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Abstract
The space of tensors of metric curvature type on a Euclidean vector space carries a two-parameter family of
orthogonally invariant commutative nonassociative multiplications invariant with respect to the symmetric bilinear
form determined by the metric. For a particular choice of parameters these algebras recover the polarization of
the quadratic map on metric curvature tensors that arises in the work of Hamilton on the Ricci flow. Here these
algebras are studied as interesting examples of metrized commutative algebras and in low dimensions they are
described concretely in terms of nonstandard commutative multiplications on self-adjoint endomorphisms. The
algebra of curvature tensors on a 3-dimensional Euclidean vector space is shown isomorphic to an orthogonally
invariant deformation of the standard Jordan product on 3 × 3 symmetric matrices. This algebra is characterized
up to isomorphism in terms of purely algebraic properties of its idempotents and the spectra of their multiplication
operators. On a vector space of dimension at least 4, the subspace of Weyl (Ricci-flat) curvature tensors is a
subalgebra for which the multiplication endomorphisms are trace-free and the Killing type trace-form is a multiple
of the nondegenerate invariant metric. This subalgebra is simple when the Euclidean vector space has dimension
greater than 4. In the presence of a compatible complex structure, the analogous result is obtained for the subalgebra
of Kähler Weyl curvature tensors. It is shown that the anti-self-dual Weyl tensors on a 4-dimensional vector space
form a simple 5-dimensional ideal isometrically isomorphic to the trace-free part of the Jordan product on trace-free
3 × 3 symmetric matrices.
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1. Introduction

Let V be an n-dimensional real vector space equipped with a metric ℎ𝑖 𝑗 . Let MC(V∗)

MC(V∗) = {Y𝑖 𝑗𝑘𝑙 ∈ ⊗4
V
∗ : Y[𝑖 𝑗 ]𝑘𝑙 = Y𝑖 𝑗𝑘𝑙 = Y𝑖 𝑗 [𝑘𝑙] ,Y[𝑖 𝑗𝑘 ]𝑙 = 0} (1.1)

be the 𝑛2 (𝑛2 − 1)/12-dimensional vector space of metric curvature tensors. Any Y𝑖 𝑗𝑘𝑙 ∈ MC(V∗)
satisfies Y𝑘𝑙𝑖 𝑗 = Y𝑖 𝑗𝑘𝑙 and Y𝑖 ( 𝑗𝑘)𝑙 is symmetric in i and l. The metric curvature tensors of n type
MCW(V∗) comprise the kernel of the Ricci trace 𝜌 : MC(V∗) → 𝑆2 (V∗) defined by 𝜌(Y)𝑖 𝑗 = Y𝑝𝑖 𝑗

𝑝 .
Note that 𝜌(Y)𝑖 𝑗 is symmetric because 2 𝜌(Y)[𝑖 𝑗 ] = −Y𝑖 𝑗𝑘𝑙ℎ

𝑘𝑙 = 0. The trace s(Y) = tr 𝜌(Y) = ℎ𝑖 𝑗 𝜌(Y)𝑖 𝑗
is the scalar curvature of Y. (Here, and when convenient, the abstract index conventions [30, chapter
2] are used.) These definitions are consistent with the conventions in which the curvature tensor of the
round metric 𝑔𝑖 𝑗 on the sphere has the form −2𝑔𝑘 [𝑖𝑔 𝑗 ]𝑙 (see Remark 5.10 for detailed discussion of
signs).

By [17, Theorem 7.1] the curvature tensor R𝑖 𝑗𝑘𝑙 of a family of metrics 𝑔(𝑡)𝑖 𝑗 solving the Ricci flow
𝑑
𝑑𝑡 𝑔(𝑡)𝑖 𝑗 = −2 𝜌(R(𝑡))𝑖 𝑗 evolves according to

𝑑
𝑑𝑡R𝑖 𝑗𝑘𝑙 = ΔR𝑖 𝑗𝑘𝑙 + 2(R ∗ R)𝑖 𝑗𝑘𝑙 + 2R𝑝 [𝑖R 𝑗 ]

𝑝
𝑘𝑙 + 2R𝑝 [𝑘R𝑙]

𝑝
𝑖 𝑗 , (1.2)

where R ∗ R is some quadratic form on MC(V∗). The polarization of the quadratic form appearing in
(1.2) can be viewed as a commutative multiplication ∗ on MC(V∗). Here, (MC(V∗), ∗) is studied as an
interesting example in the general context of commutative nonassociative algebras that exhibits some
special structural properties. Although they did not explicitly use this algebraic perspective, it was R.
Hamilton [17, 18, 19] and G. Huisken [21] who first emphasized the importance of ∗ and discovered its
basic properties.

The class of commutative not necessarily associative algebras with no additional structure is too
general to admit a good theory. In many interesting examples the commutative algebra (A, ◦) satisfies
the further condition that it is metrized, meaning it is equipped with a nondegenerate bilinear form h
that is invariant in the sense that the cubic form ℎ(𝑥 ◦ 𝑦, 𝑧) is completely symmetric in 𝑥, 𝑦, 𝑧 ∈ A (in
this case h is also often called a Frobenius form). For various perspectives on metrized commutative
algebras, see [3, 10, 12, 13, 14, 16, 22, 29, 37].

The definition of ∗ and its basic properties are described in Section 5 and are based on Theorem 5.4,
which yields two different new constructions of ∗.

By Lemma 4.2, for 𝑘 ≥ 2 there is an 𝑂 (𝑛)-equivariant linear map X ∈ MC(V∗) → X̂ ∈ End(⊗𝑘
V
∗)

such that X̂ is self-adjoint and preserves the type (by symmetries) of tensors. If X̂ preserves the 𝑂 (𝑛)-
submodule W ⊂ ⊗𝑘

V
∗, it restriction to W is written X̂W. If X → X̂W is injective, the pullback of the

projection onto the image of ·̂ W of the Jordan product X̂W � ŶW yields a commutative multiplication
on MC(V∗) on which 𝑂 (𝑛) acts by automorphisms.

For example, X̂ preserves
∧2
V
∗ and 𝑆2

V
∗ and the induced maps ·̂ ∧2

V∗ and ·̂ 𝑆2V∗ are injective
by Corollary 4.5. By Lemma 5.2, the linear combinations of the pullbacks of the projections onto
their images of the Jordan products of endomorphisms, X̂∧2

V∗ � Ŷ∧2
V∗ and X̂𝑆2V∗ � Ŷ𝑆2V∗ , yield a

two-parameter family 𝑠 ∗𝐴 +𝑡∗𝑆 of commutative multiplications on MC(V∗) that are metrized by the
metric 〈X,Y〉 = X𝑖 𝑗𝑘𝑙Y

𝑖 𝑗𝑘𝑙 on MC(V∗) and on which 𝑂 (𝑛) acts isometrically by algebra automor-
phisms. Moreover, a specific linear combination recovers ∗ as follows. As X ∈ MC(V∗) determines
an endomorphism X̂MC(V∗) of MC(V∗), it makes sense to define a multiplication on MC(V∗) by
X ∗ Y = X̂MC(V∗) (Y). It turns out that the multiplication ∗ so defined is commutative, for Theorem 5.4
shows that ∗ = 3

2 (∗𝐴 + ∗𝑆) and that it recovers the multiplication of (1.2), for it shows that ∗ has the
explicit form (5.14) found by Hamilton. Because X ∗ Y = X̂(Y), an immediate consequence of the self-
adjointness of X̂MC(V∗) with respect to 〈 · , · 〉 is that (MC(V∗), ∗) is metrized by 〈 · , · 〉, a fact due to
Huisken.
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Remark 1.1. For any metrized commutative algebra (A, ◦, ℎ) and any 𝑡 ∈ R×, 𝑡 IdA ∈ End(A) is an
isometric algebra isomorphism from (A, ◦𝑡 , 𝑡2ℎ) to (A, ◦, ℎ) where 𝑥 ◦𝑡 𝑦 = 𝑡𝑥 ◦ 𝑦. For this reason,
the family 𝑠 ∗𝐴 +𝑡∗𝑆 should be regarded as associated with [𝑠 : 𝑡] ∈ P1 (R), and it is any one of the
multiplications corresponding with [1 : 1] ∈ P1 (R) that arises in the Ricci flow, the choice of which
amounting to a normalization that is inconsequential from a purely algebraic perspective. However,
considerations related to geometric applications motivate a particular choice. Concretely, the choice of
∗ = ∗1 over ∗−1 is made by requiring that a positive multiple of the curvature tensor of the round sphere
be idempotent. See Remark 5.10 for further discussion.

Remark 1.2. Some authors [2, 32, 34] define ∗ directly in terms of curvature operators on
∧2
V
∗. Here ∗

is defined on curvature tensors, and the two definitions involve curvature operators on 𝑆2
V
∗ andMC(V∗)

itself. Although there seems to be no good notion of representation of a commutative nonassociative
algebra (at least not without embedding it in a vertex operator algebra), it is convenient to think of
curvature operators on different tensor modules such as 𝑆2

V
∗ and

∧2
V
∗ as different representations

of (MC(V∗), ∗), Theorem 5.4 shows that the multiplication itself is determined by MC(V∗) somehow
viewed as a module over itself.

The irreducible submodules of MC(V∗) under the action of certain groups of orthogonal trans-
formations are subalgebras. Lemma 5.7 shows that the space MCW(V∗) of metric curvature tensors
of Weyl type is a subalgebra of (MC(V∗), ∗). If (V, ℎ) carries an almost complex structure compat-
ible with h it makes sense to speak of the submodule of Kähler curvature tensors (see Section 11
for the definition), MCK (V∗) and its submodule of Kähler Weyl curvature tensor MCK,W(V∗) =
MCK(V∗) ∩MCW(V∗), and Lemma 11.1 shows that MCK (V∗) and MCK,W(V∗) are subalgebras of
MC(V∗). The 1-dimensional submodule of MC(V∗) generated by the metric is also a subalgebra (iso-
morphic to the real field), but the irreducible submodule generated by the Kulkarni–Nomizu products
of the metric with trace-free symmetric two-tensors (the submodule comprising curvature tensors of
pure trace-free Ricci type) is not a subalgebra. The fusion rules (in the sense of [16]) describing the
interactions of the irreducible summands of MC(V∗) are given in Table 1. They follow from Theo-
rem 7.12, which gives more information than do the fusion rules alone because it asserts the equalities
of products of subspaces, rather than simply containment relations. The proofs of these relations are
based on detailed calculations of products in (MC(V∗), ∗), given in Section 6, that, while technical,
should be useful in further study of ∗. The ingredients of the proof of Theorem 7.12 also yield a
conceptually simple proof of the Böhm–Wilking theorem (see Section 7) used in the construction of
curvature cones. The fusion rules for the unitary irreducible subspaces of the subalgebra MCK(V∗)
and the corresponding analogue of the Böhm–Wilking theorem are described in the companion
paper [11].

A commutative algebra (A, ◦) is exact (called harmonic in [29]) if its multiplication endomorphisms
𝐿◦ : A → End(A) defined by 𝐿◦(𝑥) = 𝑥 ◦ 𝑦 satisfy tr 𝐿◦(𝑥) = 0 for all 𝑥 ∈ A. Note that an exact
algebra is nonunital. A commutative algebra (A, ◦) is Killing metrized if the Killing type trace-form
𝜏◦(𝑥, 𝑦) = tr 𝐿◦(𝑥)𝐿◦(𝑦) is nondegenerate and invariant. The multiplication of a Killing metrized
commutative algebra is necessarily faithful, meaning that 𝐿◦ is injective.

Important structural features of the subalgebra (MCW(V∗), ∗) shown in Theorem 1.3 are that it is
exact and Killing metrized and is simple when dimV∗ > 4.

Theorem 1.3. Let (V, ℎ) be a Euclidean vector space of dimension at least 4. The algebra
(MCW(V∗), ∗) is exact and Killing metrized. Moreover:

1. The Killing form 𝜏∗(X,Y) = tr 𝐿∗(X)𝐿∗(Y) is a nonzero multiple of 〈 · , · 〉.
2. If dimV > 4, then (MCW(V∗), ∗) is simple.

Proof of Theorem 1.3. Let (V, ℎ) be a Euclidean vector space with dimV = 𝑛 ≥ 4. The group
𝑂 (𝑛) = 𝑂 (V, ℎ) acts on MCW(V∗) isometrically and irreducibly. By Theorem 5.4, (MCW(V∗), ∗)
is metrized by the pairing 〈 · , · 〉 and 𝑂 (𝑛) acts on (MCW(V∗), ∗) by algebra automorphisms. By
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Lemma 10.1 there is a nontrivial idempotent E ∈ (MCW(V∗), ∗). Because (MCW(V∗), ∗) con-
tains a nontrivial idempotent, its multiplication is nontrivial. Theorem 3.2 implies tr 𝐿∗(X) = 0, and
𝜏∗(X,Y) = tr 𝐿∗(X)𝐿∗(Y) equals 𝜅〈 · , · 〉 for some nonzero 𝜅 which must be positive because both 𝜏∗
and 〈 · , · 〉 are positive definite. If dimV > 4, the action by automorphisms of the connected simple
Lie group 𝑆𝑂 (𝑛) on MCW(V∗) is irreducible, so Theorem 3.1 implies (MCW(V∗), ∗) is simple. �

When dimV = 4, a choice of orientation determines an orthogonal decomposition MCW(V∗) =
MC+

W(V∗) ⊕ MC−
W(V∗) where MC±

W(V∗) are the subspaces of self-dual and anti-self-dual curvature
tensors. Theorem 1.5, discussed in more detail later in the introduction, shows that these are mutually
isomorphic subalgebras that are simple, exact, and Killing metrized with Killing form equal to 21

16 〈 · , · 〉.
Alternatively, this is a consequence of Theorem 11.3, which is the analogue of Theorem 1.3 for the
algebra of Kähler–Weyl tensors. It shows that if (V, ℎ, 𝐽) is a 2𝑛-dimensional Kähler vector space, then
(MCK,W(V∗), ∗) is a simple, exact, Killing metrized algebra with Killing form a positive multiple of
〈 · , · 〉. When dimV = 4, a choice of compatible almost complex structure J determines an orientation
of V and Lemma 11.2 shows MC−

W(V∗) = MCK,W(V∗).

Remark 1.4. When dimV > 4, Theorem 1.3 does not give the value of the positive constant 𝜅 such that
𝜏∗ = 𝜅〈 · , · 〉. To calculate 𝜅 it would suffice to calculate the eigenvalues on MCW(V∗) of the operator
Ê associated with a nonzero idempotent, as this suffices to calculate its 𝜏∗-norm. When dimV = 4,
the explicit calculations used to prove Theorem 1.5 make it possible to calculate 𝜅 = 21/16 for
(MC±

W(V∗), ∗) (and so also for (MCK,W(V∗), ∗)).

A basic problem is to describe (MC(V∗), ∗), or its subalgebras more explicitly, in terms of known
algebras. As mentioned already, when dimV = 2, the 1-dimensional algebra (MC(V∗), ∗) is isometri-
cally isomorphic to the field of real numbers with its Euclidean inner product. When dimV is 3 or 4,
explicit results are obtained relating ∗ to the usual Jordan product of symmetric endomorphisms.

V. L. Popov [31] discussed invariants of algebras constructed from traces of products of powers of
their multiplication operators, addressing questions such as when does a module for a group G admit
a nontrivial G-invariant multiplication that is simple or have automorphism group equal to G. Specific
instances of this last question are addressed in [6] for 𝐺 = 𝑆𝐿(2) and [8] for certain exceptional Lie
groups. In this context, metrizability by some particular trace-form, for example, Killing metrizability,
appears as a structurally important condition. Its importance has been explicitly indicated in work of A.
Ryba, for example [35], constructing commutative nonassociative algebras on which certain finite simple
groups act by automorphisms (see, in particular, [35, Lemma 9.1] and see also [22]), and in the work
of V. G. Tkachev and collaborators dedicated to a general program, detailed in [29], of constructing
homogeneous solutions to certain geometrically motivated linear and fully nonlinear elliptic partial
differential equations, for example, those describing minimal cones, by studying the algebras associated
with completely symmetric cubic forms. An interesting class of examples of exact Killing metrized
commutative nonassociative algebras, relevant here also for the statement of Theorem 1.5, are the
deunitalizations of the finite-dimensional simple real Euclidean Jordan algebras.

The vector space Sym(W, 𝑔) of g-self-adjoint endomorphisms of the n-dimensional Euclidean vector
space (W, 𝑔) equipped with the multiplication � that is the symmetric part of the ordinary composition
of endomorphisms is an 𝑛(𝑛 + 1)/2-dimensional simple real Euclidean Jordan algebra with unit. Its
deunitalization is the (𝑛 + 2) (𝑛 − 1)/2-dimensional commutative, nonassociative, nonunital algebra
obtained by retraction along the unit. Precisely, this is the algebra Sym0 (W, 𝑔) = {𝐴 ∈ Sym(W, 𝑔) :
tr 𝐴 = 0} of trace-free symmetric endomorphisms of (W, 𝑔) equipped with the multiplication

𝐴 × 𝐵 = 𝐴 � 𝐵 + 𝐵 ◦ 𝐴 − 1
2𝑛 tr(𝐴 ◦ 𝐵 + 𝐵 ◦ 𝐴) IdW (1.3)

and the invariant metric 𝐺 (𝐴, 𝐵) = 1
𝑛 tr(𝐴 � 𝐵) = 1

𝑛 tr(𝐴 ◦ 𝐵). When dimW = 3, 𝐺 (𝐴 × 𝐴, 𝐴) =
1
3 tr(𝐴3) = det 𝐴. (These claims follow from standard formulas as in [9] and are demonstrated more or
less explicitly in [10] and [38, section 10].)
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Section 8 treats the case dimV = 3. In this case the 6-dimensional algebra (MC(V∗), ∗) is linearly
isomorphic to 𝑆2

V
∗. The map sending 𝛼 ∈ 𝑆2

V
∗ to 𝛼♯ ∈ Sym(V, ℎ) defined by ℎ(𝛼♯ (𝑥), 𝑦) = 𝛼(𝑥, 𝑦)

for 𝑥, 𝑦 ∈ V∗ is a linear isomorphism. Transported from 𝑆2
V
∗ to Sym(V, ℎ) via ♯, the product ∗ can be

expressed in terms of familiar operations on symmetric endomorphisms. Lemma 8.2 and Theorem 8.5
describe the product on Sym(V, ℎ) corresponding to ∗ as

𝐴  𝐵 = 𝐴 � 𝐵 − 1
4 (tr(𝐴)𝐵 + tr(𝐵)𝐴 + tr(𝐴𝐵)𝐼 − (tr 𝐴) (tr 𝐵)𝐼) . (1.4)

In particular, this product is nonunital and it is not the Jordan product �. Identify 𝑆2
0V

∗ with Sym0(V, ℎ)
and equip it with the trace-free Jordan product × defined in (1.3). More precisely, Lemma 8.2 shows
that Sym0(V, ℎ) ⊕ R equipped with the multiplication

(𝐴, 𝑟) • (𝐵, 𝑠) =
(
𝐴 × 𝐵 + 1

4 (𝑟𝐵 + 𝑠𝐴), 𝑟𝑠 + 1
12 〈𝐴, 𝐵〉

)
(1.5)

is isomorphic to (MC(V∗), ∗) via the linear map (𝛼♯, 𝑟) ∈ Sym0(V, ℎ) ⊕ R→ 𝛼 + 𝑟ℎ ∈ 𝑆2
V
∗.

What is more interesting is Theorem 8.5, which characterizes  in terms in intrinsic algebraic
terms (for Euclidean h). The situation can be summarized informally as that (MC(V∗), ∗) is the most
symmetric𝑂 (3)-invariant metrized commutative algebra structure on 𝑆2

V
∗, in that the number of orbits

of its idempotents is the smallest possible, two, and the spectra of their multiplication endomorphisms
have the maximal redundancy. Up to isomorphism there is a one-parameter family of 𝑂 (3)-invariant
commutative algebra structures on 𝑆2

V
∗ each metrized by an 𝑂 (3)-invariant inner product and each

of which contains a rank 1 idempotent and contains no square-zero element. The additional condition
that there be only two orbits of idempotents, one generated by a multiple of h and the other by a rank 1
idempotent, distinguishes two such algebras. One of them is Killing metrized and the other is (𝑆2

V
∗,).

Alternatively, they are distinguished by the multiplicity of the eigenvalue 1/2 of the multiplication
endomorphism of a rank 1 idempotent, which is always at least 2, as a consequence of 𝑂 (3)-invariance,
but is 3 uniquely for (𝑆2

V
∗,). The proof yields as corollaries that  is simple and its automorphism

group is exactly the image of 𝑂 (3) in its induced action on 𝑆2
V
∗. Corollary 8.10 summarizes precisely

all that is proved.
When dimV = 4, Lemma 9.7 shows that the 5-dimensional subspaces MC±

W(V∗) are orthogonal
ideals of (MCW(V∗), ∗). Theorem 1.5 shows that each of these subalgebras is isometrically isomorphic
to the deunitalization of the 6-dimensional rank 3 simple real Euclidean Jordan algebra of symmetric
endomorphisms of a 3-dimensional vector space. The linear maps assigning to X ∈ MCW(V∗) endo-
morphisms X̂∧2

±V
∗ ∈ End(

∧2
±V

∗) of the spaces
∧2

±V
∗ of self-dual and anti-self-dual 2-forms induce

𝑆𝑂 (4)-module isomorphisms MC±
W(V∗) � Sym0(

∧2
±V

∗, ℎ) [1, Section 1.127]. The content of Theo-
rem 1.5 is that a suitable multiple of X̂∧2

±V
∗ is an algebra isomorphism.

Theorem 1.5. Let (V, ℎ) be a 4-dimensional oriented Euclidean vector space. Consider the deuni-
talization (Sym0(

∧2
±V

∗, ℎ),×) of the 6-dimensional rank 3 simple real Euclidean Jordan algebra
(Sym(

∧2
±V

∗, ℎ),�) of symmetric endomorphisms of the 3-dimensional space
∧2

±V
∗, equipped with the

product × equal to the traceless part of the usual Jordan product � of endomorphisms and the metric
𝐺 (𝐴, 𝐵) = 1

3 tr 𝐴 ◦ 𝐵.

1. The map Ψ : (MC±
W(V∗), ∗, 〈 · , · 〉) → (Sym0(

∧2
±V

∗, ℎ),×, 4
3𝐺) defined by Ψ(X) = 3X̂ is an

𝑆𝑂 (4)-equivariant isometric algebra isomorphism.
2. The Killing form 𝜏∗(X,Y) = tr 𝐿∗(X)𝐿∗(Y) on (MC±

W(V∗), ∗) satisfies 𝜏∗ = 21
16 〈 · , · 〉, where 〈 · , · 〉

is the metric on MCW(V∗) given by complete contraction with ℎ𝑖 𝑗 .
3. (MC±

W(V∗), ∗, 〈 · , · 〉) is simple and contains no nontrivial square-zero elements.

Theorem 1.5 is proved twice, at the end of Section 9 and again in Section 10 (Section 12 sketches still
another proof). The isomorphism is described both conceptually and explicitly. The explicit isomorphism
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is based on the construction of a convenient basis of MC+
W(V∗) and the calculation of the multiplication

table for its elements. See Lemma 10.8. The conceptual proof is based on a calculation relating the
endomorphisms of

∧2
V
∗ given by �X ∗ Y∧2

V∗ and X̂∧2
V∗ ◦ Ŷ∧2

V∗ , where ◦ denotes composition of
endomorphisms, which shows

1
3
�X ∗ Y∧2

V∗ = X̂∧2
V∗ � Ŷ∧2

V∗ − 1
6 tr(★̂X∧2

V∗ ◦ Ŷ∧2
V∗ ) ★− 1

6 tr(X̂∧2
V∗ ◦ Ŷ∧2

V∗ ) Id∧2
V∗ , (1.6)

in which ◦ is composition of endomorphisms and ★ denotes both the Hodge star operator on
∧2
V
∗ and

the involution it induces on MCW(V∗); see Lemma 9.7 for details.
For V of dimension greater than 4, it would be interesting to obtain a formula like (1.6) for the

difference �X ∗ YMCW (V∗) in terms of the Jordan product X̂MCW (V∗) � ŶMCW (V∗) and expressions like
those on the right side of (1.6).

Part of claim 3 of Theorem 1.5 depends strongly on the assumption of Euclidean signature. It shows
that in Euclidean signature (MCW(V∗), ∗) contains no square-zero element if dimV = 4, while Lemma
7.3 shows that if dimV ≥ 4 and h has indefinite signature, then (MCW(V∗), ∗) is spanned by square-
zero elements (see also Example 12.4). It would be interesting to know if (MCW(V∗), ∗) contains a
nonzero square-zero element when h is Euclidean and dimV > 4. Theorem 7.10 shows the weaker
result that the multiplication ∗ is faithful if h is Euclidean and dimV ≥ 4; equivalently, (MC(V∗), ∗)
contains no zero divisors.

The simplicity of the algebras (MC±
W(V∗), ∗) and (MCK,W (V∗), ∗) could perhaps appear unremark-

able in light of a result of Popov showing that, over an algebraically closed field k of characteristic zero,
a generic algebra is simple. Precisely, [31, Theorem 4] shows that the set of structure tensors of simple
algebras over k is open and dense. However, the first Theorem 3 of [31]1 shows that a generic (in the
same sense) algebra has trivial automorphism group, whereas (MC±

W(V∗), ∗, 〈 · , · 〉), (MCW(V∗), ∗),
and (MCK,W(V∗), ∗) have large automorphism groups that contain respectively the Lie groups 𝑆𝑂 (4),
𝑂 (𝑛), and 𝑈 (𝑛) and so are atypical from this point of view. Nonetheless, [31, Theorem 5] shows that
if the automorphism group of a finite-dimensional algebra with nontrivial multiplication over k con-
tains a connected algebraic subgroup that acts irreducibly on the algebra, then the algebra is simple.
Although the algebras considered here are defined over R, Popov’s argument can be used essentially
as written to show that (MCW(V∗), ∗) and (MCK,W(V∗), ∗) are simple when dimV∗ > 4. A precise
statement of a more general result is given here as Theorem 3.1 and Theorem 1.3 records its application
to (MCW(V∗), ∗).

Among metrized commutative algebras, those that have large automorphism groups are somewhat
exceptional. That a Lie group G acts on a metrized commutative algbera by automorphisms has the
consequence that the orbit of an idempotent is a G homogeneous space. It would be interesting to
describe completely the G-orbits of idempotents in subalgebras of (MC(V∗), ∗). For dimV∗ = 3,
Corollary 8.10 gives such a description, while for dimV∗ = 4, such a description can be deduced from
Theorem 1.5 and the computations used to prove Theorem 7.12. In this direction, Lemma 10.4 shows
that when dimV∗ = 2𝑛 ≥ 4, certain of the idempotents produced by Lemma 10.1 constitute an orbit of
𝑂 (2𝑛) acting in MCW(V∗) identified with the space 𝑆𝑂 (2𝑛)/𝑈 (𝑛) of orthogonal complex structures
on V inducing a given orientation on V.

Since all claims in the article are pure linear algebra, they extend straightforwardly to sections of
tensor bundles over smooth manifolds. Although no application to Ricci flow is immediately available,
it is reasonable to hope that the results obtained here will be useful for studying curvature conditions on
manifolds. A different, Lie theoretic, point of view on the structure of the multiplication ∗ has been used
profitably in [2, 41]. For background on the definition of ∗ as in (5.14), its properties, and its role in the
study of the Ricci flow, see also [20]. Some features of the algebra (MC(V∗), ∗) are used implicitly in
the study of the Ricci flow [2, 4, 5, 17, 18, 21, 32, 33, 34, 41]. The algebraic perspective makes some of
the manipulations used in such studies appear more natural and focuses attention on certain structural

1Due to a typographical error, its Theorem 2 is mislabeled as Theorem 3.
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features, namely, the invariance and nondegeneracy of the Killing type trace-form and the identification
of idempotent elements and the spectra of their left multiplication operators that are not self-evidently
relevant from the geometric perspective.

It would be interesting to extend results obtained here, for example, Theorem 1.5, to pseudo-Euclidean
real vector spaces and to vector spaces over general base fields.

2. Notation and conventions

All vector spaces considered here are finite-dimensional over R. The abstract index conventions in the
sense of Penrose [30, chapter 2] are used when convenient. Given a vector space V, 𝛼 𝑗1... 𝑗𝑘

𝑖1...𝑖𝑙
indicates an

element of ⊗𝑘
V ⊗ ⊗𝑙

V
∗. The indices are labels indicating tensor valencies and symmetries and do not

refer to any choice of reference frame. Enclosure of indices in square brackets or parentheses indicates
complete antisymmetrization or complete symmetrization over the enclosed indices; indices delimited
by vertical bars are omitted from such (anti)symmetrizations. For example, 2𝑎𝑖 𝑗𝑘 = 𝑎 [𝑖 | 𝑗 |𝑘 + 𝑎 (𝑖 | 𝑗 |𝑘) is
the decomposition of 𝑎𝑖 𝑗𝑘 into its parts antisymmetric and symmetric in the first and last indices. The
symmetric product 𝛼� 𝛽 ∈ 𝑆𝑘+𝑙V∗ of symmetric tensors 𝛼 ∈ 𝑆𝑘V∗ and 𝛽 ∈ 𝑆𝑙V∗ is defined by complete
symmetrization, (𝛼 � 𝛽)𝑖1...𝑖𝑘+𝑙 = 𝛼(𝑖1...𝑖𝑘 𝛽𝑖𝑘+1...𝑖𝑘+𝑙) , whereas the wedge product 𝛼∧ 𝛽 of antisymmetric
tensors 𝛼 ∈

∧𝑘
V
∗ and 𝛽 ∈

∧𝑙
V
∗ is defined as a multiple of the complete antisymmetrization of their

tensor product, by (𝛼 ∧ 𝛽)𝑖1...𝑖𝑘+𝑙 =
(𝑘+𝑙
𝑘

)
𝛼[𝑖1...𝑖𝑘 𝛽𝑖𝑘+1...𝑖𝑘+𝑙 ] .

Indices are raised and lowered, respecting horizontal position, using a nondegenerate symmetric
bilinear form ℎ𝑖 𝑗 (called a metric) and the inverse symmetric bivector ℎ𝑖 𝑗 satisfying ℎ𝑖 𝑝ℎ𝑝 𝑗 = 𝛿 𝑗

𝑖 . The
pair (V, ℎ) is called a metric vector space. The metric h is Euclidean if it is positive definite and in this
case (V, ℎ) is called a Euclidean vector space. Throughout the article the norms used on tensor modules
are those given by complete contraction with the metric (and not those induced from the standard 𝑂 (ℎ)-
representation). A subspaceM ⊂ ⊗𝑘

V
∗ ⊗ ⊗𝑙

V is a metric vector space with the metric 〈 · , · 〉 defined
via complete contraction with ℎ𝑖 𝑗 and ℎ𝑖 𝑗 by 〈𝛼, 𝛽〉 = 𝛼

𝑗1... 𝑗𝑙
𝑖1...𝑖𝑘

𝛽𝑏1...𝑏𝑙
𝑎1...𝑎𝑘

ℎ𝑖1𝑎1 . . . ℎ𝑖𝑘𝑎𝑘 ℎ 𝑗1𝑏1 . . . ℎ 𝑗𝑙𝑏𝑙 .
Let (V, ℎ) be an n-dimensional metric vector space. When Euclidean h is fixed, the abstract orthogonal

group 𝑂 (𝑛) is identified with the orthogonal group 𝑂 (ℎ) of linear automorphisms of V preserving h.
The action of 𝐺𝐿(V) on V given by (𝑔 · 𝑥)𝑖 = 𝑥𝑝𝑔𝑝

𝑖 induces the cogredient action on V∗ given
by (𝑔 · 𝜇)𝑖 = (𝑔−1)𝑖 𝑝𝜇𝑝 and these actions extend in the usual way to ⊗𝑘

V ⊗ ⊗𝑙
V
∗. By definition,

𝑔𝑖
𝑗 ∈ 𝐺𝐿(V) is in 𝑂 (ℎ) if and only if 𝑔𝑖 𝑝𝑔 𝑗 𝑝 = ℎ𝑖 𝑗 or, similarly, (𝑔−1)𝑖 𝑗 = 𝑔 𝑗

𝑖 . This implies the action
of𝑂 (ℎ) commutes with taking traces. For example, for X ∈ MC(V∗) and 𝑔 ∈ 𝑂 (ℎ), 𝜌(𝑔 ·X) = 𝑔 · 𝜌(X),
so MCW(V∗) is an 𝑂 (ℎ)-submodule of MC(V∗).

The space End(V) of linear endomorphisms ofV is regarded as an algebra with multiplication ◦ given
by composition. The adjoint involution 𝜎ℎ : (End(V), ◦) → (End(V), ◦) of the metric h onV is the real
linear antiautomorphism defined by ℎ(𝜎ℎ (𝜙)𝑥, 𝑦) = ℎ(𝑥, 𝜙(𝑦)) for all 𝑥, 𝑦 ∈ V and 𝜙 ∈ End(V). For a
metrized vector space (V, ℎ), the subspace Sym(V, ℎ) = Sym(End(V), 𝜎ℎ) = {𝜙 ∈ End(V) : 𝜎ℎ (𝜙) =
𝜙} of h-self-adjoint endormorphisms is a Jordan algebra with the product 𝜙 � 𝜓 = 1

2 (𝜙 ◦ 𝜓 + 𝜓 ◦ 𝜙) for
𝜙, 𝜓 ∈ Sym(V, ℎ). (When h is clear from context there is written simply Sym(V) for brevity.) There
holds 𝛼 ◦ 𝛽 = 1

2 [𝛼, 𝛽] + 𝛼 � 𝛽, where 𝛼 � 𝛽 = 1
2 (𝛼 ◦ 𝛽 + 𝛽 ◦ 𝛼).

Via metric duality, 𝛼𝑖 𝑗 ∈ ⊗2 (V∗) is identified with the endomorphism 𝑥 𝑗 → 𝑥𝑖𝛼𝑖
𝑗 of V, and the

composition of the endomorphisms of V determined by raising the second indices of 𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 ∈ ⊗2
V
∗

is given by (𝛼 ◦ 𝛽)𝑖 𝑗 = 𝛼𝑝
𝑗 𝛽𝑖

𝑝 . These conventions are such that, for 𝑥, 𝑦, 𝑧, 𝑤 ∈ V∗,

(𝑥 ⊗ 𝑦) ◦ (𝑧 ⊗ 𝑤) = 〈𝑤, 𝑥〉𝑧 ⊗ 𝑦. (2.1)

The pullback to ⊗2
V
∗ of the Lie bracket of endomorphisms yields the Lie bracket [ · , · ] : ⊗2 (V∗) ×

⊗2 (V∗) → ⊗2 (V∗) given by [𝛼, 𝛽] = 𝛼 ◦ 𝛽 − 𝛽 ◦ 𝛼. Similarly, the multiplication induced via metric
duality on ⊗2

V
∗ by the usual Jordan product of endomorphisms is denoted by �. The subspace

∧2
V
∗

is a subalgebra of (⊗2
V
∗, [ · , · ]) and (

∧2
V
∗, [ · , · ]) is isomorphic to the Lie algebra 𝔰𝔬(V, ℎ).

https://doi.org/10.1017/fms.2021.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.69


8 Daniel J. F. Fox

3. General results about commutative algebras

As explained in the introduction, the argument proving [31, Theorem 5] adapts almost without change
to the present setting to prove Theorem 3.1. For the reader’s convenience, it is reproduced here with
modifications appropriate to the current setting.

Theorem 3.1. Let (A, ◦, ℎ) be a nontrivial finite-dimensional commutative algebra. If a connected
simple real Lie group G acts on (A, ◦) irreducibly by automorphisms, then (A, ◦) is simple.

Proof. Since the action is irreducible, a nontrivial G-invariant ideal equals A. Assume (A, ◦) is not
simple and let I ⊂ A be a minimal proper ideal. Then 𝑔 · I is again a minimal proper ideal for all 𝑔 ∈ 𝐺.
Since the sum of the ideals 𝑔 · I as g ranges over G is a nontrivial G-invariant ideal, it equals A. For
𝑔, �̄� ∈ 𝐺, the ideals 𝑔 · I and �̄� · I either are equal or have intersection {0}, and it follows that there are
𝑔1, . . . , 𝑔𝑟 ∈ 𝐺 such that A = ⊕𝑟

𝑖=1𝑔𝑖 · I is a direct sum of vector spaces. Since the product of distinct
minimal ideals is the zero ideal, this sum is in fact a direct sum of algebras. If J ⊂ A is a minimal
proper ideal not equal to 𝑔𝑖 · 𝐼 for any 1 ≤ 𝑖 ≤ 𝑟 , then its product with each 𝑔𝑖 · I is the zero ideal, so
its product with A is the zero ideal. Applying the preceding argument with J in place of I shows that
the multiplication on A is trivial, contrary to hypothesis. The preceding shows that any minimal proper
ideal of (A, ◦) has the form 𝑔𝑖 · I for some 1 ≤ 𝑖 ≤ 𝑟 , and so G permutes the set {𝑔1 · I, . . . , 𝑔𝑟 · I}.
Since G is connected with simple Lie algebra, any proper normal subgroup of G must be discrete, so
this permutation action must be trivial. Consequently, each 𝑔𝑖 · I is a G-invariant linear subspace of A,
contradicting the G-irreducibility of A. �

Theorem 3.2. A nontrivial finite-dimensional Euclidean metrized commutative algebra (A, ◦, ℎ) on
which a real Lie group G acts irreducibly by isometric automorphisms is exact and Killing metrized
with Killing form 𝜏◦(𝑥, 𝑦) = tr 𝐿◦(𝑥)𝐿◦(𝑦) equal to a nonzero multiple of the metric h.

