iy is the topology of uniform convergence on

V . Therefore iy is the topology x of uniform convergence on

bounded subsets of B*(£, F) . Furthermore if W and U are in V{E)

and W <z U , then T^ is finer than T^ . Hence it follows that

Tr, is T for every bounded neighborhood V of 0 in E ,
u,n

REMARK 2.5. Let V € V(E) ; we see that

{B(n, V, U, k) : U € V(F), k > 0>

is a base of a filter Fy on Ln(E, F) .

We assume that L and M are as in Examples 1.1 and 1.2. Let

t € R , B € 2 and ff? be an integer such that |t| 5 w ; we have

M{tB) 2 mM(B) . Then if T ( s"(ff, F) , we have that *T € s"(g, F) and

fe(n, L, M, ¥, tr) 5 mk(n, L, M, V, T) . Hence it follows that tFy = Fy

for every £ * 0 .

Now let V be the filter of all neighborhoods of 0 in R . It

follows from the preceding result that V*F^ = Fy . Then, as in §0.7 of

[?], one can find a unique separated convergence structure on L (2?, F)

which is invariant with respect to translations and determined by the set

{Fy : V € V(E)} of filters which converge to 0 . It is clear that this

convergence structure is finer than the convergence structure 9 defined
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in §0.7 of [/].

In this paper we shall use the classical terminology of topology

instead of notions of convergence structure.

For each integer n and V € V(E) we shall denote l^iE, F), T

and [LH(E, F), ny j by B"(S, F, V) and Ln{E, F, V) .

DEFINITION 2.5. Let n be an integer,

J = {ix, ,..,ijc{i, ..., n}

such that i < i- < ... < i . We put

H. =
^

if i Z J ,

{0> if i ^ J ,

and let Pj denote the projection of o onto H * ... x H . In some

cases we shall identity H x ... x H with iE/ and write p. instead of

In the following lemma let {l , . . . , / } be a partition of

(l, ..., n) and m. be the cardinal of I. , j = 1, ..., r . We put
3 3

p. = pT and consider the following lemma.
J

LEMMA 2.1. Let T (. Lr(F, G) and W € V(F) satisfying (B.l) and

m.
(B.2). Let 5. € L *•(£, F) and V € K(£) satisfying (B.l) and (B.2), and

assume that S. (v ̂ ) c y /or every i = 1, ..., r . Pwt

k = min (k(m., L, M, V, S.)) ,
3 ° °

R = T o [S1° px, ..., Sr o pr) .

for ewery K. € KCff) suen tnat V. a V for every j in
3 3

{l, ..., r} , we have
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(i) R and V satisfy ( B . l ) and ( B . 2 ) ,

V L x . . . x V r\ c T W'1 x S. \V S>\\ for all

j = 1 , . . . , r ,

(Hi) k(m, L, N, V, R) 5 k'k(r, M, N, W, T) .

(
jn ,\
V .^ c W for every
<7 J

j , we have (ii) . We can suppose that k [m , L, M, V, S ] = k , then by

Definition 2.1 and Proposition 1.1 we have

k{L, N, V, R(y, •)) 5 k-k[L, M, V, Sr{pr(y, 0) , •)) for all y € F"
1 .

This implies (Hi); thus we also have ('•ij. //

PROPOSITION 2.1. Let n, m., p. be as in Lemma 2.1, let V € V(E)
3 d

and W € V{F) . Let T, S . be continuous mappings of a topological space
d

m.
X into Lr(F, G, W) , L °' (E, F, V) respectively. Suppose that [T{x), w)

and [s .(x), v) satisfy the conditions (B.l) and (B.2) for every x € X
3

and o = 1 , . . . , r . For each x € X we put

R(x) = T(x) ° (Sx(x) o P i , . . . , Sr(x) o pj .

Then for each a € X there exist V € V(E) and a neighborhood Y of

a in X such that the restriction h\l of h on Y is a continuous

mapping of Y into rf"(E, G, U) .

Proof. For the sake of simplicity we carry out the proof of this

proposition in the special case r = 2 . The general case can be dealt

with using essentially the same arguments.

Let a € X ; we choose U € V(E) such that U c V and

51(a)(I7
1) u S2(a)(U

2) c lw .

Let Y be a neighborhood of a in X such that

(2.2) S^x) € B[mx, V, S^a), \w, l) for every x € Y , i = 1, 2 .

