ON THE DENSITY TYPE TOPOLOGIES IN HIGHER DIMENSIONS

GRAŻYNA HORBACZEWSKA

(Received 12 April 2010)

Abstract

The topologies of the density type in Euclidean space of dimension higher than one are introduced. Definitions are based on a notion of density point connected with a set of sequences of real numbers. Our purpose is to study properties of these topologies and connections between them.

2000 Mathematics subject classification: primary 54A10.
Keywords and phrases: density points, comparison of topologies.

Following an observation that the notion of a density point (see [6]) of a measurable subset of the real line can be described by using a fixed sequence $\{n\}_{n \in \mathbb{N}}$, Filipczak and Hejduk [1] introduced the notion of a density point of a measurable subset of the real line with respect to a fixed unbounded and nondecreasing sequence of positive reals. They proved that this notion coincides with that of a classical density point if and only if the sequence in question tends to infinity not too fast.

We wish to investigate a similar notion, but on the plane and in Euclidean space of dimension higher than two, where, even in the classical case, the situation is more complicated (see [5, 6]). We shall use differentiation bases consisting of intervals of a special type.

We begin by recalling some basic definitions. Let \mathcal{L}_{2} stand for the family of all Lebesgue measurable sets on the plane and let λ_{2} stand for two-dimensional Lebesgue measure.

We say that a point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is an ordinary density point of the set $A \in \mathcal{L}_{2}$ if and only if

$$
\lim _{h \rightarrow 0^{+}} \frac{\lambda_{2}\left(A \cap\left(\left[x_{0}-h, x_{0}+h\right] \times\left[y_{0}-h, y_{0}+h\right]\right)\right)}{4 h^{2}}=1
$$

We say that a point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is a strong density point of the set $A \in \mathcal{L}_{2}$ if and only if

$$
\lim _{h \rightarrow 0^{+}, k \rightarrow 0^{+}} \frac{\lambda_{2}\left(A \cap\left(\left[x_{0}-h, x_{0}+h\right] \times\left[y_{0}-k, y_{0}+k\right]\right)\right)}{4 h k}=1 .
$$

[^0]Obviously if $\left(x_{0}, y_{0}\right)$ is a strong density point of A then it is also an ordinary density point of A, but the converse need not be true.

As usual, let $\Phi_{0}(A)$ denote the set of all ordinary density points of a set $A \in \mathcal{L}_{2}$ and let $\Phi_{s}(A)$ denote the set of all strong density points of $A \in \mathcal{L}_{2}$.

For brevity, let $R((x, y), a, b)$ stand for the rectangle $(x-a, x+a) \times(y-b, y+b)$, where $x, y \in \mathbb{R}, a, b \in \mathbb{R}_{+}$, and $S((x, y), a):=R((x, y), a, a)$.

Let \mathcal{S} be the family of all unbounded and nondecreasing sequences of positive reals. Sequences $\left\{s_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{S}$ are denoted by $\langle s\rangle$. We divide \mathcal{S} into two sets:

$$
\mathcal{S}_{0}:=\left\{\langle s\rangle \in \mathcal{S}: \liminf _{n \rightarrow \infty} \frac{s_{n}}{s_{n+1}}=0\right\}
$$

and

$$
\mathcal{S}_{+}:=\mathcal{S} \backslash \mathcal{S}_{0}=\left\{\langle s\rangle \in \mathcal{S}: \liminf _{n \rightarrow \infty} \frac{s_{n}}{s_{n+1}}>0\right\}
$$

Definition 1. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}$. For $A \in \mathcal{L}_{2}$ we define an operator

$$
\Phi_{\langle s\rangle\langle t\rangle}(A)=\left\{(x, y) \in \mathbb{R}^{2}: \lim _{n \rightarrow+\infty} \frac{\lambda_{2}\left(A \cap R\left((x, y), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}}=1\right\} .
$$

