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ABSTRACT

While the intersection of the Grassmannian Bruhat decompositions for all coordinate
flags is an intractable mess, it turns out that the intersection of only the cyclic
shifts of one Bruhat decomposition has many of the good properties of the Bruhat
and Richardson decompositions. This decomposition coincides with the projection
of the Richardson stratification of the flag manifold, studied by Lusztig, Rietsch,
Brown—Goodearl-Yakimov and the present authors. However, its cyclic-invariance
is hidden in this description. Postnikov gave many cyclic-invariant ways to index
the strata, and we give a new one, by a subset of the affine Weyl group we call
bounded juggling patterns. We call the strata positroid varieties. Applying results from
[A. Knutson, T. Lam and D. Speyer, Projections of Richardson varieties, J. Reine
Angew. Math., to appear, arXiv:1008.3939 [math.AG]|, we show that positroid varieties
are normal, Cohen—-Macaulay, have rational singularities, and are defined as schemes by
the vanishing of Pliicker coordinates. We prove that their associated cohomology classes
are represented by affine Stanley functions. This latter fact lets us connect Postnikov’s
and Buch—Kresch—-Tamvakis’ approaches to quantum Schubert calculus.
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1. Introduction, and statement of results

1.1 Some decompositions of the Grassmannian

This paper is concerned with the geometric properties of a stratification of the Grassmannian
studied in [BGY06, Lus98, Pos05b, Rie06, Wil07]. It fits into a family of successively finer
decompositions:

{Bruhat cells}, {open Richardson varieties}, {open positroid varieties}, { GGMS strata}.

We discuss the three known ones in turn, and then see how the family of positroid varieties fits
in between.

The Bruhat decomposition of the Grassmannian of k-planes in n-space dates back, despite
the name, to Schubert in the 19th century. It has many wonderful properties.

— The strata are easily indexed (by partitions in a k X (n — k) box).

— It is a stratification: the closure (a Schubert variety) of one open stratum is a union of
others.

— Each stratum is smooth and irreducible (in fact a cell).

— Although the closures of the strata are (usually) singular, they are not too bad: they are
normal and Cohen—Macaulay, and even have rational singularities.

The Bruhat decomposition is defined relative to a choice of coordinate flag, essentially
an ordering on the basis elements of n-space. The Richardson decomposition is the common
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refinement of the Bruhat decomposition and the opposite Bruhat decomposition, using the
opposite order on the basis. Again, many excellent properties hold for this finer decomposition.

— It is easy to describe the nonempty intersections of Bruhat and opposite Bruhat strata
(they correspond to nested pairs of partitions).

— It is a stratification, each open stratum is smooth and irreducible, and their closures are
normal and Cohen-Macaulay with rational singularities [Bri02].

At this point one might imagine intersecting the Bruhat decompositions relative to all the
coordinate flags, so as not to prejudice one over another. This gives the GGMS decomposition of
the Grassmannian [GGMSS87], and as it turns out, these good intentions pave the road to hell.

— It is infeasible to index the nonempty strata [Vam78|.
— It is not a stratification [GGMS87, §5.2].

— The strata can have essentially any singularity [Mne88]. In particular, the nonempty ones
need not be irreducible, or even equidimensional.

This raises the question: can one intersect more than two permuted Bruhat decompositions,
keeping the good properties of the Bruhat and Richardson decompositions, without falling into
the GGMS abyss?

The answer is yes: we will intersect the n cyclic permutations of the Bruhat decomposition.
That is to say, we will define an open positroid variety to be an intersection of n Schubert cells,
taken with respect to the n cyclic rotations of the standard flag. We will define a positroid variety
to be the closure of an open positroid variety. See §5 for details.

It is easy to show, though not immediately obvious, that this refines the Richardson
decomposition. It is even less obvious, though also true, that the open positroid varieties are
smooth and irreducible (as we discuss in §5.4).

There is a similar decomposition for any partial flag manifold G/P, the projection of the
Richardson stratification from G/B. That decomposition arises in the study of several seemingly
independent structures:

— total nonnegativity, in e.g. [Lus98, Pos05b, Rie06], see §1.2;

— prime ideals in noncommutative deformations of G/P [LLRO08, Yak10b], and a semiclassical
version thereof in Poisson geometry [BGY06, GY09];

— the characteristic p notion of Frobenius splitting [KLS].

We show that the positroid stratification and the projected Richardson stratification coincide.
Specifically, we prove the following theorem.

THEOREM (Theorem 5.9). If XV is a Richardson variety in the full flag manifold (u,w € Sp),
then its image under projection to Gr(k,n) is a positroid variety. If w is required to be a
Grassmannian permutation, then every positroid variety arises uniquely this way.

Theorem 5.9 has been suspected, but has not previously been proved in print, and is
surprisingly difficult in its details. This result was already known on the positive part of Gr(k, n),
as we explain in Remark 1.2.

Once we know that positroid varieties are projected Richardson varieties, the following
geometric properties follow from the results of [KLS]. Part (i) of the following Theorem was
also established by Billey and Coskun [BC10] for projected Richardson varieties.

THEOREM ([KLS] and Theorem 5.15). (i) Positroid varieties are normal and Cohen—Macaulay,
with rational singularities.
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(ii) Though positroid varieties are defined as the closure of the intersection of n cyclically
permuted Bruhat cells, they can also be defined (even as schemes) as the intersection of the n
cyclically permuted Schubert varieties. In particular, each positroid variety is defined as a scheme
by the vanishing of some Pliicker coordinates.

THEOREM [KLS|. The standard Frobenius splitting on the Grassmannian compatibly splits all
positroid varieties. Furthermore, positroid varieties are exactly the compatibly split subvarieties
of the Grassmannian.

Before going on, we mention a very general construction given two decompositions
{Ya}aca.{Zp}vep of a scheme X, one refining the other. Assume that:

- X=[aYa=1lp %;
— for each a € A, there exists a subset B, C B such that Y, = HBG, Zy;

— each Y, is irreducible (hence nonempty), and each Z; is nonempty (we do not assume that
each Z, is irreducible).

Then there is a natural surjection B — A taking b to the unique a such that Z; CY,, and a
natural inclusion A — B taking a to the unique b € B, such that Z, is open in Y,. (Moreover,
the composite A — B — A is the identity.) We will call the map B — A the A-envelope, and
will generally use the inclusion A — B to identify A with its image. Post this identification,
each a € A corresponds to two strata Y,, Z,, and we emphasize that these are usually not equal;
rather, one only knows that Y, contains Z, densely.

To each GGMS stratum X, one standardly associates the set of coordinate k-planes that are
elements of X, called the matroid of X. (While ‘matroid’ has many simple definitions, this is
not one of them; only realizable matroids arise this way, and characterizing them is essentially
out of reach [Vam78].) It is a standard, and easy, fact that the matroid characterizes the stratum,
so via the A <— B yoga above, we can index the strata in the Schubert, Richardson, and positroid
decompositions by special classes of matroids. Schubert matroids have been rediscovered many
times in the matroid literature (and renamed each time; see [BMO06]). Richardson matroids are
known as lattice path matroids [BMO06]. The matroids associated to the open positroid varieties
are exactly the positroids [Pos05b] (though Postnikov’s original definition was different, and we
give it in the next section).

In our context, the observation two paragraphs above says that if a matroid M is a positroid,
then the positroid stratum of M is usually not the GGMS stratum of M, but only contains it
densely.

Remark 1.1. For each positroid M, Postnikov gives many parametrizations by Rﬂ of the totally
nonnegative part (whose definition we will recall in the next section) of the GGMS stratum of M.
Each parametrization extends to a rational map (C* )e — Gr(k, n); if we use the parametrization
coming (in Postnikov’s terminology) from the Le-diagram of M then this map is well defined on
all of (C*)*. The image of this map is neither the GGMS stratum nor the positroid stratum of
M (although the nonnegative parts of all three coincide). For example, if (k,n) =(2,4) and M
is the ‘uniform’ matroid in which any two elements of [4] are independent, this parametrization
is

(a,b,c,d) — (pr2:p13:p1a: P23 p2a:psa) = (1:d:ed:bd: (a+ 1)bed : abed?).
The image of this map is the open set where p19, p13, P14, P23 and p34 are non-zero. It is smaller

than the positroid stratum, where p13 can be zero. The image is larger than the GGMS stratum,
where poy is also non-zero.
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One may regard this, perhaps, as evidence that matroids are a philosophically incorrect way
to index the strata. We shall see another piece of evidence in Remark 5.17.

1.2 Juggling patterns, affine Bruhat order, and total nonnegativity
We now give a lowbrow description of the decomposition we are studying, from which we will
see a natural indexing of the strata.

Start with a k x n matrix M of rank k (< n), and think of it as a list of column vectors
V1, - - -, Up. Extend this to an infinite but repeating list ..., ¥_1, vy, ¥1, . . . , Upn, Up+1, - . - Where
U; = v if i =7 mod n. Then define a function f:7Z — Z by

f(Z) = min{j >1:0U; € span({ﬁiﬂ, 172'4_2, ey ’L_f]})}
Since @,4; = Ui, each f(i) < n+ i, and each f(i) > i with equality only if @; = 0. It is fun to prove
that f must be 1:1, and has enough finiteness to then necessarily be onto as well. Permutations
of Z satisfying f(i +n) = f(i) + n Vi are called affine permutations, and the group thereof
can be identified with the affine Weyl group of GL,, (see e.g. [ER96]).

This association of an affine permutation to each k x n matrix of rank k& depends only on

the k-plane spanned by the rows, and so descends to Gr(k,n), where it provides a complete
combinatorial invariant of the strata in the cyclic Bruhat decomposition.

THEOREM (Theorem 3.16, Corollary 3.17).! This map from the set of positroid strata to the
affine Weyl group is order-preserving, with respect to the closure order on positroid strata
(Postnikov’s cyclic Bruhat order) and the affine Bruhat order, and identifies the set of
positroids with a downward Bruhat order ideal.

Consequently, the cyclic Bruhat order is Eulerian and EL-shellable (as shown by hand already
in [Wil07]).

We interpret these f physically as follows. Consider a juggler who is juggling k balls, one
thrown every second, doing a pattern of period n. At time i € Z, they throw a ball that lands
shortly? before, to be thrown again at, time f(i). No two balls land at the same time, and there
is always a ball available for the next throw. If we let t; = f(i) — ¢ be the throw at time 4, this
cyclic list of n numbers (t1,...,t,) is a juggling pattern® or siteswap (for which our references
are [Knu93, Pol03]; see also [BEGW94, CGO07, CG08, ER96, War05]). This mathematical model
of juggling was developed by several groups of jugglers independently in 1985, and is of great
practical use in the juggling community.

If M is generic, then the pattern is the lowest-energy pattern, where every throw is a k-
throw.? At the opposite extreme, imagine that M only has entries in some k columns. Then
n — k of the throws are O-throws, and k are n-throws.’

If one changes the cyclic action slightly, by moving the first column to the end and multiplying
it by (—1)k~1, then one preserves the set of real matrices for which every k& x k submatrix has
nonnegative determinant. This, by definition, lies over the totally nonnegative part Gr(k, n)>o

! This result is extended to projected Richardson varieties in partial flag varieties G /P of arbitrary type by He
and Lam [HL11].

2 Almost exactly at time f(i) — %, according to video analysis of competent jugglers.

3 Not every juggling pattern arises this way; the patterns that arise from matrices can only have throws of height
< n. This bound is very unnatural from the juggling point of view, as it excludes the standard 3-ball cascade
(t1 = 3) with period n=1.

* These juggling patterns are called ‘cascades’ for k& odd and ‘(asynchronous) fountains’ for k even.

5 These are not the most excited k-ball patterns of length n; those would each have a single kn-throw, all the
others being 0-throws. But juggling patterns associated to matrices must have each t; < n.

1714

https://doi.org/10.1112/50010437X13007240 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007240

POSITROID VARIETIES: JUGGLING AND GEOMETRY

of the Grassmannian. (This action may have period either n or 2n up on matrices, but it always
has period n down on the Grassmannian.) Postnikov’s motivation was to describe those matroids
whose GGMS strata intersect this totally nonnegative part; it turns out that they are exactly
the positroids, and the totally nonnegative part of each open positroid stratum is homeomorphic
to a ball.

Remark 1.2. Now that we have defined the totally nonnegative part of the Grassmannian, we
can explain the antecedents to Theorem 5.9. Postnikov [Pos05b] defined the totally nonnegative
part of the Grassmannian as we have done above, by nonnegativity of all minors. Lusztig [Lus98]
gave a different definition which applied to any G/P. That the two notions agree is not obvious,
and was established by K. Rietsch in a private communication (2009). In particular, the cyclic
symmetry seems to be special to Grassmannians.’

Lusztig, using his definition, gave a stratification of (G/P)x¢ by the projections of Richardson
varieties. Theorem 3.8 of [Pos05b] (which relies on the results of [MR04, RW08]) states that
Postnikov’s and Lusztig’s stratifications of Gr(k,n)so coincide. This result says nothing about
how the stratifications behave away from the totally nonnegative region. Theorem 5.9 can be
thought of as a complex analogue of [Pos05b, Theorem 3.8]; it implies but does not follow
from [Pos05b, Theorem 3.8].

We thank Konni Rietsch for helping us to understand the connections between these results.

1.3 Affine permutations, and the associated cohomology class of a positroid variety
Given a subvariety X of a Grassmannian, one can canonically associate a symmetric polynomial
in k variables, in a couple of equivalent ways.

(i) Sum, over partitions A with |A|=codim X, the Schur polynomial Sy(z1,...,xx)
weighted by the number of points of intersection of X with a generic translate of X (the
Schubert variety associated to the complementary partition inside the k x (n — k) rectangle).

(ii) Take the preimage of X in the Stiefel manifold of & x n matrices of rank k, and the closure
X inside k£ x n matrices. (In the k =1 case this is the affine cone over a projective variety, and
it seems worth giving it the name ‘Stiefel cone’ in general.) This has a well-defined class in the
equivariant Chow ring A’(‘;L(k) (CF*™), which is naturally the ring of symmetric polynomials in k&
variables.

The most basic case of X is a Schubert variety X, in which case these recipes give the Schur
polynomial S. More generally, the first construction shows that the symmetric polynomial must
be ‘Schur-positive’, meaning a positive sum of Schur polynomials.

In reverse, one has ring homomorphisms

{symmetric functions} — Z[x1, . . ., 23] = AGLk) (Ckxny AGL ) (Stiefel) = A*(Gr(k, n))
and one can ask for a symmetric function f whose image is the class [X].

THEOREM (Theorem 7.1).” The cohomology class associated to a positroid variety can be
represented by the affine Stanley function of its affine permutation, as defined in [LamO06].

6 Milen Yakimov has proven the stronger result that the standard Poisson structure on Gr(k, n), from which the
positroid stratification can be derived, is itself cyclic-invariant [Yak10a].

7 Snider [Snil0] has given a direct geometric explanation of this result by identifying affine patches on Gr(k, n)
with opposite Bruhat cells in the affine flag manifold, in a way that takes the positroid stratification to the
Bruhat decomposition. Also, an analogue of this result for projected Richardson varieties in an arbitrary G/P is
established by He and Lam [HL11]: the connection with symmetric functions is absent, but the cohomology classes
of projected Richardson varieties and affine Schubert varieties are compared via the affine Grassmannian.
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This is a surprising result in that affine Stanley functions are not Schur-positive in general,
even for this restricted class of affine permutations. Once restricted to the variables x1, ..., zx,
they are! In Theorem 7.12 we give a much stronger abstract positivity result, for positroid classes
in T-equivariant K-theory.