Then if x, y i Y and i t {l, 2} we have
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m.
(2.3) Si(ar)(l7*) c \w ,

m.
(2.14) [_S.(x)-SAy)]{v V) c (/ ,

(2.5) fc(m., L, Af, U, SAx)) < *. = 1 + fc(m., £, Af, 7 , S (a))

On the other hand we have

(2.6) R(x) - i?(j/) = r U ) o (s^x) o P;L, [S2(x)-52(y)] o p2)

By (2.3), (2.It), (2.5), (2.6) and Lemma 2.1 we see that R\Y is a

continuous mapping of Y into a{E, G, U) . II

We consider now the last proposition of this section.

PROPOSITION 2.2. Let ip : H(E, F) •* H(E, F) ,

Let g i H(E, F) , V € V(E) be given. Then there exist r > 0 and

U € V(F) such that

(i) B(g, V, U, r) e H(E, F) ,

(ii) <p|s(G, V, U, r) is continuous from [B(g, V, U, r), x )

into [H(F, E), Ty) .

Proof. Let U and r be as in Proposition l.U; then for each /

in B{g, V, U, r) we have

(2.7) / € H(E, F) ,

(2.8) <p(/)(!/) c ? ,

(2.9) *(«, £, V, <p(/)) 5 2fc(tf, L, U, V(ff)) .

On the* other hand for each f, h (. B(g, V, U, r) we have

cp(f) - <p(fc) = <p(fc) o (fe-/) o <p(f) .

Thus by (2.8), (2.9) and Proposition 1.1, <p\B(g, V, U, r) is continuous

from {B(g, V, U, r), Ty) into [H{F, E), Ty) . //
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3. Functions of class d1

By a similar method to that used in §2 of [/] we shall define notions

of differentiability, but we use here the topology T.. instead of the
v ,n

convergence structure 0 defined in [/]. In this section X is a given

open subset of E , and B°(E, F) = L°(E, F) = F and LH(E, F) is defined

as in Definition 2.2.

DEFINITION 3.1. A function f : X •* Bn(E, F) will be called weakly

m-times differentiable if there exist functions

Dkf : X - B*+fe(£, F) , k = 0, 1, .. . , m ,

such that D f = / and for each x (. X , each h € E and each

k € {0, 1, ..., p-l} we have

lim t~X{Dkf{x+th)-Dkf(x)) = Dk+1f(x)h
t-K)

where the limit exists in F if n = k = 0 , and with respect to the

topology of simple convergence in a (E, F) if n + k > 0 . If k = 1 ,

we shall write f instead of Df in some cases.

By Theorem 2.U.0 of [/] we can use only the totally symmetrical

n-linear mappings in order to define the functions of class <j as

follows.

DEFINITION 3.2. Let m > 1 . A function / : X -* LH{E, F) is said

to be differentiable of class (f1 or (f-differentiable if / is weakly

m-times differentiable and for each k € {0, 1, ..., m] and each x € X

there exist V € V(E) and a neighborhood 1 of x in X such that

D f\Y is continuous from 1 into F , if n + k = 0 and into

Ln+k(E, F, V) if n + k > 0 .

If f is of class u for every integer m , f is said to be
00 OO

differentiable of class C , or C -differentiable.

REMARK 3.1. As in Remark 2.5 we see that if / is weakly m-times
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differentiable (respectively, of class (T ) on X , then it is also weakly

m-times differentiable (respectively of class cl ) in the sense of §2 of

REMARK 3.2. Assume that E and F are Banach spaces, and L and

M are norm-Kuratowski measures of noncompactness on E and F . Then, by

Remark 2.1*, f is of class u on X if and only if f is n-times

continuously Frechet differentiable on X .

By Remark 3.1 and by Proposition 2.2.0 and Theorem 2.8.1 in [7] we

have the following elementary properties of functions of class C .

PROPOSITION 3.1. Let f be a (P-differentiable mapping of X into

F . Let x € X and Y be a neighborhood of x in X as in Definition

3.2, and h € E such that {x+th : t € [0, l]} c y . Then

r 1

(i) \lf f(x+h)-Dn f(x)\k = Dnf(x+th)(h, k)dt for every

k € E*-1 ;

(ii) we put

Rnf{x, h) = f{x+h) -i^lff(x)(h, ...,h) .