Proof. Since G acts on (A, ◦) by automorphisms, the linear form 𝑥 → tr 𝐿◦(𝑥) is G-invariant and
so, because A is G-irreducible, ker tr 𝐿◦ = A. Likewise, 𝜏◦ is G-invariant, and because both h and 𝜏◦
are G-invariant, the endomorphism 𝐴 ∈ End(A) defined by 𝜏◦(𝑥, 𝑦) = ℎ(𝐴𝑥, 𝑦) for 𝑥, 𝑦, ∈ A is G-
invariant as well. Because both h and 𝜏◦ are symmetric, A is h-self-adjoint and so is semisimple with
real eigenvalues. Since A is G-irreducible and A is h-self-adjoint, by the Schur Lemma, 𝐴 = 𝜅 IdA for
some 𝜅 ∈ R, so 𝜏◦ = 𝜅ℎ. Because 𝜅 dim(A) = tr 𝐴 = |𝜇 |2ℎ where 𝜇(𝑥, 𝑦, 𝑧) = ℎ(𝑥 ◦ 𝑦, 𝑧), were 𝜅 zero,
then 𝜇 would be identically zero. However, because (A, ◦) is assumed nontrivial there exist 𝑥, 𝑦 ∈ A
such that 𝑥 ◦ 𝑦 ≠ 0, so, by the nondegeneracy of h there is 𝑧 ∈ A such that ℎ(𝑥 ◦ 𝑦, 𝑧) ≠ 0.

The following alternative argument shows 𝜅 ≠ 0. By [36, Lemma 2.1], a nontrivial finite-dimensional
Euclidean metrized commutative real algebra (A, ◦) contains a nonzero idempotent, for, if y is an
extremum of the restriction to the h-unit sphere of the cubic polynomial ℎ(𝑥◦𝑥, 𝑥), then 𝑒 = ℎ(𝑦◦𝑦, 𝑦)−1𝑦
is a nonzero idempotent. By the invariance of h, 𝐿◦(𝑒) is a self-adjoint endomorphism ofA that preserves
the orthogonal complement of the span of e. Hence, it is diagonalizable with (possibly repeated) real
eigenvalues 1, 𝜆1, . . . , 𝜆𝑛−1, and 𝜏◦(𝑒, 𝑒) = tr 𝐿◦(𝑒)2 = 1 +

∑𝑛−1
𝑖=1 𝜆2

𝑖 ≥ 1. Since 〈𝑒, 𝑒〉 ≠ 0, it follows that
𝜅 = 𝜏◦(𝑒, 𝑒)ℎ(𝑒, 𝑒)−1 ≠ 0. �

4. Action of metric curvature tensors on tensors

Let (V, ℎ) be a metric vector space. Note that 𝜔𝑖 𝑗𝑘𝑙 ∈ MC(V∗) = {𝜔𝑖 𝑗𝑘𝑙 ∈ ⊗4
V
∗ : 𝜔 (𝑖 𝑗)𝑘𝑙 = 𝜔𝑖 𝑗𝑘𝑙 =

𝜔 (𝑘𝑙)𝑖 𝑗 , 𝜔 (𝑖 𝑗𝑘)𝑙 = 0} satisfies 𝜔𝑘𝑙𝑖 𝑗 = 𝜔𝑖 𝑗𝑘𝑙 and 𝜔𝑘 [𝑖 𝑗 ]𝑙 is antisymmetric in k and l. A straightforward
calculation proves that the linear map T : MC(V∗) → MC(V∗) defined by T (𝜇)𝑖 𝑗𝑘𝑙 = 2√

3
𝜇𝑘 [𝑖 𝑗 ]𝑙 is an

isometric isomorphism with inverse given by T −1 (𝜈)𝑖 𝑗𝑘𝑙 = − 2√
3
𝜈𝑘 (𝑖 𝑗)𝑙 .

It is convenient to abuse notation by identifying 𝑆2(
∧2
V
∗) and 𝑆2 (𝑆2

V
∗) with the subspaces {Ψ𝑖 𝑗𝑘𝑙 ∈

⊗4
V
∗ : Ψ𝑘𝑙𝑖 𝑗 = Ψ𝑖 𝑗𝑘𝑙 = Ψ[𝑖 𝑗 ]𝑘𝑙 = Ψ𝑖 𝑗 [𝑘𝑙] } and {Φ𝑖 𝑗𝑘𝑙 ∈ ⊗4

V
∗ : Φ𝑘𝑙𝑖 𝑗 = Φ𝑖 𝑗𝑘𝑙 = Φ(𝑖 𝑗)𝑘𝑙 = Φ𝑖 𝑗 (𝑘𝑙) }.

As Ψ𝑖 𝑗𝑘𝑙 ∈
∧4
V
∗ satisfies Ψ𝑘𝑙𝑖 𝑗 = Ψ𝑖 𝑗𝑘𝑙 ,

∧4
V
∗ can be viewed as a subspace of 𝑆2 (

∧2
V
∗) and,
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likewise, 𝑆4
V
∗ can be regarded as a subspace of 𝑆2(𝑆2

V
∗). The Bianchi identity implies

∧4
V
∗ and

MC(V∗) are orthogonal subspaces of 𝑆2(
∧2
V
∗) with trivial intersection and, similarly, 𝑆4

V
∗ and

MC(V∗) are orthogonal subspaces of 𝑆2(𝑆2
V
∗) with trivial intersection. Comparing dimensions shows

𝑆2 (
∧2
V
∗) � MC(V∗) ⊕

∧4
V
∗ and 𝑆2 (𝑆2

V
∗) � MC(V∗) ⊕ 𝑆4

V
∗.

For Ψ ∈ 𝑆2 (
∧2
V
∗), Ψ[𝑖 𝑗𝑘𝑙] = Ψ[𝑖 𝑗𝑘 ]𝑙 and the orthogonal projection M : 𝑆2 (

∧2
V
∗) → MC(V∗) is

given by M(Ψ)𝑖 𝑗𝑘𝑙 = Ψ𝑖 𝑗𝑘𝑙 − Ψ[𝑖 𝑗𝑘 ]𝑙 , so M ⊕ (Id𝑆2 (
∧2
V∗) −M) : 𝑆2 (

∧2
V
∗) → MC(V∗) ⊕

∧4
V
∗ is

an isometric isomorphism. Similarly, the orthogonal projection S : 𝑆2(𝑆2
V
∗) → MC(V∗) is given by

S(Ψ)𝑖 𝑗𝑘𝑙 = Ψ𝑖 𝑗𝑘𝑙 −Ψ(𝑖 𝑗𝑘)𝑙 , so (T ◦S) ⊕ (Id𝑆2 (𝑆2V∗) −S) : 𝑆2 (𝑆2
V
∗) → MC(V∗) ⊕ 𝑆4

V
∗ is an isometric

isomorphism, where, for 𝜔𝑖 𝑗𝑘𝑙 ∈ 𝑆2(𝑆2
V
∗),

(T ◦ S) (𝜔)𝑖 𝑗𝑘𝑙 = 2√
3
𝜔𝑘 [𝑖 𝑗 ]𝑙 . (4.1)

Lemma 4.1. Let (V, ℎ) be a finite-dimensional metric vector space and let 𝑘 ≥ 2. For 𝛼, 𝛽 ∈ ⊗𝑘
V
∗,

setting 𝜚(𝛼, 𝛽) equal to the h-orthogonal projection M(𝜋(𝛼, 𝛽)) ∈ MC(V∗) of 𝜋(𝛼, 𝛽)𝑎𝑏𝑐𝑑 =
Ψ(𝛼, 𝛽)[𝑎𝑏] [𝑐𝑑 ] ∈ 𝑆2 (

∧2
V
∗) where

Ψ(𝛼, 𝛽)𝑎𝑏𝑐𝑑 = 1
𝑘

∑
𝑟≠𝑠

𝛼𝑖1...𝑖𝑟−1𝑏𝑖𝑟+1...𝑖𝑠−1𝑐𝑖𝑠+1...𝑖𝑘 𝛽
𝑖1...𝑖𝑟−1

𝑎
𝑖𝑟+1...𝑖𝑠−1

𝑑
𝑖𝑠+1...𝑖𝑘 (4.2)

defines a symmetric 𝑂 (ℎ)-equivariant bilinear map 𝜚 : ⊗𝑘
V
∗ × ⊗𝑘

V
∗ → MC(V∗).

Proof. It needs to be checked only that 𝜚(𝛽, 𝛼) = 𝜚(𝛼, 𝛽). The definition (4.2) implies Ψ(𝛽, 𝛼)𝑎𝑏𝑐𝑑 =
Ψ(𝛼, 𝛽)𝑏𝑎𝑑𝑐 and there follows

𝜋(𝛽, 𝛼)𝑎𝑏𝑐𝑑 = Ψ(𝛽, 𝛼)[𝑎𝑏] [𝑐𝑑 ]
= 1

4 (Ψ(𝛽, 𝛼)𝑎𝑏𝑐𝑑 − Ψ(𝛽, 𝛼)𝑏𝑎𝑐𝑑 − Ψ(𝛽, 𝛼)𝑎𝑏𝑑𝑐 + Ψ(𝛽, 𝛼)𝑏𝑎𝑑𝑐)
= 1

4 (Ψ(𝛼, 𝛽)𝑏𝑎𝑑𝑐 − Ψ(𝛼, 𝛽)𝑎𝑏𝑑𝑐 − Ψ(𝛼, 𝛽)𝑏𝑎𝑐𝑑 + Ψ(𝛼, 𝛽)𝑎𝑏𝑐𝑑)
= Ψ(𝛼, 𝛽)[𝑎𝑏] [𝑐𝑑 ] = 𝜋(𝛼, 𝛽)𝑎𝑏𝑐𝑑 ,

(4.3)

so that 𝜚(𝛽, 𝛼) = M(𝜋(𝛽, 𝛼)) = M(𝜋(𝛼, 𝛽)) = 𝜚(𝛼, 𝛽). That 𝜚 is 𝑂 (ℎ)-equivariant means that
𝜚(𝑔 · 𝛼, 𝑔 · 𝛽) = 𝑔 · 𝜚(𝛼, 𝛽) for all 𝛼, 𝛽 ∈ ⊗𝑘

V
∗ and 𝑔 ∈ 𝑂 (ℎ), and this is apparent from the manifest

𝑂 (ℎ)-equivariance of the construction of 𝜚. �

Because 𝜚 is𝑂 (ℎ)-equivariant, its restriction toW×WwhereW is any𝑂 (ℎ)-submoduleW ⊂ ⊗𝑘
V
∗

takes values in some 𝑂 (ℎ)-submodule of MC(V∗).
The symmetric group on k elements, 𝑆𝑘 , acts on the left on ⊗𝑘

V
∗ by (𝜎 · 𝛼)𝑖1...𝑖𝑘 = 𝛼𝑖𝜎−1 (1) ...𝑖𝜎−1 (𝑘)

for 𝜎 ∈ 𝑆𝑘 . A filling of a k box Young diagram by distinct indices 𝑖1, . . . , 𝑖𝑘 determines the submodule
of ⊗𝑘

V
∗ comprising tensors antisymmetric in the indices in any column of the filled Young diagram

and such that there vanishes the antisymmetrization over a subset of indices comprising the indices in
any given column plus any index from any column to the right of the given column. The tensors in
such a submodule are said to have the type given by the filled Young diagram. By [40, Theorems 5.7.A
and 5.7.C], an 𝑂 (𝑛)-module of covariant trace-free tensors on an n-dimensional vector space having
symmetries corresponding to a Young diagram is nontrivial if and only if the sum of the lengths of the
first two columns is no greater than n, and by [40, Theorem 5.7G] all irreducible finite-dimensional
𝑂 (𝑛)-modules correspond to some such Young diagram. For example, MCW(V∗) = ker 𝜌 ⊂ MC(V∗)
corresponds with a filling of a 2 × 2 square array of boxes, so MCW(V∗) = {0} if dimV < 4. If
𝑛 = dimV ≥ 4, MCW(V∗) is a nontrivial irreducible 𝑂 (𝑛)-module. When dimV = 4, it decomposes
as an 𝑆𝑂 (𝑛)-module into two 5-dimensional submodules (see Section 9). A linear endomorphism is
said to preserve the type of tensors if it maps tensors with the symmetries determined by a given filled
Young diagram into tensors with the same symmetries.
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Lemma 4.2. Let (V, ℎ) be a finite-dimensional metric vector space and let 𝑘 ≥ 2. The linear map
MC(V∗) → End(⊗𝑘

V
∗) associating with X ∈ MC(V∗) the operator X̂ ∈ End(⊗𝑘

V
∗) defined by

X̂(𝛼)𝑖1...𝑖𝑘 = 1
𝑘

∑
𝑟≠𝑠

X𝑝
𝑖𝑟 𝑖𝑠

𝑞𝛼𝑖1...𝑖𝑟−1 𝑝𝑖𝑟+1...𝑖𝑠−1𝑞𝑖𝑠+1...𝑖𝑘 (4.4)

commutes with the action of 𝑆𝑘 on ⊗𝑘
V
∗ and so preserves the type of tensors; is 𝑂 (ℎ)-equivariant,

meaning �𝑔 · X(𝛼) = 𝑔 · X̂(𝑔−1 · 𝛼) for all 𝛼 ∈ ⊗𝑘
V
∗ and 𝑔 ∈ 𝑂 (ℎ); and has image in the self-adjoint

endomorphisms, meaning X̂ ∈ Sym(⊗𝑘
V
∗, 〈 · , · 〉) for all X ∈ MC(V∗).

Proof. That X̂ preserves the type of tensors follows from X̂(𝜎 · 𝛼) = 𝜎 · X̂(𝛼) for 𝜎 ∈ 𝑆𝑘 and
𝛼 ∈ ⊗𝑘

V
∗. This is immediate from the definition (4.4) and the symmetries of X𝑖 𝑗𝑘𝑙 . The relation�𝑔 · X(𝛼) = 𝑔 · X̂(𝑔−1 · 𝛼) likewise follows from a straightforward computation (for this relation to hold

it is necessary that g be orthogonal because the metric is used in (4.4) where indices are contracted). It
follows from (4.4) that

〈X̂(𝛼), 𝛽〉 = 〈X, 𝜚(𝛼, 𝛽)〉 (4.5)

where 𝜚(𝛼, 𝛽) is as in Lemma 4.1. By Lemma 4.1, 𝜚(𝛼, 𝛽) is symmetric in 𝛼 and 𝛽 and by (4.5) this
implies that 〈X̂(𝛼), 𝛽〉 = 〈𝛼, X̂(𝛽)〉 for all 𝛼, 𝛽 ∈ ⊗𝑘

V
∗, so X̂ is self-adjoint. �

When it is known that X̂ preserves a subspaceW ⊂ ⊗𝑘
V
∗, X̂W is written instead of X̂ when helpful

for clarity. By Lemma 4.2, for X ∈ MC(V∗) and 𝑘 ≥ 2, X̂ preserves
∧𝑘
V
∗ and 𝑆𝑘V∗, so X̂∧𝑘

V∗ ∈
Sym(

∧𝑘
V
∗) and X̂𝑆𝑘V∗ ∈ Sym(𝑆𝑘V∗) are written for the restrictions of X̂ to

∧𝑘
V
∗, 𝑆𝑘V∗ ⊂ ⊗𝑘

V
∗.

By Lemma 4.2, X̂𝑆𝑘V∗ (𝛼)𝑖1...𝑖𝑘 = (𝑘 − 1)X𝑝
(𝑖1𝑖2

𝑞𝛼𝑖3...𝑖𝑘) 𝑝𝑞 for 𝛼 ∈ 𝑆𝑘V∗ and X̂∧𝑘
V∗ (𝛼)𝑖1...𝑖𝑘 = (𝑘 −

1)X𝑝
[𝑖1𝑖2

𝑞𝛼𝑖3...𝑖𝑘 ] 𝑝𝑞 = − 𝑘−1
2 X𝑝𝑞

[𝑖1𝑖2𝛼𝑖3...𝑖𝑘 ] 𝑝𝑞 for 𝛼 ∈
∧𝑘
V
∗. In particular, when 𝑘 = 2, X̂𝑆2V∗ (𝛼)𝑖 𝑗 =

𝛼𝑝𝑞X𝑖 𝑝𝑞 𝑗 and X̂∧2
V∗ (𝛼)𝑖 𝑗 = 𝛼𝑝𝑞X𝑖 𝑝𝑞 𝑗 = − 1

2𝛼
𝑝𝑞X𝑖 𝑗 𝑝𝑞 . For example, X̂𝑆2V∗ (ℎ) = 𝜌(X). For 𝜎𝑖 𝑗 ∈

⊗2
V
∗, write (Sym𝜎)𝑖 𝑗 = 𝜎(𝑖 𝑗) and (Skew𝜎)𝑖 𝑗 = 𝜎[𝑖 𝑗 ] . For X ∈ MC(V∗), by Lemma 4.2, X̂⊗2V∗ (𝜎) =

X̂𝑆2V∗ (Sym𝜎) + X̂∧2
V∗ (Skew𝜎). This means that if ⊗2

V
∗ is regarded as the orthogonal direct sum

𝑆2
V
∗ ⊕

∧2
V
∗ via 𝜎𝑖 𝑗 = 𝜎(𝑖 𝑗) + 𝜎[𝑖 𝑗 ] , then X̂⊗2V∗ = X̂𝑆2V∗ ⊕ X̂∧2

V∗ is an orthogonal direct sum too.

Example 4.3. Because ℎ � ℎ ∈ MC(V∗) satisfies 𝑔 · (ℎ � ℎ) = ℎ � ℎ for 𝑔 ∈ 𝑂 (ℎ), when W is an
irreducible 𝑂 (𝑛)-submodule preserved by �ℎ � ℎ, it follows from Lemma 4.2 and the Schur Lemma that�ℎ � ℎW is a constant multiple of IdW. For example, �ℎ � ℎ∧2

V∗ = − Id∧2
V∗ .

Transferring the canonical isomorphisms End(
∧2
V
∗) �

∧2
V
∗ ⊗ (

∧2
V
∗)∗ and End(𝑆2

V
∗) � 𝑆2

V
∗ ⊗

(𝑆2
V
∗)∗ via metric duality yields linear isomorphisms

♯ : ⊗2 (
∧2
V
∗) = {Ψ𝑖 𝑗𝑘𝑙 ∈ ⊗4

V
∗ : Ψ𝑖 𝑗𝑘𝑙 = Ψ[𝑖 𝑗 ]𝑘𝑙 = Ψ𝑖 𝑗 [𝑘𝑙] } → End(

∧2
V
∗),

♯ : ⊗2 (𝑆2
V
∗) = {Φ𝑖 𝑗𝑘𝑙 ∈ ⊗4

V
∗ : Φ𝑖 𝑗𝑘𝑙 = Φ(𝑖 𝑗)𝑘𝑙 = Φ𝑖 𝑗 (𝑘𝑙) } → End(𝑆2

V
∗),

(4.6)

defined by sending Ψ ∈ ⊗2(
∧2
V
∗) to Ψ♯ (𝛼)𝑖 𝑗 = Ψ𝑖 𝑗

𝑝𝑞𝛼𝑝𝑞 andΦ ∈ ⊗2 (𝑆2
V
∗) toΦ♯ (𝜎)𝑖 𝑗 = Φ𝑖 𝑗

𝑝𝑞𝜎𝑝𝑞 .
Note that, for X ∈ MC(V∗), the tensor identified in this way with X̂∧2

V∗ is − 1
2X𝑖 𝑗𝑘𝑙 . Said otherwise, for

X viewed as an element of 𝑆2(
∧2
V
∗), X♯ = −2X̂∧2

V∗ .

Lemma 4.4. Let (V, ℎ) be a Euclidean vector space. For Ψ ∈ ⊗2 (
∧2
V
∗) and Φ ∈ ⊗2 (𝑆2

V
∗), tr Ψ♯ =

Ψ𝑝𝑞
𝑝𝑞 and trΦ♯ = Φ𝑝𝑞

𝑝𝑞 .

Proof. For an orthonormal basis {𝐸 (1)
𝑖 , . . . , 𝐸 (𝑛)

𝑖 } of V∗, { 1√
2
𝐸 (𝑎) ∧ 𝐸 (𝑏) : 1 ≤ 𝑎 < 𝑏 ≤ 𝑛} is an

orthonormal basis of
∧2
V
∗ and {

√
2𝐸 (𝑎) � 𝐸 (𝑏) : 1 ≤ 𝑎 < 𝑏 ≤ 𝑛} ∪ {𝐸 (𝑎) � 𝐸 (𝑎) : 1 ≤ 𝑎 ≤ 𝑛} is an
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orthonormal basis of 𝑆2
V
∗, so

tr Ψ♯ = 1
2

∑
1≤𝑎<𝑏≤𝑛

〈Ψ♯ (𝐸 (𝑎) ∧ 𝐸 (𝑏) ), 𝐸 (𝑎) ∧ 𝐸 (𝑏) 〉

=
𝑛∑

𝑎=1

𝑛∑
𝑏=1

Ψ𝑖 𝑗𝑘𝑙𝐸 (𝑎)
𝑖 𝐸 (𝑏)

𝑗 𝐸 (𝑎)
𝑘 𝐸 (𝑏)

𝑙 = Ψ𝑝𝑞
𝑝𝑞 ,

trΦ♯ = 2
∑

1≤𝑎<𝑏≤𝑛
〈Φ♯ (𝐸 (𝑎) � 𝐸 (𝑏) ), 𝐸 (𝑎) � 𝐸 (𝑏) 〉 +

∑
1≤𝑎≤𝑛

〈Φ♯ (𝐸 (𝑎) � 𝐸 (𝑎) ), 𝐸 (𝑎) � 𝐸 (𝑎) 〉

=
𝑛∑

𝑎=1

𝑛∑
𝑏=1

Φ𝑖 𝑗𝑘𝑙𝐸 (𝑎)
𝑖 𝐸 (𝑏)

𝑗 𝐸 (𝑎)
𝑘 𝐸 (𝑏)

𝑙 = Φ𝑝𝑞
𝑝𝑞 .

(4.7)

�

For example, Lemma 4.4 implies that tr X̂∧2
V∗ = 1

2 s(X) for X ∈ MC(V∗).
When MC(V∗) preserves W ⊂ ⊗𝑘

V
∗, Lemma 4.2 does not affirm that the linear map X → X̂W is

injective. From (4.5) it is apparent that this is true if and only if {𝜚(𝛼, 𝛽) : 𝛼, 𝛽 ∈ W} spans MC(V∗).
Corollary 4.5 shows that X → X̂∧2

V∗ and X → X̂𝑆2V∗ are injective. It is used in the proof of
Theorem 1.5. Note that viewing X ∈ MC(V∗) as an element of T (𝑆2(𝑆2

V
∗)) yields T −1(X)♯ =

− 2√
3
X̂𝑆2V∗ .

Corollary 4.5. Let (V, ℎ) be an n-dimensional Euclidean vector space. For X,Y ∈ MC(V∗),

tr(X̂∧2
V∗ ◦ Ŷ∧2

V∗ ) = 1
4 〈X,Y〉, tr(X̂𝑆2V∗ ◦ Ŷ𝑆2V∗ ) = 3

4 〈X,Y〉. (4.8)

The𝑂 (𝑛)-equivariant linear mapsMC(V∗) → Sym(
∧2
V
∗),MC(V∗) → Sym(𝑆2

V
∗), andMC(V∗) →

Sym(⊗2
V
∗) given by X → 2X̂∧2

V∗ = −X♯, X → 2√
3
X̂𝑆2V∗ = −T −1(X)♯, and X → X̂⊗2V∗ are isometric

with respect to the trace-norms on Sym(
∧2
V
∗), Sym(𝑆2

V
∗), and Sym(⊗2

V
∗) and injective.

Proof. Via ♯, the endomorphisms X̂∧2
V∗ ◦ Ŷ∧2

V∗ and X̂𝑆2V∗ ◦ Ŷ𝑆2V∗ are identified with the tensors
1
4X𝑘𝑙

𝑝𝑞Y𝑝𝑞𝑖 𝑗 ∈ ⊗2 (
∧2
V
∗) and X𝑘 (𝑝𝑞)𝑙Y𝑖

(𝑝𝑞)
𝑗 ∈ ⊗2 (𝑆2

V
∗), so (4.8) follows from Lemma 4.4 and

X𝑖 ( 𝑗𝑘)𝑙Y
𝑖 ( 𝑗𝑘)𝑙 = 3

4 〈X,Y〉. The injectivity follows from the nondegeneracy of the pairing 〈 · , · 〉. �

5. Algebra structures on the space of metric curvature tensors

This section defines the multiplication ∗ and derives its basic properties.
The injectivity of ·̂ ∧2

V∗ and ·̂ 𝑆2V∗ shown in Corollary 4.5 means that commutative algebra
structures ∗𝐴 and ∗𝑆 on MC(V∗) can be constructed as follows. By the injectivity there are unique
X ∗𝐴 Y ∈ MC(V∗) and X ∗𝑆 Y ∈ MC(V∗) such that (X ∗𝐴 Y)♯ = −2 �X ∗𝐴 Y∧2

V∗ equals the orthogonal
projection on MC(V∗)∧2

V∗ of the Jordan product (−2X̂∧2
V∗ ) � (−2Ŷ∧2

V∗ ) = X♯ � Y♯ ∈ Sym(
∧2
V
∗)

and T −1(X ∗𝑆 Y)♯ = − 2√
3
�X ∗𝑆 Y𝑆2V∗ equals the orthogonal projection on MC(V∗)𝑆2V∗ of the Jordan

product (− 2√
3
X̂𝑆2V∗ ) � (− 2√

3
Ŷ𝑆2V∗ ) = (T −1(X)♯ � T −1(Y)♯ ∈ Sym(𝑆2

V
∗)). More precisely:

X ∗𝐴 Y = −2M
((
X̂∧2

V∗ � Ŷ∧2
V∗

)♭)
, X ∗𝑆 Y = − 2√

3
T ◦ S

((
X̂𝑆2V∗ � Ŷ𝑆2V∗

)♭)
, (5.1)

where ♭ is the inverse of ♯.
Lemma 5.1. Let (V, ℎ) be a metric vector space. For X,Y ∈ MC(V∗), the commutative multiplications
∗𝐴 and ∗𝑆 on MC(V∗) are given by

(X ∗𝐴 Y)𝑖 𝑗𝑘𝑙 = − 1
4
(
X𝑖 𝑗

𝑝𝑞Y𝑘𝑙𝑝𝑞 + Y𝑖 𝑗
𝑝𝑞X𝑘𝑙𝑝𝑞 − 2X[𝑖 𝑗

𝑝𝑞Y𝑘𝑙]𝑝𝑞
)
, (5.2)
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(X ∗𝑆 Y)𝑖 𝑗𝑘𝑙 = − 1
3

(
X𝑘 (𝑝𝑞)𝑖Y 𝑗

(𝑝𝑞)
𝑙 − X𝑘 (𝑝𝑞) 𝑗Y𝑖

(𝑝𝑞)
𝑙 + X 𝑗 (𝑝𝑞)𝑙Y𝑘

(𝑝𝑞)
𝑖 − X𝑖 (𝑝𝑞)𝑙Y𝑘

(𝑝𝑞)
𝑗

)
. (5.3)

The Ricci and scalar traces are

𝜌(X ∗𝐴 Y)𝑖 𝑗 = 1
2X(𝑖

𝑎𝑏𝑐Y 𝑗)𝑎𝑏𝑐 , s(X ∗𝐴 Y) = 1
2 〈X,Y〉,

𝜌(X ∗𝑆 Y)𝑖 𝑗 = − 1
2X(𝑖

𝑎𝑏𝑐Y 𝑗)𝑎𝑏𝑐 + 1
3

(
X̂𝑆2V∗ (𝜌(Y))𝑖 𝑗 + Ŷ𝑆2V∗ (𝜌(X))𝑖 𝑗

)
,

s(X ∗𝑆 Y) = − 1
2 〈X,Y〉 +

2
3 〈𝜌(X), 𝜌(Y)〉.

(5.4)

Proof. Each of (5.2) and (5.3) is just a matter of unraveling the notation in (5.1). Straightforward
computations using (5.2) and (5.3) show (5.4). �

Lemma 5.2. Let (V, ℎ) be a metric vector space. For 𝑠, 𝑡 ∈ R and ∗𝑠,𝑡 = 𝑠 ∗𝐴 +𝑡∗𝑆 , the commutative
algebra (MC(V∗), ∗𝑠,𝑡 ) is metrized by 〈 · , · 〉 and 𝑂 (ℎ) acts on it by isometric algebra automorphisms.

Proof. By (5.1), Lemma 4.5, and using Z♯ = −2Ẑ∧2
V∗ and T −1 (Z)♯ = − 2√

3
Ẑ𝑆2V∗ ,

〈X ∗𝐴 Y,Z〉 = −2
〈
M

((
X̂∧2

V∗ � Ŷ∧2
V∗

)♭)
,Z

〉
= 4

〈(
X̂∧2

V∗ � Ŷ∧2
V∗

)♭
, Ẑ♭

∧2
V∗

〉
= 2 tr

(
X̂∧2

V∗ ◦ Ŷ∧2
V∗ ◦ Ẑ∧2

V∗ + Ŷ∧2
V∗ ◦ X̂∧2

V∗ ◦ Ẑ∧2
V∗

)
,

〈X ∗𝑆 Y,Z〉 = − 2√
3

〈
T ◦ S

((
X̂𝑆2V∗ � Ŷ𝑆2V∗

)♭)
,Z

〉
= 4

3

〈(
X̂𝑆2V∗ � Ŷ𝑆2V∗

)♭
, Ẑ♭

𝑆2V∗

〉
= 2

3 tr
(
X̂𝑆2V∗ ◦ Ŷ𝑆2V∗ ◦ Ẑ𝑆2V∗ + Ŷ𝑆2V∗ ◦ X̂𝑆2V∗ ◦ Ẑ𝑆2V∗

)
.

(5.5)

The right-hand sides of (5.5) are completely symmetric in X, Y, and Z, and this shows the invariance
with respect to 〈 · , · 〉 of ∗𝐴 and ∗𝑆 and so also of any linear combination 𝑠 ∗𝐴 +𝑡∗𝑆 . That 𝑂 (ℎ) acts on
(MC(V∗), ∗𝑠,𝑡 ) by isometric algebra automorphisms follows from the manifest 𝑂 (ℎ) invariance of the
construction of ∗𝐴 and ∗𝑆 . �

Because rescaling the multiplication of a commutative algebra yields an isomorphic algebra, the
products ∗𝑠,𝑡 are best viewed as parametrized by [𝑠 : 𝑡] ∈ P(R).

For X,Y ∈ MC(V∗) define 𝐵𝑖 𝑗𝑘𝑙 = 𝐵(X,Y)𝑖 𝑗𝑘𝑙 ∈ 𝑆2(⊗2
V
∗) by

𝐵(X,Y)♯ = X̂⊗2V∗ � Ŷ⊗2V∗ = X̂∧2
V∗ � Ŷ∧2

V∗ + X̂𝑆2V∗ � Ŷ𝑆2V∗ , (5.6)

the second equality by Lemma 4.2, so that

𝐵𝑖 𝑗𝑘𝑙 = 𝐵(X,Y)𝑖 𝑗𝑘𝑙 = 1
2
(
X𝑖 𝑝 𝑗𝑞Y𝑘

𝑝
𝑙
𝑞 + Y𝑖 𝑝 𝑗𝑞X𝑘

𝑝
𝑙
𝑞 ) = (

X̂⊗2V∗ � Ŷ⊗2V∗

)♭
𝑖 𝑗𝑘𝑙

. (5.7)

Lemma 5.3. Let (V, ℎ) be a metric vector space. For X,Y ∈ MC(V∗), the commutative multiplications
∗𝐴 and ∗𝑆 on MC(V∗) are given by

(X ∗𝐴 Y)𝑖 𝑗𝑘𝑙 = −2(𝐵 [𝑖 𝑗 ]𝑘𝑙 − 𝐵 [𝑖 𝑗𝑘𝑙] ) = − 2
3
(
2𝐵 [𝑖 𝑗 ]𝑘𝑙 − 𝐵𝑘 [𝑖 𝑗𝑙] + 𝐵 [𝑖 |𝑘 | 𝑗 ]𝑙

)
, (5.8)

(X ∗𝑆 Y)𝑖 𝑗𝑘𝑙 = − 2
3
(
𝐵𝑘 [𝑖 𝑗 ]𝑙 + 𝐵 [𝑖 |𝑘 | 𝑗 ]𝑙

)
= − 2

3
(
𝐵 [𝑖 𝑗 ]𝑘𝑙 + 2𝐵𝑘 [𝑖 𝑗 ]𝑙 − 3𝐵 [𝑖 𝑗𝑘𝑙]

)
. (5.9)

Proof. That 𝐵𝑖 𝑗𝑘𝑙 is contained in 𝑆2 (⊗2
V
∗) is equivalent to the symmetry 𝐵𝑘𝑙𝑖 𝑗 = 𝐵𝑖 𝑗𝑘𝑙 , which is

apparent from (5.7). There holds

2𝐵 𝑗𝑖𝑙𝑘 = X 𝑗 𝑝𝑖𝑞Y𝑙
𝑝
𝑘
𝑞 + Y 𝑗 𝑝𝑖𝑞X𝑙

𝑝
𝑘
𝑞 = X𝑖𝑞 𝑗 𝑝Y𝑘

𝑞
𝑙
𝑝 + Y𝑖𝑞 𝑗 𝑝X𝑘

𝑞
𝑙
𝑝 = 2𝐵𝑖 𝑗𝑘𝑙 . (5.10)

https://doi.org/10.1017/fms.2021.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.69


Forum of Mathematics, Sigma 13

Hence, 2𝐵 [𝑖 𝑗 ]𝑘𝑙 = 𝐵𝑖 𝑗𝑘𝑙−𝐵 𝑗𝑖𝑘𝑙 = 𝐵𝑖 𝑗𝑘𝑙−𝐵𝑖 𝑗𝑙𝑘 = 2𝐵𝑖 𝑗 [𝑘𝑙] . It follows that 2𝐵 [𝑖 𝑗 ] [𝑘𝑙] = 𝐵𝑖 𝑗 [𝑘𝑙] −𝐵 𝑗𝑖 [𝑘𝑙] =
𝐵 [𝑖 𝑗 ]𝑘𝑙 − 𝐵 [ 𝑗𝑖 ]𝑘𝑙 = 2𝐵 [𝑖 𝑗 ]𝑘𝑙 . This means that 𝐵 [𝑖 𝑗 ]𝑘𝑙 = 𝐵 [𝑖 𝑗 ] [𝑘𝑙] = 𝐵𝑖 𝑗 [𝑘𝑙] is the orthogonal projection
of 𝐵𝑖 𝑗𝑘𝑙 onto 𝑆2 (

∧2
V
∗). It follows that 𝐵𝑖 𝑗 (𝑘𝑙) = 𝐵 (𝑖 𝑗)𝑘𝑙 = 𝐵 (𝑖 𝑗) (𝑘𝑙) = 𝐵 (𝑘𝑙) (𝑖 𝑗) is the orthogonal

projection of 𝐵𝑖 𝑗𝑘𝑙 onto 𝑆2 (𝑆2
V
∗). From the second equality of (5.7) it follows that (X ∗𝐴 Y)𝑖 𝑗𝑘𝑙 and

(X ∗𝑆 Y)𝑖 𝑗𝑘𝑙 are given by applying −2M to 𝐵 [𝑖 𝑗 ]𝑘𝑙 and − 2√
3
T ◦ S to 𝐵 (𝑖 𝑗)𝑘𝑙 , respectively, and doing

so yields the first equalities of (5.8) and (5.9). The second equalities of (5.2) and (5.9) follow from
3𝐵 [𝑖 𝑗𝑘𝑙] = 𝐵 [𝑖 𝑗 ]𝑘𝑙 + 𝐵𝑘 [𝑖 𝑗 ]𝑙 − 𝐵 [𝑖 |𝑘 | 𝑗 ]𝑙 . �

Since, by Lemma 4.2, the operator X̂ preserves type, if X,Y ∈ MC(V∗), then X̂(Y), Ŷ(X) ∈ MC(V∗).
Theorem 5.4 shows that, remarkably, X̂(Y) = Ŷ(X), so that a commutative multiplication of curvature
tensors can be defined by X ∗ Y = X̂(Y), and, moreover, ∗ = 3

2 (∗𝐴 + ∗𝑆).

Theorem 5.4. Let (V, ℎ) be a metric vector space. The bilinear map ∗ : MC(V∗)×MC(V∗) → MC(V∗)
defined by X ∗ Y = X̂(Y) for X,Y ∈ MC(V∗) is 𝑂 (ℎ)-equivariant and symmetric and so determines
a commutative algebra structure ∗ on MC(V∗) metrized by the pairing 〈 · , · 〉 given by complete
contraction with h and on which 𝑂 (ℎ) acts by algebra automorphisms. Moreover, ∗ = 3

2 (∗𝐴 + ∗𝑆) and ∗
equals that multiplication given by polarizing the quadratic term of the expression (1.2) for the evolution
of the curvature tensor under the Ricci flow.

