A NOTE ON p-ADIC CARLITZ'S q-BERNOULLI NUMBERS

Taekyun Kim and Seog-Hoon Rim

In a recent paper I have shown that Carlitz's q-Bernoulli number can be represented as an integral by the q-analogue μ_{q} of the ordinary p-adic invariant measure. In the p-adic case, J. Satoh could not determine the generating function of q-Bernoulli numbers. In this paper, we give the generating function of q-Bernoulli numbers in the p-adic case.

1. Introduction

Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of the \mathbb{Q}_{p}.

Let v_{p} be the normalised exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, one normally assume $|q|<1$. If $q \in \mathbb{C}_{p}$, then we normally assume $|q-1|_{p}<p^{-1 /(p-1)}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. We use the notation:

$$
[x]=[x: q]=\frac{1-q^{x}}{1-q}
$$

Hence, $\lim _{q \rightarrow 1}[x]=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case.
Carlitz's q-Bernoulli numbers $\beta_{k}=\beta_{k}(q)$ can be determined inductively by

$$
\beta_{0}=1, \quad q(q \beta(q)+1)^{k}-\beta_{k}= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k>1\end{cases}
$$

with the usual convention of replacing β^{i} by β_{i}.
In complex case, J. Satoh (see [2]) constructed the generating function of the q Bernoulli numbers $F_{q}(t)$ which is given by

$$
F_{q}(t)=\sum_{n=0}^{\infty} q^{n} e^{[n] t}\left(1-q-q^{n} t\right)=\sum_{n=0}^{\infty} \frac{\beta_{n}}{n!} t^{n}
$$

Received 2nd December, 1999
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

However, he could not explicitly determine $F_{q}(t)[2, p .347]$ in the p-adic case.
In this paper, we give a generating function $F_{q}(t)$ of q-Bernoulli numbers in the p-adic case.

Recently I have shown that Carlitz's q-Bernoulli number can be represented as an integral by the q-analogue μ_{q} of the ordinary p-adic invariant measure [1]. In this paper, we extend to the q-Bernoulli numbers using an integral by the q-analogue μ_{q} of the ordinary p-adic invariant measure and given some relation between the Carlitz's q-Bernoulli number and the q-Bernoulli numbers of order 2 in the p-adic case.

2. Generating function

Let d be a fixed integer and let p be a fixed prime number. We set

$$
\begin{aligned}
& X=\underset{\varliminf_{N}}{\underset{N}{N}}\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right) \\
& X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p} \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leq a<d p^{N}$.
It is known from [1] that

$$
\begin{aligned}
\beta_{m}(q) & =\int_{\mathrm{Z}_{p}}[a]^{m} d \mu_{q}(a)=\int_{X}[a]^{m} d \mu_{q}(a) \\
& =\frac{1}{(1-q)^{m}} \sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \frac{i+1}{[i+1]}
\end{aligned}
$$

where $\mu_{q}\left(a+d p^{N} \mathbb{Z}_{p}\right)=q^{a} /\left[d p^{N}\right]$.
Let $G_{q}(t)$ be the generating function of $\beta_{i}(q)$:

$$
G_{q}(t)=\sum_{k=0}^{\infty} \beta_{k}(q) \frac{t^{k}}{k!}
$$

for $q \in \mathbb{C}_{p}$ with $|1-q|<p^{-1 / p-1}$. Thus we have

$$
\begin{aligned}
G_{q}(t) & =\sum_{k=0}^{\infty} \beta_{k}(t) \frac{t^{k}}{k!} \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{(1-q)^{k}} \sum_{i=0}^{k}\binom{k}{i}(-1)^{i} \frac{i+1}{[i+1]}\right) \frac{t^{k}}{k!} \\
& =\sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!} \sum_{i=0}^{\infty}\left(\frac{1}{1-q}\right)^{i} \frac{t^{i}}{i!} \\
& =e^{t /(1-q)} \cdot \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!}
\end{aligned}
$$

Therefore we obtain the following:
Theorem 1. For $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 / p-1}$,

$$
G_{q}(t)=e^{t /(1-q)} \cdot \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!}
$$

It is shown in [1] that

$$
\beta_{n}(x, q)=\int_{\mathbb{Z}_{p}}[x+t]^{n} d \mu_{q}(t)=\left(q^{x} \beta+[x]\right)^{n}, \quad \text { for } n \geq 0
$$

Thus we have

$$
\beta_{n}(x, q)=\frac{1}{(1-q)^{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{k+1}{[k+1]} q^{k x}(-1)^{k}
$$

Corollary 2. For $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 / p-1}$, we have

$$
\begin{aligned}
G_{q}(x, t) & =\sum_{n=0}^{\infty} \frac{\beta_{n}(x, t)}{n!} t^{n} \\
& =e^{t /(1 \sim q)} \cdot \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} q^{j x} \frac{t^{j}}{j!} .
\end{aligned}
$$