Then there exists a continuous seminorm p on E such that x + V c: y s

inhere V = {y € E : piy) < 1} and for each continuous seminorm q on F ,

we can define a function 6 : V -*• R such that
P ><?

(3.1) lim 9 (k) = 0 ,

(3.2) <?(#/U, k)) = 6 (k)[p(k)]n for every k € V .

It follows from (3.2) that if k € E and Bk <~. V , then

(3.3) p(k) = 0 and f(x+k) = fix) + Df(x)h .

Let us consider an example of (7^-differentiable mappings.

PROPOSITION 3.2. Assume that E and F are two Frechet spaces over

C . Let g : X •+• F be continuous and weakly n-times differentiable on
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X . Suppose that g{X) is relatively compact. Then g is of class u

on X .

Proof. Let a € X and W € V(E) such tha t [a+3(n+l)V) c X . Let

m £ n , x € (a+2&0 and u, h , ... , h , h € 2W , and z, w € C such tha t

| z | , |w| £ - and r = {z € C : | s | = l } posi t ively or iented. By the

Cauchy formula for scalar ana ly t ic functions, the Hahn-Banach theorem and

the induction we have

( 3 . 3 )

(3 .U)

I t f o l l o w s from ( 3 . 3 ) a n d (3.h) t h a t

( 3 . 5 ) | A ( ^ ) - A ( x ) | ( \ , •••'hn)

r r g(x+S^h^ + . . .+S ?2 +S?j)
osn • • • as ds

r r g(x+S^h^ + . . .+S
g p>- 1 1

• • • 5 5
1 mr S . . S (
1 m

On the other hand we have

Wih^ ..., hm_±, 0)

2 2

x I •— dsm = 0

Then
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Mlh^ ..., V l , whj * A(,)(hlt .... hm_±, o)

H . . . + S wh ]-g(x+s,7z., + . . .+s ^h ,m m' " v 1 1 m—x. m—i
_2 2

Hence by ( 3 . 3 ) we have

(3.6) d"g(x)[hlt ..., hm_i, whj

w I
=

(2iri ) •* F ^ I

We put A = co g(X) ; then A is bounded, which implies that for

every U € K(F) then there exists t > 0 such that sA <z U for every

s € C and |s| 5 £ . By (3.1*) and (3-5), for every x (. (a+2W) and

y € tU , t € ]0, 1[ we have

(3.7) A(x)(SP) ciA ,

(3.8) [z/"&(x+2/)-z/"3(x)](^) cr tA .

Because M{A) = 0 , by (3-6), (3-7) and (3-8), d"g{x) and W

satisfy the conditions (B.l) and (B.2) for every x € (a+W) and every

k > 0 . Hence it follows from (3.8) that lfg\(a+W) is continuous from

(a+&0 into f(E, F, W) .

Applying Theorem 2.1+.0 of [/] we have ifg(x) € L (E, F) for every

x (. (a+W) , which completes our proof. //

By Proposition 1.2, in the preceding proposition we can replace the

condition "g(X) is relatively compact" by the following conditions:

(E.I) M(zB) = |s|M(B) for each z (. C and B € 2F ;

(E.2) M[g(X)) and k{L, M, X, g) are finite;

(E.3) g(X) is bounded in F .

Now we shall show some basic properties of C -differentiable

mappings.
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PROPOSITION 3 .3 . Let D be an open subset of F . If f : X •* D

and g : D ->• G are of class u , then h = g ° f is of class u on

X .

Proof. At first using the induction we shall show that h is weakly

n-times differentiable on X , and for every x € D and every integer

m •S n , D h{x) can be written in the form

m . m m.
(3.9) I I aJrf[g{x)) o D ^(a) o p , ..., D 'lg{x) o p

i=0 J<LJ{n) d dl I

where J is a partition {=7 , . .., J-) of {l, ...,">} , and m. is the

cardinal of J • , and a,- € IK .