It is well known (see [6]) that the fact that (x, y) belongs to $\Phi_{0}(A)$ is equivalent to the fact that

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{2}\left(A \cap R\left((x, y), h_{n}, k_{n}\right)\right)}{4 h_{n} k_{n}}=1
$$

for each pair of sequences of positive numbers $\left\{h_{n}\right\}_{n \in \mathbb{N}},\left\{k_{n}\right\}_{n \in \mathbb{N}}$ tending to 0 and for which there exists a number $\alpha \in(0,1)$ (called the parameter of regularity) such that $\alpha<h_{n} k_{n}^{-1}<\alpha^{-1}$ for each $n \in \mathbb{N}$.

With the latter we introduce a relation between sequences from \mathcal{S}.
Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}$. We say that $\langle s\rangle$ is regular to $\langle t\rangle$ (written $\langle s\rangle$ reg $\langle t\rangle$) if there exists a number $\alpha \in(0,1)$ such that $\alpha<s_{n} t_{n}^{-1}<\alpha^{-1}$ for each $n \in \mathbb{N}$.

Here are some elementary properties of this relation.
PROPERTY 2. The relation reg is an equivalence relation in \mathcal{S}.
Property 3. If $\langle s\rangle \in \mathcal{S}_{+}$and $\langle t\rangle \in \mathcal{S}_{0}$ then $\langle s\rangle$ cannot be regular to $\langle t\rangle$.
Property 4. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S},\langle s\rangle$ reg $\langle t\rangle$ and put $k_{n}=\max \left(s_{n}, t_{n}\right)$ for $n \in \mathbb{N}$. Then $\langle k\rangle$ reg $\langle s\rangle$.

Just from the definitions and the condition equivalent to the definition of an ordinary density we get the following proposition.

Proposition 5. For any $A \in \mathcal{L}_{2}$,

$$
\bigcap_{\substack{\langle s,,\langle t\rangle \in \mathcal{S} \\\langle s\rangle \operatorname{reg}\langle t\rangle}} \Phi_{\langle s\rangle\langle t\rangle}(A)=\Phi_{0}(A) .
$$

Corollary 6. For any $A \in \mathcal{L}_{2}$ and for any $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ such that $\langle s\rangle$ reg $\langle t\rangle$,

$$
\Phi_{0}(A) \subset \Phi_{\langle s\rangle\langle t\rangle}(A)
$$

Let $\langle n\rangle$ denote the increasing sequence of all natural numbers.
Proposition 7. For any $A \in \mathcal{L}_{2}$,

$$
\Phi_{\langle n\rangle\langle n\rangle}(A) \subset \Phi_{0}(A)
$$

Proof. Let $A \in \mathcal{L}_{2}$ and $(x, y) \in \Phi_{\langle n\rangle\langle n\rangle}(A)$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\lambda_{2}(A \cap S((x, y), 1 / n))}{4 / n^{2}}=1 \tag{1}
\end{equation*}
$$

Let $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ be a nonincreasing sequence tending to 0 . Set

$$
\underline{h}_{n}=\max \left\{\frac{1}{k}: k \in \mathbb{N} \wedge \frac{1}{k} \leq h_{n}\right\} \quad \text { and } \quad \bar{h}_{n}=\min \left\{\frac{1}{k}: k \in \mathbb{N} \wedge \frac{1}{k} \geq h_{n}\right\}
$$

for $n \in \mathbb{N}$. Then the quotients $\underline{h}_{n} / h_{n}$ and \bar{h}_{n} / h_{n} tend to 1 . Since

$$
\frac{\underline{h}_{n}^{2}}{h_{n}^{2}} \frac{\lambda_{2}\left(A \cap S\left((x, y), \underline{h}_{n}\right)\right)}{4 \underline{h}_{n}^{2}} \leq \frac{\lambda_{2}\left(A \cap S\left((x, y), h_{n}\right)\right)}{4 h_{n}^{2}} \leq \frac{\bar{h}_{n}^{2}}{h_{n}^{2}} \frac{\lambda_{2}\left(A \cap S\left((x, y) \bar{h}_{n}\right)\right)}{4 \bar{h}_{n}^{2}}
$$