Proof. Evaluation of X̂(Y)𝑖 𝑗𝑘𝑙 using (4.4) and 𝜚(X, Y)𝑖 𝑗𝑘𝑙 using (4.2) and (4.3) yields

4X̂(Y)𝑖 𝑗𝑘𝑙 = −2X𝑖
𝑝
𝑘
𝑞Y 𝑗 𝑝𝑙𝑞 − 2Y𝑖

𝑝
𝑘
𝑞X 𝑗 𝑝𝑙𝑞 + 2X𝑖

𝑝
𝑙
𝑞Y 𝑗 𝑝𝑘𝑞 + 2Y𝑖

𝑝
𝑘
𝑞X 𝑗 𝑝𝑘𝑞

− X𝑖 𝑗
𝑝𝑞Y𝑝𝑞𝑘𝑙 − X𝑘𝑙

𝑝𝑞Y𝑝𝑞𝑖 𝑗 = 4𝜚(X, Y)𝑖 𝑗𝑘𝑙 , (5.11)

which is evidently symmetric in X and Y, showing that X ∗ Y = X̂(Y) = Ŷ(X) = Y ∗ X. By Lemma 4.2,
Ŷ is self-adjoint, so, for X,Y,Z ∈ MC(V∗),

〈X ∗ Y,Z〉 = 〈Ŷ(X),Z〉 = 〈X, Ŷ(Z)〉 = 〈X,Y ∗ Z〉. (5.12)

This shows the complete symmetry of 〈X ∗ Y,Z〉. That 𝑂 (ℎ) acts by algebra automorphisms follows
from (5.11) and the 𝑂 (ℎ)-equivariance of 𝜚 established in Lemma 4.1.

From the symmetries of 𝐵𝑖 𝑗𝑘𝑙 = 𝐵(X,Y)𝑖 𝑗𝑘𝑙 it follows that

1
2
(
X𝑖 𝑗

𝑝𝑞Y𝑝𝑞𝑘𝑙 +Y𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙

)
=

(
X 𝑗 𝑝𝑖𝑞 + X𝑝𝑖 𝑗𝑞

)
(Y𝑞

𝑘
𝑝
𝑙 + Y𝑘

𝑝𝑞
𝑙) +

(
Y 𝑗 𝑝𝑖𝑞 + Y𝑝𝑖 𝑗𝑞

)
(X𝑞

𝑘
𝑝
𝑙 + X𝑘

𝑝𝑞
𝑙)

= 𝐵𝑖 𝑗𝑘𝑙 + 𝐵 𝑗𝑖𝑙𝑘 − 𝐵𝑖 𝑗𝑙𝑘 − 𝐵 𝑗𝑖𝑘𝑙 = 4𝐵 [𝑖 𝑗 ] [𝑘𝑙] = 4𝐵𝑖 𝑗 [𝑘𝑙] = 4𝐵 [𝑖 𝑗 ]𝑘𝑙 . (5.13)

Combining (5.11) and (5.13) shows

−(X ∗ Y)𝑖 𝑗𝑘𝑙 = 𝐵𝑖 𝑗𝑘𝑙 − 𝐵𝑖 𝑗𝑙𝑘 + 𝐵𝑖𝑘 𝑗𝑙 − 𝐵𝑖𝑙 𝑗𝑘 = 𝐵𝑖 𝑗𝑘𝑙 − 𝐵 𝑗𝑖𝑘𝑙 + 𝐵𝑖𝑘 𝑗𝑙 − 𝐵𝑖𝑙 𝑗𝑘 . (5.14)

That ∗ = 3
2 (∗𝐴 + ∗𝑆) follows from (5.8), (5.9), and (5.14). By [18, section 7] the polarization of the

quadratic term of the expression (1.2) for the evolution of the curvature tensor under the Ricci flow
equals the right-hand side of (5.14). �

Remark 5.5. It is not self-evident that the right-hand side of (5.14) determines an element of MC(V∗).
Here this is seen as following from the construction of ∗. It also can be checked directly using the
symmetries of 𝐵𝑖 𝑗𝑘𝑙 as in [17, 18]. The invariance of 〈 · , · 〉 with respect to ∗ is attributed to G. Huisken
in [2]. The proof given here is conceptually different than the usual proofs by direct computation or as
in [2, section 1].
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A metrized commutativeR-algebra (A, ◦, ℎ) is determined up to isometric isomorphism by the𝑂 (ℎ)-
orbit of the associated homogeneous cubic polynomial, 𝑃(A,◦) (𝑥) = (1/6)ℎ(𝑥 ◦ 𝑥, 𝑥), because P and the
metric h determine the multiplication ◦ via polarization.

Corollary 5.6. The cubic polynomial of (MC(V∗), ∗) has the form

𝑃(MC(V∗) ,∗) (X) = tr X̂3
∧2
V∗ +

1
3 tr X̂3

𝑆2V∗ . (5.15)

Proof. This follows from (5.5) in conjunction with Theorem 5.4. �

Lemma 5.7. Let (V, ℎ) be a metric vector space. For X,Y ∈ MC(V∗),

𝜌(X ∗ Y) = 1
2

(
X̂𝑆2V∗ (𝜌(Y)) + Ŷ𝑆2V∗ (𝜌(X))

)
, s(X ∗ Y) = 〈𝜌(X), 𝜌(Y)〉. (5.16)

In particular, the subspace MCW(V∗) = ker 𝜌 ⊂ MC(V∗) is a subalgebra of (MC(V∗), ∗).

Proof. The identities (5.16) are immediate from (5.4) and Theorem 5.4. �

Lemma 5.8. Let (V, ℎ) be a Euclidean vector space.

1. (Due to [32]) For all X ∈ MC(V∗), s(X ∗ X) ≥ 0 with equality if and only if X ∈ MCW(V∗).
2. If X ∈ MC(V∗) is such that X̂𝑆2V∗ is nonnegative, then s((X ∗X) ∗X) ≥ 0, with equality if and only

if 𝜌(X) ∈ ker X̂𝑆2V∗ .
3. If Y ∈ MCW(V∗), then s((X ∗ Y) ∗ Z − X ∗ (Y ∗ Z)) = 0 for all X,Z ∈ MC(V∗).

Proof. If X ∈ MC(V∗) satisfies s(X ∗ X) = 0, then, by (5.16), 0 = s(X ∗ X) = | 𝜌(X) |2, so 𝜌(X) = 0
and X ∈ MCW(V∗). By (5.16), s((X ∗ X) ∗ X) = 〈X̂𝑆2V∗ (𝜌(X)), 𝜌(X)〉, from which 2 follows. From
(5.16) and the self-adjointness of X̂𝑆2V∗ and Ẑ𝑆2V∗ it follows that 2 s((X ∗ Y) ∗ Z − X ∗ (Y ∗ Z)) =
〈X̂𝑆2V∗ (𝜌(Z)) − Ẑ𝑆2V∗ (𝜌(X)), 𝜌(Y)〉 for all X,Y,Z ∈ MC(V∗). Claim 3 follows. �

In particular, Lemma 5.8 shows that, in Euclidean signature, if X ∗X = 0, then X ∈ MCW(V∗). That
is, a square-zero element of (MC(V∗), ∗) must be contained in MCW(V∗). The first claim of Lemma
5.8 is an example of a claim that depends on the assumption that h have definite signature. In other
signatures the same proof shows only that 𝜌(X) is null.

Lemma 5.9. Let (V, ℎ) be a Euclidean vector space and let Π ∈ End(V) be the h-orthogonal pro-
jection onto the subspace W ⊂ V. The linear map 𝜄 : ⊗4

W
∗ → ⊗4

V
∗ defined by 𝜄(X) (𝐴, 𝐵, 𝐶, 𝐷) =

X(Π𝐴,Π𝐵,Π𝐶,Π𝐷) restricts to an injective algebra homomorphism that maps (MC(W∗), ∗) into
(MC(V∗), ∗) and (MCW(W∗), ∗) into (MCW(V∗), ∗).

Proof. Straightforward calculations show that 𝐵(𝜄(X), 𝜄(Y)) = 𝜄(𝐵(X,Y)) for X,Y ∈ MC(W). Since
𝜄 : ⊗4

W
∗ → ⊗4

V
∗ commutes with permutations of the factors, this suffices to show 𝜄(X)∗𝜄(Y) = 𝜄(X∗Y)

for X,Y ∈ MC(W∗). Similarly, 𝜌(𝜄(X)) = 𝜄(𝜌(X)) (where 𝜄 is defined on ⊗2
W) and so 𝜄(MCW(W∗)) ⊂

MCW(V∗). �

Remark 5.10. As commented in Remark 1.1, there is no purely algebraic reason to prefer ∗ to its
pullback ∗𝑡 via rescaling by 𝑡 ∈ R×, as these algebras are isomorphic. In particular, there is no algebraic
reason to prefer ∗ to −∗ = ∗−1. However, there are at least three aesthetic and geometric reasons for
preferring ∗ to −∗:

• (geometric) By Lemma 7.8, a positive multiple of the curvature tensor of the round metric on the
sphere is an ∗-idempotent.
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• (aesthetic) By Lemma 5.8, the scalar curvature of an ∗-square is nonnegative. (Morally, squares
should be positive.)

• (aesthetic) For the induced curvature operator on MC(V∗), X ∗ Y = X̂MC(V∗) (Y).

When comparing with the literature, care has to be taken. For example, that some signs in [32] at first
glance appear inconsistent with those here is because [32] works directly with curvature operators,
essentially with what is here called X̂∧2

V∗ , which is the image under the map here called ♯ of the tensor
− 1

2X𝑖 𝑗𝑘𝑙 , whereas here results are stated directly in terms of the tensor X𝑖 𝑗𝑘𝑙 .

6. Calculation of products in (MC(V∗), ∗)

There are two ways to construct curvature tensors from simpler objects, a commutative product � of
symmetric two-tensors and a commutative product · of antisymmetric two-tensors. Lemma 6.1 records
the ∗ products of curvature tensors obtained in these ways. They are used later in the construction of
idempotents in (MCW(V∗), ∗). Although the full strength of these computations is not needed in this
article, their proofs illustrate the use of ∗𝐴 and ∗𝑆 in the computation of ∗.

By straightforward computations using (4.2), Lemma 4.1, and (4.1),

(𝛼 � 𝛽)𝑖 𝑗𝑘𝑙 = −2𝜚(𝛼, 𝛽)𝑖 𝑗𝑘𝑙 = 𝛼𝑘 [𝑖𝛽 𝑗 ]𝑙 − 𝛼𝑙 [𝑖𝛽 𝑗 ]𝑘 =
√

3 ((T ◦ S) (𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼))𝑖 𝑗𝑘𝑙 (6.1)

defines a symmetric bilinear map � : 𝑆2 (V∗) × 𝑆2(V∗) → MC(V∗). When 𝑘 = 2, � is
half what is usually called the Kulkarni–Nomizu product. Again by (4.2), for 𝛼, 𝛽 ∈

∧2
V
∗,

𝜋(𝛼, 𝛽)𝑖 𝑗𝑘𝑙 = 1
2
(
𝛼𝑘 [𝑖𝛽 𝑗 ]𝑙 − 𝛼𝑙 [𝑖𝛽 𝑗 ]𝑘

)
, so that, by Lemma 4.1, an 𝑂 (ℎ)-equivariant symmetric bilinear

map · :
∧2 (V∗) ×

∧2 (V∗) → MC(V∗) is defined by

𝛼 · 𝛽 = −6𝜚(𝛼, 𝛽)𝑖 𝑗𝑘𝑙 = −6M(𝜋(𝛼, 𝛽))𝑖 𝑗𝑘𝑙 = −3
(
𝛼𝑘 [𝑖𝛽 𝑗 ]𝑙 − 𝛼𝑙 [𝑖𝛽 𝑗 ]𝑘 − 2𝛼[𝑖 𝑗 𝛽𝑘𝑙]

)
= 3

2 (𝛼𝑖 𝑗 𝛽𝑘𝑙 + 𝛼𝑘𝑙𝛽𝑖 𝑗 ) − 1
2 (𝛼 ∧ 𝛽)𝑖 𝑗𝑘𝑙 = 3

2M(𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼)𝑖 𝑗𝑘𝑙 . (6.2)

For a commutative algebra (A, ◦) define

𝑄◦(𝑥, 𝑦) = 2𝐿◦(𝑥) � 𝐿◦(𝑦) − 𝐿◦(𝑥 ◦ 𝑦), 𝑄◦(𝑥) = 𝑄◦(𝑥, 𝑥) = 2𝐿◦(𝑥)2 − 𝐿◦(𝑥 ◦ 𝑥). (6.3)

For a Jordan algebra, 𝑄◦(𝑥) is what is usually called the quadratic representation [23, 24]. For the
special case of 𝛼, 𝛽, 𝛾 ∈ ⊗2

V
∗,

𝑄�(𝛼, 𝛽) (𝛾) = 1
2 (𝛼 ◦ 𝛾 ◦ 𝛽 + 𝛽 ◦ 𝛾 ◦ 𝛼), 𝑄� (𝛼) (𝛾) = 𝛼 ◦ 𝛾 ◦ 𝛼. (6.4)

The following identities relate 𝑄� with � and [ · , · ].

𝑄�(𝛼 � 𝛽) + 1
4𝑄�([𝛼, 𝛽]) =

1
2𝑄� (𝛼 ◦ 𝛽) + 1

2𝑄� (𝛽 ◦ 𝛼),
𝑄�(𝛼 � 𝛽) − 1

4𝑄� ([𝛼, 𝛽]) = 𝑄� (𝛼) �𝑄�(𝛽).
(6.5)

Define tr : 𝑆𝑘V∗ → 𝑆𝑘−2
V
∗ by tr(𝜔)𝑖1...𝑖𝑘−2 = 𝜔𝑖1...𝑖𝑘−2 𝑝

𝑝 . For 𝛼 ∈ ⊗2
V
∗, let 𝛼♯ = 〈𝛼, · 〉 ∈ ⊗2

V, so
that, in the notation of (4.6), 2(𝛼 � 𝛽)♯ = 𝛼 ⊗ 𝛽♯ + 𝛽 ⊗ 𝛼♯, where � is the symmetrized tensor product
of elements of ⊗2

V
∗. From the definitions there follow
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�𝛾 � 𝜎𝑆2V∗ = 𝑄� (𝛾, 𝜎) − (𝛾 � 𝜎)♯,(𝛾 � ℎ)𝑆2V∗ (𝜏) = 𝛾 � 𝜏 − 1
2 tr(𝜏)𝛾 − 1

2 〈𝛾, 𝜏〉ℎ, 𝛾, 𝜎, 𝜏 ∈ 𝑆2(V∗), (6.6)�ℎ � ℎ𝑆2V∗ (𝜏) = 𝜏 − tr(𝜏)ℎ,�(𝛼 · 𝛽)∧2
V∗ = 𝑄�(𝛼, 𝛽) − (𝛼 � 𝛽)♯, 𝛼, 𝛽 ∈

∧2 (V∗), (6.7)

�𝛾 � 𝜎∧2
V∗ = −𝑄� (𝛾, 𝜎), �𝜎 � ℎ∧2

V∗ (𝛼) = −𝜎 � 𝛼, 𝛾, 𝜎 ∈ 𝑆2
V
∗,�𝛼 · 𝛽𝑆2V∗ = 3𝑄� (𝛼, 𝛽), �𝛼 · 𝛽𝑆2V∗ (ℎ) = 3𝛼 � 𝛽, 𝛼, 𝛽 ∈

∧2
V
∗. (6.8)

By (4.5), (6.1), and (6.2), for X ∈ MC(V∗), 𝛾, 𝜎 ∈ 𝑆2
V
∗, and 𝛼, 𝛽 ∈

∧2
V
∗,

〈𝛾 � 𝜎,X〉 = −2〈𝜚(𝛾, 𝜎),X〉 = −2〈X̂(𝛾), 𝜎〉 = −2〈𝛾, X̂(𝜎)〉, (6.9)

〈𝛼 · 𝛽,X〉 = −6〈𝜚(𝛼, 𝛽),X〉 = −6〈X̂(𝛼), 𝛽〉 = −6〈𝛼, X̂(𝛽)〉. (6.10)

For 𝛼, 𝛽, 𝛾, 𝜎 ∈
∧2(V∗), by (6.10) and (6.7),

〈𝛼 · 𝛽, 𝛾 · 𝜎〉 = −6〈�𝛼 · 𝛽∧2
V∗ (𝛾), 𝜎〉

= 3 (〈𝛼, 𝛾〉〈𝛽, 𝜎〉 + 〈𝛼, 𝜎〉〈𝛽, 𝛾〉 + tr(𝛼 ◦ 𝛾 ◦ 𝛽 ◦ 𝜎 + 𝛼 ◦ 𝜎 ◦ 𝛽 ◦ 𝛾)) . (6.11)

For 𝛼, 𝛽, 𝛾, 𝜎 ∈ 𝑆2
V
∗, by (6.9) and (6.6),

〈𝛼 � 𝛽, 𝛾 � 𝜎〉 = −2〈�𝛼 � 𝛽𝑆2V∗ (𝛾), 𝜎〉
= 〈𝛼, 𝛾〉〈𝛽, 𝜎〉 + 〈𝛼, 𝜎〉〈𝛽, 𝛾〉 − tr(𝛼 ◦ 𝛾 ◦ 𝛽 ◦ 𝜎 + 𝛽 ◦ 𝛾 ◦ 𝛼 ◦ 𝜎). (6.12)

For 𝛼, 𝛽 ∈
∧2
V
∗ and 𝛾, 𝜎 ∈ 𝑆2

V
∗, by (6.8) together with (6.9) or (6.10),

〈𝛼 · 𝛽, 𝛾 � 𝜎〉 = −3 tr(𝛾 ◦ 𝛼 ◦ 𝜎 ◦ 𝛽 + 𝜎 ◦ 𝛼 ◦ 𝛾 ◦ 𝛽). (6.13)

Using (4.1) it is straightforward to check that, for 𝜎 ∈ 𝑆2
V
∗ and 𝜏 ∈

∧2
V
∗, there hold

𝜎𝑖 [𝑘𝜎𝑙] 𝑗 =
1
2 (𝜎 � 𝜎)𝑖 𝑗𝑘𝑙 , =⇒ −2M((𝑄� (𝜎)∧2

V∗ )♭) = −𝜎 � 𝜎, (6.14)

𝜏𝑖 [𝑘𝜏𝑙] 𝑗 − 𝜏[𝑖𝑘𝜏𝑙 𝑗 ] = − 1
6 (𝜏 · 𝜏)𝑖 𝑗𝑘𝑙 , =⇒ −2M((𝑄� (𝜏)∧2

V∗ )♭) = 1
3𝜏 · 𝜏, (6.15)

𝜎𝑖 (𝑘𝜎𝑙) 𝑗 − 𝜎(𝑖𝑘𝜎𝑙 𝑗) = −
√

3
6 T

−1 (𝜎 � 𝜎)𝑖 𝑗𝑘𝑙 , =⇒ − 2√
3
T ◦ S((𝑄� (𝜎)𝑆2V∗ )♭) = 1

3𝜎 � 𝜎, (6.16)

𝜏𝑖 (𝑘𝜏𝑙) 𝑗 = −
√

3
6 T

−1(𝜏 · 𝜏)𝑖 𝑗𝑘𝑙 , =⇒ − 2√
3
T ◦ S((𝑄� (𝜏)𝑆2V∗ )♭) = 1

3𝜏 · 𝜏. (6.17)

Lemma 6.1. Let (V, ℎ) be a metric vector space. For 𝛼, 𝛽, 𝛾, 𝜎 ∈ 𝑆2 (V∗),

(𝛼 � 𝛽) ∗ (𝛾 � 𝜎) = − 1
4 (〈𝛼, 𝛾〉𝛽 � 𝜎 + 〈𝛼, 𝜎〉𝛽 � 𝛾 + 〈𝛽, 𝛾〉𝛼 � 𝜎 + 〈𝛽, 𝜎〉𝛼 � 𝛾)

+ 1
2 (𝛼 � 𝑄�(𝛾, 𝜎) (𝛽) + 𝛽 � 𝑄�(𝛾, 𝜎) (𝛼) + 𝛾 � 𝑄� (𝛼, 𝛽) (𝜎) + 𝜎 � 𝑄�(𝛼, 𝛽) (𝛾))

− 1
8 ([𝛼, 𝛾] · [𝛽, 𝜎] + [𝛼, 𝜎] · [𝛽, 𝛾]) − 1

2 ((𝛼 � 𝛾) � (𝛽 � 𝜎) + (𝛼 � 𝜎) � (𝛽 � 𝛾)) . (6.18)

For 𝛼, 𝛽 ∈
∧2
V
∗ and 𝛾, 𝜎 ∈ 𝑆2(V∗),

(𝛼 · 𝛽) ∗ (𝛾 � 𝜎)
= − 1

2 (𝛼 · 𝑄� (𝛾, 𝜎) (𝛽) + 𝛽 · 𝑄� (𝛾, 𝜎) (𝛼)) + 3
2 (𝛾 � 𝑄� (𝛼, 𝛽) (𝜎) + 𝜎 � 𝑄� (𝛼, 𝛽) (𝛾))

+ 1
2 ((𝛼 � 𝛾) · (𝛽 � 𝜎) + (𝛼 � 𝜎) · (𝛽 � 𝛾)) − 3

8 ([𝛾, 𝛼] � [𝜎, 𝛽] + [𝜎, 𝛼] � [𝛾, 𝛽]) .
(6.19)
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For 𝛼, 𝛽, 𝛾, 𝜎 ∈
∧2(V∗),

(𝛼 · 𝛽) ∗ (𝛾 · 𝜎) = − 1
4 (〈𝛼, 𝛾〉𝛽 · 𝜎 + 〈𝛼, 𝜎〉𝛽 · 𝛾 + 〈𝛽, 𝛾〉𝛼 · 𝜎 + 〈𝛽, 𝜎〉𝛼 · 𝛾)

+ 1
2 (𝑄� (𝛼, 𝛽) (𝛾) · 𝜎 + 𝛾 · 𝑄� (𝛼, 𝛽) (𝜎) +𝑄� (𝛾, 𝜎) (𝛼) · 𝛽 + 𝛼 · 𝑄� (𝛾, 𝜎) (𝛽))

− 5
8 ([𝛼, 𝛾] · [𝛽, 𝜎] + [𝛽, 𝛾] · [𝛼, 𝜎]) + 3

2 ((𝛼 � 𝛾) � (𝛽 � 𝜎) + (𝛽 � 𝛾) � (𝛼 � 𝜎)) .
(6.20)

Proof. For 𝛼, 𝛽 ∈ 𝑆2
V
∗, by (6.8), (6.6), and (6.5),�𝛼 � 𝛼∧2

V∗ ��𝛽 � 𝛽∧2
V∗ = 𝑄� (𝛼) �𝑄�(𝛽) = 𝑄� (𝛼 � 𝛽) − 1

4𝑄� ([𝛼, 𝛽]). (6.21)�𝛼 � 𝛼𝑆2V∗ ��𝛽 � 𝛽𝑆2V∗ = (𝑄� (𝛼) − (𝛼 ⊗ 𝛼)♯) � (𝑄� (𝛽) − (𝛽 ⊗ 𝛽)♯)

= 𝑄� (𝛼 � 𝛽) − 1
4𝑄� ([𝛼, 𝛽]) + 〈𝛼, 𝛽〉(𝛼 � 𝛽)♯ − (𝑄�(𝛼) (𝛽) � 𝛽)♯ − (𝑄�(𝛽) (𝛼) � 𝛼)♯ . (6.22)

By (5.1), applying −2M to (6.21) and − 2√
3
T ◦ S to (6.22), and using (6.2) and (6.14)–(6.17) with

𝜎 = 𝛼 � 𝛽 and 𝜏 = [𝛼, 𝛽] to simplify the results yields

(𝛼 � 𝛼) ∗𝐴 (𝛽 � 𝛽) = −(𝛼 � 𝛽) � (𝛼 � 𝛽) − 1
12 [𝛼, 𝛽] · [𝛼, 𝛽],

(𝛼 � 𝛼) ∗𝑆 (𝛽 � 𝛽) = 2
3 (𝛼 � 𝑄�(𝛽) (𝛼) + 𝛽 � 𝑄� (𝛼) (𝛽) − 〈𝛼, 𝛽〉(𝛼 � 𝛽))
+ 1

3 (𝛼 � 𝛽) � (𝛼 � 𝛽) − 1
2 [𝛼, 𝛽] · [𝛼, 𝛽] .

(6.23)

Using ∗ = 3
2 (∗𝐴 + ∗𝑆) and (6.23) to evaluate (𝛼 � 𝛼) ∗ (𝛽 � 𝛽) yields

(𝛼 � 𝛼) ∗ (𝛽 � 𝛽) = −〈𝛼, 𝛽〉𝛼 � 𝛽 + 𝛼 � 𝑄� (𝛽) (𝛼) + 𝛽 � 𝑄�(𝛼) (𝛽)
− 1

4 [𝛼, 𝛽] · [𝛼, 𝛽] − (𝛼 � 𝛽) � (𝛼 � 𝛽).
(6.24)

Polarizing (6.24) first in 𝛼 and then in 𝛽 yields (6.18).
For 𝛼 ∈

∧2
V
∗ and 𝛾 ∈ 𝑆2

V
∗, by (6.7), (6.8), (6.6), and (6.5),

�𝛼 · 𝛼∧2
V∗ ��𝛾 � 𝛾∧2

V∗ = (𝑄� (𝛼) − (𝛼 ⊗ 𝛼)♯) �𝑄� (𝛾)

= −𝑄� (𝛼 � 𝛾) + 1
4𝑄�([𝛼, 𝛾]) + (𝑄� (𝛾) (𝛼) � 𝛼)♯ ,

(6.25)�𝛼 · 𝛼𝑆2V∗ ��𝛾 � 𝛾𝑆2V∗ = 3𝑄� (𝛼) �
(
𝑄� (𝛾) − (𝛾 ⊗ 𝛾)♯

)
= 3𝑄� (𝛼 � 𝛾) − 3

4𝑄�([𝛼, 𝛾]) − 3 (𝑄�(𝛼) (𝛾) � 𝛾)♯ .
(6.26)

By (5.1), applying −2M to (6.25) and − 2√
3
T ◦S to (6.26), and using (6.2), (6.1), and (6.14)–(6.17) with

𝜎 = [𝛼, 𝛾] and 𝜏 = 𝛼 � 𝛾 to simplify the results yields

(𝛼 · 𝛼) ∗𝐴 (𝛾 � 𝛾) = − 2
3𝛼 · 𝑄�(𝛾) (𝛼) − 1

3 (𝛼 � 𝛾) · (𝛼 � 𝛾) −
1
4 [𝛼, 𝛾] � [𝛼, 𝛾],

(𝛼 · 𝛼) ∗𝑆 (𝛾 � 𝛾) = 2𝛾 � 𝑄� (𝛼) (𝛾) + (𝛼 � 𝛾) · (𝛼 � 𝛾) − 1
4 [𝛼, 𝛾] � [𝛼, 𝛾] .

(6.27)

Using ∗ = 3
2 (∗𝐴 + ∗𝑆) and (6.27) to evaluate (𝛼 · 𝛼) ∗ (𝛾 � 𝛾) yields

(𝛼 · 𝛼) ∗ (𝛾 � 𝛾) = −𝛼 · 𝑄�(𝛾) (𝛼) + 3𝛾 � 𝑄� (𝛼) (𝛾) + (𝛼 � 𝛾) · (𝛼 � 𝛾) − 3
4 [𝛼, 𝛾] � [𝛼, 𝛾] .

(6.28)

Polarizing (6.28) first in 𝛼 and then in 𝛾 yields (6.19).
For 𝛼, 𝛽 ∈

∧2
V
∗, by (6.7), (6.8), and (6.5),

�𝛼 · 𝛼∧2
V∗ � 𝛽 · 𝛽∧2

V∗ = (𝑄�(𝛼) − (𝛼 ⊗ 𝛼)♯) � (𝑄� (𝛽) − (𝛽 ⊗ 𝛽)♯)

= 𝑄� (𝛼 � 𝛽) − 1
4𝑄�([𝛼, 𝛽]) + 〈𝛼, 𝛽〉 (𝛼 � 𝛽)♯ − (𝑄� (𝛽) (𝛼) � 𝛼)♯ − (𝑄� (𝛼) (𝛽) � 𝛽)♯ ,

(6.29)
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�𝛼 · 𝛼𝑆2V∗ � 𝛽 · 𝛽𝑆2V∗ = 9𝑄� (𝛼) �𝑄� (𝛽) = 9𝑄� (𝛼 � 𝛽) − 9
4𝑄�([𝛼, 𝛽]). (6.30)

By (5.1), applying −2M to (6.29) and − 2√
3
T ◦ S to (6.30), and using (6.2) and (6.14)–(6.17) with

𝜏 = [𝛼, 𝛽] and 𝜎 = 𝛼 � 𝛽 to simplify the results yields

(𝛼 · 𝛼) ∗𝐴 (𝛽 · 𝛽) = 2
3 (𝛼 · 𝑄�(𝛽) (𝛼) + 𝛽 · 𝑄� (𝛼) (𝛽) − 〈𝛼, 𝛽〉𝛼 · 𝛽)
− (𝛼 � 𝛽) � (𝛼 � 𝛽) − 1

12 [𝛼, 𝛽] · [𝛼, 𝛽],
(𝛼 · 𝛼) ∗𝑆 (𝛽 · 𝛽) = 3(𝛼 � 𝛽) � (𝛼 � 𝛽) − 3

4 [𝛼, 𝛽] · [𝛼, 𝛽] .
(6.31)

Using ∗ = 3
2 (∗𝐴 + ∗𝑆) and (6.31) to evaluate (𝛼 · 𝛼) ∗ (𝛽 · 𝛽) yields

(𝛼 · 𝛼) ∗ (𝛽 · 𝛽) = −〈𝛼, 𝛽〉𝛼 · 𝛽 + 𝛼 · 𝑄� (𝛽) (𝛼) + 𝛽 · 𝑄�(𝛼) (𝛽)
+ 3(𝛼 � 𝛽) � (𝛼 � 𝛽) − 5

4 [𝛼, 𝛽] · [𝛼, 𝛽] .
(6.32)

Polarizing (6.32) first in 𝛼 and then in 𝛽 yields (6.20). �

Remark 6.2. Taking 𝛽 = 𝛼 ∈ 𝑆2
V
∗ in (6.24) yields

(𝛼 � 𝛼) ∗ (𝛼 � 𝛼) = −|𝛼 |2𝛼 � 𝛼 + 2𝛼 � (𝛼 ◦ 𝛼 ◦ 𝛼) − (𝛼 ◦ 𝛼) � (𝛼 ◦ 𝛼). (6.33)

Taking 𝛾 = 𝛼 ∈ 𝑆2
V
∗ and 𝜎 = 𝛽 ∈ 𝑆2

V
∗ in (6.18) yields

(𝛼 � 𝛽) ∗ (𝛼 � 𝛽) = − 1
4 |𝛼 |

2𝛽 � 𝛽 − 1
4 |𝛽 |

2𝛼 � 𝛼 − 1
2 〈𝛼, 𝛽〉𝛼 � 𝛽 + 1

8 [𝛼, 𝛽] · [𝛼, 𝛽]
+ 𝛼 � (𝛼 � (𝛽 ◦ 𝛽)) + 𝛽 � (𝛽 � (𝛼 ◦ 𝛼)) − 1

2 ((𝛼 ◦ 𝛼) � (𝛽 ◦ 𝛽) + (𝛼 � 𝛽) � (𝛼 � 𝛽)) .
(6.34)

The identities (6.33) and (6.34) suggest that, with further conditions on 𝛼 and 𝛽, ∗-idempotents can
be constructed from 𝛼 � 𝛼, 𝛽 � 𝛽, and 𝛼 � 𝛽. This is shown to be the case in Lemma 7.4. Similarly,
taking 𝛼 = 𝛽 = 𝛾 = 𝜎 ∈

∧2
V
∗ in (6.20) yields

(𝛼 · 𝛼) ∗ (𝛼 · 𝛼) = −|𝛼 |2𝛼 · 𝛼 + 2𝛼 · (𝛼 ◦ 𝛼 ◦ 𝛼) + 3(𝛼 ◦ 𝛼) � (𝛼 ◦ 𝛼). (6.35)

The identity (6.35) suggests that with some further condition on 𝛼, the element 𝛼 ·𝛼 or its trace-free part
tf(𝛼 · 𝛼) might be a ∗-idempotent. Corollary 7.5 and Lemma 10.1 show that this works. In this regard,
see also Lemma 7.3, which uses (6.32) and (6.35) to construct square-zero elements in (MCW(V∗), ∗)
when h has indefinite signature.

7. Simplicity of (MCW(V∗), ∗) and fusion rules for (MC(V∗), ∗)

Lemma 5.7 shows that the Weyl curvature tensors constitute a subalgebra of (MC(V∗), ∗). The first
part of the section is dedicated to constructing idempotents in (MCW(V∗), ∗). This is used in the proof
of Theorem 1.3 and to show the nontriviality of the subalgebra (MCW(V∗), ∗), which in turn yields
Corollary 7.6, showing the simplicity of (MCW(V∗), ∗) when dimV > 4, but is also interesting in
its own right, as experience with Jordan and axial algebras suggests that detailed information about
idempotents and the spectra of their multiplication endomorphisms is useful for understanding the
internal structure of an algebra such as (MCW(V∗), ∗).

Next, explicit formulas for products in (MC(V∗), ∗) are deduced and these are used to deduce the
main result of this section, Theorem 7.12, that describes the interaction of the subspaces MCS(V∗),
MCR(V∗), and MCW(V∗) with respect to ∗.
Lemma 7.1. Let (V, ℎ) be an n-dimensional Euclidean vector space. For an 𝑂 (𝑛)-module of ten-
sors W, let tf ∈ End(W) denote the orthogonal projection onto the 𝑂 (𝑛)-submodule W0 ⊂ W
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comprising trace-free elements. Define 𝑆2
0 (V

∗) = {𝛼 ∈ 𝑆2 (V∗) : tr 𝛼 = 0}, MCR(V∗) = {ℎ � 𝛼 :
𝛼 ∈ 𝑆2

0 (V
∗)} ⊂ MC(V∗), and MCS(V∗) = Span {ℎ � ℎ} ⊂ MC(V∗). The orthogonal projections

PR,PS ∈ End(MC(V∗)) on MCR(V∗) and MCS(V∗) are given by

PR(X) = − 2
𝑛−2 𝜌◦(X) � ℎ, PS(X) = − 1

𝑛(𝑛−1) s(X)ℎ � ℎ, (7.1)

where 𝜌◦(X) = 𝜌(X) − 1
𝑛 s(X)ℎ, and the trace-free part tf(X) of X ∈ MC(V∗) is given by

tf(X) = X + 2
𝑛−2 𝜌◦(X) � ℎ + 1

𝑛(𝑛−1) s(X)ℎ � ℎ = X + 2
𝑛−2 𝜌(X) � ℎ − 1

(𝑛−2) (𝑛−1) s(X)ℎ � ℎ. (7.2)

Proof. For 𝛼, 𝛽 ∈ 𝑆2 (V∗), computations using the definitions show

𝜌(𝛼 � 𝛽) = 𝛼 � 𝛽 − 1
2 tr(𝛼)𝛽 − 1

2 tr(𝛽)𝛼, s(𝛼 � 𝛽) = 〈𝛼, 𝛽〉 − 〈tr 𝛼, tr 𝛽〉, (7.3)

𝜌(𝛼 � ℎ) = 2−𝑛
2 𝛼 − 1

2 tr(𝛼)ℎ, s(𝛼 � ℎ) = (1 − 𝑛) tr 𝛼, (7.4)

𝜌(ℎ � ℎ) = (1 − 𝑛)ℎ, s(ℎ � ℎ) = −𝑛(𝑛 − 1). (7.5)

When 𝑛 > 2, MC(V∗) = MCW(V∗) ⊕ MCR(V∗) ⊕ MCS(V∗) is an orthogonal decomposition into
irreducible 𝑂 (𝑛)-modules (although MCW(V∗) is trivial if dimV = 3). By (7.4), if 𝑛 > 2, the map
𝛼 → ℎ � 𝛼 is a linear isomorphism from 𝑆2

0 (V
∗) onto its image in MC(V∗), which is MCR(V∗). The

expressions (7.1) and (7.2) follow from (7.4) and (7.5). �

Example 7.2. For 𝛼, 𝛽 ∈ 𝑆2
V
∗, taking X = 𝛼 � 𝛽 in (7.2) and using (7.3) yields

tf(𝛼 � 𝛽) = 𝛼 � 𝛽 + 1
𝑛−2

(
2𝛼 � 𝛽 − tr(𝛼)𝛽 − tr(𝛽)𝛼 + 1

𝑛−1 (tr(𝛼) tr(𝛽) − 〈𝛼, 𝛽〉) ℎ
)

� ℎ. (7.6)

Similarly, by (7.2) and (7.7), for 𝛼, 𝛽 ∈
∧2(V∗),

𝜌(𝛼 · 𝛽) = 3𝛼 � 𝛽, s(𝛼 · 𝛽) = −3〈𝛼, 𝛽〉, (7.7)

tf(𝛼 · 𝛽) = 𝛼 · 𝛽 + 6
𝑛−2 (𝛼 � 𝛽) � ℎ + 3

(𝑛−1) (𝑛−2) 〈𝛼, 𝛽〉ℎ � ℎ. (7.8)

Since, by (6.9), 〈X, ℎ � ℎ〉 = −2 s(X) for anyX ∈ MC(V∗), by (7.7) there holds 〈𝛼·𝛽, ℎ � ℎ〉 = 6〈𝛼, 𝛽〉.
Alternatively, this is a special case of (6.10) or a special case of (6.13).