Our proof of Theorem 7.1 is inductive. In future work, by embedding the Grassmannian in a
certain subquotient of the affine flag manifold, and realizing the positroid decomposition as the
transverse pullback of the affine Bruhat decomposition, we hope to give a direct geometric proof
of this and Theorem 3.16.

1.4 Quantum cohomology and toric Schur functions

In [BKTO03], Buch, Kresch, and Tamvakis related quantum Schubert calculus on Grassmannians
to ordinary Schubert calculus on 2-step partial flag manifolds. In [Pos05a], Postnikov showed
that the structure constants of the quantum cohomology of the Grassmannian were encoded
in symmetric functions he called toric Schur polynomials. We connect these ideas to positroid
varieties as in the following theorem.

THEOREM (Theorem 8.1). Let S C Gr(k,n) be the union of all genus-zero stable curves of
degree d which intersect a fixed Schubert variety X and opposite Schubert variety Y. Suppose
there is a non-trivial quantum problem associated to X,Y and d. Then S is a positroid
variety: as a projected Richardson variety it is obtained by a pull-push from the 2-step flag variety
considered in [BKTO03]. Its cohomology class is given by the toric Schur polynomial of [Pos05a].

The last statement of the theorem is consistent with the connection between affine Stanley
symmetric functions and toric Schur functions (see [LamO06]).

2. Some combinatorial background

Unless otherwise specified, we shall assume that nonnegative integers k£ and n have been fixed,
satisfying 0 < k < n.

2.1 Conventions on partitions and permutations

For integers a and b, we write [a, b] to denote the interval {a,a + 1, ..., b}, and [n] to denote the
initial interval {1,2,...,n}. If i € Z, we let i € [n] be the unique integer satisfying i =7 mod n.
We write (‘2) for the set of k-element subsets of S. Thus ([z]) denotes the set of k-element subsets
of {1,2,...,n}.

As is well known, there is a bijection between ([z]) and the partitions of A\ contained in
a k x (n — k) box. There are many classical objects, such as Schubert varieties, which can be
indexed by either of these (Z)—element sets. We will favor the indexing set ([Z]), and will only
discuss the indexing by partitions when it becomes essential, in § 7.

We let S,, denote the permutations of the set [n]. A permutation w € S, is written in
one-line notation as [w(1l)w(2)---w(n)]. Permutations are multiplied from right to left so
that if u,w € S, then (uw)(i) = u(w(7)). Thus multiplication on the left acts on values, and
multiplication on the right acts on positions. Let w € S, be a permutation. An inversion of
w is a pair (7, j) € [n] x [n] such that i < j and w(i) > w(j). The length ¢(w) of a permutation
w € Sy, is the number of its inversions. A factorization w =wuv is called length-additive if
l(w) =L(u) + £(v).
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The longest element [n(n —1)---1] of S, is denoted wy. The permutation [234 ---nl] is
denoted x (for Coxeter element). As a Coxeter group, S, is generated by the simple transpositions
{si=[12---(i—1(@E+1)i(i +2)---n]}.

For k € [0, n|, we let Sk x S,_r CS,, denote the parabolic subgroup of permutations which
send [k] to [k] and [k+ 1,n] to [k+ 1,n]. A permutation w € S,, is called Grassmannian
(respectively anti-Grassmannian) if it is minimal (respectively maximal) length in its coset
w( Sk X Sp—_k); the set of such permutations is denoted ng}fn (respectively SH).

If we Sy, and k € [0, n], then oy (w) € ([Z]) denotes the set w([k]). Often, we just write o for
ok when no confusion will arise. The map oy, : S, — ([Z]) is a bijection when restricted to S;“}Cn.

2.2 Bruhat order and weak order
We define a partial order < on ([Z]) as follows. For [ = {i1 <ia <---<ipand J={j1 <jo--- <
Jk} € ([2}), we write I < J if 4, < j, for r € [k].

We shall denote the Bruhat order, also called the strong order, on S, by < and >. One
has the following well known criterion for comparison in Bruhat order: if u, w € S,, then u < w
if and only if u([k]) < w([k]) for each k € [n]. Covers in Bruhat order will be denoted by < and
>. The map oy : ( g}f, <) — (([z]), <) is a poset isomorphism.

The (left) weak order <ye.x on S, is the transitive closure of the relations

W Sweak SiW  if (s;w) = l(w) + 1.

The weak order and Bruhat order agree when restricted to S;n}gn.

2.3 k-Bruhat order and the poset Q(k, n)

The k-Bruhat order [BS98, LS82] <; on S, is defined as follows. Let u and w be in S,,. Then
u k-covers w, written u > w, if and only if u > w and oy (u) # ox(w). The k-Bruhat order is
the partial order on S,, generated by taking the transitive closure of these cover relations (which
remain cover relations). We let [u, w]; C S, denote the interval of S,, in k-Bruhat order. It is
shown in [BS98] that every interval [u, w]j in (Sy, <k) is a graded poset with rank ¢(w) — £(u).
We have the following criterion for comparison in k-Bruhat order.

THEOREM 2.1 [BS98, Theorem A]. Let u,w € S,,. Then u <j w if and only if:
(i) 1<a<k<b<n implies u(a) < w(a) and u(b) > w(b);
(ii) ifa <b, u(a) <u(b), and w(a) >w(b), then a < k < b.

Define an equivalence relation on the set of k-Bruhat intervals, generated by the relations
that [u, w]g ~ [z, y]k if there is a z € Si X S,,_ so that we have length-additive factorizations
uz =2z and wz =y. If u < w, we let (u, w) denote the equivalence class containing [u, w]y. Let
Q(k, n) denote the equivalence classes of k-Bruhat intervals.

We discuss this construction in greater generality in [KLS, §2]. To obtain the current

situation, specialize the results of that paper to (W, Wp) = (Sp, Sk X Sp_r). The results we
describe here are all true in that greater generality.

PROPOSITION 2.2. If [uy,wi] ~ [ug, wa] then ul_lu2 = wl_lwg and this common ratio is in
Sk X Sp_g. Also £(w1) — l(we) = l(u1) — £(uz).

Proof. This is obvious for the defining equivalences and is easily seen to follow for a chain of
equivalences. O
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We will prove a converse of this statement below as Proposition 2.4. The reader may prefer
this definition of ~.

PROPOSITION 2.3. Every equivalence class in Q(k,n) has a unique representative of the form
[u/, w'] where w' is Grassmannian. If [u, w] is a k-Bruhat interval, and [u’, w'] is equivalent to
[u, w] with w’ Grassmannian, then we have length-additive factorizations u=v'z and w = w'z
with z € S, X Sp_k.

Proof. See [KLS, Lemma 2.4] for the existence of a representative of this form. If [v/, w'] and
[u”, w"] are two such representatives, then (w’)~!w” is in Si x S,_p and both w' and w”
are Grassmannian, so w’ = w”. Then (uv')~!u" = (w')"'w” =e so v/ =u" and we see that the
representative is unique.

Finally, let [u/, w'] be the representative with w’ Grassmannian, and let [u, w]~ [u/, w'].
Set z=(v)"'u=(w)"lw with 2z € Sy x S,_j. Since w’ is Grassmannian, we have /(w)=
(w') 4+ £(z). Then the equation £(w) — f(w') =¥¢(u) — £(u") from Proposition 2.2 shows that
(u)=L(u') +£(z) as well. So the products u=1u'z and w=w'z are both length-additive, as
desired. O

We can use this observation to prove a more computationally useful version of the equivalence
relation as in the following proposition.

PROPOSITION 2.4. Given two k-Bruhat intervals [uy, wi] and [ug, wa], we have [uy, w1] ~ [ug, w2]
if and only if ul_luz = wl_lwg and the common ratio lies in Sy, X Sy—p.

Proof. The forward implication is Proposition 2.2. For the reverse implication, let [u1, w1] and
[ug, wo] be as stated. Let [u}, w]] and [u), wh] be the representatives with w] Grassmannian.
Since (w}) " tw} is in Sk x S,,_g, and both w! are Grassmannian, then w} = w. Since (u}) " tuf =
(w))"lwh = e, we deduce that u} =uh. So [ur, w1] ~ [u}, w}] = [uh, wh] ~ [uz, we] and we have
the reverse implication. O

We also cite the following theorem.

THEOREM 2.5 [BS98, Theorem 3.1.3]. If u < w and = <j y with wu™! =yz~!, then the map
v vu~ 'z induces an isomorphism of graded posets [u, w|x — [z, y]x-

We equip Q(k,n) with a partial order < given by ¢ <q¢ if and only if there are
representatives [u, w]x € ¢ and [u/, W', € ¢’ so that [u/, w'] C [u, w]. This partial order was studied
by Rietsch [Rie06], see also [GY09, Wil07].

The poset Q(2,4) already has 33 elements; its Hasse diagram appears in [Wil07]. See also
Figure 1.

3. Affine permutations, juggling patterns and positroids

Fix integers 0 < k < n. In this section, we will define several posets of objects and prove that
the posets are all isomorphic. We begin by surveying the posets we will consider. The objects
in these posets will index positroid varieties, and all of these indexing sets are useful. All the
isomorphisms we define are compatible with each other. Detailed definitions, and the definitions
of the isomorphisms, will be postponed until later in the section.

We have already met one of our posets, the poset Q(k, n) from §2.3.

The next poset will be the poset Bound(k,n) of bounded affine permutations: these are
bijections f:Z — Z such that f(i+n)= f(i) +n, i < f(i) < f(¢) +n and (1/n) >0 (f(i) — 1)
= k. After that will be the poset Jugg(k,n) of bounded juggling patterns. The elements of this
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poset are n-tuples (Ji, Ja, ..., Jp) € ([Z])n such that J;y1 2 (J;\{1}) — 1, where the subtraction
of 1 means to subtract 1 from each element and our indices are cyclic modulo n. These two
posets are closely related to the posets of decorated permutations and of Grassmann necklaces,
considered in [Pos05b].

We next consider the poset of cyclic rank matrices. These are infinite periodic matrices which
relate to bounded affine permutations in the same way that Fulton’s rank matrices relate to
ordinary permutations. Finally, we will consider the poset of positroids. Introduced in [Pos05b],
these are matroids which obey certain positivity conditions.

The following is a combination of all the results of this section.

THEOREM 3.1. The posets Q(k, n), Bound(k, n), Jugg(k, n), the poset of cyclic rank matrices
of type (k,n) and the poset of positroids of rank k on [n] are all isomorphic.

The isomorphism between Bound(k,n) and cyclic rank matrices is Corollary 3.12; the
isomorphism between Jugg(k, n) and Bound(k,n) is Corollary 3.13; the isomorphism between
Q(k,n) and Bound(k,n) is Theorem 3.16; the isomorphism between Jugg(k,n) and positroids
is Proposition 3.21.

3.1 Juggling states and functions

Define a (virtual) juggling state S C Z as a subset whose symmetric difference from —N:=
{i <0} is finite. (We will motivate this and other juggling terminology below.) Let its ball
number be [SNZ4| —| —N\S|, where Z, :={i > 0}. Ball number is the unique function on
juggling states such that for S 2 S’, the difference in ball numbers is |S\S’|, and —N has ball
number zero.

Call a bijection f:Z —Z a (virtual) juggling function if for some (or equivalently,
any) t € Z, the set f({i:i<t}) is a juggling state. It is sufficient (but not necessary) that
{|f(i) —i]:i€Z} be bounded. Let G be the set of such functions: it is easy to see that G is a
group, and contains the element s; : 4+ 4+ 1. Define the ball number of f € G as the ball
number of the juggling state f(—N), and denote it av(f) for reasons to be explained later.

LEMMA 3.2. The ball number av : G — Z is a group homomorphism.

Proof. We prove what will be a more general statement, that if S is a juggling state with ball
number b, and f a juggling function with ball number ¥/, then f(S) is a juggling state with
ball number b+ b'. This is proved by the following argument: if we add one element to S, this
adds one element to f(S), and changes the ball numbers of S, f(.S) by 1. We can use this operation
and its inverse to reduce to the case that S = —N, at which point the statement is tautological.

Now let f, g € G, and apply the just-proven statement to S = g(—N). O

For any bijection f:7Z — Z, let
st(fot) :={f(i) —t:i<t}
= st(s’ fs1",0)

and if f € G, call it the juggling state of f at time t. By the homomorphism property just
proven, av(f) = av(si fsjrk), which says that every state of f € G has the same ball number
(‘ball number is conserved’). The following lemma lets one work with juggling states rather than
juggling functions.

LEMMA 3.3. Say that a juggling state T can follow a state S if T={t} U (s;'-S), and
t¢ sjrl -S. In this case say that a t-throw takes state S to state T'.
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Then a list (S;)iez is the list of states of a juggling function if and only if S;+1 can follow S;
for each i. In this case the juggling function is unique.

Proof. If the (S;) arise from a juggling function f, then the condition is satisfied where the
element t; added to s;* - S;_1 is f(i) — . Conversely, one can construct f as f(i) =i +t;. O

In fact the finiteness conditions on juggling states and permutations were not necessary for
the lemma just proven. We now specify a further finiteness condition, that will bring us closer
to the true functions of interest.

LEMMA 3.4. The following two conditions on a bijection f : 7 — 7. are equivalent:

(i) there is a uniform bound on |f(i) — i|; or

(ii) there are only finitely many different st(f, ) visited by f.
If they hold, f is a juggling function.

Proof. Assume first that f has only finitely many different states. By Lemma 3.3, we can
reconstruct the value of f(i) — i from the states S;, S;1+1. So f(i) — i takes on only finitely many
values, and hence |f(i) — i| is uniformly bounded.

For the reverse, assume that | f(i) — i| < N for alli € Z. Then f(—N) C {i < N}, and f(Z) C
{i > —N}. Since f is bijective, we can complement the latter to learn that f(—N) D {i < —N}.
So st(f,0), and similarly each st(f,t), is trapped between {i < —N} and {i < N}. There are
then only 22V possibilities, all of which are juggling states. O

In the next section we will consider juggling functions which cycle periodically through a
finite set of states.

Define the height of the juggling state S CZ as
ht(S):== Y i— Y i,
1€SNZy i€—N\S
a sort of weighted ball number. We can now motivate the notation av(f), computing ball number
as an average.

LEMMA 3.5. Let a,beZ,a <b and let f € G. Then
b

> (@) =) = (b — a) av(f) + ht(st(f, b)) — ht(st(f, a)).

i=a+1

In particular, if f satisfies the conditions of Lemma 3.4, then for any a € Z,

This equality also holds without taking the limit, if st(f, a) = st(f,b).

Proof. Tt is enough to prove the first statement for b = a + 1, and add the b — a many equations
together. They are of the form

fla+1)—(a+1)=av(f) +ht(st(f,a+ 1)) — ht(st(f, a)).
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To see this, start with S =st(f, a), and use f(a + 1) to calculate st(f, a + 1). The three sets to
consider are

}) shifted left by a

}) shifted left by a + 1

+ 1}) shifted left by a + 1.