Equation (1) gives

$$
\lim _{h \rightarrow 0^{+}} \frac{\lambda_{2}(A \cap S((x, y), h))}{4 h^{2}}=1
$$

Corollary 8. For any $A \in \mathcal{L}_{2}$,

$$
\Phi_{0}(A)=\Phi_{\langle n\rangle\langle n\rangle}(A)
$$

Proposition 9. For every $\langle s\rangle \in \mathcal{S}_{+},\langle u\rangle \in \mathcal{S}$ and for every $A \in \mathcal{L}_{2}$,

$$
\Phi_{\langle s\rangle\langle s\rangle}(A) \subset \Phi_{\langle u\rangle\langle u\rangle}(A)
$$

Proof. Let $\langle s\rangle \in \mathcal{S}_{+}, \quad\langle u\rangle \in \mathcal{S}, A \in \mathcal{L}_{2}$ and $(x, y) \in \Phi_{\langle s\rangle\langle s\rangle}(A)$. Denoting the complement of A by B, we assert that $\lim _{n \rightarrow+\infty} \lambda_{2}\left(B \cap S\left((x, y), 1 / s_{n}\right)\right) /\left(4 / s_{n}^{2}\right)=0$ and $\lim \inf _{n \rightarrow+\infty} s_{n} / s_{n+1}=g>0$.

Let $\epsilon>0$. There exists $n_{0} \in \mathbb{N}$ such that for every $n \in \mathbb{N}, n>n_{0}$, we get

$$
\frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / s_{n}\right)\right)}{4 / s_{n}^{2}}<\epsilon \cdot \frac{g^{2}}{4} \quad \text { and } \quad \frac{s_{n}}{s_{n+1}}>\frac{g^{2}}{4}
$$

There exists $k_{0} \in \mathbb{N}$ such that $s_{n_{o}} \leq u_{k_{0}}$. Fix $k \in \mathbb{N}, k>k_{0}$. There exists $n \in \mathbb{N}, n \geq n_{0}$, such that $s_{n} \leq u_{k} \leq s_{n+1}$. Thus

$$
\begin{aligned}
\frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / u_{k}\right)\right)}{4 / u_{k}^{2}} & \leq \frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / s_{n}\right)\right)}{4 /\left(s_{n+1}\right)^{2}} \\
& =\frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / s_{n}\right)\right)}{4 / s_{n}^{2}} \cdot\left(\frac{s_{n+1}}{s_{n}}\right)^{2}<\epsilon \cdot \frac{g^{2}}{4} \cdot \frac{4}{g^{2}}=\epsilon,
\end{aligned}
$$

so $(x, y) \in \Phi_{\langle u\rangle\langle u\rangle}(A)$.
Corollary 10. For every $\langle s\rangle \in \mathcal{S}_{+},\langle u\rangle \in \mathcal{S}_{0}$ and for every $A \in \mathcal{L}_{2}$,

$$
\Phi_{\langle s\rangle\langle s\rangle}(A)=\Phi_{0}(A) \subset \Phi_{\langle u\rangle\langle u\rangle}(A)
$$

Corollary 11. For every $A \in \mathcal{L}_{2}$,

$$
\bigcap_{\langle s\rangle \in \mathcal{S}} \Phi_{\langle s\rangle\langle s\rangle}(A)=\Phi_{0}(A) .
$$

Proposition 12. Let $\langle s\rangle \in \mathcal{S}$. If $\Phi_{\langle s\rangle\langle s\rangle}(A)=\Phi_{0}(A)$ for every $A \in \mathcal{L}_{2}$ then $\langle s\rangle \in \mathcal{S}_{+}$.
Proof. Let $\langle s\rangle \in \mathcal{S}_{0}$. By [3, Theorem 3] there exists $Y \subset \mathbb{R}$ such that 0 is not a density point of Y and