Remark. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q}. For $q \in \overline{\mathbb{Q}} \cap \mathbb{C}_{p}$ with $|q|<1$, we have

$$
\begin{aligned}
G_{q}(t)= & e^{t /(1-q)} \cdot \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} q^{j x} \frac{t^{j}}{j!} \\
= & \sum_{m=0}^{\infty}\left\{\frac{1}{(1-q)^{m}}\left(\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} j \frac{1}{[j+1]}+\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{1}{[j+1]}\right)\right\} \frac{t^{m}}{m!} \\
= & \sum_{m=0}^{\infty}\left\{\frac{1}{(1-q)^{m-1}} \sum_{j=1}^{m}\binom{m}{j}(-1)^{j} j \sum_{n=0}^{\infty} q^{(j+1) n}\right. \\
& \left.\quad+\frac{1}{(1-q)^{m-1}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \sum_{n=0}^{\infty} q^{(j+1) n}\right\} \frac{t^{m}}{m!} \\
= & \sum_{m=0}^{\infty}\left\{-m \sum_{n=0}^{\infty} q^{n}[n]^{m-1}-(q-1)(m+1) \sum_{n=0}^{\infty} q^{n}[n]^{m}\right\} \frac{t^{m}}{m!}
\end{aligned}
$$

Differentiating both side with respect to t and comparing coefficients, we have

$$
\beta_{m}(q)=-m \sum_{n=0}^{\infty} q^{n}[n]^{m-1}-(q-1)(m+1) \sum_{n=0}^{\infty} q^{n}[n]^{m},
$$

that is,

$$
-\frac{\beta_{m}(q)}{m}=\sum_{n=0}^{\infty} q^{n}[n]^{m-1}+(q-1) \frac{(m+1)}{m} \sum_{n=0}^{\infty} q^{n}[n]^{m}
$$

for $m \geq 0$.

3. Extended q-Bernoulli numbers

For $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-1 / p-1}$, we define the q-Bernoulli numbers of higher order by
(1) $\beta_{m}^{(h, k)}=\underbrace{\int_{\mathbb{Z}_{p}} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x_{1}+\cdots+x_{k}\right]^{m} q^{x_{1}(h-1)+\cdots+x_{k}(h-k)} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right)$.

It has been proved in [1] that

$$
\beta_{m}^{(h, k)}=\frac{1}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{(j+h)_{k}}{[j+h]_{k}}
$$

where $(j+h)_{k}=(j+h)(j+h-1) \cdots(j+h-k+1)$ and $[j+h]_{k}=[j+h] \cdots[j+$ $h-k+1$]. Note that $\beta_{m}^{(1,1)}$ is Carlitz's q-Bernoulli number in the p-adic case (see [1]).

We also define the q-Bernoulli polynomial of higher order by
(2) $\beta_{m}^{(h, k)}(x)$

$$
=\underbrace{\int_{\mathbb{Z}_{p}} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x+x_{1}+\cdots+x_{k}\right]^{m} \cdot q^{x_{1}(h-1)+\cdots+x_{k}(h-k)} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right)
$$

Lemma 3. For $h, k \in \mathbb{Z}_{+}=\{$the set of positive integers $\}$, we have

$$
\beta_{m}^{(h, k)}=\frac{1}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{(j+h)_{k}}{[j+h]_{k}}
$$

and

$$
\beta_{m}^{(h, k)}(x)=\frac{1}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{(j+h)_{k}}{[j+h]_{k}} q^{j x} .
$$

In particular, for $h=1$, we see

$$
\begin{align*}
\beta_{m}^{(h, 1)}(x) & =\int_{\mathbb{z}_{p}}\left[x+x_{1}\right]^{m} q^{(h-1) x_{1}} d \mu_{q}\left(x_{1}\right) \\
& =\sum_{j=0}^{m}\binom{m}{j}[x]^{n-j} q^{j x} \beta_{j}^{(h, 1)} \tag{3}\\
& =\left(q^{x} \beta^{(h, 1)}+[x]\right)^{m}, \quad \text { for } m \geq 1
\end{align*}
$$

It is easy to see that

$$
\begin{align*}
& q^{h} \beta_{m}^{(h, 1)}(x+1)-\beta_{m}^{(h, 1)}(x) \\
& \text { 4) } \quad=\frac{q^{h}}{(1-q)^{m}} \sum_{i=0}^{m}\binom{m}{i}(-1)^{i} \frac{i+h}{[i+h]} q^{i(x+1)}-\frac{1}{(1-q)^{m}} \sum_{i=0}^{m}\binom{m}{i}(-1)^{i} q^{i x} \frac{i+h}{[i+h]} \tag{4}\\
&=q^{x} m[x]^{m-1}+h(q-1)[x]^{m} .
\end{align*}
$$