Lemma 7.3. Let (V, ℎ) be a metric vector space of dimension 𝑛 > 3. If h has indefinite signature with
minimal inertial index 𝑘 ≥ 1, then (MCW(V∗), ∗) is spanned by square-zero elements and contains a
trivial subalgebra of dimension 𝑛 − 2𝑘 − 1.

Proof. By assumption there are a nonzero h-isotropic 𝑤 ∈ V∗ and a unimodular h-orthogonal basis
{𝑧 (𝛼) : 0 ≤ 𝛼 ≤ 𝑛 − 2𝑘 − 1} of a codimension 2𝑘 subspace of V∗ orthogonal to w and on which h
has definite signature. Concretely, there is 𝜖 ∈ {±1} such that ℎ(𝑤, 𝑧 (𝛼) ) = 0 and ℎ(𝑧 (𝛼) , 𝑧 (𝛼) ) = 𝜖 for
0 ≤ 𝛼 ≤ 𝑛−2𝑘−1. For 1 ≤ 𝛼 ≤ 𝑛−2𝑘−1, the tensorZ(𝛼) = (𝑤∧𝑧 (0) ) · (𝑤∧𝑧 (0) )−(𝑤∧𝑧 (𝛼) ) · (𝑤∧𝑧 (𝛼) )
is nontrivial. Suppose 1 ≤ 𝛼 < 𝛽 ≤ 𝑛−2𝑘−1. Because (𝑤∧𝑧 (𝛼) ) ◦ (𝑤∧𝑧 (𝛼) ) = −𝜖𝑤⊗𝑤 = (𝑤∧𝑧 (𝛽) ) ⊗
(𝑤∧𝑧 (𝛽) ), by (7.7), 𝜌(Z(𝛼) ) = 0, so Z(𝛼) ∈ MCW(V∗). Because (𝑤∧𝑧 (𝛼) ) ◦ (𝑤∧𝑧 (𝛼) ) ◦ (𝑤∧𝑧 (𝛼) ) = 0
and (𝑤 ⊗ 𝑤) � (𝑤 ⊗ 𝑤) = 0, by (6.35), ((𝑤 ∧ 𝑧 (𝛼) ) ⊗ (𝑤 ∧ 𝑧 (𝛼) )) ∗ ((𝑤 ∧ 𝑧 (𝛼) ) ⊗ (𝑤 ∧ 𝑧 (𝛼) )) = 0 =
((𝑤∧ 𝑧 (𝛽) ) ⊗ (𝑤∧ 𝑧 (𝛽) )) ∗ ((𝑤∧ 𝑧 (𝛽) ) ⊗ (𝑤∧ 𝑧 (𝛽) )) and, because (𝑤∧ 𝑧 (𝛼) ) ◦ (𝑤∧ 𝑧 (𝛽) ) = 0, by (6.32),
((𝑤 ∧ 𝑧 (𝛼) ) ⊗ (𝑤 ∧ 𝑧 (𝛼) )) ∗ ((𝑤 ∧ 𝑧 (𝛽) ) ⊗ (𝑤 ∧ 𝑧 (𝛽) )) = 0, so Z(𝛼) ∗ Z(𝛼) = 0 and Z(𝛼) ∗ Z(𝛽) = 0. It
follows that Span {Z(𝛼) : 1 ≤ 𝛼 ≤ 𝑛 − 2𝑘 − 1} is a trivial subalgebra of (MCW(V∗), ∗).

Since (MCW(V∗), ∗) contains a nonzero square-zero element Z, the span of the 𝑂 (ℎ)-orbit of
Z is a nontrivial 𝑂 (ℎ)-invariant subspace of the irreducible 𝑂 (ℎ)-module MCW(V∗) and so equals
MCW(V∗), and hence MCW(V∗) is spanned by square-zero elements. �
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Let Idem(A, ◦) denote the set of idempotent elements in the algebra (A, ◦). Two idempotents
𝑒, 𝑓 ∈ Idem(A, ◦) are orthogonal if 𝑒 ◦ 𝑓 = 0 = 𝑓 ◦ 𝑒.

If 𝛼 ∈ Idem(𝑆2
V
∗,�), then tr 𝛼 = |𝛼 |2 is the rank of the orthogonal proejction 𝛼𝑖

𝑗 , so tr 𝛼 is said
to be the rank of 𝛼. If 𝛼, 𝛽 ∈ Idem(𝑆2

V
∗,�) are orthogonal idempotents, then 𝛼 ◦ 𝛽 = 0 = 𝛽 ◦ 𝛼, for

𝛼 ◦ 𝛽 = 𝛼 ◦ 𝛼 ◦ 𝛽 ◦ 𝛽 = 𝛽 ◦ 𝛽 ◦ 𝛼 ◦ 𝛼 = 𝛽 ◦ 𝛼 = −𝛼 ◦ 𝛽.
Lemma 7.4. Let (V, ℎ) be an n-dimensional Euclidean vector space. For orthogonal idempotents
𝛼, 𝛽 ∈ Idem(𝑆2

V
∗,�) with 𝑎 = tr 𝛼 and 𝑏 = tr 𝛽 there hold

(𝛽 � 𝛽) ∗ (𝛽 � 𝛽) = (1 − 𝑏)𝛽 � 𝛽, (𝛼 � 𝛽) ∗ (𝛼 � 𝛽) = − 1
2 (𝛼 � 𝛽) − 𝑏

4𝛼 � 𝛼 − 𝑎
4 𝛽 � 𝛽,

(𝛽 � 𝛽) ∗ (𝛽 � 𝛼) = 1−𝑏
2 𝛼 � 𝛽, (𝛼 � 𝛼) ∗ (𝛽 � 𝛽) = 0.

(7.9)

Moreover, |𝛽 � 𝛽 |2 = 2(𝑏 − 1)𝑏, so 𝛽 � 𝛽 ≠ 0 if and only if 𝑏 ≠ 1. In this case 1
1−𝑏 𝛽 � 𝛽 ∈

Idem(MC(V∗), ∗). If 𝑎 ≠ 1 and 𝑏 ≠ 1, then 1
1−𝑏 𝛽 � 𝛽 and 1

1−𝑎𝛼 � 𝛼 are orthogonal idempotents in
(MC(V∗), ∗).
Proof. That |𝛽 � 𝛽 |2 = 2(𝑏 − 1)𝑏 follows from (6.12). (Note that 𝑏 = 1 if and only if 𝛽 = 𝑢 ⊗ 𝑢 for a
unit norm 𝑢 ∈ V∗, in which case 𝛽 � 𝛽 = 0.) Specializing (6.18), (6.33), and (6.34) yields (7.9) and the
remaining claims. �

Corollary 7.5. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 > 2. If orthogonal idempotents
𝛼, 𝛽 ∈ Idem(𝑆2

V
∗,�) satisfy 𝑎 = tr 𝛼 ≠ 1 and 𝑏 = tr 𝛽 ≠ 1, then

B(𝛼, 𝛽) = 1
1−𝑎−𝑏

(
𝑏

𝑎−1𝛼 � 𝛼 + 𝑎
𝑏−1 𝛽 � 𝛽 − 2𝛼 � 𝛽

)
(7.10)

is an idempotent in (MCW(V∗), ∗) satisfying |B(𝛼, 𝛽) |2 = 2(𝑎+𝑏−2)𝑎𝑏
(𝑎+𝑏−1) (𝑎−1) (𝑏−1) . In particular, if 𝑏 ∉

{1, 𝑛 − 1}, 𝛽 = ℎ − 𝛽, and �̂� = tr 𝛽, then

B(𝛽) = B(𝛽, ℎ − 𝛽) = 2−𝑛
(𝑏−1) (𝑛−1−𝑏)

(
𝛽 � 𝛽 − 2(𝑏−1)

𝑛−2 𝛽 � ℎ + 𝑏 (𝑏−1)
(𝑛−1) (𝑛−2) ℎ � ℎ

)
= 2−𝑛

(𝑏−1) (𝑛−1−𝑏) tf(𝛽 � 𝛽) = 2−𝑛
(�̂�−1) (𝑛−1−�̂�) tf(𝛽 � 𝛽)

(7.11)

is an idempotent in (MCW(V∗), ∗) satisfying |B(𝛽) |2 = 2(𝑛−2) (𝑛−𝑏)𝑏
(𝑛−1) (𝑛−1−𝑏) (𝑏−1) .

Proof. That B(𝛼, 𝛽) defined by the first equality of (7.11) is an idempotent follows from (7.9). That
𝜌(B(𝛼, 𝛽)) = 0 follows from (7.3). The claimed value of |B(𝛼, 𝛽) |2 follows from (7.10) and (6.12)
by straightforward computations. Because (ℎ − 𝛽) ◦ 𝛽 = 0 and tr(ℎ − 𝛽) = 𝑛 − tr 𝛽, that (7.11) is an
idempotent in (MCW(V∗), ∗) with |B(𝛽) |2 having the claimed value is a special case of the preceding.
The first equality of (7.11) follows upon substituting 𝛽 = ℎ − 𝛽 in (7.10). Specializing (7.6) yields the
second equality of (7.11). Finally, tf(𝛽 � 𝛽) = tf(𝛽 � 𝛽) because 𝛽 � 𝛽 = 𝛽 � 𝛽 + (ℎ − 2𝛽) � ℎ. �

Corollary 7.6. Let (V, ℎ) be an n-dimensional Euclidean vector space. If 𝑛 > 3, then MCW(V∗) ∗
MCW(V∗) = MCW(V∗), and if 𝑛 > 4, then (MCW(V∗), ∗) is a simple algebra.
Proof. By Lemma 5.7, MCW(V∗) is a subalgebra of (MC(V∗), ∗). Let 𝑥, 𝑦 ∈ V∗ be orthogonal
unit norm vectors. Because 𝛽 = 𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦 satisfies 𝛽 ◦ 𝛽 = 𝛽 and tr 𝛽 = 2, by Corollary 7.5,
|B(𝛽) |2 = 4(𝑛−2)2

(𝑛−1) (𝑛−3) ≠ 0, so B(𝛽) is a nontrivial idempotent in (MCW(V∗), ∗). If 𝑛 > 3, this shows
(MCW(V∗), ∗) is a nontrivial algebra and MCW(V∗) ∗ MCW(V∗) is a nontrivial 𝑂 (𝑛)-submodule
of the irreducible 𝑂 (𝑛)-module MCW(V∗) and so must equal MCW(V∗). If 𝑛 > 4, 𝑆𝑂 (𝑛) acts on
(MCW(V∗), ∗) irreducibly by automorphisms, so, by Theorem 3.1, (MCW(V∗), ∗) is simple. �

Lemma 7.7. Let (V, ℎ) be a metric vector space. For X ∈ MC(V∗) and 𝛼 ∈ 𝑆2 (V∗),

X ∗ (𝛼 � ℎ) = 1
2

(
X̂(𝛼) � ℎ + 𝛼 � 𝜌(X)

)
, X ∗ (ℎ � ℎ) = 𝜌(X) � ℎ. (7.12)
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Proof. For 𝛼 ∈ 𝑆2
V
∗ and X,Y ∈ MC(V∗),

〈(𝛼 � ℎ) ∗ X,Y〉 = 〈𝛼 � ℎ,X ∗ Y〉 = −2〈𝛼, �X ∗ Y(ℎ)〉

= −2〈𝛼, 𝜌(X ∗ Y)〉 = −〈𝛼, X̂(𝜌(Y)) + Ŷ(𝜌(X))〉

= −〈X̂(𝛼), Ŷ(ℎ)〉 + 〈𝛼, Ŷ(𝜌(X))〉 = 1
2 〈X̂(𝛼) � ℎ + 𝛼 � 𝜌(X),Y〉,

(7.13)

the first equality by the invariance of 〈 · , · 〉, the second equality by (6.9), the third and fourth equalities
because Ẑ(ℎ) = 𝜌(Z) for any Z ∈ MC(V∗), the fifth equality again by (6.9), and the last equality by
(5.16). By the nondegeneracy of 〈 · , · 〉, (7.13) implies the first equality of (7.12). Because X̂(ℎ) = 𝜌(X),
taking 𝛼 = ℎ in the first equality of (7.12) yields its second equality. �

Lemma 7.8. Let (V, ℎ) be an n-dimensional metric vector space. For 𝛼, 𝛽 ∈ 𝑆2(V∗),

(ℎ � 𝛼) ∗ (ℎ � 𝛽) = 2−𝑛
4 𝛼 � 𝛽 + 1

2

(
𝛼 � 𝛽 − 1

2 tr(𝛼)𝛽 − 1
2 tr(𝛽)𝛼 − 1

2 〈𝛼, 𝛽〉ℎ
)

� ℎ, (7.14)

(ℎ � 𝛼) ∗ (ℎ � ℎ) = 2−𝑛
2 ℎ � 𝛼 − 1

2 tr(𝛼)ℎ � ℎ, (7.15)

(ℎ � ℎ) ∗ (ℎ � ℎ) = (1 − 𝑛)ℎ � ℎ. (7.16)

Proof. Taking X = 𝛽 � ℎ in (7.12) and simplifying using (7.4) and (6.6) yields (7.14), and (7.15) and
(7.16) are special cases of (7.14). Alternatively, (7.14)–(7.16) are special cases of (6.18). �

Lemma 7.9. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 ≥ 4. Let

W1 = Span {(𝑥 � 𝑦) � (𝑧 � 𝑤) : 𝑥, 𝑦, 𝑧, 𝑤 ∈ V∗ are pairwise orthogonal},
W2 = Span

{
𝛼 � 𝛽 : 𝛼, 𝛽 ∈ 𝑆2

0V
∗, 𝛼 � 𝛽 = 0

}
,

W3 = Span {(𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) : 𝑥, 𝑦, 𝑧, 𝑤 ∈ V∗ are pairwise orthogonal},
W4 = Span

{
𝛼 · 𝛽 : 𝛼, 𝛽 ∈

∧2
V
∗, 𝛼 � 𝛽 = 0

}
.

(7.17)

Then MCW(V∗) =W1 =W2 =W3 =W4.

Proof. By (7.3) and (7.7), W2,W4 ⊂ MCW(V∗). By (6.11) and (6.12), | (𝑥 � 𝑦) � (𝑧 � 𝑤) |2 = 1/4
and | (𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) |2 = 12, so W1 and W3 are nontrivial. If 𝑥, 𝑦, 𝑧, 𝑤 are pairwise orthogonal, then
𝑥 � 𝑦, 𝑧 � 𝑤 ∈ 𝑆2

0V
∗ satisfy (𝑥 � 𝑦) ◦ (𝑧 � 𝑤) = 0, so W1 ⊂ W2, and 𝑥 ∧ 𝑦, 𝑧 ∧ 𝑤 ∈

∧2
V
∗ satisfy

(𝑥 ∧ 𝑦) ◦ (𝑧 ∧ 𝑤) = 0, so W3 ⊂ W4. Since W1 and W3 are nontrivial 𝑂 (𝑛)-submodules of the 𝑂 (𝑛)-
irreducible module MCW(V∗), they equal MCW(V∗). �

Theorem 7.10. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 ≥ 4. If X ∈ MC(V∗) satisfies
X ∗ Y = 0 for all Y ∈ MC(V∗), then X = 0.

Proof. Because X ∗ Y = X̂MC(V∗) (Y), an equivalent claim is that the map ·̂ MC(V∗) : MC(V∗) →
End(MC(V∗)) is injective. If X ∗ Y = 0 for all Y ∈ MC(V∗), then 0 = 〈X ∗ Y,Z〉 = 〈X,Y ∗ Z〉 for all
Y,Z ∈ MC(V∗). With Y = Z = ℎ � ℎ, by (7.16) and (6.9) this yields 0 = 〈X, ℎ � ℎ〉 = −2 s(X). Taking
Y = ℎ � ℎ and Z = 𝛼 � ℎ for 𝛼 ∈ 𝑆2

0V
∗, by (7.15) and (6.9) this yields 0 = 2〈X, (ℎ � ℎ) ∗ (𝛼 � ℎ)〉 =

(2 − 𝑛)〈X, 𝛼 � ℎ〉 = 2(𝑛 − 2)〈X̂(ℎ), 𝛼〉 = 2(𝑛 − 2)〈𝜌◦(X), 𝛼〉. Since 𝛼 ∈ 𝑆2
0V

∗ is arbitrary, this
shows 𝜌(X) = 0, so X ∈ MCW(V∗). Finally, if 𝛼, 𝛽 ∈ 𝑆2

0V
∗, then, by (7.14) and the preceding,

0 = 4〈X, (𝛼 � ℎ) ∗ (𝛽 � ℎ)〉 = (2−𝑛)〈X, 𝛼 � 𝛽〉. Because the setW2 of Lemma 7.9 spans MCW(V∗),
this shows that X is orthogonal to MCW(V∗), so X = 0. �

Lemma 7.11. Let (V, ℎ) be an n-dimensional Euclidean vector space. The projections onto the 𝑂 (ℎ)-
irreducible summands of MC(V∗) of X,Y ∈ MC(V∗) satisfy

PS(X) ∗ PS(Y) = − 1
𝑛2 (𝑛−1) s(X) s(Y)ℎ � ℎ = 1

𝑛 s(X)PS(Y) = 1
𝑛 s(Y)PS(X), (7.18)
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PS(X) ∗ PR(Y) = − 1
𝑛(𝑛−1) s(X) 𝜌◦(Y) � ℎ = (𝑛−2)

2𝑛(𝑛−1) s(X)PR(Y), (7.19)

tf(X) ∗ PS(Y) = 0, (7.20)

tf(X) ∗ PR(Y) = PR(tf(X) ∗ Y), (7.21)

PR(X) ∗ PR(Y) = 1
2−𝑛 tf(𝜌◦(X) � 𝜌◦(Y)) + 2

2−𝑛PR(𝜌◦(X) � 𝜌◦(Y)) + PS(𝜌◦(X) � 𝜌◦(Y)).
(7.22)

Proof. The identities (7.18)–(7.20) follow from (7.12), (7.15), and (7.16) and the definitions (7.1)
of PR and PS. By (7.1) and (7.12), tf(X) ∗ PR(Y) = 1

2−𝑛
�tf(X)(𝜌◦(Y)) � ℎ. By (5.16), 2 𝜌(tf(X) ∗

Y) = �tf(X) (𝜌(Y)) = �tf(X) (𝜌◦(Y)), the last equality because �tf(X) (ℎ) = 𝜌(tf(X)) = 0. Combining
the preceding observations yields (7.21). Finally, (7.22) follows straightforwardly from (7.14), using
𝜌◦(𝜌◦(X) � 𝜌◦(Y)) = tf(𝜌◦(X) � 𝜌◦(Y)) and s(𝜌◦(X) � 𝜌◦(Y)) = 〈𝜌◦(X), 𝜌◦(Y)〉. �

An irreducible𝑂 (𝑛)-submodule of ⊗𝑘
V
∗ comprises the completely trace-free tensors of a given type

(this statement is false for even 𝑘 = 𝑛 if 𝑂 (𝑛) is replaced by 𝑆𝑂 (𝑛)). By Lemma 4.2, if 𝐺 ⊂ 𝑂 (𝑛) is a
Lie subgroup and U ⊂ MC(V∗) and W ⊂ ⊗𝑘

V
∗ are G-submodules, then Û(W) is a G-submodule of

⊗𝑘
V
∗, for if 𝑔 ∈ 𝑂 (𝑛), X ∈ U and Y ∈ W, 𝑔 · X̂(Y) = �𝑔 · X(𝑔 · Y) ∈ Û(W). In particular, because X̂

preserves type, if U1,U2 ⊂ MC(V∗) are G-submodules, then Û1 (U2) is a G-submodule of MC(V∗).
By Theorem 5.4, Û2 (U1) = U2 ∗ U1 = U1 ∗ U2 = Û1(U2). For example, Corollary 7.6 shows that
Û(U) = U ∗ U = U for U = MCW(V∗). Theorem 7.12 describes completely the submodules U1 ∗ U2
for U1,U2 among the 𝑂 (𝑛)-irreducible summands of MC(V∗).

Theorem 7.12. Let (V, ℎ) be an n-dimensional Euclidean vector space. The products of the 𝑂 (𝑛)-
irreducible submodules of MC(V∗) satisfy:

MCS(V∗) ∗MCS(V∗) = MCS(V∗), if 𝑛 > 1, (7.23)

MCR(V∗) ∗MCS(V∗) = MCR(V∗), if 𝑛 > 2, (7.24)

MCW(V∗) ∗MCS(V∗) = {0}, (7.25)

MCW(V∗) ∗MCR(V∗) = MCR(V∗), if 𝑛 > 3, (7.26)

tf(MCR(V∗) ∗MCR(V∗)) = MCW(V∗), if 𝑛 > 3, (7.27)

MCW(V∗) ∗MCW(V∗) = MCW(V∗), if 𝑛 > 3. (7.28)

Proof. The containments in (7.23)–(7.27) of subspaces are consequences of polarizing (7.18)–(7.22).
The equalities require further justification. The product (7.25) is immediate from (7.20). By (7.15),
multiplication by ℎ � ℎ, which spans MCS(V∗), is invertible on MCR(V∗) when 𝑛 > 2 and on
MCS(V∗) when 𝑛 > 1, and this suffices to show the equalities (7.23) and (7.24).

Let 𝛼 ∈ 𝑆2 (V∗). If X ∈ MCW(V∗), then tr X̂(𝛼) = 〈𝜌(X), 𝛼〉 = 0, so, by (7.12), 2X ∗ (𝛼 � ℎ) =
X̂(𝛼) � ℎ ∈ MCR(V∗). This shows the containment of 𝑂 (𝑛)-modules, MCW(V∗) ∗ MCR(V∗) ⊂
MCR(V∗). By the irreducibility ofMCR(V∗), to show equality it suffices to exhibit a nonzero element of
MCW(V∗) ∗MCR(V∗). Let 𝑢, 𝑣 ∈ V be such that |𝑢 |2 = 2 = |𝑣 |2 and 〈𝑢, 𝑣〉 = 0. Then 𝛼 = 𝑢 � 𝑣 ∈ 𝑆2

0V
∗

satisfies |𝛼 |2 = 2, 2𝛼 ◦ 𝛼 = 𝑢 ⊗ 𝑢 + 𝑣 ⊗ 𝑣, 〈𝛼, 𝛼 ◦ 𝛼〉 = 0, and 𝛼 ◦ 𝛼 ◦ 𝛼 = 𝛼. From these and
−4𝛼 � 𝛼 = (𝑢∧ 𝑣) ⊗ (𝑢∧ 𝑣) there follow 𝜌(𝛼 � 𝛼) = 𝛼 ◦𝛼, | 𝜌(𝛼 � 𝛼) |2 = 2, | 𝜌◦(𝛼 � 𝛼) |2 = 2(𝑛−2)

𝑛 ,
and s(𝛼 � 𝛼) = |𝛼 |2 = 2. By (7.6), tf(𝛼 � 𝛼) = 𝛼 � 𝛼 + 2

𝑛−2 (𝛼 ◦ 𝛼) � ℎ − 1
(𝑛−2) (𝑛−1) |𝛼 |

2ℎ � ℎ, and
by (6.6) and the preceding observations, tf(𝛼 � 𝛼)𝑆2V∗ (𝛼) = − 𝑛−3

𝑛−1𝛼, so, by (7.12),

tf(𝛼 � 𝛼) ∗ (𝛼 � ℎ) = 1
2

tf(𝛼 � 𝛼)(𝛼) � ℎ = 3−𝑛
2(𝑛−1) 𝛼 � ℎ, (7.29)

which shows that MCW(V∗) ∗MCR(V∗) is nontrivial if 𝑛 > 3 and so proves the equality in (7.26).

https://doi.org/10.1017/fms.2021.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.69


Forum of Mathematics, Sigma 23

Table 1. Fusion rules for (MC(V∗) , ∗).

★ 1 0 𝑛−2
2(𝑛−1)

1 {1} ∅ { 𝑛−2
2(𝑛−1) }

0 ∅ {0} { 𝑛−2
2(𝑛−1) }

𝑛−2
2(𝑛−1) { 𝑛−2

2(𝑛−1) } { 𝑛−2
2(𝑛−1) } {1, 0, 𝑛−2

2(𝑛−1) }

Suppose dimV∗ > 3. Let 𝑥, 𝑦, 𝑧, 𝑤 ∈ V∗ be pairwise orthogonal unit norm vectors. Then 𝛼 = 𝑥 � 𝑦
and 𝛽 = 𝑧 � 𝑤 are in 𝑆2

0V
∗, so 𝛼 � ℎ, 𝛽 � ℎ ∈ MCR(V∗). Because 𝛼 � 𝛽 = 0 and 〈𝛼, 𝛽〉 = 0, by (7.14),

4(𝛼 � ℎ) ∗ (𝛽 � ℎ) = (2− 𝑛)𝛼 � 𝛽. By (7.3), 𝜌(𝛼 � 𝛽) = 0, so 4(𝛼 � ℎ) ∗ (𝛽 � ℎ) = (2− 𝑛)𝛼 � 𝛽 ∈
MCW(V∗). Since, by Lemma 7.9, MCW(V∗) is spanned by elements of the form 𝛼 � 𝛽, this shows the
equality in (7.27). The equality (7.28) is Corollary 7.6. �

Remark 7.13. Lemma 7.11 and Theorem 7.12 give fusion rules (in the sense of [16]) for (MC(V∗), ∗).
Precisely, for the idempotent H = 1

1−𝑛 ℎ � ℎ, the subspaces MCS(V∗), MCR(V∗), and MCW(V∗) are
the eigenspaces of 𝐿∗(H) with eigenvalues 1, 𝑛−2

2(𝑛−1) , and 0. Lemma 7.11 shows that their products
satisfy the fusion rule ★ : Φ × Φ → 2Φ indicated in Table 1, where Φ = {1, 𝑛−2

2(𝑛−1) , 0}. A subset of Φ
indicates the sum of the eigenspaces corresponding to this subset and an entry in the table means that
the ∗ product of the eigenspaces corresponding with 𝛼, 𝛽 ∈ Φ is contained in the sum of the eigenspaces
corresponding with elements of 𝛼 ★ 𝛽.

Note that Theorem 7.12 gives more information than Table 1 because it asserts the equalities of the
products of subspaces, rather than mere containment relations.

As an application of Lemma 7.11 there is given a simple proof of [2, Theorem 2]. For 𝛼, 𝛽 ∈ R define
an 𝑂 (𝑛)-equivariant endomorphism Φ𝛼,𝛽 ∈ End(MC(V∗)) by

Φ𝛼,𝛽 (X) = tf(X) + 𝛽PR (X) + 𝛼PS(X) = X + (𝛽 − 1)PR(X) + (𝛼 − 1)PS(X). (7.30)

For example, (7.22) can be rewritten as (2 − 𝑛)PR(X) ∗ PR(X) = Φ2−𝑛,2 (𝜌◦(X) � 𝜌◦(X)).
Note that Φ1,1 = IdMC(V∗) . Because Φ𝛼,𝛽 ◦Φ�̄�,𝛽 = Φ𝛼�̄�,𝛽𝛽 , Φ𝛼,𝛽 is invertible if and only if 𝛼 ≠ 0

and 𝛽 ≠ 0, in which case Φ−1
𝛼,𝛽 = Φ𝛼−1 ,𝛽−1 . If 𝛼 = 1 + 2(𝑛 − 1)𝑎 and 𝛽 = 1 + (𝑛 − 2)𝑏, then Φ𝛼,𝛽 equals

the endomorphism called 𝑙𝑎,𝑏 introduced by C. Böhm and B. Wilking in [2]. The reason for working
with the parameters 𝛼 and 𝛽 is that the map (𝛼, 𝛽) ∈ R× ×R× → Φ𝛼,𝛽 ∈ End(MC(V∗)) is an injective
group homomorphism.

The key point of Theorem 7.14 for its applications is that (7.31) does not depend on tf(X).

Theorem 7.14 (C. Böhm and B. Wilking [2, Theorem 2].). Let (V, ℎ) be an n-dimensional Euclidean
vector space. If 𝛼, 𝛽 ∈ R \ {0} and 𝐷𝛼,𝛽 (X) = Φ−1

𝛼,𝛽

(
Φ𝛼,𝛽 (X) ∗Φ𝛼,𝛽 (X)

)
− X ∗ X, where Φ𝛼,𝛽 ∈

End(MC(V∗)) is defined in (7.30), then

𝐷𝛼,𝛽 (X) = 1−𝛽2

𝑛−2 tf(𝜌◦(X) � 𝜌◦(X)) + PR

(
2(1−𝛽)
𝑛−2 𝜌◦(X) � 𝜌◦(X) +

(𝑛−2) (𝛼−1)
𝑛(𝑛−1) s(X)X

)
+ PS

(
( 𝛽

2

𝛼 − 1) 𝜌◦(X) � 𝜌◦(X) + 𝛼−1
𝑛 s(X)X

)
= 1−𝛽2

𝑛−2 tf(𝜌◦(X) � 𝜌◦(X)) +
4(𝛽−1)
(𝑛−2)2 tf (𝜌◦(X) � 𝜌◦(X)) � ℎ

+ 2(1−𝛼)
𝑛(𝑛−1) s(X) 𝜌◦(X) � ℎ +

(
𝛼−𝛽2

𝑛(𝑛−1)𝛼 ) | 𝜌◦(X) |
2 + 1−𝛼

𝑛2 (𝑛−1) s(X)
)
ℎ � ℎ.

(7.31)
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Proof. Straightforward calculations using (7.18)–(7.22) yield

Φ𝛼,𝛽 (X) ∗Φ𝛼,𝛽 (X) = tf(X) ∗ tf(X) − 𝛽2

𝑛−2 tf(𝜌◦(X) � 𝜌◦(X))

+ PR

(
− 2𝛽2

𝑛−2 𝜌◦(X) � 𝜌◦(X) + 2𝛽 tf(X) ∗ X + 𝛼𝛽 (𝑛−2)
𝑛(𝑛−1) s(X)X

)
+ PS

(
𝛽2 𝜌◦(X) � 𝜌◦(X) + 𝛼2

𝑛 s(X)X
)
.

(7.32)

The special case 𝛼 = 1 = 𝛽 yields

X ∗ X = tf(X) ∗ tf(X) − 1
𝑛−2 tf(𝜌◦(X) � 𝜌◦(X)) + PS

(
𝜌◦(X) � 𝜌◦(X) + 1

𝑛 s(X)X
)

+ PR

(
− 2

𝑛−2 𝜌◦(X) � 𝜌◦(X) + 2 tf(X) ∗ X + (𝑛−2)
𝑛(𝑛−1) s(X)X

)
.

(7.33)

Combining (7.32) and (7.33) yields (7.31). After rewriting (7.31) in terms of the parameters a and b
and a bit of computation it can be seen that (7.31) recovers the conclusion of [2, Theorem 2]. �

8. Characterization of (MC(V∗), ∗) when dimV = 3

If dimV = 2, the 1-dimensional algebra (MC(V∗), ∗) is generated by ℎ � ℎ and, by (7.16), it is
isomorphic to the field R of real numbers by the map sending −ℎ � ℎ to 1 ∈ R. This section identifies
(MC(V∗), ∗) in a similarly explicit manner when (V, ℎ) is a 3-dimensional Euclidean vector space.
Pulling the multiplication ∗ back via an 𝑂 (3)-equivariant linear isomorphisms Ψ : 𝑆2

V
∗ → MC(V∗)

yields an 𝑂 (3)-equivariant commutative multiplication  on 𝑆2
V
∗. By Lemma 8.1, requiring that the

associated map 𝛼 ∈ 𝑆2
V
∗ → 2�Ψ(𝛼)∧2

V∗ ∈ Sym(
∧2
V
∗, 〈 · , · 〉) be a Jordan algebra isomorphism

determines Ψ uniquely, and this determines a standard model (𝑆2
V
∗,) of (MC(V∗), ∗) realizing it as

a deformation of Jordan product � on 𝑆2
V
∗ by terms built from the metric and the trace. Most of the

section is devoted to formulating and proving Theorem 8.5, which specifies algebraic conditions that
characterize the resulting algebra (𝑆2

V
∗,) up to isomorphism.

Because 𝑆2
V
∗ = 𝑆2

0V
∗ ⊕ Span {ℎ} and MC(V∗) = MCR(V∗) ⊕ MCS(V∗) are decompositions

into 𝑂 (3)-irreducible submodules, by the Schur Lemma the most general 𝑂 (3)-equivariant linear map
𝑆2
V
∗ → MC(V∗) has the form Ψ𝑝,𝜏 (𝛼) = 𝜓𝑝,𝜏 (𝛼) � ℎ for some 𝑝, 𝜏 ∈ R and 𝜓𝑝,𝜏 ∈ End(𝑆2

V
∗)

defined by 𝜓𝑝,𝜏 (𝛼) = 𝑝(𝛼 + 𝜏−1
3 (tr 𝛼)ℎ). Because 𝜓𝑝,𝜏 ◦ 𝜓 �̄�, �̄� = 𝜓𝑝 �̄�,𝜏 �̄� , 𝜓𝑝,𝜏 is invertible if and only

if 𝑝𝜏 ≠ 0, in which case 𝜓−1
𝑝,𝜏 = 𝜓𝑝−1 ,𝜏−1 , and Ψ𝑝,𝜏 ◦ 𝜓 �̄�, �̄� = Ψ𝑝 �̄�,𝜏 �̄� . By (7.3),

𝜌(Ψ𝑝,𝜏 (𝛼)) = − 𝑝
2

(
𝛼 + 4𝜏−1

3 (tr 𝛼)ℎ
)
= 𝜓−𝑝/2,4𝜏 (𝛼), s(Ψ𝑝,𝜏 (𝛼)) = −2𝑝𝜏 tr 𝛼, (8.1)

so, if 𝑝𝜏 ≠ 0,

Ψ−1
𝑝,𝜏 (X) = − 2

𝑝

(
𝜌(X) + 1−4𝜏

12𝜏 s(X)ℎ
)
= − 2

𝑝

(
𝜌◦(X) + 1

12𝜏 s(X)ℎ
)
= 𝜓−2/𝑝,1/4𝜏 (𝜌(X)). (8.2)

That Ψ𝑝,𝜏 ◦ 𝜓 �̄�, �̄� = Ψ𝑝 �̄�,𝜏 �̄� means that the pullbacks of ∗ via any Ψ𝑝,𝜏 with 𝑝𝜏 ≠ 0 yield isomorphic
algebras. Lemma 8.1 shows that certain natural conditions determine a unique choice. For its statement,
observe thatΨ𝑝,𝜏 determines a linear isomorphism 𝑆2

V
∗ → Sym(

∧2
V
∗, 〈 · , · 〉) by𝛼 → Ψ𝑝,𝜏 (𝛼)∧2

V∗ ,
so it makes sense to say that Ψ𝑝,𝜏 maps rank one elements to rank 1 elements if Ψ𝑝,𝜏 (𝛼)∧2

V∗ has rank
1 whenever 𝛼 has rank 1, where the rank of an element of 𝑆2

V
∗ means its rank as a bilinear form.

Lemma 8.1. Let (V, ℎ) be a 3-dimensional Euclidean vector space. For an 𝑂 (3)-equivariant linear
isomorphism Ψ : 𝑆2

V
∗ → MC(V∗), the following are equivalent:
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1. Ψ has the form Ψ1,−1/2.
2. Ψ is isometric, Ψ maps h to an idempotent in (MC(V∗), ∗) and �Ψ( · )∧2

V∗ : 𝑆2
V
∗ → Sym(

∧2
V
∗)

maps rank 1 elements to rank 1 elements.
3. 2 �Ψ( · )∧2

V∗ : (𝑆2
V
∗,�) → Sym(

∧2
V
∗, 〈 · , · 〉) is a Jordan algebra isomorphism.

Proof. For 𝛼, 𝛽 ∈ 𝑆2
V
∗, by (6.12),

〈Ψ𝑝,𝜇 (𝛼),Ψ𝑝,𝜇 (𝛽)〉 = 〈𝜓𝑝,𝜏 (𝛼), 𝜓𝑝,𝜏 (𝛽)〉 + tr𝜓𝑝,𝜏 (𝛼) tr𝜓𝑝,𝜏 (𝛽)

= 𝑝2
(
〈𝛼, 𝛽〉 +

(
4𝜏2−1

3

)
tr 𝛼 tr 𝛽

)
,

(8.3)

from which it follows that 〈Ψ𝑝,𝜇 (𝛼),Ψ𝑝,𝜇 (𝛽)〉 = 〈𝛼, 𝛽〉 if and only if 𝑝, 2𝜏 ∈ {±1}. As Ψ𝑝,𝜏 (ℎ) =
𝑝𝜏ℎ � ℎ, by (7.16), Ψ𝑝,𝜏 (ℎ) is idempotent in (MC(V∗), ∗) if and only if 2𝑝𝜏 = −1, in which case Ψ
has the form Ψ1,−1/2 or Ψ−1,1/2.