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{1}\left(Y \cap\left(-1 / s_{n}, 1 / s_{n}\right)\right)}{2 / s_{n}}=1
$$

Define

$$
A:=\bigcup_{y \in Y \cap[0 ;+\infty)}((\{-y, y\} \times[-y, y]) \cup([-y, y] \times\{-y, y\})) .
$$

By [3, Corollary 2.7] the set A cannot have 0 as its ordinary density point on the plane.
Analysis similar to that in [3, proof of Theorem 2.6] shows that $(0,0) \in$ $\Phi_{\langle s\rangle\langle s\rangle}(A)$.

Summarizing, we have the following theorem.
Theorem 13. Let $\langle s\rangle \in \mathcal{S}$. The set of ordinary density points of A is equal to $\Phi_{\langle s\rangle\langle s\rangle}(A)$ for every $A \in \mathcal{L}_{2}$ if and only if the sequence $\langle s\rangle$ belongs to \mathcal{S}_{+}.

We are led to the following stronger version of Corollary 11.
Proposition 14. For every $A \in \mathcal{L}_{2}$,

$$
\bigcap_{\langle s\rangle \in \mathcal{S}_{0}} \Phi_{\langle s\rangle\langle s\rangle}(A)=\Phi_{0}(A)
$$

Proof. One inclusion comes from Corollary 10.
To show the second one, suppose that there exists a point $(x, y) \in$ $\bigcap_{\langle s\rangle \in \mathcal{S}_{0}} \Phi_{\langle s\rangle\langle s\rangle}(A) \backslash \Phi_{0}(A)$. Then

$$
\liminf _{h \rightarrow 0^{+}} \frac{\lambda_{2}(A \cap S((x, y), h))}{4 h^{2}}<1
$$

hence there exists a sequence $\langle s\rangle \in \mathcal{S}$ such that

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{2}\left(A \cap S\left((x, y), 1 / s_{n}\right)\right)}{4 / s_{n}^{2}}<1
$$

We choose a subsequence $\langle t\rangle \subset\langle s\rangle$ such that $\langle t\rangle \in \mathcal{S}_{0}$. Thus

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{2}\left(A \cap S\left((x, y), 1 / t_{n}\right)\right)}{4 / t_{n}^{2}}<1
$$

so $(x, y) \notin \Phi_{\langle s\rangle\langle s\rangle}(A)$, which is a contradiction.
We wish to investigate whether we obtain something different by considering rectangles described by sequences.
Proposition 15. For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$such that $\langle s\rangle$ reg $\langle t\rangle, \Phi_{\langle s\rangle\langle t\rangle}(A) \subset \Phi_{0}(A)$ for every $A \in \mathcal{L}_{2}$.

Proof. Let $A \in \mathcal{L}_{2},\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+},\langle s\rangle$ reg $\langle t\rangle$. Put $k_{n}=\max \left(s_{n}, t_{n}\right)$ for every $n \in \mathbb{N}$. It suffices to prove that $\Phi_{\langle s\rangle\langle t\rangle}(A) \subset \Phi_{\langle k\rangle\langle k\rangle}(A)$, since Properties 4 and 3 show that $\langle k\rangle \in \mathcal{S}_{+}$and $\Phi_{\langle k\rangle\langle k\rangle}(A)=\Phi_{0}(A)$, by Theorem 13 .