In the case m = 1 , this assertion is clearly true. Now suppose that

it is true for m = r < n . In order to prove this assertion in the case

m = r + 1 it is sufficient to show that for each partition

J ={</,,..., J.} of {l, . . ., m} we have

xi-+ olf{g{x))
m
D g(x)

m.

is weakly differentiable and its derivative at x can be written in the

form

Di+1f(g(x)) o

+ Dif{g(x))

m
D g(x)

m.
D %g{x) o Pj., Dg{x)

m +1 m
D g(x) o P

m
Pj , ..., D <

m.+lm m.+l
D g(x) ° Pj , ..., D v g(x) o pj

But this follows from a simple differential calculus and Proposition
mh

2.1. Then D (x) can be written in the form (3-9) • Now applying

Proposition 2.1 and by Theorem 2.1+.0 in [/] we see that h is of class C

on x . II

Now let / : X -* L3(E, E) , g : X •* LV(E, E) be of class C1 on

X . Let (I, J) be a partition of {l, ..., i+j-l] , such that the
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cardinal of J is equal to i . For each x € X we put

h(x) = f(x) o [p g(x) o p ) . I t is clear that h is weakly

differentiable on X and

Dh(x) = { ) ( )

By induction we have the following lemma.

LEMMA 3 .1 . Let f , g : X + L{E, E) be of class tf1 . For each

x £ X we put h(x) = fix) ° g(x) . Then h is weakly n-times

differentiable on X and for each x € X and m •S n we have

ifh(x) = £ I aT Xpf{x) o \p Dig(x) o p ] + if"1 [/(a) ° Og(x)] .
J U,J) ' l J

Furthermore by induction and by Proposition 2 .1 , we see that h is of

class U . (Here we remark that p_ can be written in the form

Now we shall give a proposition about the differentiability of the

mapping cp (of. Proposition 2.2).

PROPOSITION 3.4. Let f : X •* L(E, E) be of class tf1 on X ;

suppose that f(x) € H(E, E) for every x € X . Put

g{x) = cp(f(x)) for every x (. X .

Then g is of class d1 on X .

Proof. Let x, y € X ; we have

g(y) - g(x) = g(y) ° [f(x)-f(y)] ° g(x) .

Hence it follows that g is weakly differentiable on X and

Dg(x) = -g(x) o Df(x) o {p{l}, g(x)

Applying the arguments of Proposition 2.1, by Lemma 3-1 and induction

we see that g is of class u on X . //

4. The inverse mapping theorem

In this section we shall establish an inverse mapping theorem for
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^-differentiable mappings. At first let us consider the case of

homeomorphlsms.

THEOREM 1. Let D be an open subset of E and f : D •*• F be of

class u on D . Suppose that f is a homeomorphism of D onto an open

subset of F , and there exists a D such that Df(a) is in H(E, F) .

Then there exists an open neighborhood X of a in D such that if

9 = (fix)'1 and Y = fix) then g is of class d1 on Y and for every

y € Y we have Dg(y) = [pf{g{y))']~1 .

Proof. By Proposition 1.1» we can find an open neighborhood X of a

in D such that Df(x) £ #(£, F) for every x € X . Fix an M ? ; we

shall show that g is weakly differentiable at y and

Dg(y) = \pf[g(y))y1 .

By Proposition 2.1 we can suppose that E = F , y-g(y)=O, and

/'(0) = J .

Let p , V, 9 for f and x = 0 as in Proposition 3.1. Let
P »P

U € v(E) such that U c \v and Uc f(V) and

6 (fi)5i for every h € /~1(y) .
p,p 3

Now let k € U , t € IK such that 0 < |t| < 1 . Then there exists

h. •, (. V such that gitk) = h. , . We shall show thatt ,K t,K

(14.1) p T 1 ^ k 5 1 if k € U and 0 < |*| < 1 .

Indeed if there exist k € U , t € IK such that 0 < |t| < 1 and

P * ^+ i. > ! > the1"6 exists s € ]0, l[ such that sp t" h. . = 1 .

But

where

(U.2) i?f(x, h) = f(x+h) - fix) - Dfix)h .

Because Df(O) = I , we have
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~lR^0' ht,k) •

On the other hand, by (3.2) we have

Since p(sfe) < | , by (1».3) it follows that

5 P(Sfc) +

This contradiction shows (U.l). Now let q be an arbitrary

continuous seminorm on E , let 6 be as in Proposition 3.1. We have

as above

Since lim fc , = 0 , by (3.1) we have lim t"1/?/^, 7i. .) = 0 . On
t-K) C'* t-K) t)/C

the other hand, by C*.3) we have

Therefore g is weakly differentiable at y and Dg(y) is equal to

\Df[g(y))\~ • By Proposition 2.2, g is of class (; on Y . Now if

n > 1 , we put M y ) = <p(0f(g(y))) for every y t Y . Then by

Propositions 3-3 and 3.U, h is of class C on Y , hence g is of

class C on Y . By induction 3 is of class C^ on Y . //

We shall establish an inverse mapping theorem for vector fields, but

first we need the following lemma.