For 𝛼 ∈ 𝑆2
V
∗ define 𝛼♯ ∈ End(V∗) by 𝛼(𝑢)𝑖 = 𝛼𝑖

𝑝𝑢𝑝 for 𝑢 ∈ V∗. If 𝑢, 𝑣 ∈ V∗, then 𝛼 � (𝑢 ∧ 𝑣) =
1
2 (𝛼

♯ (𝑢) ∧ 𝑣 + 𝑢 ∧ 𝛼♯ (𝑣)). By (6.8), �𝛽 � ℎ∧2
V∗ = −𝐿� (𝛽) for 𝛽 ∈ 𝑆2

V
∗, soΨ𝑝,𝜏 (𝛼)∧2

V∗ = −𝑝(𝐿� (𝛼) + 𝜏−1
3 tr(𝛼) Id∧2

V∗ ) (8.4)

and, hence, Ψ𝑝,𝜏 (𝛼)∧2
V∗ (𝑢 ∧ 𝑣) = − 𝑝

2

(
𝛼♯ (𝑢) ∧ 𝑣 + 𝑢 ∧ 𝛼♯ (𝑣) + 2(𝜏−1)

3 tr(𝛼)𝑢 ∧ 𝑣
)
. (8.5)

Let {𝑢1, 𝑢2, 𝑢3} be an orthonormal basis ofV∗ comprising eigenvectors of 𝛼♯ with respective eigenvalues
𝜇1, 𝜇2, and 𝜇3. By (8.5), 𝑢2 ∧ 𝑢3 is an eigenvector of Ψ𝑝,𝜏 (𝛼)∧2

V∗ with eigenvalue − 𝑝
6 ((2𝜏 + 1) (𝜇2 +

𝜇3) + (2𝜏 − 2)𝜇1) and similarly for permutations of the indices. If 𝛼 has rank 1, then it can be supposed
that 𝜇2 = 𝜇3 = 0 and 𝜇1 ≠ 0 and it results that the eigenvalues of Ψ𝑝,𝜏 (𝛼)∧2

V∗ are − 𝑝
3 (𝜏 − 1)𝜇1 with

multiplicity 1 and − 𝑝
6 (2𝜏 + 1)𝜇1 with multiplicity 2. Consequently, that Ψ𝑝,𝜏 (𝛼)∧2

V∗ have rank 1 is
possible if and only if 𝜏 = −1/2, and in this case Ψ𝑝,−1/2(𝛼)∧2

V∗ has rank 1 for any 𝛼 ∈ 𝑆2
V
∗ having

rank 1, for any 𝑝 ≠ 0. This completes the proof of the equivalence of 1 and 2.
Because dimV = 3, tf(𝛼 � 𝛽) = 0 for 𝛼, 𝛽 ∈ 𝑆2

V
∗, so, by (7.6),

𝛼 � 𝛽 =
(
−2(𝛼 � 𝛽) + (tr 𝛼)𝛽 + (tr 𝛽)𝛼 − 1

2 (tr 𝛼) (tr 𝛽)ℎ +
1
2 〈𝛼, 𝛽〉ℎ

)
� ℎ. (8.6)

By (6.8) and (8.6),

2𝐿� (𝛼) � 𝐿� (𝛽) + 𝐿� (𝛼 � 𝛽) = −�𝛼 � 𝛽∧2
V∗ + 2𝐿�(𝛼 � 𝛽)

= 𝐿�

(
tr 𝛼)𝛽 + (tr 𝛽)𝛼 − 1

2 (tr 𝛼) (tr 𝛽)ℎ +
1
2 〈𝛼, 𝛽〉ℎ

)
.

(8.7)

Combining (8.4) and (8.7) yieldsΨ𝑝,𝜏 (𝛼)∧2
V∗ � Ψ𝑝,𝜏 (𝛽)∧2

V∗ − 𝑝
2

Ψ𝑝,𝜏 (𝛼 � 𝛽)∧2
V∗

= 𝑝2 (2𝜏+1)
6 𝐿�

(
tr(𝛼)𝛽 + tr(𝛽)𝛼 + 2𝜏−5

6 tr(𝛼) tr(𝛽)ℎ + 1
2 〈𝛼, 𝛽〉ℎ

)
.

(8.8)

It follows that 2
𝑝

Ψ𝑝,𝜏 ( · )∧2
V∗ : (𝑆2

V
∗,�) → Sym(

∧2
V
∗, 〈 · , · 〉) is a Jordan algebra isomorphism if

and only if 𝜏 = −1/2. This shows the equivalence of 1 and 3. �

Lemma 8.2. Let (V, ℎ) be a 3-dimensional Euclidean vector space. The pullback of ∗ via Ψ1,−1/2 yields
on 𝑆2

V
∗ an 𝑂 (3)-invariant commutative multiplication  having the form

𝛼  𝛽 = 𝛼 � 𝛽 − 1
4 ((tr 𝛼)𝛽 + (tr 𝛽)𝛼 + 〈𝛼, 𝛽〉ℎ − (tr 𝛼 tr 𝛽)ℎ). (8.9)
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Proof. Let 𝑝, 𝜏 ∈ R satisfy 𝑝𝜏 ≠ 0. Write Ψ = Ψ𝑝,𝜏 . Using (7.14), (7.15), (7.16), and (8.6) yields

Ψ(𝛼) ∗ Ψ(𝛽)

= 𝑝2
(
𝛼 � 𝛽 −

(
𝜏+2

6

)
((tr 𝛼)𝛽 + (tr 𝛽)𝛼) +

(
( −16𝜏2+8𝜏+17

72 ) (tr 𝛼) (tr 𝛽) − 3
8 〈𝛼, 𝛽〉

)
ℎ
)

� ℎ.
(8.10)

By (7.4) applied to (8.10),

𝜌(Ψ(𝛼) ∗ Ψ(𝛽))

= − 𝑝2

2

(
𝛼 � 𝛽 −

(
𝜏+2

6

)
((tr 𝛼)𝛽 + (tr 𝛽)𝛼) −

(
1
2 〈𝛼, 𝛽〉 + ( (8𝜏−5) (2𝜏+1)

18 ) (tr 𝛼) (tr 𝛽)
)
ℎ
)
.

(8.11)

Tracing (8.11) yields s(Ψ(𝛼) ∗ Ψ(𝛽)) = 𝑝2

4

(
〈𝛼, 𝛽〉 + ( 16𝜏2−1

3 ) (tr 𝛼) (tr 𝛽)
)
. Substituting this and (8.11)

in (8.2) shows that the pullback Ψ−1
𝑝,𝜏 (Ψ𝑝,𝜏 (𝛼) ∗ Ψ𝑝,𝜏 (𝛽)) equals

𝑝
(
𝛼  𝛽 − (2𝜏+1)

12

(
(tr 𝛼)𝛽 + (tr 𝛽)𝛼 + 1

2𝜏

(
〈𝛼, 𝛽〉 + 4𝜏−1

3 tr 𝛼 tr 𝛽
)
ℎ
))
. (8.12)

Specializing (𝑝, 𝜏) = (1,−1/2) yields (8.9). �

Lemma 8.3. Let (V, ℎ) be a 3-dimensional Euclidean vector space. The multiplication  on 𝑆2
V
∗

defined in (8.9) is not unital. In particular,  is not isomorphic to the Jordan product on 𝑆2
V
∗.

Proof. Were 𝛼 ∈ 𝑆2
V
∗ a unit, then 4ℎ = 4𝛼ℎ = 𝛼+ (tr 𝛼)ℎ. Tracing this yields tr 𝛼 = 3, so 4ℎ = 𝛼+3ℎ,

implying that 𝛼 = ℎ. However, h is not a unit, for, if 𝛽 ∈ 𝑆2
0V

∗, then ℎ  𝛽 = 1
4 𝛽. �

Remark 8.4. If 𝛼 ∈ 𝑆2
V
∗ satisfies 𝛼 ◦ 𝛼 = 𝛼 and tr 𝛼 = 1, then, by Lemma 7.4, −(ℎ − 𝛼) � (ℎ − 𝛼)

is idempotent in (MC(V∗), ∗). By the proof of Lemma 7.4, 𝛼 � 𝛼 = 0, so −(ℎ − 𝛼) � (ℎ − 𝛼) =
2𝛼 � ℎ − ℎ � ℎ = Ψ1,−1/2(2𝛼), so, by Lemma 8.2, 2𝛼 is idempotent in (𝑆2

V
∗,). This observation

motivates motivates formulating a Characterization of (MC(V∗), ∗) in terms of rank 1 idempotents
in 𝑆2
V
∗.

Theorem 8.5. Let (V, ℎ) be a 3-dimensional Euclidean vector space and let 𝑂 (3) = 𝑂 (ℎ). On 𝑆2
V
∗

there is up to algebra isomorphism a unique commutative multiplication � satisfying:

1. 𝑂 (3) acts on (𝑆2
V
∗,�) by algebra automorphisms.

2. (𝑆2
V
∗,�) is metrized by an 𝑂 (3)-invariant inner product.

3. (𝑆2
V
∗,�) contains no nonzero square-zero element.

4. There is an idempotent in (𝑆2
V
∗,�) having rank 1.

5. Any idempotent in (𝑆2
V
∗,�) not a multiple of h has rank 1.

6. For a rank 1 idempotent e in (𝑆2
V
∗,�), 1/2 is a multiplicity 3 eigenvalue of 𝐿� (𝑒).

The algebra (𝑆2
V
∗,�) is isomorphic to (𝑆2

V
∗,), where  is defined in (8.9).

Proof. Let g be an 𝑂 (3)-invariant inner product on 𝑆2
V
∗. By the Schur Lemma, an 𝑂 (3)-invariant

bilinear form on 𝑆2
V
∗ has the form 𝑘 (𝛼, 𝛽) = 𝐴〈𝛼, 𝛽〉 + 𝐵 tr(𝛼) tr(𝛽) for all 𝛼, 𝛽 ∈ 𝑆2

V
∗. It is positive

definite if and only if 𝐴 > 0 and 𝐴 + 3𝐵 > 0. A calculation shows

𝑘 (𝜓𝑝,𝜏 (𝛼), 𝜓𝑝,𝜏 (𝛽)) = 𝑝2
(
𝐴〈𝛼, 𝛽〉 +

(
𝜏2−1

3 𝐴 + 𝜏2𝐵
)

tr(𝛼) tr(𝛽)
)
. (8.13)

Taking 𝑝2 = 1/𝐴 and 𝜏2 = 𝐴/(𝐴 + 3𝐵) yields 𝑘 (𝜓𝑝,𝜏 (𝛼), 𝜓𝑝,𝜏 (𝛽)) = 〈𝛼, 𝛽〉. Hence, it can and will be
assumed that the 𝑂 (3)-invariant inner product metrizing (𝑆2

V
∗,�) is 〈 · , · 〉.

Decomposing 𝑆2(𝑆2
V) ⊗ 𝑆2

V
∗ into its irreducible components, it can be seen that the most general

𝑂 (3)-equivariant commutative bilinear map � : 𝑆2
V
∗ × 𝑆2

V
∗ → 𝑆2

V
∗ has the form

𝛼�𝛽 = 𝑟𝛼 � 𝛽 + 𝑠(tr(𝛼)𝛽 + tr(𝛽)𝛼) + 𝑡〈𝛼, 𝛽〉ℎ + 𝑢(tr 𝛼 tr 𝛽)ℎ, (8.14)
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for some 𝑟, 𝑠, 𝑡, 𝑢 ∈ R. Because 〈𝛼�𝛽, 𝛾〉 − 〈𝛼, 𝛽�𝛾〉 = (𝑠− 𝑡) ((tr 𝛼)〈𝛽, 𝛾〉 − (tr 𝛾)〈𝛼, 𝛽〉), the invariance
of 〈 · , · 〉 with respect to � is equivalent to 𝑡 = 𝑠.

By assumption,𝑂 (ℎ) stabilizes ℎ�ℎ so there is 𝑐 ∈ R such that ℎ�ℎ = 𝑐ℎ. The assumption that there is
no nonzero square-zero element implies 𝑐 ≠ 0. By (8.14), 𝑐ℎ = ℎ�ℎ = (𝑟+6𝑠+3𝑡+9𝑢)ℎ = (6+9𝑠+9𝑢)ℎ,
so 𝑟 + 9𝑠 + 9𝑢 = 𝑐.

Suppose there is a rank 1 element of 𝑆2
V
∗ that is a �-idempotent. Then there is 𝜎 ∈ 𝑆2

V
∗ satisfying

𝜎 ◦ 𝜎 = 𝜎, tr(𝜎) = 1 = |𝜎 |2, and 𝜎�𝜎 = 𝜆𝜎 for some 𝜆 ∈ R× (so the rank 1 idempotent is 𝜆−1𝜎). For
𝜎0 = 𝜎 − 1

3 ℎ, there holds

𝜆𝜎0 + 𝜆
3 ℎ = 𝜆𝜎 = 𝜎�𝜎 = (𝑐 + 2𝑠)𝜎 + (𝑠 + 𝑢)ℎ = (𝑐 + 2𝑠)𝜎0 + 1

3 (𝑐 + 5𝑠 + 3𝑢)ℎ, (8.15)

so 𝑐 + 2𝑠 = 𝜆 = 𝑐 + 5𝑠 + 3𝑢, which imply 𝑠 = (𝜆 − 𝑐)/2 and 𝑢 = −𝑠. This shows � has the form

𝛼�𝜆,𝑐𝛽 = 𝑐𝛼 � 𝛽 + 𝜆−𝑐
2 ((tr 𝛼)𝛽 + (tr 𝛽)𝛼 + 〈𝛼, 𝛽〉ℎ − (tr 𝛼 tr 𝛽)ℎ). (8.16)

Pulling � back via the dilation by 𝑐−1 yields the product �𝜆 = �𝜆,1 on 𝑆2
V
∗ defined by

𝛼�𝜆𝛽 = 𝛼 � 𝛽 + 𝜆−1
2 ((tr 𝛼)𝛽 + (tr 𝛽)𝛼 + 〈𝛼, 𝛽〉ℎ − (tr 𝛼 tr 𝛽)ℎ), 𝛼, 𝛽 ∈ 𝑆2

V
∗. (8.17)

This establishes that if (𝑆2
V
∗,�) satisfies conditions 1–4, then there is 𝜆 ∈ R× such that (𝑆2

V
∗,�) is

isomorphic as an algebra to (𝑆2
V
∗,�𝜆). For example, 𝜆 = 1 yields the usual Jordan algebra structure

1 = �. However, a nontrivial �-idempotent can have rank 1, 2, or 3.
For an h-orthonormal basis {𝑢1, 𝑢2, 𝑢3} ofV∗, define 𝛾 = (2𝜆−1) (𝑢1⊗𝑢1+𝑢2⊗𝑢2)+ (1−𝜆) (𝑢3⊗𝑢3).

Observe that 𝛾 does not have rank 1 provided that 2𝜆 ≠ 1 and 𝛾 is not a multiple of h provided
that 3𝜆 ≠ 2. A straightforward calculation using (8.17) shows that 𝛾�𝜆𝛾 = (3𝜆2 − 3𝜆 + 1)𝛾. Since
3𝜆2 − 3𝜆 + 1 ≥ 1/4 > 0 for all 𝜆 ∈ R, this shows that (𝑆2

V
∗,�𝜆) contains an idempotent that is neither

rank 1 nor a multiple of h provided that (2𝜆 − 1) (3𝜆 − 2) ≠ 0.
Next it is shown that for 𝜆 ∈ {1/2, 2/3} the algebra (𝑆2

V
∗,�𝜆) contains no nonzero square-zero

element and satisfies 5. Suppose (𝛼0 + 𝑧ℎ)�𝜆(𝛼0 + 𝑧ℎ) = 𝜖 (𝛼0 + 𝑧ℎ) for 𝜖 ∈ {0, 1} and 𝛼0 ∈ 𝑆2
0V

∗ and
𝑧 ∈ R. Separating (𝛼0 + 𝑧ℎ)  (𝛼0 + 𝑧ℎ) − 𝜖 (𝛼0 + 𝑧ℎ) into its trace-free and pure trace parts yields the
equations

𝛼0 ◦ 𝛼0 − 1
3 |𝛼0 |2ℎ + ((3𝜆 − 1)𝑧 − 𝜖)𝛼0 = 0, 𝑧2 − 𝜖𝑧 + 3𝜆−1

6 |𝛼0 |2 = 0. (8.18)

If 𝜖 = 0 and 𝜆 > 1/3, the second equation of (8.18) implies 𝑧 = 0 and 𝛼0 = 0; this shows (𝑆2
V
∗,�𝜆)

contains no nonzero square-zero element if 𝜆 ∈ {1/2, 2/3}. Henceforth assume 𝜖 = 1. There are
h-orthonormal 𝑢1, 𝑢2, 𝑢3 ∈ V∗ and 𝑥1, 𝑥2 ∈ R such that 𝛼0 = 𝑥1𝑢1 ⊗ 𝑢1 + 𝑥2𝑢2 ⊗ 𝑢2 − (𝑥1 + 𝑥2)𝑢3 ⊗ 𝑢3
and |𝛼0 |2 = 2(𝑥2

1 + 𝑥
2
2 + 𝑥1𝑥2). Contracting the first equation of (8.18) with each of 𝑢1 ⊗ 𝑢1 and 𝑢2 ⊗ 𝑢2

yields the equations

0 = 𝑥2
1 − 2𝑥2

2 − 2𝑥1𝑥2 + 3((3𝜆 − 1)𝑧 − 1)𝑥1,

0 = −2𝑥2
1 + 𝑥

2
2 − 2𝑥1𝑥2 + 3((3𝜆 − 1)𝑧 − 1)𝑥2.

(8.19)

Appropriate linear combinations of the equations (8.19) yield

(𝑥1 − 𝑥2) (𝑥1 + 𝑥2 + (3𝜆 − 1)𝑧 − 1) = 0, (2𝑥2 + 𝑥1) ((3𝜆 − 1)𝑧 − 1 − 𝑥1) = 0, (8.20)

while the second equation of (8.18) becomes

0 = 𝑧2 − 𝑧 + 3𝜆−1
3 (𝑥2

1 + 𝑥
2
2 + 𝑥1𝑥2). (8.21)

If 𝑥1 = 𝑥2, the second equation of (8.20) yields 𝑥1 ((3𝜆 − 1)𝑧 − 1 − 𝑥1) = 0, so either 𝑥1 = 0, in which
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case 𝑧 ∈ {0, 1} and 𝛾 is a multiple of h, or 𝑥1 = (3𝜆 − 1)𝑧 − 1. In the latter case, (8.21) yields

0 = 𝑧2 − 𝑧 + (3𝜆 − 1)𝑥2
1 = ((3𝜆 − 1)3 + 1)𝑧2 − (2(3𝜆 − 1)2 + 1)𝑧 + (3𝜆 − 1)

= 9𝜆(3𝜆2 − 3𝜆 + 1)𝑧2 + 3(6𝜆2 − 4𝜆 + 1)𝑧 + 3𝜆 − 1
= (3(3𝜆2 − 3𝜆 + 1)𝑧 − (3𝜆 − 1)) (3𝜆𝑧 − 1).

(8.22)

If 𝑧 = 1/(3𝜆) there results 𝛼0 + 𝑧ℎ = 𝜆−1𝑢3 ⊗ 𝑢3, which has rank 1. If 𝑧 = 3𝜆−1
3(3𝜆2−3𝜆+1) there results

𝛼0 + 𝑧ℎ = 1
(3𝜆2−3𝜆+1) ((2𝜆 − 1) (𝑢1 ⊗ 𝑢1 + 𝑢2 ⊗ 𝑢2) + (1 − 𝜆)𝑢3 ⊗ 𝑢3). (8.23)

As observed before, this element is idempotent, but it has rank 1 if 𝜆 = 1/2 and is a multiple of h if
𝜆 = 2/3.

If 𝑥1 ≠ 𝑥2, the first equation of (8.20) yields (3𝜆 − 1)𝑧 = 1 − 𝑥1 − 𝑥2 and the second equation of
(8.20) becomes 0 = (2𝑥2 + 𝑥1) (2𝑥1 + 𝑥2). Without loss of generality, it can be assumed that 𝑥2 = −2𝑥1
(otherwise, interchange the indices 1 and 2), in which case (3𝜆 − 1)𝑧 − 1 = −𝑥1 − 𝑥2 = 𝑥1. As in (8.22),
in (8.21) this yields

0 = 𝑧2 − 𝑧 + (3𝜆−1)
3 (𝑥2

1 + 4𝑥2
1 − 𝑥2

1) = 𝑧2 − 𝑧 + (3𝜆 − 1)𝑥2
1

= (3(3𝜆2 − 3𝜆 + 1)𝑧 − (3𝜆 − 1)) (3𝜆𝑧 − 1).
(8.24)

If 𝑧 = 1/(3𝜆), there results 𝑥1 = −1/(3𝜆) and 𝑥2 = 2/(3𝜆) so that 𝛼0+𝑧ℎ = 𝜆−1𝑢2⊗𝑢2, which has rank 1.
If 𝑧 = 3𝜆−1

3(3𝜆2−3𝜆+1) and 𝜆 = 1/2, then 𝑧 = 2/3, 𝑥1 = −2/3, and 𝑥2 = 4/3, which yields 𝛼0 + 𝑧ℎ = 2𝑢2 ⊗ 𝑢2,
which has rank 1, while if 𝜆 = 2/3, then 𝑧 = 1, 𝑥1 = 0, and 𝑥2 = 0, which yields 𝛼0 + 𝑧ℎ = ℎ. This shows
that �𝜆 satisfies 5 for 𝜆 ∈ {1/2, 2/3}.

For an h-orthonormal basis {𝑢1, 𝑢2, 𝑢3} of V∗, define 𝑒𝑖 = 𝑢𝑖 ⊗ 𝑢𝑖 ∈ 𝑆2
V
∗ and 𝑓𝑖∧ 𝑗 =

√
2𝑢𝑖 � 𝑢 𝑗 ∈

𝑆2
0V

∗, where distinct indices take distinct values from {1, 2, 3} and 𝑖 ∧ 𝑗 is the complement of {𝑖, 𝑗} in
{1, 2, 3} (so 1 ∧ 2 = 3 and 𝑖 ∧ (𝑖 ∧ 𝑗) = 𝑗). Then {𝑒𝑖 , 𝑓𝑖 : 1 ≤ 𝑖 ≤ 3} is an orthonormal basis of 𝑆2

V
∗.

Calculations using (8.16) show

𝑒𝑖�𝜆𝑒𝑖 = 𝜆𝑒𝑖 , 𝑒𝑖�𝜆𝑒 𝑗 = 1−𝜆
2 𝑒𝑖∧ 𝑗 , 𝑒𝑖�𝜆 𝑓𝑖 = 𝜆−1

2 𝑓𝑖 ,

𝑒𝑖�𝜆 𝑓 𝑗 = 𝜆
2 𝑓 𝑗 , 𝑓𝑖�𝜆 𝑓𝑖 = 𝜆

2 ℎ −
1
2 𝑒𝑖 , 𝑓𝑖�𝜆 𝑓 𝑗 = 1

2
√

2
𝑓𝑖∧ 𝑗 .

(8.25)

By (8.25), the basis 𝑒𝑖 , 𝑓 𝑗 , 𝑓𝑖∧ 𝑗 , 𝑒 𝑗 + 𝑒𝑖∧ 𝑗 , 𝑓𝑖 , and 𝑒 𝑗 − 𝑒𝑖∧ 𝑗 comprises eigenvectors of of 𝐿�𝜆 (𝜆−1𝑒𝑖)
having respective eigenvalues 1, 1/2, 1/2, 1−𝜆

2𝜆 , 𝜆−1
2𝜆 , and 𝜆−1

2𝜆 . The four values 1, 1/2, 1−𝜆
2𝜆 , and 𝜆−1

2𝜆
are pairwise distinct if 𝜆 ∉ {−1, 1/3, 1/2}. The 1/2 eigenspace always contains 𝑓 𝑗 and 𝑓𝑖∧ 𝑗 , and the
multiplicity of the eigenvalue 1/2 is greater than 2 if and only if (1−𝜆)/(2𝜆) = 1/2, which occurs if and
only if 𝜆 = 1/2. The eigenvalues of 𝐿�1/2 (2𝑒𝑖) are 1 with eigenspace spanned by 𝑒𝑖; 1/2 with eigenspace
spanned by 𝑓 𝑗 , 𝑓𝑖∧ 𝑗 , and 𝑒 𝑗 + 𝑒𝑖∧ 𝑗 ; and −1/2 with eigenspace spanned by 𝑓𝑖 and 𝑒 𝑗 − 𝑒𝑖∧ 𝑗 . Because any
rank 1 idempotent is in the 𝑂 (3) orbit of a multiple of 𝑒1, this proves 6 and completes the proof. �

Remark 8.6. That 1/2 is an eigenvalue of multiplicity at least 2 of 𝐿�𝜆 (𝜆−1𝑒𝑖) is a consequence of
the 𝑂 (3)-invariance of �𝜆. Differentiating along a one-parameter family of rank 1 idempotents passing
through 𝜆−1𝑒𝑖 shows that a vector tangent to the 𝑂 (3)-orbit passing through 𝜆−1𝑒𝑖 is an eigenvector
of 𝐿�𝜆 (𝜆−1𝑒𝑖) with eigenvalue 1/2. The content of 6 of Theorem 8.5 is that, for 𝜆 = 1/2, the 1/2
eigenspace of 𝐿�1/2 (2𝑒𝑖) has an extra third dimension.

Remark 8.7. The conditions in Theorem 8.5 are all necessary and serve to exclude certain particularly
symmetric 𝑂 (3)-invariant algebra structures on 𝑆2

V
∗.

As mentioned in the proof, the algebra Sym(V, ℎ) satisfies conditions 1–4 of Theorem 8.5 but fails
5 (and also 6) because it contains rank 2 idempotents.
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Consider 𝑆2
V
∗ with the 𝑂 (3)-invariant multiplication

𝛼×̄𝛽 = 𝛼 � 𝛽 − 5
12 (tr(𝛼)𝛽 + tr(𝛽)𝛼 + 〈𝛼, 𝛽〉ℎ) + 4

9 tr(𝛼) tr(𝛽)ℎ. (8.26)

It can be checked that (𝑆2
V
∗, ×̄) is exact and Killing metrized with 𝜏×̄ = 5

8 〈 · , · 〉, so that Aut(𝑆2
V
∗, ×̄) =

𝑂 (3) (modulo inconsequential scalar factors, this algebra is what is in [10] called the conformal extension
of (Sym0 (V, ℎ),×)). That (𝑆2

V
∗, ×̄) contains no square-zero element can be checked directly or follows

from results in [10]. However, (𝑆2
V
∗, ×̄) contains no rank 1 idempotent, for if 𝜎 ∈ 𝑆2

V
∗ has rank 1,

then 36𝜎×̄𝜎 = 6 tr(𝜎)𝜎 + tr(𝜎)2ℎ.
As the proof of Theorem 8.5 shows, 6 excludes (𝑆2

V
∗,�2/3), which is an interesting algebra because,

in addition to satisfying 1–5, it is Killing metrized, as follows from Lemma 8.8.

Lemma 8.8. Let (V, ℎ) be a 3-dimensional Euclidean vector space. For 𝜆 ∈ R×, let �𝜆 be as in (8.17).

1. (𝑆2
V
∗,�𝜆) is simple if 𝜆 ∉ {1, 1/3}.

2. There holds tr 𝐿�𝜆 = 5𝜆−1
2 〈ℎ, · 〉. In particular, �𝜆 is exact if and only if 𝜆 = 1/5.

3. For all 𝛼, 𝛽 ∈ 𝑆2
V
∗, there hold

4(5𝜆 − 1) tr 𝐿�𝜆 (𝛼�𝜆𝛽) + 4(𝜆 − 1) tr 𝐿�𝜆 (𝛼) tr 𝐿�𝜆 (𝛽) = (5𝜆 − 1)2(3𝜆 − 1)〈𝛼, 𝛽〉,
4(5𝜆 − 1)2𝜏�𝜆 (𝛼, 𝛽) − 4𝜆(3𝜆 − 2) tr 𝐿�𝜆 (𝛼) tr 𝐿�𝜆 (𝛽) = (5𝜆 − 1)2(6𝜆2 − 4𝜆 + 3)〈𝛼, 𝛽〉.

(8.27)

In particular, (𝑆2
V
∗,�𝜆) is Killing metrized if and only if 𝜆 = 2/3.

4. If 𝜆 ≠ 1/5, the automorphism group Aut(𝑆2
V
∗,�𝜆) is isomorphic to 𝑆𝑂 (3) in its induced action on

𝑆2
V
∗.

Proof. Suppose I ⊂ 𝑆2
V
∗ is a �𝜆-ideal and there are 𝛼0 ∈ 𝑆2

0V
∗ and 𝑧 ∈ R such that 0 ≠ 𝛼0 + 𝑧ℎ ∈ I.

Suppose 𝜆 ∉ {1, 1/3}. Then 3𝜆−1
2 𝛼0 + 𝑧ℎ = ℎ�𝜆 (𝛼0 + 𝑧ℎ) ∈ I, so 3

2 (1−𝜆)𝑧ℎ = ℎ�𝜆 (𝛼0 + 𝑧ℎ) + 1−3𝜆
2 (𝛼0 +

𝑧ℎ) ∈ I. If 𝑧 ≠ 0, this implies ℎ ∈ I. Otherwise, there is 0 ≠ 𝛼0 ∈ I ∩ 𝑆2
0V

∗. As 4ℎ�𝜆 (𝛼0�𝜆𝛼0) =
2(3𝜆− 1)𝛼0�𝜆𝛼0 − (𝜆− 1) (3𝜆− 1) |𝛼0 |2ℎ, in this case, (1−𝜆) (3𝜆− 1) |𝛼0 |2ℎ = 4ℎ�𝜆 (𝛼0�𝜆𝛼0) + 2(1−
3𝜆)𝛼0�𝜆𝛼0 ∈ I. Because |𝛼0 |2 ≠ 0, this implies ℎ ∈ I. In either case, because 𝐿�𝜆 (ℎ) is invertible, that
ℎ ∈ I implies I = 𝑆2

V
∗. This shows (𝑆2

V
∗,�𝜆) is simple if 𝜆 ∉ {1, 1/3}. (When 𝜆 = 1/3, 𝐿�1/3 (ℎ)

annihilates 𝑆2
0V

∗, so h generates a proper ideal, while when 𝜆 = 1, �1 = � and 𝑆2
0V

∗ is a proper ideal.)
Claims 2 and 3 can be proved by straightforward through tedious calculations using (8.25). Their

principal relevance here is to prove 4. An alternative approach is the following. Identify 𝑆2
V
∗
0 ⊕ R with

𝑆2
V
∗ via the map (𝛼0, 𝑎) → 𝛼0+𝑎ℎ. With respect to this identification the multiplication endomorphism

𝐿�𝜆 (𝛼0, 𝑎) has the block form

𝐿�𝜆 (𝛼0, 𝑎) =
(
𝐿×(𝛼0) + 3𝜆−1

2 𝑎 Id𝑆2
0V

∗
3𝜆−1

2 𝛼0
3𝜆−1

6 〈𝛼0, · 〉 𝑎

)
, (8.28)

in which × is the trace-free Jordan product 𝛼0 × 𝛽0 = 𝛼0 � 𝛽0 − 1
3 〈𝛼0, 𝛽0〉ℎ. Claim 2 follows by

tracing (8.28), while (8.27) follow by straightforward computations using (8.28) and the fact that
𝜏×(𝛼0, 𝛽0) = 7

12 〈𝛼0, 𝛽0〉, which is proved in [10].
Suppose 𝜆 ≠ 1/5. By 3, an algebra automorphism 𝜙 of �𝜆 preserves 〈 · , · 〉. By 2, 5𝜆−1

2 〈𝜙(ℎ), · 〉 =
tr 𝐿�𝜆 (𝜙(ℎ)) = tr 𝐿�𝜆 (ℎ) = 5𝜆−1

2 〈ℎ, · 〉, so 𝜙(ℎ) = ℎ. It follows that 0 = 𝜙(𝛼)�𝜆𝜙(𝛽) − 𝜙(𝛼�𝜆𝛽) =
𝜙(𝛼) � 𝜙(𝛽) − 𝜙(𝛼 � 𝛽), so that 𝜙 is an automorphism of the Jordan algebra (𝑆2

V
∗,�). Every automor-

phism of (𝑆2
V
∗,�) is given by the action of an element of𝑂 (3) [24, Theorem VII.13]. This proves 4. �

Remark 8.9. The 𝜆 = 1 case of 2 and 3 of Lemma 8.8 recovers identities for the Jordan algebra
(Sym(V, ℎ),�) that can be found in [9, Proposition III.4.2 and Lemma VI.1.1].

Corollary 8.10 summarizes the result of combining Theorem 8.5 and Lemma 8.8 for .
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Corollary 8.10. Let (V, ℎ) be a 3-dimensional Euclidean vector space. The map Ψ : (𝑆2
V
∗,) →

(MC(V∗), ∗) defined by Ψ(𝛼) = (𝛼− 1
2 tr(𝛼)ℎ) � ℎ) is an algebra isomorphism, where the commutative

multiplication  on 𝑆2
V
∗ is defined by

𝛼  𝛽 = 𝛼 � 𝛽 − 1
4 ((tr 𝛼)𝛽 + (tr 𝛽)𝛼 + 〈𝛼, 𝛽〉ℎ − (tr 𝛼 tr 𝛽)ℎ) (8.29)

and is characterized as the unique, up to algebra isomorphism, commutative multiplication on 𝑆2
V
∗

satisfying:

1. 𝑂 (3) acts on (𝑆2
V
∗,) by algebra automorphisms.

2. (𝑆2
V
∗,) is metrized by an 𝑂 (3)-invariant inner product.

3. (𝑆2
V
∗,) contains no nonzero square-zero element.

4. There is an idempotent in (𝑆2
V
∗,) having rank 1.

5. Any idempotent in (𝑆2
V
∗,) not a multiple of h has rank 1.

6. For a rank 1 idempotent e in (𝑆2
V
∗,), the spectrum of 𝐿(𝑒) contains 1/2 with multiplicity 3.

Moreover, the multiplication  has the following properties:

1. An idempotent in (𝑆2
V
∗,) distinct from h has the form 𝛼 = 2𝑢 ⊗ 𝑢 for a unit norm 𝑢 ∈ V∗.

2. For an idempotent 𝛼 as in 5, the eigenvalues of 𝐿(𝛼) are 1 with multiplicity 1, 1/2 with multiplicity
3, and −1/2 with multiplicity 2.

3. (𝑆2
V
∗,) is simple.

4. For all 𝛼, 𝛽 ∈ 𝑆2
V
∗,

16
3

(
tr 𝐿(𝛼  𝛽) − 1

3 tr 𝐿(𝛼) tr 𝐿(𝛽)
)
= 〈𝛼, 𝛽〉 = 8

5 (𝜏(𝛼, 𝛽) + tr 𝐿(𝛼) tr 𝐿(𝛽)). (8.30)

5. The full automorphism group of (𝑆2
V
∗,) is 𝑂 (3) in its induced action on 𝑆2

V
∗.

The idempotents in (𝑆2
V
∗,) are parametrized by the disjoint union of a point, corresponding with

h, and a projective plane, corresponding with the 𝑂 (3)-orbit of a rank 1 symmetric bilinear form having
norm 2.

9. Characterization of the subalgebra of anti-self-dual Weyl tensors when dimV = 4

This section proves Theorem 1.5, that shows that, when dimV = 4, the subalgebra of anti-self-dual
Weyl tensors is isomorphic to the space of trace-free endomorphisms of a 3-dimensional vector space
equipped with the trace-free Jordan product. The proof is conceptual in the sense that it relies on the
description of ∗ in terms of curvature operators. On the other hand, the approach is special to dimV = 4.
Lemma 10.8 yields an alternative proof that, while more computational, is based on an approach viable
in all dimensions.

Let (V, ℎ) be an n-dimensional Euclidean vector space. Let 𝜖𝑖1...𝑖𝑛 be the volume n-form determined
by choice of orientation of V and evaluating to 1 when paired with the wedge product of the vectors of
an ordered h-orthonormal basis consistent with the chosen orientation. The polyvector 𝜖 𝑖1...𝑖𝑛 obtained
by raising indices satisfies 𝜖𝑖1...𝑖𝑝𝑘1...𝑘𝑛−𝑝 𝜖

𝑗1... 𝑗𝑝𝑘1...𝑘𝑛−𝑝 = 𝑝!(𝑛 − 𝑝)!𝛿 [𝑖1 [ 𝑗1𝛿𝑖2 𝑗2 . . . 𝛿𝑖𝑝−1
𝑗𝑝−1𝛿𝑖𝑝 ]

𝑗𝑝 ] .
Suppose dimV = 4. Then this yields the identities

𝜖𝑎𝑏𝑐𝑑𝜖
𝑎𝑏𝑐𝑑 = 4!, 𝜖𝑖𝑎𝑏𝑐𝜖

𝑗𝑎𝑏𝑐 = 6𝛿𝑖 𝑗 ,

𝜖𝑖 𝑗𝑎𝑏𝜖
𝑘𝑙𝑎𝑏 = 4𝛿 [𝑖 [𝑘𝛿 𝑗 ]

𝑙] , 𝜖𝑖 𝑗𝑘 𝑝𝜖
𝑎𝑏𝑐𝑝 = 6𝛿 [𝑖 [𝑎𝛿 𝑗

𝑏𝛿𝑘 ]
𝑐 ] .