Suppose that there exists a point $(x, y) \in \Phi_{\langle s\rangle\langle t\rangle}(A) \backslash \Phi_{\langle k\rangle\langle k\rangle}(A)$. Let $\mathcal{B}:=\mathbb{R}^{2} \backslash A$. Then

$$
\limsup _{n \rightarrow+\infty} \frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / k_{n}\right)\right)}{4 / k_{n}^{2}}>0
$$

so there exist $\gamma>0$ and a subsequence $\left\{k_{n_{l}}\right\}_{l \in \mathbb{N}}$ of $\left\{k_{n}\right\}$ such that

$$
\lim _{l \rightarrow+\infty} \frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / k_{n_{l}}\right)\right)}{4 / k_{n_{l}}^{2}}=\gamma
$$

From this there exists $l_{0} \in \mathbb{N}$ such that for every $l \in \mathbb{N}, l>l_{0}$,

$$
\frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / k_{n_{l}}\right)\right)}{4 / k_{n_{l}}^{2}}>\frac{\gamma}{2} .
$$

Hence

$$
\frac{\lambda_{2}\left(B \cap R\left((x, y), 1 / s_{n_{l}}, 1 / t_{n_{l}}\right)\right)}{4 /\left(s_{n_{l}} t_{n_{l}}\right)} \geq \frac{\lambda_{2}\left(B \cap S\left((x, y), 1 / k_{n_{l}}\right)\right)}{4 / k_{n_{l}}^{2}} \cdot \frac{t_{n_{l}}}{k_{n_{l}}} \cdot \frac{s_{n_{l}}}{k_{n_{l}}}>\frac{\gamma}{2} \lambda^{2}>0
$$

and $(x, y) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$, which is a contradiction.

Corollary 16. If $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$and $\langle s\rangle \operatorname{reg}\langle t\rangle$, then $\Phi_{0}(A)=\Phi_{\langle s\rangle\langle t\rangle}(A)$ for every $A \in \mathcal{L}_{2}$.
Proposition 17. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$or $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{0}$. If $\Phi_{\langle s\rangle\langle t\rangle}(A)=\Phi_{0}(A)$ for every $A \in \mathcal{L}_{2}$, then $\langle s\rangle$ reg $\langle t\rangle$.

Proof. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$or $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{0}$. Assume that $\langle s\rangle$ reg $\langle t\rangle$ fails, that is, for every $\alpha \in(0,1)$ there exists $n \in \mathbb{N}$ such that $\left(s_{n} / t_{n}\right) \leq \alpha$ or $\left(s_{n} / t_{n}\right) \geq(1 / \alpha)$. Therefore there exists a subsequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ such that $\left\{s_{n_{k}} / t_{n_{k}}\right\}_{k \in \mathbb{N}}$ tends monotonically to $+\infty$ or to zero. We will assume that the second case holds, for the first case is analogous. We will assume additionally, by choosing a subsequence if necessary, that $s_{n_{k+1}}>2 s_{n_{k}}$.

Define a function $f:\left(0,1 / 2 s_{n_{1}}\right] \rightarrow \mathbb{R}$, where $f\left(1 / 2 s_{n_{k}}\right)=1 / t_{n_{k}}$ for $n \in \mathbb{N}$ and f is linear and continuous on the intervals $\left[1 / 2 s_{n_{k+1}}, 1 / 2 s_{n_{k}}\right], k \in \mathbb{N}$.

Since for every $x \in\left(1 / 2 s_{n_{k+1}}, 1 / 2 s_{n_{k}}\right)$ the quotient $f(x) / x$ is between

$$
\frac{f\left(1 / 2 s_{n_{k}}\right)}{1 / 2 s_{n_{k}}}=\frac{2 s_{n_{k}}}{t_{n_{k}}} \quad \text { and } \quad \frac{f\left(1 / 2 s_{n_{k+1}}\right)}{1 / 2 s_{n_{k+1}}}=\frac{2 s_{n_{k+1}}}{t_{n_{k+1}}}
$$

it follows that

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=0
$$

Set

$$
A=[-1,1]^{2} \backslash\left\{(x, y): x \in\left(0,1 / 2 s_{n_{1}}\right) \wedge y \in(0, f(x))\right\}
$$