By its definition, ht(S”) = ht(S) — av(f). And ht(st(f,a 4+ 1)) =ht(S") + f(a+ 1) — (a + 1). The
equation follows.

~—
NN N
QL

For the second, if f only visits finitely many states then the difference in heights is bounded,
and dividing by b — a kills this term in the limit. O

We now motivate these definitions from a juggler’s point of view. The canonical reference
is [Pol03], though our setting above is more general than considered there. All of these concepts
originated in the juggling community in the years 1985-1990, though precise dates are difficult
to determine.

Consider a idealized juggler who is juggling with one hand,® making one throw every second,
of exactly one ball at a time, has been doing so since the beginning of time and will continue
until its end. If our juggler is only human (other than being immortal) then there will be a limit
on how high the throws may go.

Assume at first that the hand is never found empty when a throw is to be made. The history
of the juggler can then be recorded by a function

f(t) = the time that a ball thrown at time ¢ is next thrown.

The number f(t) —t is usually called the throw at time t. If ever the juggler does find the
hand empty i.e. all the balls in the air, then of course the juggler must wait one second for the
balls to come down. This is easily incorporated by taking f(¢) =t, a O-throw.

While these assumptions imply that f is a juggling function, they would also seem to force the
conclusion that f(i) > i, i.e. that balls land after they are thrown. Assuming that for a moment,
it is easy to compute the number of balls being juggled in the permutation f: at any time ¢,
count how many balls were thrown at times {¢ < ¢} that are still in the air, f(i) > ¢. This is of
course our formula for the ball number, in this special case. The formula av(f) = av(s!, fs;")
then says that balls are neither created nor destroyed.

The state of f € G at time ¢ is the set of times in the future (of ¢) that balls in the air are
scheduled to land. (This was introduced to study juggling by the first author and, independently,
by Jack Boyce, in 1988.) The ‘height’ of a state does not seem to have been considered before.

Thus, the sub-semigroup of G where f(t) >t encodes possible juggling patterns. Since we
would like to consider G as a group (an approach pioneered in [ER96]), we must permit f(¢) < ¢.
While it may seem fanciful to view this as describing juggling with antimatter, the ‘Dirac sea’
interpretation of antimatter is suggestive of the connection with the affine Grassmannian.

3.2 Affine permutations
Let S, denote the group of bijections, called affine permutations, f:7Z — Z satisfying

fli+n)=i+n forallieZ.

8 Or as is more often assumed, rigidly alternating hands.
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Plainly this is a subgroup of GG. This group fits into an exact sequence
1—>Z"i>5'n—»5n—>1

where for y1 = (yu1, . . ., pin) € Z", we define the translation element t,, € S,, by t,(i) = nju; + i
for 1 <i<n. The map S,, — S, is evident. We can give a splitting map S,, — Sy, by extending a
permutation 7 : [n] — [n] periodically. By this splitting, we have S, ~ S, x Z", so every f € S,
can be uniquely factorized as f =w t, with w € S, and p € Z".

An affine permutation f € S, is written in one-line notation as [ - - f(1)f(2) - -- f(n)---] (or
occasionally just as [f(1)f(2) - - - f(n)]). As explained in § 1.2, jugglers instead list one period of
the periodic function f(i) —4 (without commas, because very few people can make 10-throws’
and higher), and call this the siteswap. We adopt the same conventions when multiplying affine
permutations as for usual permutations. The ball number av(f) = (1/n) > i, (f(i) — i) is always
an integer; indeed av(w t,) =av(t,) =), i;. Define

Sp={f € Sulav(f) =k} =555}

so that 5’2 = ker av is the Coxeter group with simple generators sg, s1, . . ., Sn—1, usually called
the affine symmetric group.'’ Note that if f € 5‘3 and g € S’Z then the product fg is in S’fﬁb.
There is a canonical bijection f+ f o (i+— i+ b— a) between the cosets 5’;‘{ and Sg The group
32 has a Bruhat order ‘<’ because it is a Coxeter group Z;le This induces a partial order on
each 5¢, also denoted <.

An inversion of f is a pair (i, j) € Z x Z such that i <j and f(i) > f(j). Two inversions
(i,7) and (¢, j") are equivalent if i’ =i+ rn and j' = j + rn for some integer r. The number
of equivalence classes of inversions is the length ¢(f) of f. This is sort of an ‘excitation
number’ of the juggling pattern; this concept does not seem to have been studied in the juggling
community (though see [ER96]).

An affine permutation f € S¥ is bounded if i < f(i) < i+ n for i € Z. We denote the set of
bounded affine permutations by Bound(k, n). The restriction of the Bruhat order to Bound(k, n)
is again denoted <.

LEMMA 3.6. The subset Bound(k,n) C S¥ is a lower order ideal in (S*

", <). In particular,
(Bound(k, n), <) is graded by the rank function ((f).

Proof. Suppose f € Bound(k, n) and g < f. Then g is obtained from f by swapping the values of
i+ kn and j + kn for each k, where i < j and f(i) > f(j). By the assumption on the boundedness
of fywehavei+n> f(i)> f(j)=g(t)=2j>iand j+n>i+n>= f(i)=g(j) > f(j) = j. Thus
g € Bound(k, n). O

Postnikov, in [Pos05b, §13], introduces ‘decorated permutations’. A decorated permutation
is an element of S,, with each fixed point colored either 1 or —1. There is an obvious
bijection between the set of decorated permutations and [[;_, Bound(k, n): given an element
f € Bound(k, n), form the corresponding decorated permutation by reducing f modulo n and
coloring the fixed points of this reduction —1 or 1 according to whether f(i) =i or f(i) =i+ n
respectively. In [Pos05b, §17], Postnikov introduces the cyclic Bruhat order, C' By, on those

9 The few that do sometimes use A, B, . .. to denote throws 10, 11, . . . , which prompts the question of what words
are jugglable. Michael Kleber informs us that THEOREM and TEAKETTLE give valid juggling patterns.

10 One reason the subgroup 59 is more commonly studied than S, is that it is the Coxeter group An_1; its
relevance for us, is that it indexes the Bruhat cells on the affine flag manifold for the group SLy. In §7 we will be
concerned with the affine flag manifold for the group GL,,, whose Bruhat cells are indexed by all of S,,.
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F1GURE 1. The posets of siteswaps, bounded affine permutations, and decorated permutations
for Gr(2,4), each up to cyclic rotation. (The actual posets each have 33 elements.)

2

decorated permutations corresponding to elements of Bound(k, n). From the list of cover relations
in [Pos05b, Theorem 17.8], it is easy to see that C By, is anti-isomorphic to Bound(k, n).

Ezample 3.7. In the Gr(2,4) case there are already 33 bounded affine permutations, but only
10 up to cyclic rotation. In Figure 1 we show the posets of siteswaps, affine permuations, and
decorated permutations, each modulo rotation. Note that the cyclic symmetry is most visible on
the siteswaps, and indeed jugglers draw little distinction between cyclic rotations of the ‘same’
siteswap.

3.3 Sequences of juggling states
A (k,n)-sequence of juggling states is a sequence J = (J1,...,J,) € ([Z})n such that for
each i € [n], we have that J; 11 U —N follows J; U —N, where the indices are taken modulo n. Let
Jugg(k, n) denote the set of such sequences.

Let f € Bound(k, n). Then the sequence of juggling states

,st(f, —1), st(f, 0),st(f, 1), ...
is periodic with period n. Furthermore for each i € Z:
(a) =N Cst(f,4); and
(b) st(f,d) N [n] e (7).
Thus
J(f)=(st(f,0)N[n],st(f,1)Nn],...,st(f,n—1)N[n]) € Jugg(k,n).
LEMMA 3.8. The map f— J(f) is a bijection between Bound(k, n) and Jugg(k,n).

We now discuss another way of viewing (k, n)-sequences of juggling states which will be useful
in §5.1. Let .S be a k-ball virtual juggling state. For every integer j, define

R;j(S)=k—#{zeS:z>j}
These {R;} satisfy the following properties:
— R;j(S) — Rj—1(95) is either 0 or 1, according to whether j & J or j € J respectively;
— R;(S) =k for j sufficiently positive; and
— R;(S) =j for j sufficiently negative.

Conversely, from such a sequence (R;) one can construct a k-ball juggling state.
Let S7 and Sy be two k-ball juggling states. Define a 2 x oo matrix (r;;) by rij = Rj—i+1(5:).
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LEMMA 3.9. The state So can follow Sy if and only if r1; —r9; =0 or 1 for all j € Z and there
is no 2 x 2 submatrix for which r1j =r2j = ry(j11) = r1(j41) — L.

Proof. 1t is easy to check that Sy = sI_lSl U {t} if and only if r1; = ro; + 1 for j <t and r1; =195
for j >t + 1. If this holds, it immediately follows that ri; —rg; =0 or 1 for all j and that there
is no j for which ry; = ro; while ry¢; 11y =71(41) — 1.

Conversely, suppose that 71; —72; =0 or 1 for all j€Z and there is no j for which
T1j =725 = To(j+1) = T1(j+1) — 1. Then we claim that there is no j for which 71; =rg; and
T(j+1) = T1(j+1) — 1. To prove this claim, suppose there were. If ro(;, 1) = ra;, then we are done
by our hypothesis; if ro(; 1) = ro; then r1(;11) =715 + 2, contradicting that r1(;;1) —r1; =0 or 1.
Since 79(j11) — r2; =0 or 1, we have a contradiction either way. This establishes the claim. Now,
we know that r1; = 7o, for j sufficiently positive and r1; =79 + 1 for j sufficiently negative, so
there must be some ¢ such that r1; =rg; + 1 for j <t and r1; =ry; for j > ¢+ 1. Then S can
follow S7. O

It is immediate to extend this result to a sequence of juggling states. Let G be the group
of juggling functions introduced in §3.1 and let G®=* be those juggling functions with ball
number k. For any f in G*=* let J(f) = (Ji, Jo, . . ., Jn) be the corresponding (k, n)-sequence of
juggling states. Define an oo x oo matrix by r;; = R(j_i;1)(Ji U —N). Then, applying Lemma 3.9
to each pair of rows of (r;;) gives the following corollary.

COROLLARY 3.10. The above construction gives a bijection between G®=F and co x oo matrices
such that:
(C1) for each i, there is an m; such that r;; =j —i+ 1 for all j < m;;
(C2) for each i, there is an n; such that r;; =k for all j > n;;
(C3) 745 — 7(i41); €10, 1} and 75 — 7351y € {0, 1} for all i, j € Z; and
(C4) i raray-1) = TGr1); = rig-1) then rij =r 1) G-1)-
Under this bijection, 7;j = 7(;41y; = Ti(j—1) > T(i+1)(j—1) if and only if f(i) =
ProrosiTiON 3.11. Let f, g € S’; C G*=F and let r and s be the corresponding matrices. Then
f < g (in Bruhat order) if and only if r;; > s;; for all (i, j) € Z>.
Proof. See [BB05, Theorem 8.3.1]. O
When 74 = r(;11y; = Ti(j—1) > T(i41)(j—1), We say that (i, j) is a special entry of r.
An easy check shows the following.

COROLLARY 3.12. Under the above bijection, Bound(k, n) corresponds to oo X oo matrices such
that:

)
(C2') rij=kforalj>i+n—1;
(C3) rij —r(iy1); €10, 1} and 755 — rij_1) € {0, 1} for all i, j € Z;
(04) 1f7“(2+1)(]_1) = (H—l)] = z(]—l) then Tij = T(i-i—l)(j—l):' and
(C5) 7 (im)(i4n) = Tij-

We call a matrix (r;;) as in Corollary 3.12 a cyclic rank matrix. (See [Fu92] for the definition
of a rank matrix, which we are mimicking.) We now specialize Proposition 3.11 to the case of
Bound(k, n): define a partial order < on Jugg(k, n) by

(Jiy. ooy Jn) < (J1, ..., J}) if and only if J; < J! for each i.

1724

https://doi.org/10.1112/50010437X13007240 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007240

POSITROID VARIETIES: JUGGLING AND GEOMETRY

COROLLARY 3.13. The map f— J(f) is an isomorphism of posets from bounded affine
permutations (Bound(k, n), <) to (k, n)-sequences of juggling states (Jugg(k,n), <).

Proof. One simply checks that the condition r;; > rgj for all j is equivalent to J; < J.. O

Ezample 3.14. Let n=4 and k = 2. Consider the affine permutation [- - - 2358 - - - |, last seen in
Figure 1. Its siteswap is 4112, and the corresponding sequence of juggling states is (14, 13, 12, 12).
Below we list a section of the corresponding infinite permutation matrix and cyclic rank matrix.
Namely, we display the entries (i, j) for 1 <i <4 and i < j < i+ 4. The special entries have been
underlined

0 1

1 1
0 1

O = O
S O O
O = OO
o O O
e
=N NN
NN DN DN

2
2 2
2 2 2

0
0 0 1

In § 1.2 we associated an affine permutation to each k x n matrix M of rank k; a modification
of that rule gives instead a (k, n)-sequence of juggling states. Call a column of M pivotal if it
is linearly independent of the columns to its left. (If one performs Gaussian elimination on M, a
column will be pivotal exactly if it contains a ‘pivot’ of the resulting reduced row-echelon form.)
There will be k pivotal columns, giving a k-element subset of {1, ..., n}; they form the lex-first
basis made of columns from M.

Now rotate the first column of M to the end. What happens to the set of pivotal columns?
Any column after the first that was pivotal still is pivotal, but (unless the first column was all
zeroes) there is a new pivotal column; the new state can follow the previous state. The n cyclic
rotations of M thus give a (k, n)-sequence of juggling states.

3.4 From Q(k,n) to Bound(k, n)
The symmetric group S, acts on Z" (on the left) by
w - (w1,...,wn):(ww—l(l),...ww—l(n)). (1)
Ifwe S, and ¢y, ty €5, are translation elements, we have the following relations in S
whw ' =ttty =ty (2)

Let wp=(1,...,1, 0,..., 0), with k& occurrences of 1, be the kth fundamental weight of
GL(n). Note that t,, € S¥. Now fix (u, w) € Q(k, n), the set of equivalence classes we defined in
§2.3. Define an affine permutation f, ., € Sk by

—1
fu,'w = uty,, w .

The element f,, ., does not depend on the representative [u, w]y of (u, w): if v’ = uz and v’ = wz
for z € S}, X S,,—i then

u'ty, (W)t =uzty,, 2w = ut, . wt = uty,, wt
since z stabilizes wy.

PROPOSITION 3.15. The map (u, w) — fy. is a bijection from Q(k,n) to Bound(k, n).

Proof. We first show that (u, w) — f, ,, is an injection into Sk Suppose that Juw = fuw- 1t
is clear from the factorization S,, ~ S,, X Z" that there is some z € S, X S,_; such that u=u'z
and w = w'z. Using Proposition 2.4, we have [u, w] ~ [u/, w'].
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We now show that for (u,w)e€ Q(k,n), we have f,, € Bound(k,n). Let i€ [1,n] and

a=w"1(i). Then
. u(a ifa>k
Juaw(i) = (@) .
u(a)+n ifa<k.
The boundedness of f;, ,, now follows from Theorem 2.1(i).