(9.1)

The Hodge star operator ★ ∈ End(
∧2
V
∗) is defined by (★𝛼)𝑖 𝑗 = 1

2 𝜖𝑖 𝑗
𝑝𝑞𝛼𝑝𝑞 . By (9.1), ★ ◦★ = Id∧2

V∗ ,
so

∧2
V
∗ decomposes into the two 3-dimensional ★-eigenspaces

∧2
±V

∗, denominated the self-dual and
anti-self-dual two-forms on V. Note that, with the conventions used here, 𝛼 ∧★𝛽 = 1

2 〈𝛼, 𝛽〉𝜖 .
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Lemma 9.1. Let (V, ℎ, 𝜖) be an oriented 4-dimensional Euclidean vector space.

1. If 𝛼, 𝛽 ∈
∧2

+V
∗ or 𝛼, 𝛽 ∈

∧2
−V

∗, then (𝛼 � 𝛽) = − 1
4 〈𝛼, 𝛽〉ℎ.

2. For 𝛼, 𝛽 ∈
∧2
V
∗, [★𝛼,★𝛽] = [𝛼, 𝛽] and ★[𝛼, 𝛽] = [★𝛼, 𝛽]. In particular, [

∧2
+V

∗,
∧2

−V
∗] = {0}

and 〈
∧2

+V
∗,

∧2
−V

∗〉 = {0}. Under the identification of (
∧2
V
∗, [ · , · ]) with 𝔰𝔬(4), the subspaces∧2

±V
∗ are commuting Lie ideals identified with commuting ideals of 𝔰𝔬(4) isomorphic to 𝔰𝔬(3).

Proof. For 𝛼, 𝛽 ∈
∧2
V
∗, using (9.1) yields

((★𝛽) ◦ (★𝛼))𝑖 𝑗 = −(★𝛼)𝑝𝑖 (★𝛽) 𝑝𝑘ℎ𝑘 𝑗 = − 1
4 𝜖𝑖𝑎𝑏𝑝𝜖

𝑘𝑐𝑑𝑝𝛼𝑎𝑏𝛽𝑐𝑑ℎ𝑘 𝑗

= − 3
2𝛿 [𝑖

[𝑘𝛿𝑎
𝑐𝛿𝑏]

𝑑 ]𝛼𝑎𝑏𝛽𝑐𝑑ℎ𝑘 𝑗 = − 1
2 〈𝛼, 𝛽〉ℎ𝑖 𝑗 − (𝛼 ◦ 𝛽)𝑖 𝑗 .

(9.2)

Symmetrizing (9.2) in 𝛼 and 𝛽 yields 1. Antisymmetrizing (9.2) in 𝛼 and 𝛽 yields [★𝛼,★𝛽] = [𝛼, 𝛽].
Because ★ is self-adjoint and ad(𝛼) = [𝛼, · ] is anti-self-adjoint, for any 𝛾 ∈

∧2
V
∗,

〈★[𝛼, 𝛽], 𝛾〉 = 〈[𝛼, 𝛽], ★𝛾〉 = −〈𝛽, [𝛼,★𝛾]〉 = −〈𝛽, [★𝛼, 𝛾]〉 = 〈[★𝛼, 𝛽], 𝛾〉, (9.3)

showing that ★[𝛼, 𝛽] = [★𝛼, 𝛽]. It follows that
∧2

±V
∗ are commuting Lie ideals in

∧2
V
∗. This shows

the first part of 2. The claimed isomorphisms with 𝔰𝔬(4) and 𝔰𝔬(3) follow from standard representation
theory and are omitted. �

Lemma 9.2. Let (V, ℎ, 𝜖) be an oriented 4-dimensional Euclidean vector space. For X ∈ MCW(V∗),
define (★X)𝑖 𝑗𝑘𝑙 = 1

2 𝜖𝑖 𝑗
𝑎𝑏X𝑎𝑏𝑘𝑙 . Then (★X)𝑖 𝑗𝑘𝑙 ∈ MCW(V∗), and ★ : MCW(V∗) → MCW(V∗) is a

linear involution satisfying ★̂X∧2
V∗ = ★ ◦ X̂∧2

V∗ = X̂∧2
V∗ ◦★.

Proof. By definition (★X)𝑖 𝑗𝑘𝑙 = (★X)[𝑖 𝑗 ]𝑘𝑙 = (★X)𝑖 𝑗 [𝑘𝑙] , so ★X ∈ 𝑆2(
∧2
V
∗). To show ★X ∈ MC(V∗)

it suffices to show that (★X)[𝑖 𝑗𝑘 ]𝑙 vanishes. For X ∈ MCW(V∗), if 𝑛 = dimV, tracing X[𝑖 𝑗
[𝑎𝑏𝛿𝑘 ]

𝑐 ] in
k and c yields a multiple of (𝑛 − 4)X𝑖 𝑗

𝑎𝑏 . Since this vanishes if 𝑛 = 4 and, by [40, Theorem 5.7.A],
an 𝑂 (𝑛)-module of covariant trace-free tensors on an n-dimensional vector space having symmetries
corresponding to a Young diagram for which the sum of the lengths of the first two columns is greater
than n is trivial, when dimV = 4,

X[𝑖 𝑗
[𝑎𝑏𝛿𝑘 ]

𝑐 ] = 0 (9.4)

for any X ∈ MCW(V∗). (The identity is sometimes called a Lovelock identity because similar identities
generalizing it are discussed in [25].) Contracting (9.4) with 𝜖𝑎𝑏𝑐𝑙 yields 0 = 𝜖𝑎𝑏𝑐𝑙X[𝑖 𝑗

[𝑎𝑏𝛿𝑘 ]
𝑐 ] =

−2(★X)𝑙 [𝑖 𝑗𝑘 ] , so ★X ∈ MC(V∗). There holds 𝜌(★X) 𝑗𝑘 = 1
2 𝜖 𝑗

𝑝𝑎𝑏X𝑎𝑏𝑝𝑘 = 1
2 𝜖 𝑗

𝑎𝑏𝑝X[𝑎𝑏𝑝]𝑘 = 0, so
★X ∈ MCW(V∗). For 𝛼𝑖 𝑗 ∈

∧2
V
∗,

(★X̂∧2
V∗ (𝛼))𝑖 𝑗 = 1

2 𝜖𝑖 𝑗
𝑎𝑏X̂∧2

V∗ (𝛼)𝑎𝑏 = − 1
4 𝜖𝑖 𝑗

𝑎𝑏𝛼𝑝𝑞X𝑎𝑏𝑝𝑞

= − 1
2𝛼

𝑝𝑞 (★X)𝑖 𝑗 𝑝𝑞 = ★̂X∧2
V∗ (𝛼)𝑖 𝑗 .

(9.5)

That ★X ∈ MCW(V∗) implies (★X)𝑖 𝑗𝑘𝑙 has all the other symmetries that this inclusion implies; for
example, 1

2 𝜖𝑖 𝑗
𝑎𝑏X𝑎𝑏𝑘𝑙 = (★X)𝑖 𝑗𝑘𝑙 = (★X)𝑘𝑙𝑖 𝑗 = 1

2 𝜖𝑘𝑙
𝑎𝑏X𝑎𝑏𝑖 𝑗 . It follows that

X̂∧2
V∗ (★𝛼)𝑖 𝑗 = − 1

2 (★𝛼)
𝑎𝑏X𝑖 𝑗𝑎𝑏 = − 1

4 𝜖
𝑎𝑏𝑝𝑞𝛼𝑝𝑞X𝑖 𝑗𝑎𝑏 = − 1

4𝛼
𝑝𝑞𝜖𝑝𝑞

𝑎𝑏X𝑎𝑏𝑖 𝑗

= − 1
4𝛼

𝑝𝑞𝜖𝑖 𝑗
𝑎𝑏X𝑎𝑏𝑝𝑞 = − 1

2𝛼
𝑝𝑞 (★X)𝑖 𝑗 𝑝𝑞 = ★̂X∧2

V∗ (𝛼)𝑖 𝑗 ,
(9.6)

which, with (9.5), shows that X̂∧2
V∗ ◦★ = ★̂X∧2

V∗ = ★ ◦ X̂∧2
V∗ . �

For a 4-dimensional oriented Euclidean vector space (V, ℎ, 𝜖), define MC±
W(V∗) = {X ∈

MCW(V∗) : ★X = ±X}. Because 〈★X,Y〉 = 〈X, ★Y〉, MC+
W(V∗) and MC−

W(V∗) are orthogonal
complements.
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Lemma 9.3. Let (V, ℎ, 𝜖) be an oriented 4-dimensional Euclidean vector space. Write 𝛼 = 𝛼+ + 𝛼− for
the decomposition of 𝛼 into its self-dual and anti-self-dual parts 𝛼± ∈

∧2
±V

∗. For 𝛼, 𝛽 ∈
∧2
V
∗,

tf(★𝛼 ·★𝛽) = tf(𝛼 · 𝛽) = ★ tf((★𝛼) · 𝛽), tf(𝛼± · 𝛽±) = 𝛼± · 𝛽± − 1
4 〈𝛼

±, 𝛽±〉ℎ � ℎ. (9.7)

In particular, tf(𝛼+ · 𝛽+) ∈ MC+
W(V∗), tf(𝛼− · 𝛽−) ∈ MC−

W(V∗) and tf(𝛼+ · 𝛽−) = 0 so that

𝛼+ · 𝛽− = −3(𝛼+ � 𝛽−) � ℎ ∈ MCR(V∗). (9.8)

Proof. By (6.10) and Lemma 9.2, for X ∈ MCW(V∗) and 𝛼, 𝛽 ∈
∧2
V
∗,

〈tf(★𝛼 ·★𝛽),X〉 = 〈★𝛼 ·★𝛽,X〉 = −6〈X̂(★𝛼),★𝛽〉

= −6〈★X̂(𝛼), ★𝛽〉 = −6〈X̂(𝛼), 𝛽〉 = 〈𝛼 · 𝛽,X〉 = 〈tf(𝛼 · 𝛽),X〉,

〈★ tf((★𝛼) · 𝛽),X〉 = 〈tf((★𝛼) · 𝛽), ★X〉 = 〈(★𝛼) · 𝛽,★X〉 = −6〈★𝛼, ★̂X(𝛽)〉

= −6〈★𝛼,★X̂(𝛽)〉 = −6〈𝛼, X̂(𝛽)〉 = 〈𝛼 · 𝛽,X〉 = 〈tf(𝛼 · 𝛽),X〉,

(9.9)

which show (9.7). By (7.2) and (7.7),

tf(𝛼 · 𝛽) = 𝛼 · 𝛽 + 3(𝛼 � 𝛽) � ℎ + 1
2 〈𝛼, 𝛽〉ℎ � ℎ. (9.10)

By (9.10) and Lemma 9.1, 𝛼±� 𝛽± = − 1
4 〈𝛼

±, 𝛽±〉ℎ, and in (9.10) this yields (9.7). By (9.7),★ tf(𝛼 · 𝛽) =
tf((★𝛼) · 𝛽) = tf(𝛼+ · 𝛽+) − tf(𝛼− · 𝛽−), and it follows that tf(𝛼± · 𝛽±) ∈ MC±

W(V∗) and tf(𝛼+ · 𝛽−) = 0.
Substituting the last identity in (9.10) yields (9.8). �

Example 9.4. Given an oriented 4-dimensional Euclidean vector space (V, ℎ, 𝜖), let 𝜔 ∈
∧2
V
∗ satisfy

𝜔 ◦ 𝜔 = −ℎ, so that 𝜔𝑖
𝑗 is a compatible almost complex structure and (V, ℎ, 𝜔) is a Kähler structure.

Then 𝜔 ∈
∧2

±V
∗ as 1

2𝜔 ∧ 𝜔 = ±𝜖 and, by Lemma 9.3, the idempotent S(𝜔) = 1
6 (ℎ � ℎ − 𝜔 · 𝜔) =

− tf(𝜔 · 𝜔) ∈ MCW(V∗) defined in (10.2) satisfies S(𝜔) ∈ MC±
W(V∗).

Lemma 9.5 gives another expression for X ∗ Y that is used in the proof of Lemma 9.6.

Lemma 9.5. Let (V, ℎ) be a metric vector space. For X,Y ∈ MC(V∗),

(X ∗ Y)𝑖 𝑗𝑘𝑙 = −4𝐵(X,Y)[𝑖 𝑗 ]𝑘𝑙 − 2𝐵(X, Y)𝑘 [𝑖 𝑗 ]𝑙 + 6𝐵(X,Y)[𝑖 𝑗𝑘𝑙]
= − 1

2
(
X𝑖 𝑗

𝑝𝑞Y𝑝𝑞𝑘𝑙 + Y𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙

)
+ 3

2X[𝑖 𝑗
𝑝𝑞Y𝑘𝑙]𝑝𝑞 − 2𝐵(X, Y)𝑘 [𝑖 𝑗 ]𝑙 .

(9.11)

Proof. The first equality of (9.11) follows from (5.8), (5.9), and Theorem 5.4. The second equality of
(9.11) follows from (5.13). �

Lemma 9.6. Let (V, ℎ) be a 4-dimensional Euclidean vector space. For X,Y ∈ MCW(V∗),

X(𝑖
𝑎𝑏𝑐Y 𝑗)𝑎𝑏𝑐 = 1

4 〈X,Y〉ℎ𝑖 𝑗 , (9.12)

2𝐵(X,Y)[𝑖 𝑗 ]𝑘𝑙 = 1
4 (X𝑖 𝑗

𝑝𝑞Y𝑝𝑞𝑘𝑙 + Y𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙) = 2𝐵(X,Y)𝑘 [𝑖 𝑗 ]𝑙 + 1

8 〈X,Y〉(ℎ � ℎ)𝑖 𝑗𝑘𝑙 . (9.13)

(X ∗ Y)𝑖 𝑗𝑘𝑙 = − 3
4
(
X𝑖 𝑗

𝑝𝑞Y𝑝𝑞𝑘𝑙 + Y𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙

)
+ 1

8 〈★X,Y〉𝜖𝑖 𝑗𝑘𝑙 +
1
8 〈X,Y〉(ℎ � ℎ)𝑖 𝑗𝑘𝑙 . (9.14)

Proof. By (9.4), 0 = X𝑏𝑐𝑙
𝑝X[𝑖 𝑗

[𝑘𝑏𝛿𝑝]
𝑐 ] . Lowering the index k and simplifying this expression yields

X𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙 = −2X𝑖 𝑝𝑙𝑞X𝑘

𝑝
𝑗
𝑞 + 2X 𝑗 𝑝𝑙𝑞X𝑘

𝑝
𝑖
𝑞 + X𝑙𝑎𝑏𝑐X 𝑗

𝑎𝑏𝑐ℎ𝑖𝑘 − X𝑙𝑎𝑏𝑐X𝑖
𝑎𝑏𝑐ℎ 𝑗𝑘 . (9.15)
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Tracing (9.15) in 𝑗 𝑙 and relabeling the result yields X𝑖𝑎𝑏𝑐X 𝑗
𝑎𝑏𝑐 = 1

4 |X|2ℎ𝑖 𝑗 . Polarizing this yields
(9.12). Substituting (9.12) into (9.15) and using (5.13) yields

4𝐵(X,X)[𝑖 𝑗 ]𝑘𝑙 = X𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙 = −2X𝑖 𝑝𝑙𝑞X𝑘

𝑝
𝑗
𝑞 + 2X 𝑗 𝑝𝑙𝑞X𝑘

𝑝
𝑖
𝑞 + 1

2 |X|2ℎ𝑘 [𝑖ℎ 𝑗 ]𝑙

= 4𝐵(X,X)𝑘 [𝑖 𝑗 ]𝑙 + 1
4 |X|2 (ℎ � ℎ)𝑖 𝑗𝑘𝑙 .

(9.16)

Polarizing (9.16) yields (9.13). Because dim
∧4
V
∗ = 1, X[𝑖 𝑗

𝑝𝑞Y𝑘𝑙]𝑝𝑞 = 𝑐𝜖𝑖 𝑗𝑘𝑙 for some 𝑐 ∈ R.
Contracting this equality with 𝜖 𝑖 𝑗𝑘𝑙 yields 24𝑐 = 2〈★X,Y〉, so that 12X[𝑖 𝑗

𝑝𝑞Y𝑘𝑙]𝑝𝑞 = 〈★X,Y〉𝜖𝑖 𝑗𝑘𝑙 .
Substituting this and (9.13) into (9.11) of Lemma 9.5 yields (9.14). �

Lemma 9.7. Let (V, ℎ, 𝜖) be a 4-dimensional oriented Euclidean vector space. There hold

1
3
�X ∗ Y∧2

V∗ = X̂∧2
V∗ � Ŷ∧2

V∗ − 1
3 tr(X̂∧2

V∗ ◦ Ŷ∧2
V∗ )P∧2

±V
∗ if X,Y ∈ MC±

W(V∗),�X ∗ Y∧2
V∗ = 0 if X ∈ MC+

W(V∗),Y ∈ MC−
W(V∗),

(9.17)

where P∧2
±V

∗ ∈ End(
∧2
V
∗) are the orthogonal projections onto

∧2
±V

∗. Consequently,

MC±
W(V∗) ∗MC±

W(V∗) = MC±
W(V∗), MC+

W(V∗) ∗MC−
W(V∗) = {0}. (9.18)

Proof. For X,Y ∈ MCW(V∗), rewriting (9.14) in terms of ∧̂2
V∗ and using Corollary 4.5 yields

1
3
�X ∗ Y∧2

V∗ = X̂∧2
V∗ � Ŷ∧2

V∗ − 1
6 tr(★̂X∧2

V∗ ◦ Ŷ∧2
V∗ ) ★− 1

6 tr(X̂∧2
V∗ ◦ Ŷ∧2

V∗ ) Id∧2
V∗ . (9.19)

Because, by Lemma 9.2,★ commutes with X̂ and Ŷ, (9.19) implies the equality★X ∗★Y = X ∗Y, which
showsMC+

W(V∗)∗MC−
W(V∗) = {0}. Since ★̂X∧2

V∗ = X̂∧2
V∗ ◦★, ifX = X++X− withX± ∈ MC±

W(V∗),
then X̂∧2

V∗ (𝛼) = X̂+∧2
V∗ (𝛼+) + X̂−∧2

V∗ (𝛼−) where 𝛼 = 𝛼+ +𝛼− is the decomposition of 𝛼 ∈
∧2
V
∗ into

its self-dual and anti-self-dual parts. In particular, X̂±∧2
V∗ annihilates

∧2
∓V

∗ and X̂+∧2
V∗ and Ŷ−∧2

V∗

anticommute. In (9.19) these observations yield (9.17), which implies the containments in (9.18).
Because, by Example 9.4, each of MC+

W(V∗) contains a nontrivial idempotent, the 𝑆𝑂 (4)-submodules
MC±

W(V∗)∗MC±
W(V∗) are nontrivial 𝑆𝑂 (4)-submodules of the irreducible 𝑆𝑂 (4)-modulesMC+

W(V∗),
so equality holds in (9.18). �

Remark 9.8. Reversing the orientation of V interchanges the subspaces MC±
W(V∗), but the orthogonal

decomposition remains; all that changes is the labeling as + or −. Hence, the relations (9.18) make sense
independent of any choice of orientation, in the sense that MCW(V∗) decomposes as an orthogonal
direct sum of two 5-dimensional ∗-subalgebras whose product is {0}.

Lemma 9.9. The deunitalization (Sym0(3,R),×) of the 6-dimensional rank 3 simple real Euclidean
Jordan algebra Sym(3,R) is simple and contains no nontrivial square-zero elements.

Proof. Consider the representation of Sym0(3,R) as trace-free 3 × 3 symmetric matrices. Let D ⊂
Sym0(3,R) be the 2-dimensional subalgebra comprising the diagonal matrices. First it is shown that
the subalgebra (D,×) is simple. Let 𝛾1 = 𝐸11 − 𝐸33, 𝛾2 = 𝐸22 − 𝐸33, 𝛾3 = 𝐸33 − 𝐸11 ∈ D where 𝐸𝑖 𝑗

is the matrix with 1 in the 𝑖 𝑗 component and 0 in all other components. Then {𝛾𝑖 : 1 ≤ 𝑖 ≤ 3} are
idempotents satisfying 𝛾𝑖 ◦ 𝛾 𝑗 = −𝛾𝑖 − 𝛾 𝑗 . Let I be an ideal of D and let 𝑎 = 𝑎1𝛾1 + 𝑎2𝛾2 ∈ I. Then
𝑎 × 𝛾1 + 𝑎 = (2𝑎1 − 𝑎2)𝛾1 and 𝑎 × 𝛾2 + 𝑎 = (2𝑎2 − 𝑎1)𝛾2. If 2𝑎1 = 𝑎2 and 2𝑎2 = 𝑎1, then 4𝑎1 = 𝑎1, so
𝑎1 = 0 and 𝑎2 = 0, so 𝑎 = 0. Otherwise, if 2𝑎1 ≠ 𝑎2, then 𝛾1 ∈ I, in which case 𝛾2 = 𝛾1 + 𝛾1 × 𝛾2 ∈ I,
so I = D, while, if 𝑎1 ≠ 2𝑎2, then 𝛾2 ∈ I, so 𝛾1 = 𝛾2 + 𝛾1 × 𝛾2 ∈ I, so I = D. This shows D is simple.

Now let I be a nonzero ideal in Sym0 (3,R,×). By the principal axis theorem, every element of
Sym0(3,R,×) is equivalent via an automorphism of (Sym0 (3,R),×) to an element of D, so it can be
assumed that I contains a nonzero element. Since 𝐸𝑖𝑖 + 𝐸 𝑗 𝑗 − 2𝐸𝑘𝑘 ∈ D ⊂ I, 𝐸𝑖 𝑗 + 𝐸 𝑗𝑖 = (𝐸𝑖 𝑗 + 𝐸 𝑗𝑖) ×
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(𝐸𝑖𝑖 + 𝐸 𝑗 𝑗 − 2𝐸𝑘𝑘 ) ∈ I for all 𝑖 ≠ 𝑗 ∈ {1, 2, 3}. Since together D and the elements 𝐸𝑖 𝑗 + 𝐸 𝑗𝑖 with 𝑖 ≠ 𝑗
span Sym0 (3,R), this shows I = Sym0(3,R).

By the principal axis theorem, any square-zero element of (Sym0(3,R),×) is equivalent via an
automorphism to an element of D. If 𝑎 = 𝑎1𝛾1 + 𝑎2𝛾2 ∈ D is square-zero, then 𝑎1 (𝑎1 − 2𝑎2) = 0 =
𝑎2 (𝑎2 − 2𝑎1) and the unique solution is 𝑎1 = 0 = 𝑎2. �

Remark 9.10. Essentially the same argument shows that the deunitalization of a simple real Euclidean
Jordan algebra of rank at least 3 is simple. However, that there are no nontrivial square-zero elements is
true if and only if the rank is odd. See [10] for details.

Proof of Theorem 1.5. Let (V, ℎ) be a 4-dimensional Euclidean vector space. By Lemma 9.2, for any
X ∈ MCW(V∗), ★X̂∧2

V∗ = �(★X)∧2
V∗ = X̂∧2

V∗★, so, if X ∈ MC±
W(V∗), then X preserves

∧2
±V

∗

and annihilates
∧2

∓V
∗ and so induces a symmetric endomorphism of

∧2
±V

∗. By Example 9.4, if
𝜔 ∈

∧2
V
∗ satisfies 𝜔 ◦ 𝜔 = −ℎ, then 𝜔 ∈

∧2
±V

∗ as 1
2𝜔 ∧ 𝜔 = ±𝜖 , and S(𝜔) ∈ MC±

W(V∗). By
(6.7), �𝜔 · 𝜔∧2

V∗ (𝜔) = −5𝜔, so 6�S(𝜔)∧2
V∗ (𝜔) = �ℎ � ℎ∧2

V∗ (𝜔) − �𝜔 · 𝜔∧2
V∗ (𝜔) = 4𝜔. Since this

shows that �S(𝜔)∧2
V∗ acts nontrivially on

∧2
±V

∗, it follows from the Schur Lemma that the 𝑆𝑂 (4)-
equivariant map Ψ : MC±

W(V∗) → Sym0(
∧2

±V
∗, ℎ) sending X ∈ MC±

W(V∗) to 3X̂∧2
±V

∗ is a linear
isomorphism. It follows from (9.17) of Lemma 9.7 that Ψ : (MC±

W(V∗), ∗) → (Sym0 (
∧2

±V
∗, ℎ),×) is

an algebra isomorphism. By the definition of G and Corollary 4.5, forX,Y ∈ MC±
W(V∗),Ψ∗(𝐺) (X,Y) =

9𝐺 (X̂, Ŷ) = 3 tr(X̂ ◦ Ŷ) = 3
4 〈X,Y〉. That the trace-form 𝜏∗ is the stated multiple of h follows from the

corresponding statement in the algebra (Sym0 (
∧2

±V
∗, ℎ),×, 4

3𝐺) and the fact that Ψ is an isometric
isomorphism. That (MC±

W(V∗), ∗, 〈 · , · 〉) is simple and contains no square-zero elements follows from
the preceding in conjunction with Lemma 9.9. �

10. Idempotents in the subalgebra of Weyl curvature tensors

In this section some idempotents in (MCW(V∗), ∗) are constructed and some of their products are
calculated. This provides more detailed information about the internal structure of (MCW(V∗), ∗) and
yields an alternative proof of Theorem 1.5 along lines viable when dimV > 4.

Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 > 2. A subspace W ⊂ V determines
𝑔 ∈ Idem(𝑆2

V
∗,�) such thatW equals the image of the endomorphism 𝑔𝑖

𝑗 , in which case tr 𝑔 = dimW.
The space of orthogonal almost complex structures onW is identified with

OC(W, ℎ) = {𝛼 ∈
∧2
V
∗ : 𝛼 ◦ 𝛼 = −𝑔, 𝛼 ◦ 𝑔 = 𝛼 = 𝑔 ◦ 𝛼}. (10.1)

By construction, 𝛼 ∈ OC(W, ℎ) satisfies dimW = tr 𝑔 = |𝑔 |2 = |𝛼 |2. It will be said that 𝛼 ∈ OC(W, ℎ)
determines an orthogonal almost complex structure onW.

For even r satisfying 2 ≤ 𝑟 ≤ 𝑛, there is r-dimensional W ⊂ V such that OC(W, ℎ) is nonempty.
Let {𝜖 (1), . . . , 𝜖 (𝑛)} be an h-orthonormal basis of V∗ such that {𝜖 (1), . . . , 𝜖 (𝑟)} spans W∗ and
{𝜖 (𝑟 + 1), . . . , 𝜖 (𝑛)} spans the h-orthogonal complementW∗⊥. The endomorphism associated with 𝑔 =∑𝑟

𝑖=1 𝜖 (𝑖) ⊗ 𝜖 (𝑖) ∈ 𝑆2
V
∗ is the orthogonal projection onW and 𝛼 =

∑𝑟/2
𝑖=1 𝜖 (2𝑖 − 1) ∧ 𝜖 (2𝑖) ∈ OC(W, ℎ).

Lemma 10.1. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 > 2. Let r be even and satisfy
2 ≤ 𝑟 ≤ 𝑛, letW ⊂ V have dimension r, let 𝛼 ∈ OC(W, ℎ), and let 𝑔 = −𝛼◦𝛼. The elements of MC(V∗)
defined by

H(𝑔) = 1
1−𝑟 𝑔 � 𝑔, K𝑟 (𝛼) = − 1

𝑟+2 (𝛼 · 𝛼 + 𝑔 � 𝑔),

S𝑟 (𝛼) = 1
𝑟+2

(
3

𝑟−1𝑔 � 𝑔 − 𝛼 · 𝛼
)
= K𝑟 (𝛼) −H(𝑔),

(10.2)
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are idempotents in (MC(V∗), ∗) that are nontrivial and linearly independent when 𝑟 ≥ 4, while, when
𝑟 = 2, S2(𝛼) is trivial and K2 (𝛼) = H(𝑔). They satisfy the relations

K𝑟 (𝛼) ∗H(𝑔) = H(𝑔), K𝑟 (𝛼) ∗ S𝑟 (𝛼) = S𝑟 (𝛼), S𝑟 (𝛼) ∗H(𝑔) = 0, (10.3)

〈K𝑟 (𝛼), S𝑟 (𝛼)〉 = |S𝑟 (𝛼) |2ℎ = 6𝑟 (𝑟−2)
(𝑟+2) (𝑟−1) , |K𝑟 (𝛼) |2ℎ = 8𝑟

𝑟+2 ,

〈K𝑟 (𝛼),H(𝑔)〉 = |H(𝑔) |2ℎ = 2𝑟
𝑟−1 , 〈S𝑟 (𝛼),H(𝑔)〉 = 0.

(10.4)

Moreover:

1. S𝑟 (𝛼) ∈ MCW(V∗), while K𝑟 (𝛼) ∉ MCW(V∗) because 𝜌(K𝑟 (𝛼)) = 𝑔.
2. If 𝑟 ∈ {𝑛 − 1, 𝑛}, S𝑟 (𝛼) = − 1

𝑟+2 tf(𝛼 · 𝛼).

Proof. By (6.35), (6.19), and Lemma 7.4,

(𝛼 · 𝛼) ∗ (𝛼 · 𝛼) = −(𝑟 + 2)𝛼 · 𝛼 + 3𝑔 � 𝑔, (𝛼 · 𝛼) ∗ (𝑔 � 𝑔) = −3𝑔 � 𝑔,

(𝑔 � 𝑔) ∗ (𝑔 � 𝑔) = (1 − 𝑟)𝑔 � 𝑔.
(10.5)

Combining the identities (10.5) yields

(𝐴𝛼·𝛼 + 𝐵𝑔 � 𝑔) ∗ (𝐴𝛼 · 𝛼 + 𝐵𝑔 � 𝑔) − (𝐴𝛼 · 𝛼 + 𝐵𝑔 � 𝑔)
= −𝐴((𝑟 + 2)𝐴 + 1)𝛼 · 𝛼 + ((1 − 𝑟)𝐵2 − (6𝐴 + 1)𝐵 + 3𝐴2)𝑔 � 𝑔.

(10.6)

That (10.6) vanish yields the equations 𝐴2(𝑟 + 2) = −𝐴 and (𝑟 − 1)𝐵2 + (6𝐴 + 1)𝐵 − 3𝐴2 = 0. These
equations have the three nontrivial solutions (0, 1

1−𝑟 ), (−
1

𝑟+2 ,−
1

𝑟+2 ), and (− 1
𝑟+2 ,

3
(𝑟−1) (𝑟+2) ) for (𝐴, 𝐵)

that yield, respectively, the idempotents H(𝑔), K𝑟 (𝜔), and S𝑟 (𝜔). The relations (10.3) follow from
(10.5) by computations similar to those showing (10.6).

By (7.7), 𝜌(𝛼 · 𝛼) = 3𝛼 ◦ 𝛼 = −3𝑔, and by (7.3), 𝜌(𝑔 � 𝑔) = 𝑔 ◦ 𝑔 − tr(𝑔)𝑔 = −(𝑟 − 1)𝑔, from which
there follow 𝜌(S𝑟 (𝛼)) = 0 and 𝜌(K𝑟 (𝛼)) = 𝑔, so that S𝑟 (𝛼) ∈ MCW(V∗) but K𝑟 (𝛼) ∉ MCW(V∗).

From (6.11), (6.13), and (6.12) there follow |𝛼 · 𝛼 |2ℎ = 6𝑟 (𝑟 + 1), 〈𝛼 · 𝛼, 𝑔 � 𝑔〉 = 6𝑟 , and |𝑔 � 𝑔 |2 =
2𝑟 (𝑟−1), which yield (10.4). By (10.4),H(𝑔),K𝑟 (𝛼), and S𝑟 (𝛼) are nontrivial and linearly independent
when 𝑟 ≥ 4, while when 𝑟 = 2, S2(𝛼) is trivial and K2(𝛼) = H(𝑔).

A straightforward computation using (7.8) shows

− tf(𝛼 · 𝛼) = −𝛼 · 𝛼 + 6
𝑛−2𝑔 � ℎ − 3𝑟

(𝑛−1) (𝑛−2) ℎ � ℎ = (𝑟 + 2)S𝑟 (𝛼) + 3(𝑛−1−𝑟 )
𝑛−2 H(𝑔), (10.7)

where H(𝑔) is as in (7.11). If 𝑟 = 𝑛, then ℎ = 𝑔 and H(𝑔) = 0, so if 𝑟 ∈ {𝑛 − 1, 𝑛}, by (10.7),
(𝑟 + 2)S𝑟 (𝛼) = − tf(𝛼 · 𝛼). �

Remark 10.2. From Lemma 5.9 it follows that, ifW∗ is a subspace ofV∗, the inclusion of an idempotent
of MCW(W∗) is an idempotent in MCW(V∗). In particular, the 𝑟 < 𝑚 cases of Lemma 10.1 follow
from the 𝑟 = 𝑚 case of Lemma 10.1 in conjunction with Lemma 5.9.

Lemma 10.4 shows that when dimV∗ = 2𝑛 ≥ 4, certain of the idempotents produced by Lemma 10.1
constitute an orbit of 𝑂 (2𝑛) acting in MCW(V∗) that can be identified with the space of orthogonal
complex structures on V inducing a given orientation on V. The proof uses Lemma 10.3.

Lemma 10.3. Let (V, ℎ) be a Euclidean vector space of dimension n. Let r be even and satisfy 4 ≤ 𝑟 ≤ 𝑛.
LetW ⊂ V have dimension r, let 𝛼 ∈ OC(W, ℎ), and let 𝑔 = −𝛼 ◦ 𝛼.

1. The eigenvalues of �S𝑟 (𝛼)∧2
V∗ are 𝑟−2

𝑟−1 , with 1-dimensional eigenspace spanned by 𝛼; 1
1−𝑟 , with

𝑟 (𝑟−2)
4 -dimensional eigenspace contained in

∧2
W

∗; 𝑟−4
(𝑟+2) (𝑟−1) , with 𝑟2−4

4 -dimensional eigenspace
contained in

∧2
W

∗; and 0, with eigenspace equal to
∧2
W

⊥∗ ⊕W⊥∗ ∧W∗.
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2. The nonzero eigenvalues of �K𝑟 (𝛼)∧2
V∗ are 1, with 1-dimensional eigenspace spanned by 𝛼, and

− 2
𝑟+2 , with 𝑟2−4

4 -dimensional eigenspace contained in
∧2
W

∗.

Proof. Write A = 𝑄� (𝛼) ∈ End(
∧2
V
∗). By (6.5), A 2 = 𝑄� (𝛼) � 𝑄�(𝛼) = 𝑄� (𝑔) and A 3 =

𝑄� (𝛼) �𝑄� (𝑔) = 𝑄�(𝛼) = A . By (6.7) and (6.8),

�S𝑟 (𝛼)∧2
V∗ = 1

𝑟+2

(
𝛼 ⊗ 𝛼♯ −A − 3

𝑟−1A
2
)
. (10.8)

Since A (𝛼) = −𝛼, by (10.8), �S𝑟 (𝛼)∧2
V∗ (𝛼) = 𝑟−2

𝑟−1𝛼. Because �S𝑟 (𝛼)∧2
V∗ is self-adjoint, it preserves

the orthogonal complement 〈𝛼〉⊥ ⊂
∧2
V
∗. Because 〈A (𝛾), 𝛼〉 = −〈𝛼, 𝛾〉, A preserves 〈𝛼〉⊥ as well.

A straightforward computation using A 3 = A shows that the minimal polynomial of the restriction�S𝑟 (𝛼) 〈𝛼〉⊥ is 𝑥(𝑥 + 1
𝑟−1 ) (𝑥 − 𝑟−4

(𝑟+2) (𝑟−1) ). It follows that 𝑟−2
𝑟−1 has multiplicity 1 as an eigenvalue of�S𝑟 (𝛼)∧2

V∗ . It is convenient to identify W∗ and W⊥∗ with orthogonal subspaces of V∗. If 𝜈 ∈ W⊥∗,
then 𝜈𝑝𝑔𝑝𝑖 = 0, so 𝜈𝑝𝛼𝑝𝑖 = 𝜈𝑝𝑔𝑝

𝑞𝛼𝑞
𝑖 = 0, and it follows that, for all 𝜇 ∈ V∗, A (𝜇 ∧ 𝜈) = 0,

so
∧2
W

⊥∗ ⊕ (W⊥∗ ∧W∗) ⊂ ker �S𝑟 (𝛼)∧2
V∗ . Because it commutes with 𝑔𝑖

𝑗 , the endomorphism 𝛼𝑖
𝑗

preserves W and its restriction to W is an almost complex structure compatible with the restriction
of h to W. Consequently, both A and �S𝑟 (𝛼)∧2

V∗ preserve
∧2
W

∗ and their eigenvalues on
∧2
W

∗ are
nonzero. In addition to forcing the equality

∧2
W

⊥∗ ⊕ W⊥∗ ∧W∗ = ker �S𝑟 (𝛼)∧2
V∗ , this observation

implies that the nonzero eigenspaces of �S𝑟 (𝛼)∧2
V∗ on

∧2
W

∗ ∩ 〈𝛼〉⊥ are the ±1-eigenspaces of A on∧2
W

∗ ∩ 〈𝛼〉⊥. The dimensions of these eigenspaces can be computed using the observation that these
subspaces comprise the real parts of forms of type (2, 0) and (1, 1) with respect to the almost complex
structure given by 𝛼𝑖

𝑗 (see [11] for details). This proves 1. Claim 2 follows from the preceding and�K𝑟 (𝛼)∧2
V∗ = �S𝑟 (𝛼)∧2

V∗ + �H(𝑔)∧2
V∗ . Further details are omitted. �

For a Euclidean vector space (V, ℎ) of even dimension 𝑛 = 2𝑚, the space OC(V, ℎ) = {𝜔𝑖 𝑗 ∈
∧2
V
∗ :

𝜔𝑖
𝑝𝜔𝑝

𝑗 = −𝛿𝑖 𝑗 } is identified with the homogeneous space𝑂 (2𝑚)/𝑈 (𝑚). The action of𝑂 (2𝑚) on
∧2
V
∗

preserves OC(V, ℎ). Given 𝜔 ∈ OC(V, ℎ) with associated almost complex structure 𝐽𝑖
𝑗 = 𝜔𝑖

𝑗 there
exists an orthonormal basis of V of the form {𝑒1, . . . , 𝑒𝑛, 𝐽 (𝑒1), . . . , 𝐽 (𝑒𝑛)}, and this suffices to show
that𝑂 (2𝑚) acts transitively on OC(V, ℎ). The stabilizer of𝜔 ∈ OC(V, ℎ) is𝑈 (𝑚) = 𝑂 (2𝑚) ∩𝑆𝑝(𝑛,R),
where 𝑆𝑝(𝑛,R) is the symplectic group fixing 𝜔 and 𝑈 (𝑚) the unitary group preserving (ℎ, 𝐽). Thus,
OC(V, ℎ) is identified with 𝑂 (2𝑚)/𝑈 (𝑚) for any 𝜔 ∈ OC(V, ℎ).