By (3) and (4), we see

$$
q^{h}\left(q \beta^{(h, 1)}+1\right)^{m}-\beta_{m}^{(h, 1)}= \begin{cases}1 & \text { if } m=1 \\ 0 & \text { if } m>1\end{cases}
$$

Note that

$$
\beta_{0}^{(h, 1)}=\int_{Z_{p}} q^{(h-1) x} d \mu_{q}(x)=\frac{h}{[h]} .
$$

Example.

$$
\begin{aligned}
& \beta_{0}^{(2,1)}=\frac{2}{[2]}, \quad \beta_{1}^{(2,1)}=-\frac{2 q+1}{[2][3]} \\
& \beta_{2}^{(2,1)}=\frac{2 q^{2}}{[3][4]}, \quad \beta_{3}^{(2,1)}=-\frac{q^{2}(q-1)(2[3]+q)}{[3][4][5]}, \cdots
\end{aligned}
$$

Let $G_{q}^{(h, 1)}(t)$ be the generating function of $\beta_{i}^{(h, 1)}(q)$:

$$
G_{q}^{(h, 1)}(t)=\sum_{k=0}^{\infty} \beta_{k}^{(h, 1)}(q) \frac{t^{k}}{k!}, \quad \text { for } q \in \mathbb{C}_{p} \text { with }|1-q|_{p}<p^{-1 / p-1}
$$

then $G_{q}^{(h, 1)}(t)$ is given by

$$
\begin{aligned}
G_{q}^{(h, 1)}(t) & =\lim _{\rho \rightarrow \infty} \frac{1}{\left[p^{\rho}\right]} \sum_{i=0}^{p^{\rho}-1} q^{i} e^{[i] t} q^{(h-1) t}=\int_{\mathbf{Z}_{p}} e^{[x] t} q^{(h-1) x} d \mu_{q}(x) \\
& =e^{t /(1-q)} \cdot \sum_{j=0}^{\infty} \frac{j+h}{[j+h]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!}
\end{aligned}
$$

Remark. For $q \in \overline{\mathbb{Q}} \cap \mathbb{C}_{p}$, we have

$$
\begin{aligned}
G_{q}^{(h, 1)}(t)= & e^{t /(1-q)} \cdot \sum_{j=0}^{\infty} \frac{j+h}{[j+h]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!} \\
= & \sum_{m=0}^{\infty}\left\{\frac{1}{(1-q)^{m}}\left(\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} j \frac{j}{[j+h]}+\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{h}{[j+h]}\right)\right\} \frac{t^{m}}{m!} \\
= & \sum_{m=0}^{\infty}\left\{\frac{1}{(1-q)^{m-1}} \sum_{j=1}^{m}\binom{m}{j}(-1)^{j} j \sum_{n=0}^{\infty} q^{(j+h) n}\right. \\
& \left.+\frac{h}{(1-q)^{m-1}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \sum_{n=0}^{\infty} q^{(j+h) n}\right\} \frac{t^{m}}{m!} \\
= & \sum_{m=0}^{\infty}\left\{-m \sum_{n=0}^{\infty} q^{h n}[n]^{m-1}-(q-1)(m+h) \sum_{n=0}^{\infty} q^{h n}[n]^{m}\right\} \frac{t^{m}}{m!}
\end{aligned}
$$

Differentiating both side with respect to t and comparing coefficients, we have

$$
\beta_{m}^{(h, 1)}(q)=-m \sum_{n=0}^{\infty} q^{h n}[n]^{m-1}-(q-1)(m+h) \sum_{n=0}^{\infty} q^{h n}[n]^{m}
$$

that is,

$$
-\frac{\beta_{m}^{(h, 1)}(q)}{m}=\sum_{n=0}^{\infty} q^{h n}[n]^{m-1}+(q-1) \frac{m+h}{m} \sum_{n=0}^{\infty} q^{h n}[n]^{m}
$$

for $m \geq 0$.