Conversely, if f € Bound(k, n) then it is clear from (2) that f has a factorization as

f=ut,w?!

for u, w € S, and w € {0, 1}". Since f € gﬁ, the vector w has k occurrences of 1. By changing u
and w, we may further assume that w = wy and w € Sﬁ?}f. It remains to check that u <; w, which
we do via Theorem 2.1; its condition (ii) is vacuous when w € 5’2}}{“ and checking condition (i) is
the same calculation as in the previous paragraph. O

THEOREM 3.16. The bijection (u, w) — fy. IS a poset isomorphism from the pairs (Q(k, n), <)
to bounded affine permutations (Bound(k, n), <). Furthermore, one has {(fuw) = (}) — {(w) +
0(u).

Proof. Tt is shown in [Wil07] that (Q(k,n), <) is a graded poset, with rank function given by
p({u, w)) =k(n — k) — ({(w) — £(u)). It follows that each cover in Q(k, n) is of the form

(i) (u, w’) > (u, w) where w’' < w; or

(i) (v, w) > (u, w) where u < u’.
We may assume that w € S™8 (Proposition 2.3). Suppose we are in case (i). Then w’ = w(ab)
where a <k <b and w(a) > w(b) Here (ab) € S,, denotes the transposition swapping a and b.
Thus fuw = fuw(w(a)w(b)). Using the formula in the proof of Proposition 3.15, we see that
Juw(w(a)) >n while f, ,(w(b)) <n. Thus fuw > fuw-

Suppose we are in case (ii), and that v’ = u(ab) where a < b and u(a) < u(b). It follows that
fuwr = (u(a)u(b)) fuw. Suppose first that a < k < b. Then (t,,)"!(a) = a — n, while (t,)"*(b) = b
so we also have fy . = fuw((w(a) —n)w(b)) where w(a) —n is clearly less than w(b). Thus
fuw > fuw- Otherwise suppose that a,b>k (the case a,b<k is similar). Then f, ., =
fuw(w(a)w(b)). Since w € ng}ﬁn, we have w(a) < w(b). Again we have fy, o > fuw-

We have shown that (v, w’) > (u, w) implies fy/ v = fuw. The converse direction is similar.

The last statement follows easily, using the fact that both of the posets (Q(k,n), <) and
(Bound(k, n), <) are graded. O

3.5 Shellability of Q(k, n)
A graded poset P is Eulerian if for any x <y € P such that the interval [z, y| is finite we have
p(z, y) = (—1)rank(@)—rank(y) where 1 denotes the Mdbius function of P. A labeling of the Hasse
diagram of a poset P by some totally ordered set A is called an EL-labeling if for any x <y € P:
(i) there is a unique label-(strictly)increasing saturated chain C' from x to y;
(ii) the sequence of labels in C' is A-lexicographically minimal amongst the labels of saturated
chains from x to y.

If P has an EL-labeling then we say that P is EL-shellable.

Verma [Ver71] has shown that the Bruhat order of a Coxeter group is Eulerian. Dyer [Dye93,
Proposition 4.3] showed the stronger result that every Bruhat order (and also its dual) is EL-
shellable. (See also [BW82].) Since these properties are preserved under taking convex subsets,
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Lemma 3.6, Corollary 3.13 and Theorem 3.16 imply the following result, proved for the dual of
(Q(k,n), <) by Williams [Wil07].

COROLLARY 3.17. The posets (Q(k,n), <), (Bound(k,n), <), and (Jugg(k,n), <), and their
duals are Fulerian and EL-shellable.

Remark 3.18. Williams’ result is stronger than Corollary 3.17: in our language, she shows that
the poset Q(k, n), formed by adding a formal maximal element 1 to Q(k, n), is shellable.

3.6 Positroids
A matroid M on [n] with rank k is a non-empty collection of k-element subsets of [n], called
bases, satisfying the unique minimum axiom: for any permutation w € S, there is a unique
minimal element of w - M, in the partial order < on ([Z]). This is only one of many equivalent
definitions of a matroid; see [Bry86] for a compendium of many others, in which this one appears
as Axiom B2(®).

Let M be a matroid of rank k on [n]|. Define a sequence of k-element subsets J(M) =
(J1,J2, ..., Jn) by letting J, be the minimal base of x~"*!(M), which is well defined by
assumption. Postnikov proved the following lemmas, in the terminology of Grassmann necklaces.

LEMMA 3.19 [Pos05b, Lemma 16.3]. For a matroid M, the sequence J (M) is a (k, n)-sequence
of juggling states.

Let J = (J1, Jo, ..., Jy) € Jugg(k, n). Define
o= {re (B)crrin ).

LEMMA 3.20 [Pos05b, Ohll]. Let J € Jugg(k,n). Then M 7 is a matroid and J(Mg)=J.
The matroids M s are called positroids.

ProPOSITION 3.21. The maps J — My and M — J(M) are inverse isomorphisms between
the poset Jugg(k, n) and the poset of positroids; J(M1) < J(My) if and only if M1 D Ma.

Proof. The composition J +— Mz +— J(M7) is the identity by the above lemma and, since the
set of positroids is defined as those matroids of the form M 7, the compositions are inverse in
the other order as well.

It is easy to see from the definitions, that M; O My implies J(M;) < J(Ms3) and that
J1 < Jo implies M 7, O M 7,. Since these correspondences are inverse, then J; < J2 if and only
it Mgz DMy, |

If M is an arbitrary matroid, then we call the positroid M 7, the positroid envelope of
M (see the discussion before Remark 1.1). Every positroid is a matroid. The positroid envelope
of a positroid is itself.

Ezample 3.22. Let M; and Ms be the matroids {12, 13, 14, 23,24,34} and {12, 23, 34, 14}.
In both cases, J(M;) is (12,12,12,12) and, thus, M; is the positroid envelope of both

M; and Ms. The corresponding affine permutation is [---3456---]. On the other hand, if
My ={12,13, 14, 23, 24}, then J(M3) = {12, 12, 13, 12}, with corresponding affine permutation
[--3546---].

Remark 3.23. Postnikov [Pos05b] studied the totally nonnegative part Gr(k,n)so of the
Grassmannian. Each point V' € Gr(k, n)>o has an associated matroid My . Postnikov showed
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that the matroids that can occur this way, called positroids, were in bijection with Grassmann
necklaces of type (k,n) (similar to our (k,n)-sequences of juggling states), with decorated
permutations of [n] with k anti-exceedances, and with many other combinatorial objects.
Oh [Ohl1], proving a conjecture of Postnikov, showed that positroids can be defined in the
way we have done.

4. Background on Schubert and Richardson varieties

We continue to fix nonnegative integers k and n, satisfying 0 < k < n. For S any subset of [n],
let Projectg : C"* — C* denote the projection onto the coordinates indexed by S. (So the kernel
of Projectg is Spanggg €s.)

4.1 Schubert and Richardson varieties in the flag manifold
Let F4(n) denote the variety of flags in C". For a permutation w € S,,, we have the Schubert
cell

X, = {G. € F(n) | dim(Projecty; (G;)) = #{w([z]) N [j]} for all 4, j}
and Schubert variety

X, = {Ga € Fi(n) | dim(Project;; (G;)) < #{w([i]) N [j]} for all 4, j}

which both have codimension ¢(w); moreover X, = Xo. (For basic background on the
combinatorics of Schubert varieties, see [Fu92] or [MS05, ch. 15].) We thus have

— I X and X, =] X
wEeS, V2w

Similarly, we define the opposite Schubert cell
¥ = {G. € Fi(n) | dim(Projecty, ;1 ,(G:)) = #{w (i) N [n — j + 1, ]} for all i, j}
and opposite Schubert variety
Y ={G. € Fl(n) | dim(Project|, j,1,)(Gi)) < #{w([i]) N[n — j+ 1, n]} for all 4, j}.

It may be easier to understand these definitions in terms of matrices. Let M be an n x n
invertible matrix and let G; be the span of the top ¢ rows of M. Then G, is in X (respectively,

Xy), if and only if, for all 1 < ¢, j < n, the rank of the top-left i x j submatrix of M is the same as
(respectively, less than or equal to) the rank of the corresponding submatrix of the permutation
matrix w. Similarly, G, is in X¥ (respectively X™) if the ranks of the top right submatrices of
M are equal to (respectively less than or equal to) those of w. (The permutation matrix of w
has 1 in positions (i, w(i)) and 0 elsewhere.)

Define the Richardson varieties as the transverse intersections

XY=X,NX" and X"=X,NX,.

The varieties XY and X W are nonempty if and only if v < w, in which case each has dimension
l(w) — £(v). Let E, be the flag (Span(e;), Span(eq, e2), . . .). The coordinate flag vE, is in X7 if
and only if u <v < w.

We will occasionally need to define Schubert cells and varieties with respect to a flag
Fo. We set

Xu(Fa) ={Ga € Fe(n) | dim(Gi/(Gi N Foy)) = #{w((i]) N [j]} for all 4, j}
and define X,,(F,) by replacing = with <. Warning: under this definition X,, is Xy, (woFE.).

1728

https://doi.org/10.1112/50010437X13007240 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007240

POSITROID VARIETIES: JUGGLING AND GEOMETRY

4.2 Schubert varieties in the Grassmannian
Let Gr(k,n) denote the Grassmannian of k-planes in C”, and let 7 : F'¢(n) — Gr(k, n) denote
the natural projection. For I € ([Z]), we let

X1 ={V € Gr(k, n) | dim Project;;; (V) = #(I N [5])}
denote the Schubert cell labeled by I and
X1 ={V € Gr(k, n) | dim Project; (V) < #(I N [j])}

the Schubert variety labeled by I.
Thus we have 7(Xy) = Xy () and

Gr(k,n): H )O([ and XJ:HX[.
re() 1>

We define
X! = {V € Gr(k, n) | dim Projecty,_; 1 (V) =#{ N[n—j+1,n])},
X1 ={V € Cr(k,n) | dim Projecty,_j1,,(V) <#(UI N[n—j+1,n))}

So, for J € ([Z}), the k-plane Span;¢ ; e; lies in X if and only if I < J, and lies in XX if and
only if J < K.

To review: if v and w lie in S,,, then X, is a Schubert variety, X" an opposite Schubert and
X a Richardson variety in F/¢(n). If I and J lie in ([Z]), then X7, X7/ and X/ mean the similarly
named objects in Gr(k, n). (Note that permutations have lower case letters from the end of the
alphabet while subsets have upper case letters chosen from the range {I, J, K'}.) The symbol X
would indicate that we are dealing with an open subvariety, in any of these cases.

5. Positroid varieties

We now introduce the positroid varieties, our principal objects of study. Like the Schubert
and Richardson varieties, they will come in open versions, denoted ﬁ, and closed versions,
denoted II.1! The positroid varieties will be subvarieties of Gr(k, n), indexed by the various posets
introduced in § 3. For each of the different ways of viewing our posets, there is a corresponding
way to view positroid varieties. The main result of this section will be that all of these ways
coincide. Again, we sketch these results here and leave the precise definitions until later.

Given [u, w]g, representing an equivalence class in Q(k, n), we can project the Richardson
variety X}f (respectively X») to Gr(k,n). Given a (k,n)-sequence of juggling states
(J1, Ja, ..., Jn) € Jugg(k, n), we can take the intersection () x* !X, (respectively (] x*1X,)
in Gr(k,n). (Recall x is the cyclic shift [234...n1].) Given a cyclic rank matrix r, we can
consider the image in Gr(k, n) of the space of k x n matrices such that the submatrices made
of cyclically consecutive columns have ranks equal to (respectively, less than or equal to) the
entries of . Given a positroid M, we can consider those points in Gr(k,n) whose matroid has
positroid envelope equal to (respectively, contained in) M.

THEOREM 5.1. Choose our [u, w|g, (J1,...,Jn), r and M to correspond by the bijections in
§3. Then the projected open Richardson variety, the intersection of cyclically permuted open

' Note that IT stands for ‘positroid’, ‘Postnikov’, and ‘projected Richardson’.
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Schubert varieties, the space of matrices obeying the rank conditions, and the space of matrices
whose matroids have the required positroid envelope, will all coincide as subsets of Gr(k, n).

The equalities of the last three spaces is essentially a matter of unwinding definitions. The
equality between the projected open Richardson variety, and the space of matrices obeying the
cyclic rank conditions, is non-trivial and is checked in Proposition 5.4.

We call the varieties we obtain in this way open positroid varieties or positroid varieties
respectively, and denote them by IT or IT with a subscript corresponding to any of the possible
combinatorial indexing sets.

The astute reader will note that we did not describe how to define a positroid variety using
a bounded affine permutation (except by translating it into some other combinatorial data).
We hope to address this in future work using the geometry of the affine flag manifold. The
significance of bounded affine permutations can already be seen in this paper, as it is central in
our description in § 7 of the cohomology class of II.

5.1 Cyclic rank matrices
Recall the definition of a cyclic rank matrix from the end of §3.1. As we explained there, cyclic
rank matrices of type (k, n) are in bijection with Bound(k, n) and hence with Q(k,n) and with
bounded juggling patterns of type (k, n).

Let V € Gr(k, n). We define an infinite array ree(V) = (13;(V)); jez of integers as follows: for
i>j, we set r;;(V)=j—1i+1 and for ¢ < j we have

r;5(V) = dim(Projecty; ;11, j3(V))

where the indices are cyclic modulo n. (So, if n=25, i =4 and j =6, we are projecting onto
Span(ey, €5, e1).) Note that, when j > i+ n — 1, we project onto all of [n]. If V' is the row span
of a k x n matrix M, then r;j(V) is the rank of the submatrix of M consisting of columns 1,
S

5.2 Positroid varieties and open positroid varieties
LEMMA 5.2. Let V € Gr(k,n). Then ree(V) is a cyclic rank matrix of type (k, n).

Proof. Conditions (C1), (C2'), and (C5) are clear from the definitions. Let M be a k x n matrix
whose row span is V; let M; be the ith column of M. Condition (C3) says that adding a column
to a matrix either preserves the rank of that matrix or increases it by one. The hypotheses of
condition (C4) state that M; and M; are in the span of M; 1, M;io, ..., Mj_1; the conclusion
is that dim Span(M;, M1, ..., M;_1, M;) = dim Span(M;41, ..., Mj_1). O

For any cyclic rank matrix 7, let II, be the subset of Gr(k: n) consisting of those k-planes
V with cyclic rank matrix r. We may also write Hf, 1T 7 or Hw where f is the bounded
affine permutation, J the juggling pattern or (u, w) the equivalence class of k-Bruhat interval
corresponding to r.

The next result follows directly from the definitions. Recall that x =[23---(n — 1)nl] € S,
denotes the long cycle.

LEMMA 5.3. For any J = (J1, Ja, ..., Jp) € Jugg(k, n), we have
My =X, Nx(X) 00" (X))
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By Lemma 5.2 and our combinatorial bijections, we have

Gr(k,n) = H 1.
J€Jugg(k,n)

We call the sets 117 open positroid varieties. Postnikov [Pos05b] showed that IT; (and even
(IL7)>0) is nonempty if J € Jugg(k, n) (this statement also follows from Proposition 5.4 below).