Since 𝑂 (2𝑚) has two connected components, comprising orthogonal transformations preserving
opposite orientations of V, and 𝑈 (𝑚) is connected, the space OC(V, ℎ) has two connected components
OC±(V, ℎ), each identified with 𝑆𝑂 (2𝑚)/𝑈 (𝑚), and the complex structures of OC+(V, ℎ) induce the
orientation opposite that induced by the complex structures of OC−(V, ℎ). If 𝜔 ∈ OC(V, ℎ) is fixed and
𝐹 ∈ 𝑂 (2𝑚) is the orthogonal reflection through the +1 eigenspace of the endomorphism 𝜔𝑖

𝑗 , then the
action of F interchanges OC±(V, ℎ). Let �̂� (𝑚) ⊂ 𝑂 (2𝑚) be the subgroup generated by 𝑈 (𝑚) and F.
Then 𝑂 (2𝑚)/�̂� (𝑚) is identified with the quotient space OC(V, ℎ)/∼ where 𝜔 ∼ −𝜔 = 𝐹 · 𝜔. Since
𝑈 (𝑚) and 𝐹𝑈 (𝑚) lie in different connected components of𝑂 (2𝑚), this quotient space is identified with
𝑆𝑂 (2𝑚)/𝑈 (𝑚).

Lemma 10.4. Let (V, ℎ) be a Euclidean vector space of even dimension 𝑛 = 2𝑚. The map S :
OC(V, ℎ) → Idem(MCW(V∗), ∗) ⊂ MCW(V∗) defined by

S(𝜔) = − 1
𝑛+2 tf(𝜔 · 𝜔) = 1

𝑛+2

(
3

𝑛−1 ℎ � ℎ − 𝜔 · 𝜔
)

(10.9)

is an 𝑂 (2𝑚)-equivariant double cover of its image S(OC(V, ℎ))) = {S(𝜔) : 𝜔 ∈ OC(V, ℎ)}, injective
on either connected component OC±(V, ℎ) � 𝑆𝑂 (2𝑚)/𝑈 (𝑚), with image equal to 𝑂 (2𝑚)/�̂� (𝑚) �
𝑆𝑂 (2𝑚)/𝑈 (𝑚), realized as the 𝑂 (2𝑚) orbit of S(𝜔) for any 𝜔 ∈ OC(V, ℎ), and spanning MCW(V∗).

https://doi.org/10.1017/fms.2021.69 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.69


Forum of Mathematics, Sigma 37

Proof. Because the map tf and the product · are 𝑂 (2𝑚)-equivariant, so is the map S. By Lemma 10.1,
for 𝑔 ∈ 𝑂 (2𝑚), S(𝑔 · 𝜔) = 𝑔 · S(𝜔) is an idempotent in (MCW(V∗), ∗), and so S is a map from the
homogeneous space 𝑂 (2𝑚)/𝑈 (𝑚) � OC(V, ℎ) to the 𝑂 (2𝑚) orbit of S(𝜔) in MCW(V∗) whose image
comprises idempotents. By definition, S(−𝜔) = S(𝜔). If S(𝑔 · 𝜔) = S(𝜔) for 𝑔 ∈ 𝑂 (2𝑛), then, by
Lemmas 4.2, and 10.3 and the 𝑂 (2𝑛)-equivariance of S,�S(𝜔)∧2

V∗ (𝑔 · 𝜔) = S(𝑔 · 𝜔)∧2
V∗ (𝑔 · 𝜔)

= 𝑔 · S(𝜔)∧2
V∗ (𝑔 · 𝜔) = 𝑔 · �S(𝜔)∧2

V∗ (𝜔) = 𝑛−2
𝑛−1𝑔 · 𝜔.

(10.10)

By Lemma 10.3, 𝜔 spans the 𝑛−2
𝑛−1 -eigenspace of �S(𝜔)∧2

V∗ , so (10.10) shows 𝑔 · 𝜔 is a multiple of
𝜔. Since (𝑔 · 𝜔) ◦ (𝑔 · 𝜔) = −ℎ, this forces 𝑔 · 𝜔 = ±𝜔, and hence 𝑔 ∈ �̂� (𝑚). It follows that S is
two-to-one, with image equal to the 𝑂 (2𝑚) orbit of S(𝜔) for any 𝜔 ∈ OC(V, ℎ), and that this orbit
is identified with 𝑂 (2𝑚)/�̂� (𝑚) in such a way that S maps either connected component OC±(𝜔, ℎ)
onto it bijectively. By the 𝑂 (2𝑚)-irreducibility of MCW(V∗), because the 𝑂 (2𝑚)-invariant subspace
Span {S(𝜔) : 𝜔 ∈ OC(V, ℎ)} ⊂ MCW(V∗) is nonempty, it equals MCW(V∗). �

Lemma 10.5. For 𝑚 × 𝑚 anti-Hermitian complex matrices A and B such that 𝐴2 = −𝐼 = 𝐵2,

−2𝑚 ≤ 2𝑚 − 4 tr 𝐴 � 𝐵
𝑡
𝐴 � 𝐵 = −2 tr(𝐴𝐵𝐴𝐵) = −2𝑚 + tr [𝐴, 𝐵]

𝑡
[𝐴, 𝐵] ≤ 2𝑚, (10.11)

with equality in the upper bound if and only if A and B anticommute and equality in the lower bound if and
only if A and B commute. In the latter case there is 𝑞 ∈ Z such that 0 ≤ 𝑞 ≤ 𝑚 such that tr 𝐴𝐵 = 2𝑞 −𝑚
with tr 𝐴𝐵 = ±𝑚 if and only if 𝐵 = ±𝐴; moreover, if A and B are real matrices, then q must be even.

Proof. The equalities in (10.11) are always valid. If 𝐴 � 𝐵 = 0, then tr [𝐴, 𝐵]
𝑡
[𝐴, 𝐵] = − tr[𝐴, 𝐵]2 =

−4 tr(𝐴𝐵𝐴𝐵) = 4 tr(𝐴2𝐵2) = 4𝑚, so equality holds in the upper bound in (10.11). It is immediate that
equality holds in the lower bound in (10.11) if and only if A and B commute. In this case, 𝑖𝐴 and 𝑖𝐵
are commuting Hermitian matrices and so are simultaneously unitarily diagonalizable. If 𝑚 − 𝑞 is the
dimension of their joint 1 eigenspace, then − tr 𝐴𝐵 tr(i𝐴) (i𝐵) = (𝑚 − 𝑞) − 𝑞 = 𝑚 − 2𝑞 and tr 𝐴𝐵 = ±𝑚
if and only if 𝑞 ∈ {0, 𝑚}, in which case 𝐵 = ±𝐴. If A and B are, moreover, real, then their eigenvalues
±i have the same multiplicities, so q must be even. Now suppose A and B are anti-Hermitian and
𝐴2 = −𝐼 = 𝐵2. There is an 𝑚 × 𝑚 unitary matrix U such that 𝐶 = 𝑈𝐴�̄�𝑡 is diagonal with diagonal
entries 𝑐1, . . . , 𝑐𝑚 ∈ {±i}. Define 𝐷 = 𝑈𝐵�̄�𝑡 . The components of [𝐶, 𝐷] with respect to a basis satisfy
[𝐶, 𝐷]𝑖 𝑗 = (𝑐𝑖 − 𝑐 𝑗 )𝐷𝑖 𝑗 and 𝑐𝑖 − 𝑐 𝑗 = −(𝑐𝑖 − 𝑐 𝑗 ), so

0 ≤ tr [𝐴, 𝐵]
𝑡
[𝐴, 𝐵] = tr [𝐶, 𝐷]

𝑡
[𝐶, 𝐷] = −

∑
𝑖≠ 𝑗

(𝑐𝑖 − 𝑐 𝑗 )2 |𝐷𝑖 𝑗 |2

≤ 2
∑
𝑖≠ 𝑗

(|𝑐𝑖 |2 + |𝑐 𝑗 |2) |𝐷𝑖 𝑗 |2 ≤ 4
∑
𝑖≠ 𝑗

|𝐷𝑖 𝑗 |2 ≤ −4 tr 𝐷2 = −4 tr 𝐵2 = 4𝑚.
(10.12)

By (10.12), tr [𝐴, 𝐵]
𝑡
[𝐴, 𝐵] = 4𝑚 if and only if (𝑐𝑖 + 𝑐 𝑗 ) |𝐷𝑖 𝑗 |2 = 0 for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚 and 𝐷𝑖𝑖 = 0

for all 1 ≤ 𝑖 ≤ 𝑚. This means 𝑐𝑖 + 𝑐 𝑗 = 0 or 𝐷𝑖 𝑗 = 0 for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, so tr [𝐴, 𝐵]
𝑡
[𝐴, 𝐵] = 4𝑚

if and only if (𝑐𝑖 + 𝑐 𝑗 )𝐷𝑖 𝑗 = 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Equivalently, tr [𝐴, 𝐵]
𝑡
[𝐴, 𝐵] = 4𝑚 if and only if

𝐶𝐷 + 𝐷𝐶 = 0 or, similarly, if and only if A and B anticommute. �

Lemma 10.6. Let (V, ℎ) be a Euclidean vector space of dimension n. LetW ⊂ V have dimension 𝑟 ∈ 2Z
satisfying 4 ≤ 𝑟 ≤ 𝑛, let 𝛼, 𝛽 ∈ OC(W, ℎ) and let 𝑔 = −𝛼 ◦ 𝛼 = −𝛽 ◦ 𝛽. There holds

〈S𝑟 (𝛼), S𝑟 (𝛽)〉 = 6
(𝑟+2)2

(
〈𝛼, 𝛽〉2 + tr(𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽) − 3𝑟

𝑟−1

)
≥ − 6𝑟

(𝑟+2) (𝑟−1) , (10.13)
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so that

〈S𝑟 (𝛼) ,S𝑟 (𝛽) 〉
|S𝑟 (𝛼) | |S𝑟 (𝛽) | =

𝑟−1
𝑟 (𝑟−2) (𝑟+2)

(
〈𝛼, 𝛽〉2 + tr(𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽) − 𝑟 (𝑟 + 1)

)
+ 1 ≥ − 1

𝑟−2 . (10.14)

1. There holds equality in the lower bounds in (10.13) and (10.14) if and only if 𝛼 ◦ 𝛽 + 𝛽 ◦ 𝛼 = 0.
2. If [𝛼, 𝛽] = 0, then there is 𝑘 ∈ {4𝑝 − 𝑟 : 0 ≤ 𝑝 ≤ 𝑟/2} such that 〈𝛼, 𝛽〉 = −𝑘 and 〈S𝑟 (𝛼), S𝑟 (𝛽)〉 =

6𝑟 (𝑟−4)
(𝑟−1) (𝑟+2)2 + 6𝑘2

(𝑟+2)2 . Moreover, 𝑘 = ±𝑟 if and only if 𝛽 = ±𝛼. In particular, 〈S4(𝛼), S4(𝛽)〉 = 0 if and
only if 𝑟 = 4 and 𝛽 ≠ ±𝛼.

Proof. Let 𝛽 ∈ OC(V, ℎ) and note that this means 𝛽 ◦ 𝛽 = −𝑔. By (6.11), |𝛼 · 𝛼 |2ℎ = 6𝑟 (𝑟 + 1) and
〈𝛼 · 𝛼, 𝛽 · 𝛽〉 = 6〈𝛼, 𝛽〉2 + 6 tr(𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽). By (6.12), |𝑔 � 𝑔 |2ℎ = 2𝑟 (𝑟 − 1) and

〈𝛽 · 𝛽, 𝑔 � 𝑔〉 = −6 tr 𝛽 ◦ 𝑔 ◦ 𝛽 ◦ 𝑔 = −6 tr 𝛽 ◦ 𝑔 ◦ 𝛽 ◦ 𝑔 = −6 tr 𝛽 ◦ 𝛽 = 6 tr 𝑔 = 6𝑟 (10.15)

and, similarly, 〈𝛼 · 𝛼, 𝑔 � 𝑔〉 = 6𝑟 . There result the equality in (10.13) and (10.14). Equality holds
in the lower bounds of (10.13) and (10.14) when 𝛼 ◦ 𝛽 = −𝛽 ◦ 𝛼 because in this case 〈𝛼, 𝛽〉 = 0
and tr 𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽 = −𝑟 . By Lemma 10.5 applied to the matrices of 𝛼𝑖 𝑗 and 𝛽𝑖

𝑗 in some basis,
2𝑟 − 2 tr(𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽) = − tr([𝛼, 𝛽] ◦ [𝛼, 𝛽]) ≤ 4𝑟 , with equality if and only if 𝛼 � 𝛽 = 0, so that
tr(𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽) ≥ −𝑟 , with equality if and only if 𝛼 � 𝛽 = 0. There follow the lower bounds in
(10.13) and (10.14), with equality if and only if 𝛼 � 𝛽 = 0. If [𝛼, 𝛽] = 0, then 𝛼 ◦ 𝛽 is self-adjoint
and 𝛼 ◦ 𝛽 ◦ 𝛼 ◦ 𝛽 = 𝑔, so −〈𝛼, 𝛽〉 = tr(𝛼 ◦ 𝛽) is an integer k such that −𝑟 ≤ 𝑘 ≤ 𝑟 . By Lemma 10.5,
𝑘 = 4𝑝 − 𝑟 for some 0 ≤ 𝑝 ≤ 𝑟/2. In (10.13) this yields 2. �

A hypercomplex structure on a real vector space V is a pair of anticommuting almost complex
structures 𝐼, 𝐽 ∈ End(V) such that 𝐾 = 𝐼 ◦ 𝐽 is an almost complex structure. Because it is a module over
the quaternions, a hypercomplex vector space has dimension divisible by 4. A hyper-Kähler structure on
a Euclidean vector space (V, ℎ) equipped with a hypercomplex structure {𝐼, 𝐽, 𝐾} and a metric h such
that each of I, J, and K is compatible with h. By definition this means that 𝛼𝑖 𝑗 = 𝐼𝑖

𝑝ℎ𝑝 𝑗 , 𝛽𝑖 𝑗 = 𝐽𝑖
𝑝ℎ𝑝 𝑗 ,

and 𝛾𝑖 𝑗 = 𝐾𝑖
𝑝ℎ𝑝 𝑗 are symplectic forms. Given a subspace W ⊂ V, it will be said that an ordered

pair (𝛼, 𝛽) ∈ OC(W, ℎ)2 determines a hyper-Kähler structure onW if 𝛼 and 𝛽 anticommute, meaning
𝛼 � 𝛽 = 0. In this case, 𝛾 = 𝛼 ◦ 𝛽 ∈ OC(W, ℎ), W is the image of the endomorphism 𝑔𝑖

𝑗 where
−𝑔 = 𝛼 ◦ 𝛼 = 𝛽 ◦ 𝛽 = 𝛾 ◦ 𝛾, 𝛼 ◦ 𝑔 = 𝛼 = 𝑔 ◦ 𝑔, 𝛽 ◦ 𝑔 = 𝛽 = 𝑔 ◦ 𝛽, and 𝛾 ◦ 𝑔 = 𝛾 = 𝑔 ◦ 𝛾, and
tr 𝑔 = |𝑔 |2 = |𝛼 |2 = |𝛽 |2 = dimW.

Lemma 10.7. Let (V, ℎ) be a Euclidean vector space. Let W ⊂ V be a subspace of dimension
r divisible by 4, suppose (𝛼, 𝛽) ∈ OC(W, ℎ)2 determines a hyper-Kähler structure on W and let
S𝑟 (𝛼), S𝑟 (𝛽), S𝑟 (𝛾) ∈ MCW(V∗) be the idempotents defined as in (10.2) (where 𝛾 = 𝛼 ◦ 𝛽).

1. There hold the relations

S𝑟 (𝛼) ∗ S𝑟 (𝛽) = − 1
𝑟+2 (S𝑟 (𝛼) + S𝑟 (𝛽) − 5S𝑟 (𝛾)),

S𝑟 (𝛼) ∗ (𝛼 · 𝛽) = 1
2𝛼 · 𝛽, S𝑟 (𝛼) ∗ (𝛽 · 𝛾) = − 6

𝑟+2 𝛽 · 𝛾,
(10.16)

(𝛼 · 𝛽) ∗ (𝛼 · 𝛽) = (𝑟 + 2)
(
(𝑟+4)

4 (S𝑟 (𝛼) + S𝑟 (𝛽)) − 5
2S

𝑟 (𝛾)
)
,

(𝛼 · 𝛽) ∗ (𝛼 · 𝛾) = − 𝑟+14
4 𝛽 · 𝛾

(10.17)

and those obtained from them by permuting 𝛼, 𝛽, and 𝛾.
2. 〈S𝑟 (𝛼), S𝑟 (𝛽)〉 = 〈S𝑟 (𝛽), S𝑟 (𝛾)〉 = 〈S𝑟 (𝛾), S𝑟 (𝛼)〉 = − 6𝑟

(𝑟+2) (𝑟−1) , so the cosine of the angle between
any two of S𝑟 (𝛼), S𝑟 (𝛽), and S𝑟 (𝛾) is 1/(2 − 𝑟).

3. The elements 𝛼 ·𝛽, 𝛽 ·𝛾, and 𝛾 ·𝛼 are pairwise orthogonal of norm
√

3𝑟 (𝑟 + 2) and each is orthogonal
to Span {S𝑟 (𝛼), S𝑟 (𝛽), S𝑟 (𝛾)}.

4. Let B = Span {S4(𝛼), S4(𝛽), S4(𝛾), 𝛼 · 𝛽, 𝛽 · 𝛾, 𝛾 · 𝛼}.
(a) If 𝑟 = 4, S4 (𝛼) + S4 (𝛽) + S4(𝛾) = 0, and B ⊂ (MCW(V∗), ∗) is a 5-dimensional subalgebra.
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(b) If 𝑟 ≥ 8, B is a 6-dimensional subalgebra of (MCW(V∗), ∗).
5. For X ∈ Span {S𝑟 (𝛼), S𝑟 (𝛽), S𝑟 (𝛾), 𝛽 · 𝛾, 𝛾 · 𝛼, 𝛼 · 𝛽}, X̂∧2

V∗ preserves Span {𝛼, 𝛽, 𝛾} ⊂
∧2
V
∗.

6. For X = −𝑥1S
𝑟 (𝛼) − 𝑥2S

𝑟 (𝛽) − 𝑥3S
𝑟 (𝛾) − 2

𝑟+2 (𝑤1𝛽 · 𝛾 + 𝑤2𝛾 · 𝛼 + 𝑤3𝛼 · 𝛽), the matrix of
X̂Span {𝛼,𝛽,𝛾 } with respect to the equal-norm orthogonal basis {𝛼, 𝛽, 𝛾} is

����
(2−𝑟 )𝑥1+𝑥2+𝑥3

𝑟−1 𝑤3 𝑤2
𝑤3

𝑥1+(2−𝑟 )𝑥2+𝑥3
𝑟−1 𝑤1

𝑤2 𝑤1
𝑥1+𝑥2+(2−𝑟 )𝑥3

𝑟−1

���� . (10.18)

Proof. The two-forms 𝛼, 𝛽, 𝛾 are pairwise orthogonal. Specializing (6.20) yields (10.17) and the iden-
tities obtained from them by permuting 𝛼, 𝛽, and 𝛾. By (6.18), (6.19), and (6.20) there hold

(𝛼 · 𝛼) ∗ (𝛽 · 𝛽) = 𝛼 · 𝛼 + 𝛽 · 𝛽 − 5𝛾 · 𝛾,
(𝛼 · 𝛼) ∗ (𝛽 · 𝛾) = 6𝛽 · 𝛾, (𝛼 · 𝛼) ∗ (𝛼 · 𝛽) = − 𝑟+2

2 𝛽 · 𝛾,
(𝛼 · 𝛼) ∗ (𝑔 � 𝑔) = −3𝑔 � 𝑔, (𝛼 · 𝛽) ∗ (𝑔 � 𝑔) = 0,

(10.19)

and the identities obtained from them by permuting 𝛼, 𝛽, and 𝛾. The identities (10.16) follow from
(10.19). By (10.16) and (10.4),

〈S𝑟 (𝛼), S𝑟 (𝛽)〉 = 〈S𝑟 (𝛼) ∗ S𝑟 (𝛼), S𝑟 (𝛽)〉 = 〈S𝑟 (𝛼), S𝑟 (𝛼) ∗ S𝑟 (𝛽)〉
= − 1

𝑟+2 |S
𝑟 (𝛼) |2 − 1

𝑟+2 〈S
𝑟 (𝛼), S𝑟 (𝛽)〉 + 5

𝑟+2 〈S
𝑟 (𝛼), S𝑟 (𝛾)〉

= − 6𝑟 (𝑟−2)
(𝑟+2)2 (𝑟−1) +

4
𝑟+2 〈S

𝑟 (𝛼), S𝑟 (𝛽)〉,
(10.20)

so that 〈S𝑟 (𝛼), S𝑟 (𝛽)〉 = − 6𝑟
(𝑟+2) (𝑟−1) . Combined with (10.4) this shows that the cosine of the angle

between S𝑟 (𝛼) and S𝑟 (𝛽) is 1/(2−𝑟). The preceding claims remain true when 𝛼, 𝛽, and 𝛾 are permuted
cyclically. The identities (10.19) show B as in 4 is a subalgebra. By (10.4) and 2,

|𝑐1S
𝑟 (𝛼) + 𝑐2S

𝑟 (𝛽) + 𝑐3S
𝑟 (𝛾) | 2 =

6𝑟 ( (𝑟−4) (𝑐2
1+𝑐

2
2+𝑐

2
3 )+(𝑐1−𝑐2)2+(𝑐2−𝑐3)2+(𝑐3−𝑐1)2)
(𝑟+2) (𝑟−1) . (10.21)

It follows that 𝑐1S
𝑟 (𝛼) + 𝑐2S

𝑟 (𝛽) + 𝑐3S
𝑟 (𝛾) = 0 for 𝑐𝑖 not all zero if and only if 𝑟 = 4 and 𝑐1 = 𝑐2 = 𝑐3.

Together with (10.4), 2, and 3 this implies both claims of 4 straightforwardly.
By (6.7) and (6.8), there hold �𝛼 · 𝛼∧2

V∗ (𝛼) = −(𝑟 + 1)𝛼, �𝑔 � 𝑔∧2
V∗ (𝛼) = −𝛼, �(𝛼 · 𝛽)∧2

V∗ (𝛼) =

− 𝑟+2
2 𝛽, �(𝛼 · 𝛽)∧2

V∗ (𝛾) = 0, and the identities obtained from these by permuting 𝛼, 𝛽, and 𝛾. Combining
these identities with the definition of S(𝛼) yields �S(𝛼)∧2

V∗ (𝛼) = 𝑟−2
𝑟−1𝛼 and �S(𝛽)∧2

V∗ (𝛼) = − 1
𝑟−1𝛼.

Claims 5 and 6 follow from these identities. �

Lemma 10.8 identifies the 5-dimensional subalgebra of (4a) of Lemma 10.7.

Lemma 10.8. Let (V, ℎ) be a Euclidean vector space of dimension at least 4. Let W ⊂ V be a
4-dimensional subspace and suppose (𝛼, 𝛽) ∈ OC(W, ℎ)2 determines a hyper-Kähler structure onW.
Define S(𝛼) = S4(𝛼), S(𝛽) = S4 (𝛽), S(𝛾) = S4(𝛾) ∈ MCW(V∗) as in (10.2) (where 𝛾 = 𝛼 ◦ 𝛽).

1. For X contained in the 5-dimensional subalgebra B = Span {S(𝛼), S(𝛽), S(𝛾), 𝛼 · 𝛽, 𝛽 · 𝛾, 𝛾 · 𝛼}, X̂
preserves U = Span {𝛼, 𝛽, 𝛾} ⊂

∧2
V
∗.

2. The map Ψ : B → End(U) defined by Ψ(X) = 3X̂U is an isometric algebra isomorphism
from (B, ∗, ℎ) to the deunitalization (Sym0 (U, ℎ),×, 4

3𝐺) of the 6-dimensional rank 3 simple real
Euclidean Jordan algebra (Sym(U, ℎ),�), in its realization as the trace-free symmetric endomor-
phisms of U equipped with the product × equal to the traceless part of the usual Jordan product �
of endomorphisms and the metric 𝐺 (𝐴, 𝐵) = 1

3 tr 𝐴 ◦ 𝐵.
3. The Killing form 𝜏∗,B (X,Y) = tr 𝐿∗,B(X)𝐿∗,B (Y) on (B, ∗) satisfies 𝜏∗,B = 21

16 〈 · , · 〉.
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4. The subalgebra (B, ∗, ℎ) is simple.

Proof. By 4 of Lemma 10.7, S(𝛾) = −S(𝛼) − S(𝛽). In (10.16) and (10.17) this yields the relations

S(𝛼) ∗ S(𝛽) = −S(𝛼) − S(𝛽), S(𝛼) ∗ (S(𝛽) − S(𝛾)) = −(S(𝛽) − S(𝛾)),
(𝛼 · 𝛾) ∗ (𝛽 · 𝛾) = − 9

2𝛼 · 𝛽, (𝛼 · 𝛽) ∗ (𝛼 · 𝛽) = 27(S(𝛼) + S(𝛽)),
S(𝛼) ∗ (𝛼 · 𝛽) = 1

2𝛼 · 𝛽, S(𝛼) ∗ (𝛽 · 𝛾) = −𝛽 · 𝛾,
(10.22)

and those obtained from them by permuting 𝛼, 𝛽, and 𝛾. By 6 of Lemma 10.7, for

X = (2𝑥1 + 𝑥2)S(𝛼) + (𝑥1 + 2𝑥2)S(𝛽) − 1
3 (𝑧1𝛽 · 𝛾 + 𝑧2𝛼 · 𝛾 + 𝑧3𝛼 · 𝛽), (10.23)

the matrix of X̂U with respect to the equal-norm orthogonal ordered basis {𝛼, 𝛽, 𝛾} of U is

X =
���
𝑥1 𝑧3 𝑧2
𝑧3 𝑥2 𝑧1
𝑧2 𝑧1 −𝑥1 − 𝑥2

��� ∈ Sym0 (U, ℎ). (10.24)

From (10.24) it is apparent that Ψ : B→ Sym0(U, ℎ) defined by Ψ(X) = 3X̂U is a linear isomorphism.
Because ∗ and × are commutative, by polarization, to check that Ψ is an algebra homomorphism it
suffices to check that Ψ(X ∗ X) = Ψ(X) × Ψ(X). By (10.22),

X ∗ X = −3(2𝑥1𝑥2 + 𝑥2
2 + 𝑧

2
1 − 𝑧2

3)S(𝛼) − 3(2𝑥1𝑥2 + 𝑥2
1 + 𝑧

2
2 − 𝑧2

3)S(𝛽)
− (𝑧1𝑧2 + (𝑥1 + 𝑥2)𝑧3)𝛼 · 𝛽 + (𝑧2𝑧3 − 𝑥1𝑧1)𝛽 · 𝛾 + (𝑧1𝑧3 − 𝑥2𝑧2)𝛾 · 𝛼.

(10.25)

Comparing (10.25) with

X × X =
�����
𝑥2

1−2𝑥2
2−2𝑥1𝑥2−2𝑧2

1+𝑧
2
2+𝑧

2
3

3 𝑧1𝑧2 + (𝑥1 + 𝑥2)𝑧3 𝑧1𝑧3 − 𝑥2𝑧2

𝑧1𝑧2 + (𝑥1 + 𝑥2)𝑧3
−2𝑥2

1+𝑥
2
2−2𝑥1𝑥2+𝑧2

1−2𝑧2
2+𝑧

2
3

3 𝑧2𝑧3 − 𝑥1𝑧1

𝑧1𝑧3 − 𝑥2𝑧2 𝑧2𝑧3 − 𝑥1𝑧1
𝑥2

1+𝑥
2
2+4𝑥1𝑥2+𝑧2

1+𝑧
2
2−2𝑧2

3
3

����� (10.26)

shows that Ψ(X ∗ X) = Ψ(X) × Ψ(X).
By claims 2 and 3 of Lemma 10.7 with 𝑟 = 4,{ √

3
2
√

2
(S(𝛼) + S(𝛽)),− 1

2
√

2
(S(𝛼) − S(𝛽)), 1

6
√

2
𝛽 · 𝛾, 1

6
√

2
𝛾 · 𝛼, 1

6
√

2
𝛼 · 𝛽

}
(10.27)

is an orthonormal basis of B. By definition of G, (10.24), and the orthonormality of (10.27) (used to
compute the norm of (10.23)),

Ψ∗(𝐺) (X,X) = 1
3 tr Ψ(X)2 = 3 trX2 = 6

(
𝑥2

1 + 𝑥1𝑥2 + 𝑥2
2 + 𝑧

2
1 + 𝑧

2
2 + 𝑧

2
3

)
= 3

4 |X|2. (10.28)

Slightly tedious calculations using (10.22) show that the matrix of the restriction to B of 𝐿∗,B (X) with
respect to the ordered orthonormal basis (10.27) is

𝑀 =

���������

− 3
2 (𝑥1 + 𝑥2) −

√
3

2 (𝑥1 − 𝑥2)
√

3
2 𝑧1

√
3

2 𝑧2 −
√

3𝑧3

−
√

3
2 (𝑥1 − 𝑥2) 3

2 (𝑥1 + 𝑥1) − 3
2 𝑧1

3
2 𝑧2 0√

3
2 𝑧1 − 3

2 𝑧1 − 3
2𝑥1

3
2 𝑧3

3
2 𝑧2√

3
2 𝑧2

3
2 𝑧2

3
2 𝑧3 − 3

2𝑥2
3
2 𝑧1

−
√

3𝑧3 0 3
2 𝑧2

3
2 𝑧1

3
2 (𝑥1 + 𝑥2)

���������
. (10.29)
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Comparing (10.29) with (10.28) shows

𝜏B,∗ = tr 𝐿∗,B (X)𝐿∗,B(X) = tr 𝑀2 = 21
2

(
𝑥2

1 + 𝑥1𝑥2 + 𝑥2
2 + 𝑧

2
1 + 𝑧

2
2 + 𝑧

2
3

)
= 21

16 |X|2. (10.30)

That (B, ∗, ℎ) is simple follows from 2 and Lemma 9.9. �

11. Subalgebra of Kähler–Weyl tensors and the 4-dimensional case revisited

A 2𝑛-dimensional Kähler vector space (V, ℎ, 𝐽, 𝜔) is a Euclidean vector space (V, ℎ) of dimension 𝑚 =
2𝑛 equipped with a compatible complex structure 𝐽𝑖 𝑗 , meaning that 𝐽𝑖 𝑝𝐽 𝑗 𝑞ℎ𝑝𝑞 = ℎ𝑖 𝑗 and 𝜔𝑖 𝑗 = 𝐽𝑖

𝑝ℎ𝑝 𝑗

is a symplectic form. When a Kähler vector space is fixed, the abstract unitary group 𝑈 (𝑛) is identified
with the unitary group 𝑈 (ℎ, 𝐽) of linear automorphisms of V preserving h and J.

Lemma 11.1. Let (V, ℎ, 𝐽, 𝜔) be a 2𝑛-dimensional Kähler vector space. The 𝑈 (𝑛)-submodules

MCK (V∗) = {X ∈ MC(V∗) : 𝐽𝑖 𝑎𝐽 𝑗 𝑏X𝑎𝑏𝑘𝑙 = X𝑖 𝑗𝑘𝑙} = {X ∈ MC(V∗) : 𝐽[𝑖 𝑝X 𝑗 ]𝑝𝑘𝑙 = 0} (11.1)

of curvature tensors of Kähler type and MCK,W(V∗) = MCK(V∗) ∩ MCW(V∗) of Kähler-Weyl
curvature tensors are subalgebras of (MC(V∗), ∗) on which 𝑈 (𝑛) acts by automorphisms.

Proof. Let X,Y ∈ MCK(V∗). Write 𝐵𝑖 𝑗𝑘𝑙 = 𝐵(X,Y)𝑖 𝑗𝑘𝑙 . By (5.13),

8𝐽𝑖 𝑎𝐽 𝑗 𝑏𝐵𝑎𝑏 [𝑘𝑙] = 𝐽𝑖
𝑎𝐽 𝑗

𝑏 (X𝑎𝑏
𝑝𝑞Y𝑝𝑞𝑘𝑙 + Y𝑎𝑏

𝑝𝑞X𝑝𝑞𝑘𝑙)
= X𝑖 𝑗

𝑝𝑞Y𝑝𝑞𝑘𝑙 + Y𝑖 𝑗
𝑝𝑞X𝑝𝑞𝑘𝑙 = 8𝐵𝑖 𝑗 [𝑘𝑙] .

(11.2)

Similarly,

2𝐽 𝑗 𝑎𝐽𝑙𝑏𝐵𝑖𝑎𝑘𝑏 = 𝐽 𝑗
𝑎𝐽𝑙

𝑏X𝑖 𝑝𝑎𝑞Y𝑘
𝑝
𝑏
𝑞 + 𝐽 𝑗 𝑎𝐽𝑙𝑏Y𝑖 𝑝𝑎𝑞X𝑘

𝑝
𝑏
𝑞

= 𝐽𝑞
𝑎𝐽𝑏𝑙X𝑖 𝑝 𝑗𝑎Y𝑘

𝑝𝑏𝑞 + 𝐽𝑞𝑎𝐽𝑏𝑙Y𝑖 𝑝 𝑗𝑎X𝑘
𝑝𝑏𝑞

= −𝐽𝑞𝑎𝐽𝑏𝑞X𝑖 𝑝 𝑗𝑎Y𝑘
𝑝
𝑙
𝑏 − 𝐽𝑞

𝑎𝐽𝑏
𝑞Y𝑖 𝑝 𝑗𝑎X𝑘

𝑝
𝑙
𝑏

= X𝑖 𝑝 𝑗𝑏Y𝑘
𝑝
𝑙
𝑏 + Y𝑖 𝑝 𝑗𝑏X𝑘

𝑝
𝑙
𝑏 = 2𝐵𝑖 𝑗𝑘𝑙 .

(11.3)

Together (5.14), (11.2), and (11.3) yield

𝐽𝑖
𝑎𝐽 𝑗

𝑏 (X ∗ Y)𝑎𝑏𝑘𝑙 = 𝐽𝑖
𝑎𝐽 𝑗

𝑏 (
−2𝐵𝑎𝑏 [𝑘𝑙] − 𝐵𝑎𝑘𝑏𝑙 + 𝐵𝑎𝑙𝑘𝑏

)
= −2𝐵𝑖 𝑗 [𝑘𝑙] − 2𝐵𝑖 [𝑘 | 𝑗 |𝑙] = (X ∗ Y)𝑖 𝑗𝑘𝑙 .

(11.4)

This shows MCK(V∗) is a subalgebra of (MC(V∗), ∗). By Lemmas 5.7 and 11.1, MCK,W(V∗) =
MCK(V∗) ∩ MCW(V∗) is a subalgebra of (MC(V∗), ∗). That 𝑈 (𝑛) acts by automorphisms on these
subalgebras follows from the containment 𝑈 (𝑛) ⊂ 𝑂 (2𝑛). �

A Kähler vector space is canonically oriented by the Euclidean volume form 𝜖 = 1
𝑛!𝜔

𝑛. Lemma 11.2
shows that, for a 4-dimensional Kähler vector space, the space of Weyl curvature tensors anti-self-dual
with respect to the orientation determined by the complex structure coincides with the space of Kähler–
Weyl curvature tensors. As is explained subsequently, this has the consequence of showing that the
subalgebra (MCK,W(V∗), ∗) is nontrivial whenever dimV∗ ≥ 4.

Lemma 11.2. Let (V, ℎ, 𝐽, 𝜔) be a 4-dimensional Kähler vector space oriented by 𝜖 = 1
2𝜔 ∧ 𝜔.

1. For 𝛼, 𝛽 ∈
∧2

−V
∗, K(𝛼, 𝛽) = 𝛼 · 𝛽 + (𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔) is contained in MCK(V∗).