LEMMA 4.1. Let W be an open in E , f = (I-g) : W ->• E be of

class C on W . Suppose that k(L, L, W, g) < k < l and for every

a € W , f'(a) € H(E, E) and k[L, L, W, I-y(Df(a))) < i=£ . Let a € W ;

then there exist U, V € V(E) such that a + V cz W and for each

(t, q ) € [ 0 , l] x 1/ we have
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(i) t[f(a+x)-f(a)] - (l-t)/'(a)(x) * q for all x € dV , or

t[f{y)-f(a)] - (l-t)f'(a)(y-a) tq for all y € a+dV ;

(ii) f(x+a) * f(a) for all x € V\{o} .

Proof. Fix an a € W ; we have S i B{E, E) such that

k{L, L, W, S) < j=| and <f[f'{a)) = I + 5 . Put f± = if [Df(a)) o f .

Then Df^a) = I and /" = I - g where j = j + S o j - S . By

Proposition 1.1 we have

k[L, L, W, g^ < k(L, L, W, g) + k(L, L, J/, S o g) + k(£, I, J/, S)

. (l-fc)fc 1-fc
< * + + l+fc

We see tha t i f the lemma holds for f , then i t holds for / . Then

we can suppose tha t Df(a) = I and a = f(a) = 0 . By Proposition 3.1 we

can choose W € V(E) such tha t V c V and D/|f/' i s a continuous

mapping from f/' in to B{E, E, W) and

C*.5) / ( « ) = / '(O)a; = x for every x € W such tha t IKx c W .

Let V € V(E) such tha t "Kef/' and

(It.6) ( f ' ( O ) - / ' ( x ) ) € B(f/', 2W, i ) for a l l x € ? .

By Proposition 3-1 we have

rl
g{x) = (f'(0)-/'(sx))xds for

J0
all x (. W .

Put

F = {t/(x)-(l-t)x = x-tg(x) : (t, x) € [0, l] x 9̂ } .

We shall show that F is closed and does not contain 0 , which implies

(i).

Now let {(*., x.)} be a sequence in [0, l] x 3y such that {y .}
3 0 3

converges to y in E , where y. = x. - t .g[x.) . We can suppose that
3 3 3 3

{t .} converges to t in [0, l] . Put A = {x.} , B = {y .} u {y} and
3 3 3

C = co[g(A) u {o}) . Since x.=y. + t.g[x.) , we see that A c B + C .
3 3 3 3

Arguing as in the proof of Proposition 1.1 we see that A is relatively
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compact. Let x be an adherent point of {x.} , then x € dV . By
J

Proposition 3.1, / is continuous on D ; thus tf(x) + (l-t)x = y .

Then F is closed.

Now suppose that there exists (t, x) €. [0, l] x 3V such that

tf(x) + (l-6)/'(0)x = (I-tg)(x) = x - t f (/'(O)-f'(sx))xds

= 0 .

If IKx c w' , by (!+.5), f'(0) = 0 ; hence x = 0 , which contradicts

the condition x £ 3^ .

Then there exists e € IK such that ex € 3 V ; hence we have

/•I

ax = [f'(0)-f{sx))toxds .
>0

By (1*.6) it follows that ex € ̂ W c (/' , which contradicts the

condition ex € W . Then F does not contain 0 .

(ii) Let x £ V such that /(x) = 0 ; we shall show that x = 0 .

If IKx c w' , then by (M.5), /'(0)x = x = 0 . Now if there exists t € IK

such that tx € 3V , we have

if(x) = t(I-g)(x) = tx - [ (f'(O)-/'(sx))txcfs = 0 .

Arguing as in (i) we can find a contradiction, which completes our

proof. //

Applying Theorem 1 and Lemma U.I we can show the following inverse

mapping theorem for vector fields.