We define the positroid varieties Il 7 to be the closures Il 7 := I1 e

5.3 From Q(k, n) to cyclic rank matrices
We now describe a stratification of the Grassmannian due to Lusztig [Lus98], and further
studied by Rietsch [Rie06]. (This stratification was also independently discovered by Brown
et al. [ BGY06, GY09], motivated by ideas from Poisson geometry; we will not discuss the Poisson
perspective further in this paper.) Lusztig and Rietsch’s work applies to any partial flag variety,
and we specialize their results to the Grassmannian.

The main result of this section is the following proposition.

PROPOSITION 5.4. Let u <j w, and fy., be the corresponding affine permutation from § 3.4.
Recall that X¥ denotes the open Richardson variety in F¢(n) and m the map F{(n) — Gr(k,n).
Then 11y = 7(X}7).

Remark 5.5. If u<w, but ug, w, then 7(X¥) may not be of the form fIf. See [KLS,
Remark 3.5].

The projection 7(X?) depends only on the equivalence class of [u, w];, in Q(k, n).
PropPOSITION 5.6 [KLS, Lemma 3.1]. Suppose [u, w]; ~ [u/,w']y in Q(k,n). Then W(Xf,f’) =
m(Xy).

We now introduce a piece of notation which will be crucial in the proof of Proposition 5.4,
but will then never appear again. Let V' € Gr(k, n). Given a flag F, in C", we obtain another flag
Fo(V) containing V' as the kth subspace, as follows. Take the sequence Fo NV, i NV,... . F, NV
and remove repetitions to obtain a partial flag Fo NV inside C”, with dimensions 1, 2,...k.
Next take the sequence V + Fy, V 4+ F1, V + F5, ...,V + F,, and remove repetitions to obtain a
partial flag Fy + V inside C" of dimensions k, k+ 1,...,n. Concatenating Fe NV and Fy +V
gives us a flag Fo(V) in C™. The flag F¢(V) is the ‘closest’ flag to Fe which contains V' as the
kth subspace. This notion of ‘closest flag’ is related to the notion of ‘closest Borel subgroup’
in [Rie06, § 5], and many of our arguments are patterned on arguments of [Rie06].

LEMMA 5.7. Let w be a Grassmannian permutation. Let Fy be a complete flag and let V = F},.
Then Fy € X"V if and only if:

(i) Ve X°®); and
(il) Fo=FEo(V).
Proof. The flag F, is in X" if and only if, for every ¢ and j,
dim(F; N E;) = #(w([i]) N [j]) or, equivalently, dim(F; + E;) = (i + j) — #(w([i]) N [4]).

When i =k, the equation above is precisely the condition that V € Xow), Therefore, when
proving either direction of the equivalence, we may assume that V € X7®).
Since V € Xo(w),

Eo(V)=(Ewa)yNV, By NV, ..., Eyay NV, Eyey1) + Vi Byera) + Voo oo Eymy + V).
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Let i <k. If F, € X%, then dim(F; N E,;)) = #(w([i]) N [w(i)]) =4, where we have used
that w is Grassmannian. However, F; N Ey,;) €V N E,;), which also has dimension i because
VeXxew SoF, X" implies that F; =V N Ey;). Similarly, for 7 > k, the equation dim(F; +
Ey@)) =i+ w(i) — #(w([i]) N [w(i)]) implies that F; = E,q + V. So, if F, € X* then F, =
E.(V). The argument is easily reversed. O

LEMMA 5.8. Let w be a Grassmannian permutation, with u < w and let V € Gr(k, n). Then
V e n(XY) if and only if

Eo(V)i=VNEyuu for1<i<k (3)
Ee(V)i=V + Eyy fork<i<n (4)

and
E. (V) € X,. (5)

Proof. By definition, V € W(Xff) if and only if there is a flag Fy with V = F, and F, € X, N X",
By Lemma 5.7, this flag F,, should it exist, must be Eo(V'). By Lemma 5.7, Eq lies in X
if and only if V lies in X So Eevy € X, N X" if and only if V € X°®) and E.(V) e X
Now, conditions (3) and (4) determine the dimension of V' N E,; for all i. They are precisely

the condition on dim(V N w(j)) occurring in the definition of X7(). So conditions (3)-(5) are
equivalent to the condition that V € X°®) and E,(V) € X,. O

Proof of Proposition 5.4. First, note that by Proposition 5.6, and the observation that f, ., only
depends on the equivalence class (u,w) in Q(k,n), we may replace (u,w) by any equivalent
pair in Q(k, n). We may thus assume that w is Grassmannian (Proposition 2.3). By Lemma 5.8,
V e m(X¥) if and only if conditions (3)~(5) hold.

Suppose that V € 7(X¥). Let r=r¢(V). Let a €Z and let b= fuw(a); without loss of
generality we may assume that 1 < a <n. Set i =w~!(a). We now check that (a, b) is a special
entry of r.

Case 1: i ¢ [k]. In this case f, . (a) = ut,, w='(a) € [n]. Since f, ., € Bound(k, n), we deduce
that a < b < n. (Occasionally, our notation will implicitly assume a < b, we leave it to the reader
to check the boundary case.) By conditions (4) and (5),

dim Projecty, (V' + Eq) = #(u([i]) N [b]).
We can rewrite this as
dim(V + E, + woE,—p) = (n — b) + #(u([7]) N [b])
or, again,
dim Project(, 11 (V) = #(u([i]) N [b]) — a.
(We have used a < b < n to make sure that dim E, + woE,_y =n — b+ a.) In conclusion,
T(at+1)p = #(u([i]) N [b]) — a.
A similar computation gives us
Ta+1)0-1) = #(u(li]) N [b = 1]) —a.

We now wish to compute r4, and 74(,—1). This time, we have V + E, 1 = E¢(V);—1. So we
deduce from condition (4) that

rab = #(u([i = 1)) N [o]) — (a — 1)
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and

rap—1) = #(u([i = 1)) N [b—1]) — (a — 1).

Now, u(i) = u(w~(a)) = b. So, T(a+1)b — T(a4+1)(b—1) = 1 and, since b € u([i — 1]), we also have
Tab — Ta(b—1) = 0. So (a, b) is special as claimed.

Case 2: i € [k]. In this case, b=u(i)+n and n+1<b<a+n. We mimic the previous
argument, using V N E, N woFEs,_p in place of V + E, + woFE,_p; the conclusion again is that
(a,b) is a special entry of r.

We have now checked, in both cases, that (a, b) is a special entry of r. Therefore, the affine
permutation g associated to r has g(a) = b. Smce fuw(a) =b, we have checked that f, ., =g. We
have thus shown that, if V € 7(X?), then V € Hfu -

We must now prove the converse. Let ree(V') = 7(fyw)- Let (v, w’) be such that E,(V) € X,
so we know that V € 7(X%'). By Lemma 5.7, w’ is Grassmannian. So 7ee(V) = 7(fu ) and
Juw w = Juw- However, by Proposition 3.15, this shows that [u, w]; and [v/, w']}, represent the
same element of Q(k,n). Since w and w’ are both Grassmannian, this means that v =" and
w=w',and V € (XY as desired. O

5.4 Positroid varieties are projected Richardson varieties
Lusztig [Lus98] exhibited a stratification [] P,y ) of Gr(k,n) indexed by triples (u, v, w) €
mMAX % (S X Spg) X SMN satisfying u < wv, and showed that his strata satisfy

P(u,'u,w) = ﬂ_(j’(;uv) = 77( O;val)'

Furthermore, the projection 7 : F¢(n) — Gr(k, n) restricts to an isomorphism on X}j’” Using the
bijection between the triples (u, v, w) and Q(k, n) (see §2.3), the following theorem thus follows
from Proposition 5.4.

THEOREM 5.9. The stratification of Gr(k, n) by open positroid varieties is identical to Lusztig’s
stratification. If f = fy. corresponds to (u,w) under the bijection Q(k,n)— Bound(k,n) of
§3.4, then m(XY) = Hf The varieties 11y and Hf are irreducible of codimension ¢(f), and ﬁf
is smooth. For any Richardson variety X', whether or not u < w, the projection mw(X¥) is a
closed positroid variety.

Proof. Open Richardson varieties in the flag manifold are smooth and irreducible (by Kleiman
transversality). Lusztig’s strata are, by definition, the projected open Richardson varieties,
which we have just showed are the same as the open positroid varieties. Lusztig shows that
7 restricted to X is an isomorphism on its image, so dim Iy =dim X} = (w) — {(u) and II;
is irreducible. By Theorem 3.16, {(w) — ¢(u) = k(n — k) — £(f), so ﬁf has codimension ¢(f), as
does its closure IIy.

See [KLS, Proposition 3.3] for the fact that the projection of any Richardson X¥ is equal to
the projection of some X% with ' anti-Grassmannian. O

For u <j w, we shall call X} a Richardson model for IT;, . We refer the reader to [KLS]
for a discussion of projections of closed Richardson varieties. In particular, for any u < w
(not necessarily a k-Bruhat relation) there exists a bounded affine permutation f such that
(X)) =1ly.

Postnikov [Pos05b] parametrized the ‘totally nonnegative part’ of any open positroid variety,
showing that it is homeomorphic to an open ball. Before one knows that positroid varieties

are actually irreducible, one can use this parametrizability to show that only one component
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intersects the totally nonnegative part of the Grassmannian. A priori there might be other
components, so it is nice to know that in fact there are not.
We now describe the containments between positroid varieties in the following theorem.

THEOREM 5.10. Open positroid varieties form a stratification of the Grassmannian. Thus for
f € Bound(k, n) we have

Oy =[] 1y =X nx(X) N -nx™ H(X,)
r'=f

where (Jy, Ja, . .., Jp) € Jugg(k, n) corresponds to f.
Proof. Rietsch [Rie06] described the closure relations of Lusztig’s stratification of partial flag
varieties; see also [BGY06]. The first equality is Rietsch’s result, translated from the language
of Q(k, n) to Bound(k, n).

We know that X;=]];.; X;. Using this to expand the intersection X, N x(X ) N---N
X" 1(X,) and applying Lemma 5.3 gives the second equality. O

We note that Postnikov [Pos05b] also described the same closure relations for the totally
nonnegative Grassmannian, using Grassmann necklaces and decorated permutations.
For a matroid M let

GGMS(M) = {V € Gr(k, n) | Af(V) £ 0 <= I € M}

denote the GGMS stratum of the Grassmannian [GGMS87]. Here for I € ([Z]), At denotes the
Pliicker coordinate labeled by the columns in I. Recall that in § 3.6, we have defined the positroid
envelope of a matroid. It is easy to see that

= J[ GGMswm).
MI(M)=J(f)
PROPOSITION 5.11. Let M be a positroid. Then GGMS(M) is dense in ﬁJ(M).

Proof. Suppose f € Bound(k, n) is such that J(f) = J(M). Postnikov [Pos05b] showed that the
totally nonnegative part GGMS(M)xo of GGMS(M) is a real cell of dimension k(n — k) — £(f).
Thus GGMS(M) has at least dimension k(n — k) — £(f). By Theorem 5.9 II ¢ is irreducible with
the same dimension. It follows that GGMS(M) is dense in II T(M)- O

COROLLARY 5.12. Let M be a positroid. Then, as sets,
Hromy = GGMS(M) ={V € Gr(k,n) | I ¢ M= A;(V)=0}.

Proof. The first equality follows from Proposition 5.11. The second follows from Theorem 5.10
and the description of Schubert varieties by vanishing of Pliicker coordinates:

X;={VeGrlk,n)|I<ao(J)= A (V)=0} 0

Consider the set on the right-hand side of the displayed equation in Corollary 5.12. Lauren
Williams conjectured that this set was irreducible; this now follows from Corollary 5.12 and
Theorem 5.9.

5.5 Geometric properties of positroid varieties
The following results follow from Theorem 5.9 and the geometric results of [KLS].

THEOREM 5.13. Positroid varieties are normal, Cohen—Macaulay, and have rational
singularities.
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THEOREM 5.14. There is a Frobenius splitting on the Grassmannian that compatibly splits all
the positroid varieties therein. Furthermore, the set of positroid varieties is exactly the set of
compatibly split subvarieties of the Grassmannian.

THEOREM 5.15. Let M be a positroid. Then the ideal defining the variety Il 7(x inside Gr(k, n)
is generated by the Pliicker coordinates {Ar: I ¢ M}.

Proof. By Theorem 5.10, II 7o) is the set-theoretic intersection of some permuted Schubert
varieties. By the Frobenius splitting results of [KLS], it is also the scheme-theoretic intersection.

Hodge proved that Schubert varieties (and hence permuted Schubert varieties) are defined
by the vanishing of Pliicker coordinates. (See e.g. [Ram87], where a great generalization of this is
proven using Frobenius splitting.) The intersection of a family of them is defined by the vanishing
of all their individual coordinates.

As explained in [FZ00, Proposition 3.4], it is easy to determine which Pliicker coordinates
vanish on a T-invariant subscheme X of the Grassmannian; they correspond to the fixed points
not lying in X. O

COROLLARY 5.16. Let M be a positroid. Embed Gr(k, n) into p(i)-1 by the Pliicker embedding.
Then the ideal of Il 75 in p()-1 js generated in degrees 1 and 2.

Proof. By Theorem 5.15, the ideal of Il 75 is the sum of a linearly generated ideal and the
ideal of Gr(k, n). It is classical that the ideal of Gr(k, n) is generated in degree 2. O

Remark 5.17. For a subvariety X C G/P CPV of a general flag manifold embedded in the
projectivization PV of an irreducible representation, one can ask whether X is defined as a
set by the vanishing of extremal weight vectors in V. This is easy to show for Schubert varieties
(see [FZ00]) and more generally for Richardson varieties.

Since the above corollary proves this property for positroid varieties, and [FZ00] prove it for
Richardson varieties in G/ B, one might conjecture that it would be true for projected Richardson
varieties in other G'/Ps. This is not the case: consider the Richardson variety X{25} projecting
to a divisor in the partial flag manifold {(V; C V3 C C*)}. One can check that the image contains
every T-fixed point, so no extremal weight vector vanishes on it.

For any irreducible T-invariant subvariety X C G/P, the set of T-fixed points X7 C
(G/P)T 2 W/Wp forms a Cozeter matroid [BGWO03], and X is contained in the set where the
extremal weight vectors corresponding to the complement of X7 vanish. If the containment is
proper, as in the above example, one may take this as evidence that the Coxeter matroid is not
a good description of X. We saw a different knock against matroids in Remark 1.1.

6. Examples of positroid varieties

In this section, we will see that a number of classical objects studied in algebraic geometry are
positroid varieties, or closely related to positroid varieties.

First, for any I € ([Z]), the Schubert variety X7 in the Grassmannian is the positroid variety
associated to the positroid {J:J > I}. Similarly, the cyclically permuted Schubert varieties
X' - X1 are also positroid varieties. Similarly, the Richardson varieties X [K are also positroid
varieties, corresponding to the positroid {J: I < J < K}.

Another collection of objects, closely related to Schubert varieties, are the graph Schubert
varieties. Let X, be a Schubert variety in F¢(n). Considering F'¢(n) as B_\GL,, (where B_

is the group of invertible lower triangular matrices), let X/ be the preimage of X,, in GL,,.
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The matrix Schubert variety M X,,, introduced in [Fu92], is the closure of X, in Mat,, x,. We
cut M X, out of Mat,, «,, by imposing certain rank conditions on the top-left justified submatrices
(as was explained in §4.1). Embed Mat,,x, into Gr(n,2n) by the map I" which sends a matrix
M to the graph of the linear map v — M¥; its image is the big cell {A[n] # 0}. In coordinates,
['(M) is the row span of the n X 2n matrix [Id M ] We will abuse notation by also calling this
matrix I'(M). We introduce here the graph Schubert variety, GX,,, as the closure of I'(M X,,)
in Gr(n, 2n). Graph Schubert varieties will be studied further in a separate paper by the first
author (in preparation).