2. If 𝛼, 𝛽 ∈
∧2

−V
∗, then tf(𝛼 · 𝛽) = 3

4 tfK(𝛼, 𝛽) ∈ MCK,W(V∗).
3. If 𝛼 ∈

∧2
−(V∗) satisfies |𝛼 |2ℎ = 4, then S(𝛼) = − 1

6 tf(𝛼 · 𝛼) = − 1
8 tfK(𝛼, 𝛼), where S(𝛼) is as defined

in (10.2), is a nontrivial idempotent in (MCK,W(V∗), ∗) satisfying |S(𝛼) |2 = 8
3 .

4. MCK,W(V∗) = MC−
W(V∗).
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Proof. The operator ★ ∈ End(
∧2
V
∗) can be expressed ★ = 1

2 𝜖
♯ = 1

2 (𝜔 ⊗ 𝜔)♯ + 𝑄� (𝜔) (recall from
(4.6) the isomorphism ♯ and its inverse ♭). It follows that 𝛼 ∈

∧2
V
∗ is contained in

∧2
−V

∗ if and only if
〈𝛼, 𝜔〉 = 0 and 𝑄�(𝜔) (𝛼) = −𝛼. The latter condition is equivalent to 𝛼 ◦ 𝜔 = 𝜔 ◦ 𝛼 ∈ 𝑆2

V
∗, and this

shows that the element K(𝛼, 𝛽) of 1 is correctly defined.
Suppose 𝛼, 𝛽 ∈

∧2
V
∗. Substituting 1

2 〈𝛼,★𝛽〉𝜖 = 𝛼 ∧ 𝛽 into (6.2) yields the alternative expressions

𝛼 · 𝛽 = 3
2 (𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼) − 1

4 〈𝛼,★𝛽〉𝜖 =
3
2 (𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼) − 1

8 〈𝛼,★𝛽〉𝜔 ∧ 𝜔. (11.5)

Taking 𝛼 = 𝛽 = 𝜔 in (11.5) yields

𝜔 · 𝜔 = 3𝜔 ⊗ 𝜔 − 1
2𝜔 ∧ 𝜔 = 3𝜔 ⊗ 𝜔 − 𝜖 . (11.6)

By Example 4.3, 2 Id♭∧2
V∗ = −2�ℎ � ℎ

♭

∧2
V∗ = ℎ � ℎ, so

(𝑄� (𝜔) ◦ 𝜖♯)♭ = −𝜔 ⊗ 𝜔 + 2 Id♭∧2
V∗ = −𝜔 ⊗ 𝜔 + ℎ � ℎ. (11.7)

Combining 𝛼 ∧ 𝛽 = 1
2 〈𝛼,★𝛽〉𝜖 with (11.7) and noting (𝛼 ∧ 𝛽)♯ = (𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼)♯ + 4𝑄� (𝛼, 𝛽) yields

1
2 〈𝛼,★𝛽〉(𝜔 ⊗ 𝜔 − ℎ � ℎ) = − 1

2 〈𝛼,★𝛽〉
(
𝑄� (𝜔) ◦ 𝜖♯

)♭
= −

(
𝑄�(𝜔) ◦ (𝛼 ∧ 𝛽)♯

)♭
= − (𝑄�(𝜔) (𝛼) ⊗ 𝛽 + 𝛼 ⊗ 𝑄� (𝜔) (𝛽)) − 4 (𝑄�(𝜔) ◦𝑄�(𝛼, 𝛽))♭ .

(11.8)

Now suppose 𝛼, 𝛽 ∈
∧2

−V
∗. In this case, by (6.8),

−𝑄�(𝜔) ◦𝑄�(𝛼, 𝛽) = −(𝑄� (𝛼 ◦ 𝜔, 𝛽 ◦ 𝜔) = (𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔)∧2
V∗ (11.9)

and, because −2 (𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔)
♭

∧2
V∗ = (𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔), substituting this into (11.8) yields

(𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔) = 1
2 (𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼) + 1

4 〈𝛼, 𝛽〉(𝜔 ⊗ 𝜔 − ℎ � ℎ). (11.10)

Substituting (11.5) and (11.6) into (11.10) and simplifying the result using (11.7) yields

K(𝛼, 𝛽) = 𝛼 · 𝛽 + (𝛼 ◦ 𝜔) � (𝛽 ◦ 𝜔) = 4
3𝛼 · 𝛽 + 1

12 〈𝛼, 𝛽〉𝜔 · 𝜔 − 1
4 〈𝛼, 𝛽〉ℎ � ℎ

= 2(𝛼 ⊗ 𝛽 + 𝛽 ⊗ 𝛼) + 1
4 〈𝛼, 𝛽〉 (𝜖 + 𝜔 ⊗ 𝜔 − ℎ � ℎ).

(11.11)

A straightforward calculation using the last equality of (11.11) shows 𝑄�(𝜔) ◦K(𝛼, 𝛽)♯ = −K(𝛼, 𝛽)♯,
so K(𝛼, 𝛽) ∈ MCK(V∗). By (11.11), (7.8), and 1 of Lemma 9.1,

3
4 tfK(𝛼, 𝛽) = tf(𝛼 · 𝛽) = 𝛼 · 𝛽 + 3(𝛼 � 𝛽) � ℎ + 1

2 〈𝛼, 𝛽〉ℎ � ℎ = 𝛼 · 𝛽 − 1
4 〈𝛼, 𝛽〉ℎ � ℎ. (11.12)

This shows 2. If 𝛼 ∈
∧2

−(V∗), then 𝛼 ∧ 𝛼 = −𝛼 ∧ ★𝛼 = − 1
4 |𝛼 |

2𝜔 ∧ 𝜔, so if |𝛼 |2ℎ = 4, then 𝛼 ∧ 𝛼 =
−𝜔 ∧ 𝜔. Hence, 0 = (𝛼 ∧ 𝛼 + 𝜔 ∧ 𝜔)♯ (𝜔) = 4(𝑄� (𝛼) (𝜔) + 𝜔), so 𝛼 ◦ 𝜔 ◦ 𝛼 = −𝜔. This implies
𝛼 ◦ 𝛼 = −𝛼 ◦ 𝜔 ◦ 𝜔 ◦ 𝛼 = −𝛼 ◦ 𝜔 ◦ 𝛼 ◦ 𝜔 = 𝜔 ◦ 𝜔 = −ℎ, showing 𝛼 satisfies the hypotheses of
Lemma 10.1. Taking 𝛽 = 𝛼 in (11.12) yields 3.

For X ∈ MCK(V∗), pairing 𝐽𝑖
𝑝X𝑝 𝑗𝑘𝑙 = 𝐽 𝑗

𝑝X𝑖 𝑝𝑘𝑙 with ℎ𝑖𝑙 yields 𝜔𝑝𝑞X𝑝𝑞 𝑗𝑘 = −2𝜔𝑝𝑞X𝑝 𝑗𝑘𝑞 =
𝐽 𝑗

𝑝 𝜌(X)𝑝𝑘 , so, because X ∈ MCK,W(V∗), (★X)𝑖 𝑗𝑘𝑙 = ( 1
2𝜔𝑖 𝑗𝜔

𝑎𝑏 − 𝐽𝑖
𝑎𝐽 𝑗

𝑏)X𝑎𝑏𝑘𝑙 = −X𝑖 𝑗𝑘𝑙 . This
shows that MCK,W(V∗) ⊂ MC−

W(V∗). Since both MCK,W(V∗) and MC−
W(V∗) are 𝑆𝑈 (2)-modules

and MC−
W(V∗) is an irreducible 𝑆𝑈 (2)-module, to prove equality it suffices to show that MCK,W(V∗)

has dimension at least 1. By the preceding paragraph there exists 𝛼 ∈
∧2

−V
∗ such that tf(𝛼 · 𝛼) is

nontrivial and is contained in MCK,W(V∗). This proves claim 4. �
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Theorem 11.3. Let (V, ℎ, 𝐽, 𝜔) be a Kähler vector space of dimension 𝑚 = 2𝑛 ≥ 4. The subspace
MCK,W(V∗) is a simple subalgebra of (MCW(V∗), ∗) that is exact and Killing metrized, with Killing
form equal to a positive multiple of the metric 〈 · , · 〉 and on which 𝑈 (𝑛) = 𝑈 (V, 𝐽, ℎ) acts irreducibly
by automorphisms.

Proof. The group 𝑈 (𝑛) acts irreducibly on MCK,W(V∗) [39, Theorem 6.4]. It is straightforward to
check that when, in the setting of Lemma 5.9, V is equipped with a Kähler structure and W ⊂ V is a
Kähler subspace, the map 𝜄 of Lemma 5.9 is an injective algebra homomorphism from (MCK(W∗), ∗)
and (MCK,W(W∗), ∗) to (MCK(V∗), ∗) and (MCK,W(V∗), ∗), respectively. Consequently, by Lemmas
5.9 and 11.2, (MCK,W(V∗), ∗) contains a nontrivial idempotent, so its multiplication is nontrivial. The
group 𝑈 (𝑛) acts on (MCK,W(V∗), ∗) by isometric automorphisms because it is a subgroup of 𝑂 (2𝑛),
which acts on (MC(V∗), ∗) by algebra automorphisms. By Theorem 3.2, (MCK,W(V∗), ∗) is exact
and Killing metrized, with Killing form equal to a positive multiple of the metric 〈 · , · 〉. Because
every finite-dimensional irreducible representation of 𝑈 (𝑛) restricts to an irreducible representation of
𝑆𝑈 (𝑛), MCK,W(V∗) is irreducible as an 𝑆𝑈 (𝑛)-module. Since the action by automorphisms of 𝑆𝑈 (𝑛)
on MCK,W(V∗) is irreducible, the simplicity of (MCK,W(V∗), ∗) follows from Theorem 3.1. �

12. Examples related with idempotents

This final section shows the viability of making explicit computations in (MCW(V∗), ∗) and describes
some relations among the idempotents constructed earlier that are suggestive both with respect to the
structure of (MCW(V∗), ∗) and in the context of developing a structure theory for commutative al-
gebras metrized by a trace-form. It is indicated how this yields an alternative proof of Theorem 1.5.
Theorem 12.3 shows that (MCW(V∗), ∗) contains many 2-dimensional unital associative subalgebras
isomorphic to the paracomplex numbers and exhibits zeros of its cubic polynomial. The final Ex-
ample 12.5 shows that when dimV ≥ 6, (MCW(V∗), ∗) contains subalgebras isomorphic to Matsuo
algebras.

Lemma 12.1. Let (V, ℎ) be a Euclidean vector space. For 𝑥, 𝑦, 𝑧, 𝑤 ∈ V∗,

0 = (𝑥 � 𝑦) � (𝑧 � 𝑤) + (𝑦 � 𝑧) � (𝑥 � 𝑤) + (𝑧 � 𝑥) � (𝑦 � 𝑤),
0 = (𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) + (𝑦 ∧ 𝑧) · (𝑥 ∧ 𝑤) + (𝑧 ∧ 𝑥) · (𝑦 ∧ 𝑤),

(12.1)

12(𝑥 � 𝑦) � (𝑧 � 𝑤) = (𝑥 ∧ 𝑧) · (𝑦 ∧ 𝑤) + (𝑦 ∧ 𝑧) · (𝑥 ∧ 𝑤), (12.2)

(𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) = 4(𝑥 � 𝑧) � (𝑦 � 𝑤) − 4(𝑦 � 𝑧) � (𝑥 � 𝑤). (12.3)

Proof. The identities (12.1) follow from the definitions (6.1) and (6.2); precisely, summing (𝑥 � 𝑦) �
(𝑧 �𝑤) and (𝑥 ∧ 𝑦) � (𝑧∧𝑤) cyclically over x, y, and z yields elements in ker S and kerM, respectively.
By the definitions, (6.1) and (6.2),

−12(𝑥 � 𝑦) � (𝑥 � 𝑦)
= 3((𝑥 + 𝑦) � (𝑥 + 𝑦) − 𝑥 � 𝑥 − 𝑦 � 𝑦) � ((𝑥 + 𝑦) � (𝑥 + 𝑦) − 𝑥 � 𝑥 − 𝑦 � 𝑦)
= 3(𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦) � (𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦) = 6(𝑥 ⊗ 𝑥) � (𝑦 ⊗ 𝑦)
= 3(𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦) = (𝑥 ∧ 𝑦) · (𝑥 ∧ 𝑦).

(12.4)

Polarizing (12.4) first in x and then in y and using (12.1) yields (12.2). Using (12.2) and (12.1) to
evaluate the right-hand side of (12.3) yields the left-hand side of (12.3). �

Example 12.2. Let (V, ℎ) be a Euclidean vector space. Let 𝑥, 𝑦 ∈ V∗ be orthogonal unit norm vectors.
Let 𝜎 = 𝑥 ∧ 𝑦, so that 𝜎 ◦ 𝜎 = −𝛼 where 𝛼 = 𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦. Then 𝛼 satisfies 𝛼 ◦ 𝛼 = 𝛼, tr 𝛼 = 2 and, by
(12.4), 𝜎 ·𝜎 = 3𝛼 � 𝛼, so that 4S2 (𝑥 ∧ 𝑦) = 3𝛼 � 𝛼 −𝜎 ·𝜎 = 0. On the other hand, by (6.35), Lemma
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10.1, and (12.4), H(𝛼) = −𝛼 � 𝛼 = −(𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦) = K2(𝜎) is an idempotent in (MC(V∗), ∗)
satisfying 𝜌(𝛼 � 𝛼) = 𝛼. Similarly, if {𝑥, 𝑦, 𝑧, 𝑤} ⊂ V∗ is an orthonormal set,

((𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦)) ∗ ((𝑦 ∧ 𝑧) ⊗ (𝑦 ∧ 𝑧)) = − 1
2 (𝑥 ∧ 𝑧) ⊗ (𝑥 ∧ 𝑧),

((𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦)) ∗ ((𝑧 ∧ 𝑤) ⊗ (𝑧 ∧ 𝑤)) = 0.
(12.5)

These are most easily computed using (6.18) or (6.20) in conjunction with (12.4). By Corollary 7.5, as
the idempotents 𝛼 = 𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦, 𝛽 = 𝑧 ⊗ 𝑧 + 𝑤 ⊗ 𝑤 ∈ Idem(𝑆2,�) are orthogonal,

B(𝑥, 𝑦, 𝑧, 𝑤) = B(𝛼, 𝛽) = − 2
3 ((𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦) + (𝑧 ∧ 𝑤) ⊗ (𝑧 ∧ 𝑤))

+ 1
3 ((𝑥 ∧ 𝑧) ⊗ (𝑥 ∧ 𝑧) + (𝑥 ∧ 𝑤) ⊗ (𝑥 ∧ 𝑤) + (𝑦 ∧ 𝑧) ⊗ (𝑦 ∧ 𝑧) + (𝑦 ∧ 𝑤) ⊗ (𝑦 ∧ 𝑤))

(12.6)

is an idempotent in (MCW(V∗), ∗) satisfying |B(𝑥, 𝑦, 𝑧, 𝑤) |2 = 16/3. The symmetries B(𝑦, 𝑥, 𝑧, 𝑤) =
B(𝑥, 𝑦, 𝑧, 𝑤) = B(𝑥, 𝑦, 𝑤, 𝑧) = B(𝑧, 𝑤, 𝑥, 𝑦), evident from (12.6), show that (12.6) yields only three dis-
tinct idempotents, namely, B(𝑥, 𝑦, 𝑧, 𝑤), B(𝑦, 𝑧, 𝑥, 𝑤), and B(𝑧, 𝑥, 𝑦, 𝑤). From (12.6) it is apparent that
B(𝑥, 𝑦, 𝑧, 𝑤) +B(𝑦, 𝑧, 𝑥, 𝑤) +B(𝑧, 𝑥, 𝑦, 𝑤) = 0. This shows −B(𝑥, 𝑦, 𝑧, 𝑤) −B(𝑦, 𝑧, 𝑥, 𝑤) is idempotent,
which implies

B(𝑥, 𝑦, 𝑧, 𝑤) ∗B(𝑦, 𝑧, 𝑥, 𝑤) = B(𝑧, 𝑥, 𝑦, 𝑤) = −B(𝑥, 𝑦, 𝑧, 𝑤) −B(𝑦, 𝑧, 𝑥, 𝑤). (12.7)

This shows B(𝑥, 𝑦, 𝑧, 𝑤), B(𝑦, 𝑧, 𝑥, 𝑤), and B(𝑧, 𝑥, 𝑦, 𝑤) span a 2-dimensional subalgebra isomorphic
to the algebra E2 (R) called the simplicial algebra in [10]; it is the unique 2-dimensional metrized
commutative algebra with automorphism group 𝑆3.

Theorem 12.3. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 ≥ 4. For an h-orthonormal set
{𝑥, 𝑦, 𝑧, 𝑤} ⊂ V∗,

E = E(𝑥, 𝑦, 𝑧, 𝑤) = 2
3 (𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) ∈ MCW(V∗) (12.8)

is a zero of the cubic polynomial 𝑃MCW (V∗) ,∗ that satisfies:

1. E ∗ (E ∗ E) = E and E ∗ E = B(𝑥, 𝑦, 𝑧, 𝑤) is idempotent.
2. The subspace Span {E,E ∗ E} ⊂ MCW(V∗) is an associative subalgebra isomorphic to the algebra
R[𝑡]/(𝑡2 − 1) of paracomplex numbers via the linear map 𝑎E ∗ E + 𝑏E → 𝑎 + 𝑏𝑡.

Proof. The two-forms 𝛼±(𝑥, 𝑦, 𝑧, 𝑤) = 𝛼± = 𝑥 ∧ 𝑦 ± 𝑧 ∧ 𝑤 satisfy 𝛼± ◦ 𝛼± = −𝑔 for 𝑔 = 𝑥 ⊗ 𝑥 + 𝑦 ⊗
𝑦 + 𝑧 ⊗ 𝑧 + 𝑤 ⊗ 𝑤 and [𝛼+, 𝛼−] = 0. Because 〈𝛼+, 𝛼−〉 = 0 and 𝛼+ ◦ 𝛼− ◦ 𝛼+ ◦ 𝛼− = 𝑔, by (10.13),
〈S4 (𝛼+), S4 (𝛼−)〉 = 0. Define S±(𝑥, 𝑦, 𝑧, 𝑤) = S4 (𝛼±). By (12.4),

(𝑥 ∧ 𝑦) · (𝑥 ∧ 𝑦) + (𝑧 ∧ 𝑤) · (𝑧 ∧ 𝑤) − (𝑥 ∧ 𝑧) · (𝑥 ∧ 𝑧) − (𝑦 ∧ 𝑤) · (𝑦 ∧ 𝑤),
= −12 ((𝑥 � 𝑦) � (𝑥 � 𝑦) + (𝑧 � 𝑤) � (𝑧 � 𝑤) − (𝑥 � 𝑧) � (𝑥 � 𝑧) − (𝑦 � 𝑤) � (𝑦 � 𝑤)),
= 6 (𝑥 ⊗ 𝑥 − 𝑤 ⊗ 𝑤) � (𝑦 ⊗ 𝑦 − 𝑧 ⊗ 𝑧).

(12.9)

By (12.2), (12.3), and (12.9),

6S±(𝑥, 𝑦, 𝑧, 𝑤) = ∓2(𝑥 ∧ 𝑦) · (𝑧 ∧ 𝑤) − 2
3 ((𝑥 ∧ 𝑦) · (𝑥 ∧ 𝑦) + (𝑧 ∧ 𝑤) · (𝑧 ∧ 𝑤))

+ 1
3 ((𝑥 ∧ 𝑧) · (𝑥 ∧ 𝑧) + (𝑦 ∧ 𝑤) · (𝑦 ∧ 𝑤) + (𝑦 ∧ 𝑧) · (𝑦 ∧ 𝑧) + (𝑥 ∧ 𝑤) · (𝑥 ∧ 𝑤)).

(12.10)

Comparing (12.6) and (12.8) with (12.10) shows that

S+(𝑥, 𝑦, 𝑧, 𝑤) + S−(𝑥, 𝑦, 𝑧, 𝑤) = B(𝑥, 𝑦, 𝑧, 𝑤),
S−(𝑥, 𝑦, 𝑧, 𝑤) − S+(𝑥, 𝑦, 𝑧, 𝑤) = E(𝑥, 𝑦, 𝑧, 𝑤).

(12.11)
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Write S± = S±(𝑥, 𝑦, 𝑧, 𝑤) and B = B(𝑥, 𝑦, 𝑧, 𝑤). Because S+, S−, and B(𝑥, 𝑦, 𝑧, 𝑤) are idempotents
in (MCW(V∗), ∗), (12.11) implies S+ ∗ S− = 0 and 〈S+, S−〉 = 0. By (12.11), E ∗ E = S− + S+ = B.
This shows E ∗ E is idempotent and 〈E,E ∗ E〉 = 〈S− − S+, S− + S+〉 = |S−|2 − |S+|2 = 0, the last
equality because |S±(𝑥, 𝑦, 𝑧, 𝑤) |2 = 8/3 by Lemma 10.6 or direct computation using (12.10). Finally,
E ∗ (E ∗ E) = E ∗B = (S− − S+) ∗ (S− + S+) = S− − S+ = E. The final claim follows. �

For an h-orthonormal set {𝑥, 𝑦, 𝑧, 𝑤} ⊂ V∗, by (12.10) and (12.1),

S±(𝑥, 𝑦, 𝑧, 𝑤) + S±(𝑦, 𝑧, 𝑥, 𝑤) + S±(𝑧, 𝑥, 𝑦, 𝑤) = 0. (12.12)

The symmetries S±(𝑥, 𝑦, 𝑧, 𝑤) = S±(𝑧, 𝑤, 𝑥, 𝑦) = S±(𝑦, 𝑥, 𝑤, 𝑧) = S±(𝑤, 𝑧, 𝑦, 𝑥) and S+(𝑦, 𝑥, 𝑧, 𝑤) =
S−(𝑥, 𝑦, 𝑧, 𝑤), evident from (12.10), show that, under the action of 𝑆4 permuting {𝑥, 𝑦, 𝑧, 𝑤}, (12.10)
yields only six distinct idempotents, namely, S±(𝑥, 𝑦, 𝑧, 𝑤), S±(𝑦, 𝑧, 𝑥, 𝑤) and S±(𝑧, 𝑥, 𝑦, 𝑤). By (12.12),
−S±(𝑥, 𝑦, 𝑧, 𝑤) − S±(𝑦, 𝑧, 𝑥, 𝑤) is idempotent, which implies

S±(𝑥, 𝑦, 𝑧, 𝑤) ∗ S±(𝑦, 𝑧, 𝑥, 𝑤) = −S±(𝑥, 𝑦, 𝑧, 𝑤) − S±(𝑦, 𝑧, 𝑥, 𝑤) = S±(𝑧, 𝑥, 𝑦, 𝑤). (12.13)

(Alternatively, (12.13) follows from Lemma 10.7.) This shows S±(𝑥, 𝑦, 𝑧, 𝑤), S±(𝑦, 𝑧, 𝑥, 𝑤), and
S±(𝑧, 𝑥, 𝑦, 𝑤) span a 2-dimensional subalgebra isomorphic to E2 (R). Computations using (6.11)–
(6.13), as in the proof of Lemma 10.1, or computations using 𝛼+(𝑥, 𝑦, 𝑧, 𝑤) � 𝛼+(𝑦, 𝑧, 𝑥, 𝑤) = 0 and
[𝛼+(𝑥, 𝑦, 𝑧, 𝑤), 𝛼−(𝑦, 𝑧, 𝑥, 𝑤)] = 0 and those relations obtained from them via the action of 𝑆4 on
{𝑥, 𝑦, 𝑧, 𝑤} together with (10.13) of Lemma 10.6, show that S±(𝑥, 𝑦, 𝑧, 𝑤) is orthogonal to the span of
S∓(𝑥, 𝑦, 𝑧, 𝑤) andS∓(𝑦, 𝑧, 𝑥, 𝑤) while |S±(𝑥, 𝑦, 𝑧, 𝑤) |2 = 8/3 and 〈S±(𝑥, 𝑦, 𝑧, 𝑤), S±(𝑦, 𝑧, 𝑥, 𝑤)〉 = −4/3.
The last identity gives an example where equality holds in (10.13).

Define Y(𝑥, 𝑦, 𝑧, 𝑤) = (𝑥 ∧ 𝑧) · (𝑧 ∧ 𝑧) − (𝑦 ∧ 𝑤) · (𝑦 ∧ 𝑤). By Lemma 10.8 the element

C±(𝑥, 𝑦, 𝑧, 𝑤) = 𝛼±(𝑥, 𝑦, 𝑧, 𝑤) · 𝛼±(𝑦, 𝑧, 𝑥, 𝑤)
= Y(𝑥, 𝑧, 𝑤, 𝑦) ± Y(𝑦, 𝑤, 𝑥, 𝑧) = 𝛼∓(𝑧, 𝑦, 𝑥, 𝑤) · 𝛼∓(𝑦, 𝑥, 𝑧, 𝑤)

(12.14)

and its cyclic permutations in x, y, and z are orthogonal eigenvectors of 𝐿∗(S±(𝑥, 𝑦, 𝑧, 𝑤)). By def-
inition S±(𝑥, 𝑦, 𝑧, 𝑤) = S4(𝛼±), S±(𝑦, 𝑧, 𝑥, 𝑤) = S4(𝛽±), and S±(𝑧, 𝑥, 𝑦, 𝑤) = S4 (𝛾±), where 𝛼± =
𝛼±(𝑥, 𝑦, 𝑧, 𝑤), 𝛽± = 𝛼±(𝑦, 𝑧, 𝑥, 𝑤), and 𝛾± = 𝛼±(𝑧, 𝑥, 𝑦, 𝑤). There hold𝛼±◦𝛼± = 𝛽±◦𝛽± = 𝛾±◦𝛾± = −𝑔
and 𝛼± ◦ 𝛽± = 𝛾± = −𝛽± ◦ 𝛼± and its cyclic permutations. Computations using 𝛼+ ◦ 𝛼− = 𝛼− ◦ 𝛼+ =
−𝑥 ⊗ 𝑥− 𝑦 ⊗ 𝑦+ 𝑧⊗ 𝑧+𝑤 ⊗𝑤; 𝛼± ◦ 𝛽∓ = 𝛽∓ ◦𝛼± = 2𝑥 � 𝑧±2𝑦 �𝑤; 𝛼+ ◦𝛾− = 𝛾− ◦𝛼+ = 2𝑦 � 𝑧−2𝑥 �𝑤;
that, by (6.28), (𝛼± · 𝛼±) ∗ (𝑔 � 𝑔) = −3𝑔 � 𝑔 and (𝛼± · 𝛽±) ∗ (𝑔 � 𝑔) = 0; (6.32); (12.4); and (12.2)
yield (𝛼+ · 𝛼+) ∗ (𝛼− · 𝛼−) = −3𝑔 � 𝑔, (𝛼+ · 𝛼+) ∗ (𝛽− · 𝛽−) = −3𝑔 � 𝑔, (𝛼+ · 𝛼+) ∗ (𝛼− · 𝛽−) = 0,
(𝛼+ · 𝛼+) ∗ (𝛽− · 𝛾−) = 0, (𝛼+ · 𝛽+) ∗ (𝛼− · 𝛽−) = 0, and (𝛼+ · 𝛽+) ∗ (𝛼− · 𝛾−) = 0. Together
these imply 36S4 (𝛼+) ∗ S4 (𝛼−) = (𝑔 � 𝑔 − 𝛼+ · 𝛼+) ∗ (𝑔 � 𝑔 − 𝛼− · 𝛼−) = 0, 36S4 (𝛼+) ∗ S4(𝛽−) =
(𝑔 � 𝑔 − 𝛼+ · 𝛼+) ∗ (𝑔 � 𝑔 − 𝛽− · 𝛽−) = 0, 6S4 (𝛼+) ∗ C−(𝑥, 𝑦, 𝑧, 𝑤) = −(𝛼+ · 𝛼+) ∗ (𝛼− · 𝛽−) = 0, and
6S4 (𝛼+) ∗ C−(𝑦, 𝑧, 𝑥, 𝑤) = −(𝛼+ · 𝛼+) ∗ (𝛽− · 𝛾−) = 0. In particular, S+(𝑥, 𝑦, 𝑧, 𝑤) ∗ S−(𝑦, 𝑧, 𝑥, 𝑤) = 0.
It follows that

B
± = Span {S±(𝑥, 𝑦, 𝑧, 𝑤), S±(𝑦, 𝑧, 𝑥, 𝑤),C±(𝑥, 𝑦, 𝑧, 𝑤),C±(𝑦, 𝑧, 𝑥, 𝑤),C±(𝑧, 𝑥, 𝑦, 𝑤)} (12.15)

are orthogonal 5-dimensional subalgebras of (MCW(V∗), ∗, ℎ) that satisfy B+ ∗ B− = {0} and each of
which is as in Lemma 10.8. The two nonisomorphic structures of a 𝐶𝑙2-module on V are represented
by the hyper-Kähler structures determined by the pairs (𝛼±, 𝛽±) ∈ OC(V, ℎ)2.

Example 12.4. Let (V, ℎ) be a Euclidean vector space of dimension 𝑛 > 3. Let 𝑥, 𝑦 ∈ V∗ be orthogonal
unit norm vectors. Since 𝛼 = 𝑥 ⊗ 𝑥 + 𝑦 ⊗ 𝑦 satisfies 𝛼 ◦ 𝛼 = 𝛼 and tr 𝛼 = 2, by Lemma 7.5, B(𝛼)
defined by (7.11) satisfies |B(𝛼) |2 = 4(𝑛−2)2

(𝑛−1) (𝑛−3) . Let �̂� = ℎ − 𝛼 and write �̂� =
∑𝑛−2

𝛼=1 𝑧
(𝛼) ⊗ 𝑧 (𝛼) where

{𝑧 (1) , . . . , 𝑧 (𝑛−2) } is an orthonormal basis of the orthocomplement of Span {𝑥, 𝑦}. (Note that 𝑛 > 3 is
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assumed because �̂� � �̂� = 0 if 𝑛 = 3.) By (7.6),

B(𝛼) = 𝑛−2
𝑛−3 tf(𝛼 � 𝛼) = 𝑛−2

𝑛−1𝛼 � 𝛼 − 2
𝑛−1𝛼 � �̂� + 2

(𝑛−1) (𝑛−3) �̂� � �̂�

= 𝑛−2
𝑛−1 (𝑥 ∧ 𝑦) ⊗ (𝑥 ∧ 𝑦) + 2

(𝑛−1) (𝑛−3)

∑
1≤𝛼<𝛽≤𝑛−2

(𝑧 (𝛼) ∧ 𝑧 (𝛽) ) ⊗ (𝑧 (𝛼) ∧ 𝑧 (𝛽) )

− 1
𝑛−1

𝑛−2∑
𝛼=1

(
(𝑥 ∧ 𝑧 (𝛼) ) ⊗ (𝑥 ∧ 𝑧 (𝛼) ) + (𝑦 ∧ 𝑧 (𝛼) ) ⊗ (𝑦 ∧ 𝑧 (𝛼) )

)
= 3

(𝑛−1) (𝑛−3)

∑
1≤𝛼<𝛽≤𝑛−2

B(𝑥, 𝑦, 𝑧 (𝛼) , 𝑧 (𝛽) ).

(12.16)

By Corollary 7.5, if 𝑛 > 3, B(𝛼) is a nontrivial idempotent in (MCW(V∗), ∗).
Let (V, ℎ) be a metric vector space of dimension 𝑛 ≥ 4. In accord with [7, Definition 1.2], a nonzero

X ∈ MCW(V∗) is maximally degenerate if the stabilizer 𝑂 (ℎ)[X] in 𝑂 (ℎ) of [X] ∈ P(MCW(V∗)) has
maximal dimension among subgroups of 𝑂 (ℎ) stabilizing a point in P(MCW(V∗)). Equivalently, the
𝑂 (ℎ)-orbit of X has the minimal dimension possible among nontrivial 𝑂 (ℎ)-orbits in MCW(V∗). By
[7, Equation (3.2)and Appendix B], when h is Euclidean, if 𝑛 = 5 or 𝑛 ≥ 7 the tensor B(𝛼) of (12.16) is
maximally degenerate with dim𝑂 (𝑛)[B(𝛼) ] =

(𝑛−2
2

)
+ 1 and 𝑂 (𝑛)-orbit of dimension 2𝑛 − 4. Moreover,

by [7, Theorem 1.3], if 𝑛 ≥ 7, any maximally degenerate element of MCW(V∗) is in the 𝑂 (𝑛)-orbit
of a nonzero multiple of B(𝛼) and any element of P(MCW(V∗)) stabilized by dim𝑂 (𝑛)[B(𝛼) ] equals
[B(𝛼)] (this gives an alternative proof that some multiple of B(𝛼) is idempotent, for [B(𝛼) ∗ B(𝛼)]
is stabilized by dim𝑂 (𝑛)[B(𝛼) ] and so must equal [B(𝛼)]). The cases 𝑛 ∈ {4, 5, 6} require special
treatment; if 𝑛 = 5, there are maximally degenerate tensors not orthogonally equivalent to a multiple of
B(𝛼), while if 𝑛 ∈ {4, 6}, B(𝛼) is not maximally degenerate. In these cases the maximally degenerate
tensors can be built from Kähler–Weyl tensors; see [7].

If both inertial indices of h are least 2, there are x and y spanning a 2-dimensional h-null subspace of
V
∗, and it follows from (6.35) that (𝑥∧𝑦) ⊗ (𝑥∧𝑦) is a nontrivial square-zero element in (MCW(V∗), ∗).

By [7], any maximally degenerate Weyl tensor is in the 𝑂 (ℎ) orbit of a nonzero multiple of this tensor.
Its stabilizer in 𝑂 (ℎ) has dimension

(𝑛−2
2

)
+ 4.

If h has negative inertial index 1, for Z(𝛼) as in the proof of Lemma 7.3, Z𝐴 =
∑

𝛼∈𝐴Z
(𝛼) is square-

zero for any nonempty subset 𝐴 ⊂ {1, . . . , 𝑛− 3}. The elements Z𝐴 and Z𝐵 are orthogonally equivalent
if and only if A and B have the same cardinality, and by [7, Theorem 4.2], Z{1,...,𝑛−3} is maximally
degenerate having stabilizer of dimension

(𝑛−2
2

)
+ 2.

Example 12.5. This example shows that, when dimV ≥ 6, (MCW(V∗), ∗) contains subalgebras iso-
morphic to 3-dimensional Matsuo algebras.

Straightforward computations using (6.12), (6.18), and (7.10) show that if 𝛼(1), 𝛼(2), 𝛼(3) ∈
Idem(𝑆2

V
∗,�) are pairwise orthogonal idempotents of ranks 𝑎1, 𝑎2, and 𝑎3, each at least 2, and

B𝑖 𝑗 = B(𝛼(𝑖), 𝛼( 𝑗)) for 1 ≤ 𝑖 < 𝑗 ≤ 3, there hold

2(𝑎1 + 𝑎2 − 1) (𝑎 + 𝑎3 − 1)B12 ∗B13

= (𝑎3 (𝑎1 + 𝑎2 − 1)B12 + 𝑎2 (𝑎1 + 𝑎3 − 1)B13 − 𝑎1 (𝑎2 + 𝑎3 − 1)B23,

〈B12,B13〉 = 2𝑎1𝑎2𝑎3
(𝑎1+𝑎2−1) (𝑎1+𝑎3−1) (𝑎1−1) .

(12.17)

Note that there must hold 𝑛 ≥ 𝑎 + 𝑎2 + 𝑎3 ≥ 6.
Suppose that 𝑎1 = 𝑎2 = 𝑎3 = 2. Then (12.17) becomes B12 ∗ B13 = 1

3 (B12 + B13 − B23).
Using this relation it is straightforward to check that the elements 𝑒0 = 3

5 (B12 + B13 + B23),
𝑒1 = 3

5 (B12 +B13 − 2
3B23), 𝑒2 = 3

5 (B12 − 2
3B13 +B23), and 𝑒3 = 3

5 (−
2
3B12 +B13 +B23) are idempotents
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satisfying 3(𝑒1 + 𝑒2 + 𝑒2) = 4𝑒0 and the relations

𝑒0 ∗ 𝑒𝑖 = 𝑒𝑖 , 𝑒𝑖 ∗ 𝑒 𝑗 = 1
6 (𝑒𝑖 + 𝑒 𝑗 − 𝑒𝑖∧ 𝑗 ), 1 ≤ 𝑖 ≠ 𝑗 ≤ 3, (12.18)

where 𝑖∧ 𝑗 is the unique element of {1, 2, 3} distinct from i and j. From (12.17) it follows that 〈B𝑖 𝑗 ,B𝑖𝑘〉 =
16/9 and so, for 1 ≤ 𝑖 ≠ 𝑗 ≤ 3, |𝑒0 |2 = 48/5, |𝑒𝑖 |2 = 64/15 = 〈𝑒0, 𝑒𝑖〉, and 〈𝑒𝑖 , 𝑒 𝑗〉 = 32/45. These
norm calculations together with the relations (12.18) show that the subalgebra Span {𝑒1, 𝑒2, 𝑒3} ⊂
(MCW(V∗), ∗) is the 3-dimensional algebra based on the Fischer space with one line {1, 2, 3} and
having parameters 𝛾 = 512/15 and 𝛿 = 2/3 defined by Matsuo in [26, Sections 3.2and 3.3]2; this
algebra is denoted 𝑀 ({1, 2, 3}, 1

6 ,R) in the notations of [15].
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