Lemma 4. For $q \in \overline{\mathbb{Q}} \cap \mathbb{C}_{p}$, we have

$$
-\frac{\beta_{m}^{(h, 1)}(q)}{m}=\sum_{n=0}^{\infty} q^{h n}[n]^{m-1}+(q-1) \frac{m+h}{m} \sum_{n=0}^{\infty} q^{h n}[n]^{m} .
$$

For $m>1$, we see

$$
\begin{aligned}
\beta_{m}^{(h, 1)}\left(1-x, q^{-1}\right) & =\int_{\mathrm{Z}_{p}}\left[1-x+x_{1}: q^{-1}\right]^{m} q^{-(h-1) x_{1}} d \mu_{q^{-1}}\left(x_{1}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}: q^{-1}\right]} \sum_{x_{1}=0}^{p^{N}-1}\left[1-x+x_{1}: q^{-1}\right]^{m} q^{-h x_{1}} \\
& =q^{m+h-1}(-1)^{m} \beta_{m}^{(h, 1)}(x)
\end{aligned}
$$

Thus we have

$$
\beta_{m}^{(h, 1)}\left(0, q^{-1}\right)=(-1)^{m} q^{m+h-1} \beta_{m}^{(h, 1)}(1)=(-1)^{m} q^{m-1} \beta_{m}^{(h, 1)} \quad \text { (by (4)) }
$$

Therefore we obtain the following:
Proposition 5. For $h, m(>1) \in \mathbb{Z}_{+}$, we have

$$
\beta_{m}^{(h, 1)}\left(1-x, q^{-1}\right)=(-1)^{m} q^{m+h-1} \beta_{m}^{(h, 1)}(1)
$$

Moreover,

$$
\beta_{m}^{(h, 1)}\left(0, q^{-1}\right)=(-1)^{m} q^{m+h-1} \beta_{m}^{(h, 1)}(1)=(-1)^{m} q^{m-1} \beta_{m}^{(h, 1)}
$$

By the definition of $\beta_{m}^{(h, k)}$, we see

$$
\begin{aligned}
& \beta_{m}^{(k, k)}(x)=\underbrace{\int_{\mathbf{Z}_{p}} \int_{\mathbf{Z}_{p}} \cdots \int_{\mathbf{Z}_{p}}}_{k \text { times }}\left[x+x_{1}+\cdots+x_{k}\right]^{m} q^{x_{1}(k-1)+\cdots+x_{k-1}} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right) \\
&= \sum_{j=0}^{m}\binom{m}{j} q^{x j} \underbrace{\int_{\mathbf{Z}_{p}} \int_{\mathbf{Z}_{p}} \cdots \int_{\mathbf{Z}_{p}}\left[x_{k}\right]^{j}\left[x_{1}+\cdots+x_{k-1}\right]^{m-j}}_{k \text { times }} \\
& \quad \cdot q^{(k+i-1) x_{1}+\cdots+(i+1) x_{k-1} d \mu_{q}\left(x_{1}\right) \cdots d \mu_{q}\left(x_{k}\right)} \\
&= \sum_{j=0}^{m}\binom{m}{j} q^{x j} \beta_{j}^{(1,1)} \beta_{m-j}^{(k+i, k-1)} .
\end{aligned}
$$

Therefore we obtain the following:

Theorem 6. For $k \in \mathbb{Z}_{+}$, we have

$$
\beta_{m}^{(k, k)}=\sum_{i=0}^{m}\binom{m}{i} \beta_{i}^{(1,1)} \beta_{m-i}^{(i+k, k-1)}
$$

Moreover,

$$
\beta_{m}^{(2,2)}=\sum_{j=0}^{m}\binom{m}{j} \beta_{j} \beta_{m-j}^{(j+2,1)}
$$

We see

$$
\begin{aligned}
\beta_{m}^{(h+1,1)} & =\int_{\mathbb{Z}_{p}}[x]^{m} q^{h x} d \mu_{q}(x)=\int_{\mathbb{Z}_{p}}[x]^{m}((q-1)[x]+1)^{h} d \mu_{q}(x) \\
& =\sum_{j=0}^{h}\binom{h}{j}(q-1)^{j} \beta_{m+j}
\end{aligned}
$$

Corollary 7.

$$
\beta_{m}^{(2,2)}=\sum_{j=0}^{m}\binom{m}{j} \beta_{j} \sum_{i=0}^{j+1}(q-1)^{i}\binom{j+1}{i} \beta_{m-j+i}
$$

Remark. If $q \rightarrow 1$, then we have

$$
B_{m}^{(2)}=\sum_{i=0}^{m}\binom{m}{i} B_{i} B_{m-i}
$$

where $B_{m}, B_{m}^{(2)}$ denote the m th Bernoulli number and the m th Bernoulli number of order 2.

References

[1] T. Kim, 'On a q-analogue of the p-adic log gamma functions and related integrals', J. Number Theory 76 (1999), 320-329.
[2] J. Satoh, ' q-Analogue of Riemann's ζ-function and q-Euler numbers', J. Number Theory 31 (1989), 346-362.

Centre for Experimental and
Constructive Mathematcs
Simon Fraser Unviersity
Burnaby
Canada
e-mail: taekyun@cecm.sfu.ca

Department of Mathematics Education
Kyungpook National University
702-701 Taegu
South Korea