Let us write My ;) (1,5 for the top-left i X j submatrix of M. Then the rank of My ;) 1 ;7 isn — i
less than the rank of the submatrix of I'(M) using rows {i +1,i+2,...,n,n+1,...,n+j}.
So every point of GX,, obeys certain rank bounds on the submatrices of these types. These
rank bounds are precisely the rank bounds imposed by r(f), where f is the affine permutation
fi)=w(i)+n for 1<i<n, f(i)=i+n for n+1<i<2n. So GX,, is contained in Iy, with
equality on the open set I'(Mat,yx,). But II; and GX, are both irreducible, so this shows
that GX,, =IIy. In §7, we will see that cohomology classes of general positroid varieties will
correspond to affine Stanley symmetric functions; under this correspondence, graph Schubert
varieties give the classical Stanley symmetric functions.

The example of graph Schubert varieties can be further generalized [BGY06, §0.7]. Let u
and v be two elements of S,, and consider the affine permutation f(i) =u(i) +n for 1 <i<n,
f(@)=v71(i —n)+ 2n for n + 1 <i < 2n. (So our previous example was when v is the identity.)
Let us look at ITf N T'(Mat,,x,). This time, we impose conditions both on the ranks of the upper
left submatrices and the lower right submatrices. In fact, II ¢ lies entirely within I'(GL,,) and is
['(B_uB4 N ByvB_). This is essentially Fomin and Zelevinsky’s [FZ99] double Bruhat cell.
Precisely, the double Bruhat cell GL;;"" is ByuB; N B_vB_. So the positroid variety Il is the
closure in Gr(n, 2n) of T'(woGLy""ov).

Finally, we describe a connection of positroid varieties to quantum cohomology, which we
discuss further in § 8. For C' any algebraic curve in Gr(k, n), one defines the degree of C' to be its
degree as a curve embedded in p(i)-1 by the Pliicker embedding; this can also be described as
fGr(k’n) [C] - [Xn] where Xp is the Schubert divisor. Let I, J and K be three elements of (}) and
d a nonnegative integer, d < k, such that codim X; + codim X; + codim Xg = k(n — k) + dn.

Intuitively, the (genus zero) quantum product (X;X;Xk)g is the number of curves in
Gr(k,n), of genus zero and degree d, which meet X;(F,), X;(G.) and X (H,) for a generic
choice of flags F,, G4 and H,. This is made precise via the construction of spaces of stable maps,
see [FP97].

Define E(I, J,d) to be the space of degree d stable maps of a genus zero curve with three
marked points to Gr(k, n), such that the first marked point lands in X' and the second marked
point lands in X ;. Let S(I, J, d) be the subset of Gr(k, n) swept out by the third marked point.
It is intuitively plausible that (X; X ;Xg)q is fGr(k’n) [S(I,J,d)] - [Xk] and we will show that,
under certain hypotheses, this holds. We will show that (under the same hypotheses) S(I, J, d)
is a positroid variety.

7. The cohomology class of a positroid variety

Let H*(Gr(k, n)), H;(Gr(k, n)) denote the ordinary and equivariant (with respect to the natural
action of T'= (C*)™) cohomologies of the Grassmannian, with integer coefficients. If X C Gr(k, n)
is a T-invariant subvariety of the Grassmannian, we let [X]o € H*(Gr(k,n)) denote its ordinary
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cohomology class, and [X] € H}(Gr(k, n)) denote its equivariant cohomology class. We also write
[X]|, for the restriction of [X] to a T-fixed point p. We index the fixed points of Gr(k, n) by
([Z]). We use similar notation for the flag manifold F¢(n), whose fixed points are indexed by .S,,.
Recall that 7 : F¢(n) — Gr(k,n) denotes the (T-equivariant) projection.

In [Lam06], a symmetric function F 't € Sym is introduced for each affine permutation f. Let
¥ : Sym — H*(Gr(k, n)) denote the natural quotient map. In this section, we show the following
theorem.

THEOREM 7.1. Let f € Bound(k, n). Then ¢(Fy) = [[I4]o € H*(Gr(k, n)).

7.1 Monk’s rule for positroid varieties
The equivariant cohomology ring H7.(Gr(k, n)) is a module over H}.(pt) = Z[y1, y2, - - . , Yn]. The
ring H}.(Gr(k,n)) is graded with the real codimension, so that deg(y;) =2 and deg([X]r) =
2 codim(X) for an irreducible T-equivariant subvariety X C Gr(k, n).

Let Xp € H7(Gr(k,n)) denote the class of the Schubert divisor. Note that 7*(Xp) e
HZY(FU(n)) is the class [X,] of the kth Schubert divisor. We recall the equivariant Monk’s
formula (see for example [KK86]):

[Xsk] ’ [Xw] = ([Xsk”w) ’ [Xw] + Z [Xv] (6)

W<V

PRroPOSITION 7.2. Let Il be a positroid variety with Richardson model X'. Then

Xo- (M) = (Xolow) - M+ > [y, ] (7)

Here o is the map o1 : S, — ([Z]).
Proof. Let X7 be a Richardson model for IT¢. Then, using the projection formula and (6), we
have in H}(Gr(k, n)),
Xo - [Hy] = m(7*(X0) - [X¥] - [Xu])
— (P 1+ (3 Pl 1)

u<pu’
= (Xolow) - [+ Y m((X9)).
u<pu’
But
My, ] if v <pw,

0 otherwise.

me([Xo]) = { O
COROLLARY 7.3. Let IIy be a positroid variety with Richardson model X7, and let Xp C
Gr(k, n) denote the Schubert divisor. Then, as a scheme,
(U-XD) ﬂHf = U Hf“,’w.

U<pU' <pw
Proof. The containment O follows from Theorem 5.15. The above proposition tells us that the
two sides have the same cohomology class, hence any difference in scheme structure must occur
in lower dimension; this says that (u-Xg) N1l is generically reduced (and has no other top-

dimensional components). But since IIy is irreducible and normal (Theorems 5.9 and 5.13), a
generically reduced hyperplane section of it must be equidimensional and reduced. O
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LEMMA 7.4. The collection of positroid classes [I1¢] € H}(Gr(k, n)) are completely determined
by:

(i) [IIf] is homogeneous with degree deg([I1¢]) = 2((f);

(ii) Proposition 7.2; and

(iii) the positroid point classes {[Il, , | = [o(w)] | w € Smm

Proof. Let f € Bound(k, n). We may assume by induction that the classes [II/] for £(f") > ¢(f)
have all been determined. The case ¢(f) = k(n — k) is covered by assumption (3), so we assume
((f) < k(n — k). Using Proposition 7.2, we may write

(X0 = Xolew) - M= > [, ]

V<V W

Now, the class X — Xpls(,) does not vanish when restricted to any fixed point J # 7 (v)
(see [KT03]), so the above equation determines [II¢]|; for every J # m(v). Thus if @ and b are two
classes in H7(Gr(k,n)) satisfying (7), then a — b must be supported on 7(v). This means that
a — b is a multiple of the point class [7(v)]. But deg([r(v)]) = 2k(n — k) and deg(a) = deg(b) =
U(f) <2k(n — k) so a=b. Thus [II¢] is determined by the three assumptions. O

7.2 Chevalley formula for the affine flag variety
Let .7-"£( ) denote the affine flag variety of GL(n, C). We let {¢f € Hx (.7-"6( )) | f € Sn} denote
the equivariant Schubert classes, as defined by Kostant and Kumar in [KK86].

Now suppose that f e S,. We say that f is affine Grassmannian if f(1) < f(2) <--- <
f(n). For any f € S,, we write f0 € S, for the affine permutation given by fO=[-- g(1)g(2)

- g(n)---] where g(1), g(2), ..., g(n) is the increasing rearrangement of f(1), f(2),..., f(n).
Then f° is affine Grassmannian. Suppose that f < g and f% # ¢°. Then we say that g 0-covers
f and write f < g. These affine analogues of k-covers were studied in [LLMS10].

For a transposition (ab)€ S with a <b, we let Q(qp) (respectively ozE/ab)) denote the
corresponding positive root (respectlvely coroot), which we shall think of as an element of the
affine root lattice Q =@, 17« (respectively affine coroot lattice QY = @?;01 Z- o).
We have (qp) = aq + Qat1 + -+ ap—1, where the «; are the simple roots, and the indices
on the right-hand side are taken modulo n. A similar formula holds for coroots. Note that
Q(ab) = X(a+n,b+n)-

In the following so denotes [- -k, k+2,k+3,...,k+n—1,k+n+1---]€S,.

LEMMA 7.5. Suppose that f € Bound(k, n). Then

g ¢l = SIE ¢+ Z &9 + other terms,
f<og€Bound(k,n)

where the other terms are a linear combination of Schubert classes not labeled by Bound(k, n).

Proof. We deduce this formula by specializing the Chevalley formula for Kac-Moody flag varieties
in [KK86],'? which in our situation states that for any f € S,

g0l =g el 4+ Z <a(vab)’ xo) &9
f<g=F-(ab)

2 The formula in Kostant and Kumar [KK86], strictly speaking, applies to the affine flag variety .7-"6( )o of SL(n).
But each component of .7-'(( ) is isomorphic to .7-'[( )o-
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where xq is a weight of the affine root system satisfying (o, xo0) = dio. We see that

<a2/ab)a X0> = #({ L) —2TL, —n, 07 n, 2”) <. } N [CL, b))
Now suppose that g € Bound(k,n). Since i < g(i) <i+mn, if g-(ab) < g then we must have
0<b—a<mn. In this case, the condition that [a,b) intersects {...,—2n,—n,0,n,2n,...} is
the same as f <y g, and furthermore one has <a2/ab), Xo) = 1. This proves the lemma. |

7.3 Positroid classes and Schubert classes in affine flags

For the subsequent discussion we work in the topological category. Our ultimate aim is to
calculate certain cohomology classes, and changing from the algebraic to the topological category
does not alter the answers. We refer the reader to [Mag07, PS86] for background material.

Let U,, denote the group of unitary n x n matrices and let Tk ~ (S')" denote the subgroup
of diagonal matrices. We write LU,, for the space of polynomial loops into U,,, and QU,, for the
space of polynomial based loops into U,. It is known that LU,, /T is weakly homotopy equivalent
to ﬁ(n), and that QU,, ~ LU, /U, is weakly homotopy equivalent to the affine Grassmannian
(see [PS86]).

The connected components of QU,, and LU,, are indexed by Z, using the map L det : LU,, —
LU; = Map(S*,U(1)) ~ w1 (U(1)) = Z. We take as our basepoint of the k-component of QU,, the
loop t — diag(t,...,t,1,...,1), where t appears k times. Abusing notation, we write t,, € QU,
for this point, identifying the basepoint with a translation element.

The group LU, acts on QU,, by the formula

(a-b)(t) = a(t)b(t)a(t) ™!

where a(t) € LU,, and b(t) € QU,,. The group U, embeds in LU, as the subgroup of constant
loops. The action of LU,, on QU, restricts to the conjugation action of U(n) on U(n). It then
follows that the orbit of the basepoint under the action of U,

Up - tw, ~Upn/(Ug x Up_g) (8)

is isomorphic to the Grassmannian Gr(k, n).
Thus we have a map ¢: Gr(k,n) — QU,. Let r:QU, — LU, /T be the map obtained by
composing the natural inclusion QU,, — LU,, with the projection LU,, — LU, /T. We let

p:=roq:Gr(k,n) — LU, /T

denote the composition of ¢ and r. All the maps are Tk-equivariant, so we obtain a ring
homomorphism p* : H5.(Fl(n)) — H}(Gr(k, n)).

LEMMA 7.6. Supposew € Sg}f and I = o(w), which we identify with a T-fixed point of Gr(k, n).
Then p(I) = tyw,Tr € LU, /TR.

Proof. 1t follows from the action of S,, < U, on QU,, that ¢(I) = ty.., € QU,. But by definition
T(tw-wy ) = tww, € LUnp. O

LEMMA 7.7. (i) Suppose w € ng}cn. Then p*(£tver) = [o(w)].
(ii) Furthermore, p*(£%°) = Xp.

Proof. We prove (i). Let f = ty.,. It is enough to check that &/|,, = [7(w)]]5(u) for each u €

U W

;Ln}f We have [7(w)]|,(4) = 0 unless u = w. By [KK86, Proposition 4.24(a)], £/|; = 0 unless f < g.
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Since f is maximal in Bound(k, n), it is enough to calculate

&= I1 0(c).

acf~1(A_)NAL

Here Ay (respectively A_) are the positive (respectively negative) roots of the root system of
S, and 0(«) € H7(pt) =Z[y1, Y2, - - - , Yn) denotes the image of o under the linear map defined
by

Yi— Y1 fori=1,2, ..., n—1,
0(i) = ,
Un — Y1 for ¢ =0.

Applying 6 corresponds to specializing from H}. ¢ (Fl(n)) to H;(.ﬁ(n))
With this terminology, a g € f~'(A_) if and only if f(a) > f(b). We have 0(cv(ap)) = Ya — Us,
where the indices are taken modulo n. Thus
¢y= H (vi —vj)
i€o(w) and j€[n]\o(w)
which is easily seen to agree with [7(w)]|s(w)-
Now we prove (ii). The class p*(£*°) € H}.(G/P) is of degree 2. So by [KT03, Lemma 1],

it is enough to show that it vanishes when restricted to the identity basepoint, and equals
Xals, =Yk — Yk+1 when restricted to si. We know that

§°la=0 and &, =yr — Yrt
since id < sp, and the inversions of sy' are exactly {ax}. (Here id denotes [---k+ 1,k 42,
..., k+mn---].) But we have that ¢,, is in the same (right) S,-coset as id and %, ., is in the
same Sy,-coset as so. Since £ is a Grassmannian class, it follows that [KK86] £*iq = £, and
£ sy = &™|t,, ., - Applying Lemma 7.6, we see that p*(£°°) has the desired properties. O
THEOREM 7.8. For each f € SF

n’

() = {[Hf] if f € Bound(k, n),

0 otherwise.

we have in H3(Gr(k, n)),

Proof. Suppose f ¢ Bound(k, n). Then by [KK86, Proposition 4.24(a)], §f|g =0 unless f <y,
so that ¢/, =0 for g € Bound(k, n) (using Lemma 3.6). It follows that p*(¢/) vanishes at each
T-fixed point of Gr(k, n), and so it is the zero class.