Then

$$
\frac{\lambda_{2}\left(A \cap[-h, h]^{2}\right)}{4 h^{2}} \geq \frac{3 h^{2}+h(h-f(h))}{4 h^{2}}=1-\frac{f(h)}{4 h} \rightarrow 1
$$

for $h \rightarrow 0^{+}$, so $(0,0) \in \Phi_{0}(A)$. However,

$$
\lambda_{2}\left(\left(\mathbb{R}^{2} \backslash A\right) \cap R\left((0,0), 1 / s_{n_{k}}, 1 / t_{n_{k}}\right)\right) \geq \frac{1}{2} \cdot \frac{1}{s_{n_{k}}} \cdot \frac{1}{t_{n_{k}}}
$$

therefore $(0,0) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$. Thus we have found a set A for which $\Phi_{\langle s\rangle\langle t\rangle}(A) \neq$ $\Phi_{0}(A)$.

Summarizing Corollary 16 and Proposition 17, we have the following theorem.
THEOREM 18. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$. The set of ordinary density points of A is equal to $\Phi_{\langle s\rangle\langle t\rangle}(A)$ for every $A \in \mathcal{L}_{2}$ if and only if $\langle s\rangle$ reg $\langle t\rangle$.
Proposition 19. For every $A \in \mathcal{L}_{2}$,

$$
\bigcap_{\langle s\rangle,\langle t\rangle \in \mathcal{S}} \Phi_{\langle s\rangle\langle t\rangle}(A)=\Phi_{s}(A)
$$

Proof. Let $A \in \mathcal{L}_{2}$. By the Heine definition of limit, each point of strong density of A belongs to $\Phi_{\langle s\rangle\langle t\rangle}(A)$ for every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$.

Suppose that there exists a point (x, y) belonging to $\bigcap_{\langle s\rangle,\langle t\rangle \in \mathcal{S}} \Phi_{\langle s\rangle\langle t\rangle}(A)$ but which is not a strong density point of A. Hence there exist decreasing sequences $\left\{k_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ tending to 0 such that

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{2}\left(A \cap R\left((x, y), h_{n}, k_{n}\right)\right)}{4 h_{n} k_{n}}<1
$$

Then for $s_{n}=1 / h_{n}, t_{n}=1 / k_{n}, n \in \mathbb{N}$, we obtain $(x, y) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$, which is a contradiction.

Proposition 20. For every $\langle s\rangle \in \mathcal{S}$ there exists $\langle t\rangle \in \mathcal{S}$ which is not regular to $\langle s\rangle$ and there exists a set $A \in \mathcal{L}_{2}$ such that the difference $\Phi_{\langle s\rangle\langle s\rangle}(A) \backslash \Phi_{\langle s\rangle\langle t\rangle}(A)$ is nonempty.
Proof. Let $\langle s\rangle \in \mathcal{S}$. Define $t_{n}:=s_{n}^{2}$ for $n \in \mathbb{N}$. Then $\langle t\rangle$ is not regular to $\langle s\rangle$. Set $A:=\left\{(x, y): y>x^{2} \vee y<-x^{2}\right\}$. It is clear that

$$
(0,0) \in \Phi(A) \subset \Phi_{\langle s\rangle\langle s\rangle}(A) \quad \text { and } \quad \frac{\lambda_{2}\left(A \cap R\left((0,0), 1 / s_{n}, 1 / s_{n}^{2}\right)\right)}{4 / s_{n}^{3}}=\frac{2}{3}
$$

so $(0,0) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$.
Proposition 21. For every $\langle s\rangle \in \mathcal{S}$ there exists $\langle t\rangle \in \mathcal{S}$ which is not regular to $\langle s\rangle$ and there exists a set $A \in \mathcal{L}_{2}$ such that the difference $\Phi_{\langle s\rangle\langle t\rangle}(A) \backslash \Phi_{0}(A)$ is nonempty.
Proof. Let $\langle s\rangle \in \mathcal{S}$. Define $t_{n}:=n \cdot s_{n}$ for $n \in \mathbb{N}$. Then $\langle t\rangle$ is not regular to $\langle s\rangle$. Moreover, $\langle t\rangle \in \mathcal{S}_{0}$ if and only if $\langle s\rangle \in \mathcal{S}_{0}$. We choose a subsequence $\left\{t_{n_{k}}\right\}_{k \in \mathbb{N}} \subset$ $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ such that $t_{n_{k+1}}>2 t_{n_{k}}$. Set

