Some New Properties of the Triangle.
By J. S. Mackay, M.A., L.L.D.
[The substance of this communication will be included in Dr Mackay's paper on The Triangle in the first volume of the Proceedings, which is about to be printed.]

Proofs of some optical theorems.

By William Peddie, D.Sc.
[The results of this paper will be contained in Dr Peddie's book on
Physics, which will appear in a short time.]

Second Meeting, December 12th, 1890.
R. E. Allardice, Esq., President, in the Chair.

On the condition that the straight line

$$
l x+m y+n z=0
$$

should be a normal to the conic
$(a, b, c, f, g, h)(x, y, z)^{2}=0$
the co-ordinates being trilinear.
By R. H. Pinkerton, M. A.

1. The condition in question may be found by using the following theorem:-

If the equation in trilinear co-ordinates

$$
\begin{equation*}
\mathrm{F}(x, y, z) \equiv\left(u, v, w, u^{\prime}, v^{\prime}, w^{\prime}\right)(x, y, z)^{2}=0 \quad . \tag{A}
\end{equation*}
$$

represents a pair of straight lines, then the line whose equation is

$$
\begin{equation*}
l x+m y+n z=0 \quad \ldots \quad \ldots \quad \ldots \tag{B}
\end{equation*}
$$

will be perpendicular to one of those lines if
$\mathrm{F}(l-m \cos \mathrm{C}-n \cos \mathrm{~B}, m-n \cos \mathrm{~A}-l \cos \mathrm{C}, n-l \cos \mathrm{~B}-m \cos \mathrm{C})=0$
where A, B, C are the angles of the fundamental triangle.