We shall show that the collection of classes {p*(¢7) | f € Bound(k, n)} satisfies the conditions
of Lemma 7.4. Part (i) is clear, and part (iii) follows from Lemma 7.7(i). We check part (ii).
The map p* is a ring homomorphism, so the formula in Lemma 7.5 holds for the classes
p*(¢7) as well. Suppose f < g€ Bound(k,n) and f = f,. and g= fu .. As in the proof of
Theorem 3.16, we may assume that either (i) v’ =wu and v’ <w, or (ii) v’ > u and w' = w. If
f <o g, then writing fy, » = ty.w, ww~! and recalling that right multiplication by uw~"! acts on the
positions, we see that we must have u - wy, # u’ - wi. This implies that we are in case (ii), and that
u’ >}, u. Conversely, if w’ = w and v/ >, u then we must have f <y g. Comparing Lemma 7.5 and
Proposition 7.2, and using Lemma 7.7(ii), we see that we may apply Lemma 7.4 to the classes
{*(¢/)| f € Bound(k, n)}.

Thus p*(¢/) = [I4] for every f € Bound(k, n). O
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7.4 Affine Stanley symmetric functions

Let Sym denote the ring of symmetric functions over Z. For each f € 5’2, a symmetric function
F 't € Sym, called the affine Stanley symmetric function, is defined in [LamO06]. This definition
extends to all f € S, via the isomorphisms S¥ ~ S9.

We will denote the simple reflections of the Coxeter group 5’2 by so, S1, - - -, Sn—1, Where the
indices are taken modulo n. Let w € 52 We say that w is cyclically decreasing if there exists
a reduced expression s;,s;, - - - 8;, for w such that (a) no simple reflection is repeated, and (b) if
s; and s;41 both occur, then s;41 precedes s;. Then the affine Stanley symmetric function
Ff is defined by letting the coefficient of ' z3? - - - 2% in Z*:'f (z1, 2, . ..) be equal to the number
of factorizations w = wMw® ... w) where each w® is cyclically decreasing, E(w(i)) =a;, and
((w) = L(wD) + L(wP) + - 4 L(w).

For example, consider k=2, n=4 and f=15,2,7,4]. The corresponding element of 5’2
is fo=1[3,0,5,2]; the reduced words for fy are s1s3sgs2, s153S250, S3S1S0S2 and $381520.
So the coefficient of xizox374 in F '+ is 4, corresponding to these four factorizations. Similar
computations yield that Ff =4mi111 + 2mo11 + Moo = S92 + S911 — S1111 Where the monomial
symmetric functions are denoted by m and the Schur functions are denoted by s. Note that
affine Stanley symmetric functions are not necessarily Schur-positive!

The ordinary cohomology H*(2SU,,) can be identified with a quotient of the ring of symmetric
functions:

H*(QSU,,) ~ Sym/(my | Ay > n),
where m) denotes the monomial symmetric function labeled by A. We refer to [Sta99] for general
facts concerning symmetric functions, and to [LamO08] for more about H*(2SU,,).

Let sy € Sym denote the Schur functions, labeled by partitions. As each component of
QU,, is homeomorphic to 2SU,, the inclusion ¢: Gr(k,n) — QU,, (defined after (8)) induces
a map ¢ : H*(QSU,) — H*(Gr(k,n)). Let v : Sym — H*(Gr(k, n)) denote the composition of
the quotient map Sym — H*(QSU,,) with « : H*(QSU,,) — H*(Cr(k, n)).

For a partition A= (A1, Ag, ..., A\g) with Ay <n—Fk, let o(A) be {A\pg +1, g1 +2,...,
A1+ k}. This is a bijection from partitions with at most k parts and largest part at most
n—k to ([Z]). We denote the set of such partitions by Par(k, n).

LEMMA 7.9. The map v : Sym — H*(Gr(k,n)) is the natural quotient map defined by

_ [Xa(/\)]() AE Par(k, n);
Plsn) = {O otherwise.

Proof. The copy of Gr(k, n) inside QU,, is the union of the (Z) Schubert varieties labeled by the
translation elements {t,.., | w € S™"}. Tt follows that the map <) : H*(QSU,,) — H*(Gr(k,n))
sends Schubert classes to Schubert classes.

It is well known that H*(Gr(k, n)) is isomorphic to the quotient ring of Sym as stated in the
lemma. To check that the quotient map agrees with v, it suffices to check that they agree on
the homogeneous symmetric functions h; € Sym, which generate Sym. In [Lam08, Theorem 7.1]
it is shown that the Schubert classes of H*(Q2SU,,) are the ‘affine Schur functions’, denoted
F\. When X is a single row, we have F(r) = h, € Sym/(my | Ay > n). Furthermore, the finite-
dimensional Schubert variety in QU,, with dual Schubert class F(,,) lies in Gr(k, n) C QU, exactly
when r <n — k. It follows that ¥ (h;) = [X)]o € H*(Gr(k, n)) for r <n —k, and ¢(h,) =0 for
r >n — k. Thus 9 is the stated map. O
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Proof of Theorem 7.1. Let fg eH *(ﬁ(n)) denote the non-equivariant Schubert classes. It is
shown'? in [Lam08, Remark 8.6] that we have 7‘*(5({) = F; € H*(QSU,,), where we identify
F € Sym with its image in H*(QSU,,) = Sym/(my | A\ > n). Thus we calculate using the non-
equivariant version of Theorem 7.8

M slo = p*(&]) = ¢" 1 (&]) = (Fy). O

Recall our previous example where k=2, n=4 and f= [5,~2, 7,4], with siteswap 4040.
Thi~s positroid variety is a point. The affine Stanley function Fy was sg2 + s211 — 51111, SO
Y(Fy) =1)(s22), the class of a point.

Example 7.10. Stanley invented Stanley symmetric functions in order to prove that the number of
reduced words for the long word wq in S, was equal to the number of standard Young tableaux
of shape (m — 1, m —2,...,21). He showed that Fy, = $(;,—1)(m—2)...21, 0 the number of reduced
words for wy is the coefficient of the monomial myq;...1 in the Schur polynomial s(,;,_1)(m—2)...21, as
required. See [Sta84] for more background. We show how to interpret this result using positroid
varieties.

Let (k,n) = (m, 2m). The Stanley symmetric function F,, is the affine Stanley associated to
the affine permutation

) i+n 1<i<n
Vil
wo(i —n)+2n n+1<i<2n.

As discussed in §6, the positroid variety I, is a graph matrix Schubert variety, and can be
described as the Zariski closure, within G(m, 2m), of m-planes that can be represented in the

form
1 000 0 00 O0 0 =
01 00 0 O0O0O0 % =
RowSpan [0 O 1 0 0 0 0 = % =
0001 0 0 % % x =
0 00 0 1 * % % *x =

(The example shown is for m = 5.)

Reordering columns turns II, into the Zariski closure of those m-planes that can be
represented in the form

0 00O 0O0O0OO0OTG 01 %
0000 O0O0OT1 x 0 =
RowSpan [0 O 0 0 1 % 0 % 0 =
001 x 0 x 0 % 0 =
1 « 0 x 0 %« 0 x 0 =

This is the Schubert variety Xiss7...2m—1), Which is associated to the partition (m — 1)(m —
2) - - - 321. Reordering columns acts trivially in H*(G(k,n)), so the cohomology classes of II,
and Xi3s5...(2m—1) are the same, and they thus correspond to the same symmetric function. This
shows that £y, = S(m—1)(m—2)--21-

13 The setup in [Lam08] involves 2SU,, but each component of QU, is isomorphic to 2SU, so the results easily
generalize.
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7.5 The K- and Krp-classes of a positroid variety

We conjecture that the K-class of a positroid variety is given by the affine stable Grothendieck
polynomials defined in [Lam06]. These symmetric functions were shown in [LSS10] to have
the same relationship with the affine flag manifold as affine Stanley symmetric functions, with
K-theory replacing cohomology.

CONJECTURE 7.11.'* The K-theory class of the structure sheaf of a positroid variety Iy is given
by the image of the affine stable Grothendieck polynomial Gy, when K*(Gr(k,n)) is identified
with a ring of symmetric functions as in [Buc02].

This conjecture would follow from suitable strengthenings of Proposition 7.2, and Lemmas 7.4,
and 7.5. We have the necessary characterization of the Kp positroid classes: Corollary 7.3 and
the main result of [Knu09] give the Kp-analogue of Proposition 7.2. The degree-based argument
used in Lemma 7.4 must be modified, in the absence of a grading on K-theory, to comparing
pushforwards to a point, and it is easy to show using [KLS, Theorem 4.5] that the pushforward
of a positroid class is 1. What is currently missing are the two corresponding results on affine
stable Grothendieck polynomials.

While the class associated to an algebraic subvariety of a Grassmannian is always a positive
combination of Schubert classes, this is not visible from Theorem 7.1, as affine Stanley functions
are not in general positive combinations of Schur functions sj.

The following theorem gives a much stronger positivity result on positroid classes.

THEOREM 7.12. Let X be a positroid variety, and [Ox] € Kr(Gr(k,n)) the class of its structure
sheaf in equivariant K-theory. Then in the expansion [Ox] =, ax[O,] into classes of Schubert
varieties, the coefficient ay € Kr(pt) lies in (—1)N=dim XN[{e=® — 1], where the {a;} are the
simple roots of GL(n).

Proof. This is just the statement of [AGM11, Corollary 5.1], which applies to any T-invariant
subvariety X of a flag manifold such that X has rational singularities (as positroid varieties do,
[KLS, Corollary 4.8]). O

After our first version of this preprint was circulated, a very direct geometric proof of
Theorem 7.8 was given in [Snil0], which also proves the corresponding statement in equivariant
K-theory. Snider identifies each affine patch on Gr(k,n) with an opposite Bruhat cell in the
affine flag manifold, T-equivariantly, in a way that takes the positroid stratification to the Bruhat
decomposition, thereby corresponding the Kp-classes.

8. Quantum cohomology, toric Schur functions, and positroids

8.1 Moduli spaces of stable rational maps to the Grassmannian

For background material on stable maps we refer the reader to [FWO04]. Let I, J € (@)7 which we
assume to be fixed throughout this section. We now investigate the variety S(I, J, d) consisting of
points lying on a stable rational map of degree d, intersecting X ; C Gr(k,n) and X C Gr(k, n).
Let My 3(d) denote the moduli space of stable rational maps to Gr(k,n) with three marked
points and degree d. Write p1, p2, p3 : Mo 3(d) — Gr(k, n) for the evaluations at the three marked
points.

4 This conjecture has been established in [HL11].
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Denote by E(I, J, d) the subset
E(I,J,d) =p; (X;) Npy ' (XT) € Mos(d).

It is known [FWO04] that E(I,J,d) is reduced and locally irreducible, with all
components of dimension dim(X ;) + dim(X?) + dn — k(n — k). Furthermore, the pushforward
(p3)«([E(I, J,d)]) € H*(Gr(k,n)) is a generating function for three-point, genus zero, Gromov—
Witten invariants, in the sense that

(pa)+([E]) - o = {[X], [X"], 0)q (9)

for any class o € H*(Gr(k,n)). We now define S(I,J,d):=ps(E(I, J,d)). Let us say that
there is a non-zero quantum problem for (I, J, d) if ([X,],[X], 0)4 is non-zero for some
o € H*(Gr(k,n)). It follows from (9) that S(I,J,d) and E(I, J,d) have the same dimension
whenever there is a non-zero quantum problem for (I, J, d), namely,

dim(S(I, J, d)) = dim(E(I, J, d)) = dim(X ) + dim(X') + dn — k(n — k). (10)

The torus T acts on My 3(d) and, since X; and X! are T-invariant, the space E(I, J, d)
also has a T-action. The torus-fixed points of E(I, J, d) consist of maps f:C — Gr(k,n), where
C' is a tree of projective lines, such that f,(C) is a union of T-invariant curves in Gr(k,n)
whose marked points are T-fixed points, satisfying certain stability conditions. Since ps is
T-equivariant, we have S(I, J, d)T = p3(E(I, J,d)"). The T-invariant curves in Gr(k, n) connect
pairs of T-fixed points labeled by I, J € ([Z]) satisfying |[I N J| =k — 1. We’ll write T'(I, J, d) for
S(I, J,d)T, considered as a subset of ([Z]).

We now survey the rest of this section. In §8.2, we use the ideas of the previous paragraph
to give an explicit combinatorial description of T'(I, J,d). We then define an explicit affine
permutation f associated to (I, J,d) in (11) below. We say that (I, J, d) is valid if for i € I,
we have i + k < f(I, J,d)(i) <i+n and, for m € [n]\I, we have m < f(I, J,d)(m) <m+ k. In
particular, (I, J, d) is valid implies f(I, J, d) is bounded. The main result of this section is given
in the following theorem.

THEOREM 8.1. When (I, J, d) is valid, the image p3(E(I, J, d)) is IIy. Moreover, there is one
component Fy of E(I, J,d) for which p3: Fy — Il is birational; on any other component F of
E(1,J,d), we have dim p3(F) < dim F.

When (I, J,d) is not valid, then dim p3(F) < dim F' for every component F of E(I, J,d).
Thus, (1, J,d) is valid if and only if there is a non-zero quantum problem for (I, J, d).

Our key combinatorial result is given in the following proposition.

PROPOSITION 8.2. Let (I, J,d) be valid. Then T(I, J,d) is the positroid corresponding to the
bounded affine permutation f(I, J, d).

We should point out that we use previously known formulas for Gromov—Witten invariants
to establish part of Theorem 8.1. Namely, when f is valid, we can establish directly that
p3(E(I, J,d)) CIIy. To prove that (p3)«([E]) = [lI¢], we combine previous work of Postnikov
with Theorem 7.1.

It was shown in [Lam06] that o(E}) is Postnikov’s ‘toric Schur function’. Postnikov showed
that this toric Schur function computed Gromov—Witten invariants but did not provide a
subvariety of Gr(k,n) representing his class; Theorem 8.1 can thus be viewed as a geometric
explanation for toric Schur functions.
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8.2 Formulas for T'(I, J,d) and f(I,J,d)
We proceed to describe S(I, J, d)T explicitly.

IfI e ([Z]), then we let A(I) (respectively B(I)) denote the upper (respectively lower) order
ideals generated by I. Thus A(J) ={K € ([Z}) | K > J} is the set of T-fixed points lying in X ;
and B(I) is the set of T-fixed points lying in X'. Define the undirected Johnson graph G,
with vertex set ([Z]), and edges [ < J if [I N J| =k — 1. The distance function dist(I, J) in G,
is given by dist(I, J) =k — [IN J|. Then one has

S(I,J,d) =1(1,J,d) = {K € <[Z]) | dist(K, B(I)) + dist(K, A(J)) < d}.

For a pair (I, J), it is shown in [FWO04] that the minimal d such that T'(1, J, d) is nonempty (or
equivalently, that there is a path of length d from I to J in Gy ,,), is equal to the minimal d such
that a non-zero quantum problem for (I, J, d) exists.