THEOREM 2. Let D be an open in E , f = {I-g) : D •* E be of

class d1 on D . Suppose that 0 Z D and f{0) = 0 , f'(0) = I , g

is L-bounded on D and k{L, L, D, g) < 1 . Then there exists an open

neighborhood X of 0 such that X c D and f\x is a homeomorphism of

X onto an open subset Y of E . Put h = (f\x)~X ; then h is of

class u on Y and for every y € Y we have

h'(y) = 0.
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Proof. By Proposition 2.2 we can choose W, W, V and U for a = 0

as in Lemma U.I such that U c V . Now let p € U . By Lemma U.I and

(D.U) we have

(U.7) deg(f, V, p) = deg(/'(O), V, p) = deg(I, V, p) = 1 .

By (U.6) and Remark 1.1, for each a d V and each V f 7(£) such

that a + V c W , g'(a) is a limit-compact mapping on a + V . By

(It.6) and Proposition 3.1, [l-tg'(a)) € H(E, E) , which implies that

[l-tg'(a)) (y-a) # 0 for every t/ € a+dV . Arguing as in Proposition 3.1,

by (D.I) and (D.I*) we have

(It.8) deg(/'(a)(«-a), a+V , o) = deg ((l-g'(a)) (--a), a+V, o)

= deg(K--a), a+V, o) = deg(I, a+V, a) = 1 .

Put i4 = (/|F)"1({p}) = ((-T-9')l7)"1({p}) . Arguing as in the proof of

Lemma U.I, we see that A is compact. Then by Proposition 1.3 and by (ii)

of Lemma U.I, A consists only of isolated points. Then

A' {a±, ...,am] .

By Lemma U.I we can choose V i V(E) such that V c W and

{a .+V : j = 1, . . . , m\ is a family of pairwise disjoint open subsets of
d

V and for every j € {l, ..., m} we have, by (U.8),

deg(/, a.+V, p) = deg(/, a+V, f{a.)) = deg(l- [g+f{a .)), a.+V, o)
d d J d d

= deg(f-/(a.), a+V, o)
d d

= deg(/' [a^i-a.), a.+V, o) = 1 .

From (U.3) and (D.3) it follows that

1 = deg(f, V, p) = I deg(/, a.+V, p) = m .

3 °

Hence it follows that for each p € U there exists an unique x S. V

such that f(x) = p . Put Y = U and X = V n /•"1(r) .

Then f\X maps X onto Y . Analogously f\x also is an open

mapping of X onto Y . Therefore f\x is a homeomorphism of X onto

Y . Now applying Theorem 1, we have the desired results. //

REMARK 4.1. In Theorem 2 we can replace the condition f 1,0) = I by

the condition /'(0) ? H(E, E) . This result relies on the study of the
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spectrum of L-bounded linear operators and will appear elsewhere.

DEFINITION 4.1 . Let be an open in E , f • D •* F be of class

C on D . For each x € D put Rf(x, h) as in (h.2). We shall say

that / satisfies the condition (c) on D if

(C) for each x £ D and each d > 0 , there exists a

neighborhood X of x in D such that

k[L, M, X-x, Rf(x, •)) < d .

REMARK 4.2. if £ and F are Banach spaces, 0 is an open subset

of E , L and M are the norm-Kuratowski measures of non-compactness on

E and F and f : D •* F is of class C1 . Then / satisfies the

condition (C) on D .

In fact, let x € D , d > 0 and f € V{E) such that x+K c D . Let

h, k € V ; we have

i?/(x, h) - Rf(x, k) = f(x+h) - f(x+k) - Df(x)(h-k)

lDf[x+t(h-k))-Df(x)] {h-k)dt .
0

Thus

\\Rf(x, h)-Rf(x, k)\\ £ sup \\Df[x+t(h-k))-Df(x)\\\\h-k\\ .

Therefore if V is small enough, k[L, M, V, Rf{x, •)) < d .

REMARK 4.3. Let E, F, X, g, x, W be as in Proposition 3.2. By

(3-5), Dg(x)(W) is relatively compact, then Rg{x, W) also is relatively

compact; hence k[L, M, W, Rg(x, •)') = 0 . Then g satisfies the

condition (C) on X . Since D{T+g) = T + Dg for every T £ B(E, F) ,

R(T+g)(x, ') = Rg(x, •) . Then T + g satisfies the condition (C) on X

for every T £ B(E, F) .