Denote by M = {m1 <mgy <--- <my_} the complement of I in [n] and similarly L = {l; <
lo <+ <lp_ k:} the complement of J. We define a bi-infinite sequence ¢ such that o =la for
1<a<k and lgrk = iq + n. Similarly, we extend J, M and L to bi-infinite sequences j, m and
[, such that ]a+k =Jatn, Motn—k = Mg +n and la+n x = l, + n. Define an affine permutation

f(I, J, D) by

AT, d) i) = Jrpk—a U, T, d) (M) = Lrga. (11)
We say that (I, J,d) is valid if, for i € I, we have i + k < f(I, J,d)(i) < i+ n and, for m € M,
we have m < f(I, J,d)(m) < m+ k. In particular, if (I, J, d) is valid, then f(I, J,d) is bounded.
For example, let k=2 and n=6. Pick I ={1,4}, J={2,4}, d=1. Then M ={2,3,5, 6}
and L={1,3,5,6}. The equation f(iy) = jrik—a gives f(1)=4 and f(4)=8. The equation
f(my) =lyq gives £(2) =3, f(3) =5, f(5) =6 and f(6) =7. Thus f(I,J,d) = - - 435867 - - -].
Our next task is to prove Proposition 8.2; we shorten f(I,.J,d) to f. Our approach is to
first find the cyclic rank matrix for f. Let I and J be the preimages of I and J under the
projections Z — Z/nZ. For integers a < b, we adopt the shorthand I[a, b] for #(I N [a, b]) and
similar notations J[a, b) etc. For 1 <a < b< a+ n, define

rep :=min(b—a+1,d+ J[1,b] — I[1,a), k) (12)

and define rg, for all rqy, such that vy p4n = rap; by rap =b — a + 1 for a > b and by 74, = k for
a+n<b.

LEMMA 8.3. If (I, J,d) is valid, then the matrix rq, is the cyclic rank matrix for f.

It will be convenient to introduce the functions a;(a,b) =b—a+ 1, as(a,b) =d + J[1,b] —
I[1, a) and as(a, b) = k, so that 74, = min(ai(a, b), az(a, b), as(a,b)).

Proof. We first check that ry, is a cyclic rank matrix, meaning that it obeys the conditions in
Corollary 3.12. Conditions (C1’), (C2) and (C5) hold by definition.

For r =1, 2 or 3, it is easy to see that, a,(a,b) — a,(a +1,b) and a,(a,b+ 1) — a,(a, b) are
clearly either 0 or 1, and are integer valued. So rap — 7(q41)p and rep — 74p—1) are either 0 or 1.
This verifies (C3).

Similarly, for any (a,b) and r =1, 2 or 3, the 2 x 2 matrix ( ar(ab=1)  ar(ab)

ar(a+1,b—1) a,(a+1,b
s s s s+1 s+1 s+1 s+1 s+2
s s s s+1 s s S s+1
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for some integer s. Looking at what happens when we take the minimum of three matrices of
this form (where we never take both the two middle matrices), we see that we always get one of
the above forms, or (Sng iﬂ ) In particular, condition (C4) holds. We have now shown that rq,
is a cyclic rank matrix. Let g be the associated permutation.

We now show that g=f. Let (a,b) = (i, jr4x_q) for some r between 1 and k. Then

#(IN[1,a)=r—1and #(JN[1,b]) =7+ k —d, so as(a, b) = k + 1. Similar arguments let us

compute
as(a,b—1) as(a,b) \ ([ k k41
Oég(d‘l‘l,b-l) ag(a—i-l,b) k-1 k ’
The assumption that i, + k < f(I, J,d)(i,) = Jrik—d translates into b —a >k, so the o term
n (12) has no effect and we deduce that

( Ta,b—1 Tab ) _ ( k k)
Tat1b—1 Tatlb k=1 k)’
By the last sentence of Corollary 3.10, this means that g(a) =b.

Similarly, if (a, b) = (my, l,+4) we can show that g(a) = b. So, for every a € Z, we have shown
that g(a) = f(a), as desired. O

We now begin proving the lemmas which will let us prove Proposition 8.2.
LEMMA 8.4. We have dist(K, B(I)) <s if and only if for all r € [n], one has I[1,r) — K[1,r) <s.

Proof. Suppose dist(K, B(I)) <s. Then dist(K, L) <s for some L < I. Thus for each r, we have
I, r)— K[1,r)< L[1,r) — K[1,7) < s.

Now suppose I[1,7) — K[1, r) < s for each r. Construct L < I recursively, starting with L = ().
Assume L N [1,r) is known. If r € K, place r in L. Otherwise, if r ¢ K, place r in L only if r € I
and L[1,r) = I[1, r). Repeat until we have constructed a k-element subset L which clearly satisfies
L < I. The elements in L\ K are all in I. Let ¢ be the largest element in L\ K. Then I[1, ¢] differs

from K11, ¢] by |L\K]|, and so |L\K| < s. Thus dist(K, L) <s. O
LEMMA 8.5. We have K € T'(I, J, d) if and only if
IN,r)—K[1,r)+ K[1,s) — J[1,s) < d (13)

forall1<r,s,<n+1.
Proof. By Lemma 8.4, we have K € T'(I, J, d) if and only if
max(I[1,r) — K[1,7),0) + max(K][l, s) — J[1,s),0) <d (14)

for all 1 <r, s, <n+ 1. Equation (14) certainly implies the stated condition. Conversely, if (13)
holds, but (14) fails, then we must have I[1,7) — K[1,7) >d or K[1,s) — J[1,s) > d for some
7, s. In the first case setting s =1 in (13) gives a contradiction. In the second case, setting r =1
gives a contradiction. O

Proof of Proposition 8.2. First, suppose that K € T'(1, J, d).
By Lemma 8.3, K is in the positroid corresponding to f(I, J, d) if and only if for each cyclic
interval [a, b] C [n] we have

Kla,b] <min(b—a+1,d+ J[1,b] — I[1, a), k).

Since #[a,b] =b—a+ 1 and #(K) =k, we always have K[a,b] <b—a+ 1 and K]a, b] <k, so
we must check that Kla, b] <d+ J[1,b] — I[1, a).
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First, suppose that 1 <a < b<n. Then K]a, b = K[1,b] — K1, a) so the required equation
is
K[1,b] — K[1,a) <d+ J[1,b] — I[1, ).
This is easily equivalent to (13) for (r, s) = (a, b). Now, suppose that a <n < b. Then K|a, b] :=
K[1,b] — K[1,a) and we again want to show that K[1,0] — K[1,a) <d+ J[1,b] — I[1, a). Let
b=V +n. Then K[1,b] = K[1,V] + n and J[1,b] = J[1, '] + n. So it is equivalent to show

K[L VY] - K[1,a) <d+ J[1, 0] — I[1, a)

which is (13) for (r, s) = (a, V).
The reverse implication is similar. O

8.3 Toric shapes and toric Schur functions

In [Pos05a], Postnikov introduced a family of symmetric polynomials, called toric Schur
polynomials, and showed that the expansion coefficients of these symmetric functions in
terms of Schur polynomials gave the three-point, genus-zero, Gromov—Witten invariants of the
Grassmannian. In [Lam06], it was shown that toric Schur functions were special cases of affine
Stanley symmetric functions. We now put these results in the context of Theorem 7.1 and
equation (9): the subvariety S(I, J, d) C Gr(k, n) is a positroid variety whose cohomology class
is a toric Schur polynomial.

We review the notion of a toric shape and refer the reader to [Pos05a] for the notion of a
toric Schur function. A cylindric shape is a connected, row and column convex subset of Z?2
which is invariant under the translation (z,y) — (z +n — k,y — k). Also, every row or column
of a cylindric shape must be finite, and in addition the ‘border’ of a cylindric shape is an infinite
path which has steps going north and east only (when read from the southwest). A toric shape
is a cylindric shape such that every row has at most n — k boxes, and every column has at most
k boxes. For example, the following is a toric shape for k =2, n =5:

|

L[]

where a fundamental domain for the action of the translation has been highlighted. In [Pos05a,
Postnikov associated a toric shape 6(I,J,d) to each triple (I, J,d) for which a non-trivial
quantum problem could be posed involving the Schubert varieties X! and X, and rational
curves of degree d. The steps of the upper border of § are determined by I, the lower border by
J. The gap between the two borders is determined by d. We do not give a precise description of
Postnikov’s construction here as our notation differs somewhat from Postnikov’s.

If 8 is a cylindric shape, we can obtain an affine permutation as follows. First label the edges
of the upper border of 6 by integers, increasing the labels from southwest to northeast. Now label
the edges of the lower border of # by integers, so that if e and €’ are edges on the upper border
and lower border respectively, and they lie on the same northwest-southeast diagonal, then e’
has a label which is k bigger than that of e. One then defines f(6) as follows: if a € Z labels a
vertical step of the upper border, then f(a) is the label of the step of the lower border on the
same row; if a € Z labels a horizontal step, then f(a) is the label of the step of the lower border

1747

https://doi.org/10.1112/50010437X13007240 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007240

A. Knutson, T. Lam AND D. E. SPEYER

on the same column. This determines (I, J, d) from f(I, J, d) up to a translation: the equations
(11) say that the labels inside I or J are vertical steps, while labels in M and L are horizontal
steps.

The condition that (I, ., d) is valid translates to 6(I,J,d) being toric. In our language,
Postnikov [PosO5a, Lemma 5.2 and Theorem 5.3] shows that a non-trivial quantum problem
exists for (I, J,d) if and only if the toric shape (I, J, d) is well defined. Thus we have the
following lemma.

LEMMA 8.6. A non-trivial quantum problem exists for (I, J, d) if and only if (I, J,d) is valid.
LEMMA 8.7. Suppose (1, J,d) is valid. Then

Uf(I,J,d) =101, J,d)| = codim(X ) + codim(X7) — dn,
where |0(1, J, d)| is the number of boxes in a fundamental domain for 6(I, J, d).

Proof. The first equality follows from [Lam06], and can be explained simply as follows: each
box in a fundamental domain for 6(1, J, d) corresponds to a simple generator in a reduced
expression for f(I,J,d). Indeed, the equations (11) can be obtained by filling 6(I, J, d) with
a wiring diagram, where each wire goes straight down (respectively across) from a horizontal
(respectively vertical) step. The second equality follows from [PosO5al. A simple proof is as
follows: if we decrease d by 1, then the lower border of d is shifted one step diagonally southeast,
increasing |0(I, J, d)| by n. When the upper and lower borders are far apart, then changing
codim(X7) or codim(X ) by one also changes |0(I, .J, d)| by one. Finally, when I = .J and d =0,
one checks that |0(1, J, d)| is k(n — k). O

Proof of Theorem 8.1. Suppose that (I, J, d) is valid.

Consider any index K € ([z])\T(I, J, d). Then the Pliicker coordinate pg is zero on T'(1, J, d),
and hence on S(I,J,d). By Corollary 5.12, Il is cut out by {px =0|K ¢TI, J,d)}, so
S(I,J,d) C1Iy.

By Lemma 8.7, (10) and Theorem 5.9, S(I, J,d) and Il (; ;4 have the same dimension and
I1; is irreducible. So S(I, J, d) = IIy. Now, let Fi, Fy, ..., F, be the components of E(1, J, d); let
€1, €2, ..., ¢ be the degrees of the maps p3 : F; — S(I, J, d). Using again that Il is irreducible,
we know that (p3)«(E(I, J,d)) = (>_;_; ¢i)[]. By the main result of [Pos05a], the left-hand
side of this equation is the toric Schur polynomial with shape 6(I,.J,d) and by [Lam06,
Proposition 33], this is the affine Stanley function w(ﬁ’f). But by Theorem 7.1, the right-hand
side is (37—, ci)¥(Fy). So >, ¢i=1. We deduce that p3 is birational on one component of
S(I, J,d) and collapses every other component.

Finally, if (I, J, d) is not valid, then there is no non-zero quantum product for (I, J, d) by
Lemma 8.6, so p3 must collapse all components of F(I, J, d) in this case. O

8.4 Connection with two-step flag varieties

Let Fl(k—d,k,k+d;n) and Fl(k—d,k+ d;n) be the spaces of three-step and two-step
flags of dimensions (k —d, k, k 4+ d) and (k — d, k + d) respectively. We have maps ¢q; : FU(k —
d,k,k+d;n)— Gr(k,n) and qo: Fl(k —d, k,k+d;n) — Fl(k — d, k + d;n). For a subvariety
X C Gr(k, n) we define, following [BKT03],

XD = go(q7 (X)) C Fl(k — d, k + d; n).
Let us now consider the subvariety

Y(I,J,d) = (X)Dn(xXHD < Fe(k —d, k+d;n).
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Buch—Kresch—Tamvakis studied varieties similar to Y (I, J, d), which arise from intersections of
three Schubert varieties, and they also showed in a bijective manner that these intersections
solved quantum problems. Let us now consider the subvariety q1(g; (Y (I, J, d))) C Gr(k, n).
The subvarieties (X )@, (X)) c Fo(k —d, k+d;n) are Schubert (and opposite Schubert)
subvarieties. Thus q1(q; ' (Y (I, J, d))) C Gr(k, n) is a positroid variety by Theorem 5.9.

The following result can also be deduced directly from [BM11].

PROPOSITION 8.8. Suppose (I, J, d) is valid. Then qi(q; 1 (Y (I, J,d))) = S(I, J, d).

Proof. Let us first show that S(I,J,d) C q1(g5 (Y (I, J,d))). Since (I,J,d) is valid, we know
that dim S(I, J, d) = dim(X ) + dim(X’) 4+ dn — k(n — k) =: N. Choose K € ([Z]) such that
codim Xg =N and ([S(I,J,d)], [ XKk]) #0. Then, for a general flag F,, S(I,J,d) intersects
Xk (F,) at a finite set of points. Moreover, the set of all points that occur as such intersections is
dense in S(1, J, d). (If this set were contained in a subvariety of smaller dimension, then Xy (F,)
would miss S(I, J, d) for generic F,, contradicting our choice of K.)

So, for V' in a dense subset of S(I, J, d), we know that V" also lies on some X g (F,) and we can
impose furthermore that F, is in general position with both Fe and wgF,. It follows from [BKT03,
Theorem 1] that there is a corresponding point W € Y (I, J, d) such that V € ql(qz_l(W)). Thus
S(, 7, d) C (g5 (Y (1, 7, ).

Conversely, let W €Y (I, J, d) be a generic point, and Z = q1(g, *(W)) C Gr(k, n). The space
Z is isomorphic to Gr(d, 2d). Pick a point U € ZN Xy and V € ZN X!, and another generic
point 7' € Z. By [BKT03, Proposition 1], there is a morphism f:P!' — Z C Gr(k, n) of degree d
which passes through U, V, and T. It follows that a generic point in Z lies in S(I, J, d). Thus
QI(qgl(Y(I’ Jvd)))CS(I’ Jvd)' U

8.5 An example

Let k=2 and n=>5. We take I =J ={1,4} and d=1. The affine permutation f(I,.J,d) is
[+ - 43567 - - - ], with siteswap 31222. The positroid T'(1, J, d) is {12, 13, 14, 15, 24, 25, 34, 35, 45}
and the juggling states are J(f(I,J,d))=(12,13,12,12,12). If we pull back Y (I, J,d) to
Fi(n) we get the Richardson variety X{332. (Following the description given in [BKTO03],
we obtained 12435 by sorting the entries of the Grassmannian permutation 14235 in positions
k—d+1,k—d+2,...,k+din increasing order. For 45132, we first applied wg to J = {1, 4}
to get {2,5}. Then we did the sorting, and left-multiplied by wq again.)

By [KLS, Proposition 3.3], we have 7(X{5132) = m(X5{213). With (u, w) = (21543, 54312),
we have fu.=1[2,1,5,4,3] tq11000) 45, 3,2,1]=1[4,3,5,6,7], agreeing with f(I,J,d).
Alternatively, one can check that the T-fixed points inside X3{5i7, that is, the interval
[21543, 54312], project exactly to T'(1, J, d).
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