Now we can announce the inverse mapping theorem for the general case

as follows.

THEOREM 3 (Inverse mapping theorem). Let D be an open in E ,

f : D •* F be of class (f1 on D and a € D such that f'(a) € #( E, E) .

Suppose that f satisfies the condition (C) on D . Then there exists an

open neighborhood X of a in D such that f\x is a homeomorphism of
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X onto an open I of F . Put g = (f\X)~ ; then g is of class

and satisfies the condition (C) on Y . For every y € Y we have

Proof. We can suppose that a = f{a) = 0 . Put T = (o/XO))"1 and

h = T o f ; we have h'(0) = J and h(0) = 0 . For each x € D we have

h(x) = T{f(x)-f(0)) = T{Df(0)x+Rf(0, x)) = [l-[To Rf(0, -)))(x) .

Since / satisfies the condition (C) and T € B{F, E) , there exists

an open neighborhood D' of 0 in D such that

k[L, L, D', T o i?/(0, •)) < 1 .

Then by Theorem 2, there exist an open neighborhood AT of 0 in D'

such that h\X is a homeomorphi sm of X onto an open U in E . Then

f\x is a homeomorphi sm of X onto Y = T~ (£/) . By Proposition 2.2, we

can suppose that /'(x) £ H(E, F) for every x € * . Thus by Theorem 1,

g = (f\x)~ is of class <J on Y and for every i/ € Y we have

9'(y) = (/'G?(2/)))~ • N o w w e shall show that <? satisfies the condition

(C) on Y .

Fix an y € Y ; for the sake of simplicity we suppose z/ = 0 and

consider ^ ( 0 , •) . By (U.U), /?ft"1(0, •) = -Rf(O, •) ° h'1 . Then

(U.9) ^ ( 0 , •) = -Rf{0, •) o /T 1 o T .

Since k[L, L, D', T o i?/(o, •)) < 1 and h = I - T o Rf(o, •) , by

Proposition 1.1, k{L, L, U, h~ ) is finite. Then by Proposition 1.1 and

(U.9)> g satisfies the condition (C) at y . This completes the proof of

the theorem. //

Let S be a compact linear mapping of E into E , that is, there

exists V € V(E) such that S(V) is relatively compact. It is well known

that if (I-S)(E) = E , then it is a homeomorphi sin from E onto E , and

(I-S)~ = J + {I-S)~ o S . Because (IS)'1 ° S is compact, we see that

(IS) € H{E, E) . Then by Remark It.3, Proposition 3.2 and Theorem 3 we

have the following theorem.

https://doi.org/10.1017/S0004972700007474 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007474


D i f f e r e n t i a l c a l c u l u s in F r e c h e t s p a c e s 121

THEOREM 4 (The inverse mapping theorem for analytic vector fields).

Let E and F be two Frechet spaces over (C . Let g be a continuous

and weakly n-times differentiable from an open set D in E into E .

Suppose that g(D) is relatively compact and [i-g'(a)) is surjective for

an a € D . Then there exists an open neighborhood X of a in D such

that f = {J-g)\x is a homeomorphism of X onto an open Y in E , and

f and f are of class d1 on X and Y repsectively and for each

y € Y we have

With the product topology E * F also is a Frechet space. We shall

identify E x {o} and {o} * F to be E and F respectively. Let pr

and pr_ be the projections of E x F onto E and F . Assume that

there exists a measure of noncompactness Q on E x p such that pr^ and

pr are the elements of B(E x F, E x F) . Let L and M be the

restrictions of Q on 2 and 2 . Because the projections are open, L

and M are measures of noncompactness on E and F .

Using the notions and arguments in §7 of Chapter V and §2 of Chapter

VI in [2], and applying Theorem 3 we have the following theorem.

THEOREM 5 (The implicit function theorem). Let V x u be an open

set in E y- F and f : V * U + G be of class d1 , and (a, b) (. V x u .

Assume that f satisfies the condition (C) on V x u and the partial

derivative with respect to the second variable D-f(a, b) € H(F, G) and

f(a, b) = 0 . Then there exists a continuous mapping g from V , an

open neighborhood of a , into U such that g(a) = b and f[x, g(x)) = 0

for every x € V. .

If V. is taken to be sufficiently small, then g is uniquely

determined and is a (P-differentiable mapping on V .
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