$$
A:=[-1,1]^{2} \backslash \bigcup_{k \in \mathbb{N}}\left[1 / 2 t_{n_{k}}, 1 / t_{t_{n_{k}}}\right]^{2}
$$

and denote by B the complement of the set A.
We now consider two cases. If $1 / t_{n} \in\left(1 / 2 t_{n_{k}}, 1 / t_{n_{k}}\right)$ then

$$
\begin{aligned}
\lambda_{2}\left(B \cap R\left((0,0), \frac{1}{s_{n}}, \frac{1}{t_{n}}\right)\right) & \leq \frac{1}{t_{n}} \cdot \frac{1}{2 t_{n_{k}}}+\left(\frac{1}{t_{n}}-\frac{1}{2 t_{n_{k}}}\right)^{2} \\
& +\left(\frac{1}{t_{n_{k}}}-\frac{1}{t_{n_{k}}}\right)\left(\frac{1}{t_{n}}-\frac{1}{2 t_{n_{k}}}\right) \\
& \leq \frac{1}{t_{n}} \cdot \frac{1}{2 t_{n_{k}}}+\left(\frac{1}{t_{n}}-\frac{1}{2 t_{n_{k}}}\right)^{2}+\frac{1}{2 t_{n_{k}}}\left(\frac{1}{t_{n}}-\frac{1}{2 t_{n_{k}}}\right) \\
& =\left(\frac{1}{t_{n}}\right)^{2} .
\end{aligned}
$$

If $1 / t_{n} \in\left(1 / t_{n_{k+1}}, 1 / 2 t_{n_{k}}\right)$ then $B \cap R\left((0,0), 1 / s_{n}, 1 / t_{n}\right) \subset\left[0,1 / t_{n}\right]^{2}$.

Therefore

$$
\frac{\lambda_{2}\left(B \cap R\left((0,0), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}} \leq \frac{\left(1 / t_{n}\right)^{2}}{4 / s_{n} t_{n}}=\frac{1}{4 n}
$$

so $(0,0) \in \Phi_{\langle s\rangle\langle t\rangle}(A)$.
The point $(0,0)$ is clearly not an ordinary density point of A since

$$
\lambda_{2}\left(B \cap S\left((0,0), 1 / t_{n_{k}}\right)\right) \geq \frac{1}{4}\left(1 / t_{n_{k}}\right)^{2} .
$$

This concludes the proof.
After a slight modification of the last proof we can obtain the following proposition.
Proposition 22. For every $\langle s\rangle \in \mathcal{S}_{0}$ there exists $\langle t\rangle \in \mathcal{S}$, which is not regular to $\langle s\rangle$, and there exists a set $A \in \mathcal{L}_{2}$ such that the difference $\Phi_{\langle s\rangle\langle t\rangle}(A) \backslash \Phi_{\langle s\rangle\langle s\rangle}(A)$ is nonempty.
Proposition 23. For every $\langle s\rangle \in \mathcal{S}_{0}$ there exists $\langle t\rangle \in \mathcal{S}$, such that $\langle s\rangle$ reg $\langle t\rangle$ and there exists a set $A \in \mathcal{L}_{2}$ such that the difference $\Phi_{\langle s\rangle\langle s\rangle}(A) \backslash \Phi_{\langle s\rangle\langle t\rangle}(A)$ is nonempty.
Proof. Let $\langle s\rangle \in \mathcal{S}_{0}$. Define $t_{n}:=2 s_{n}$ for $n \in \mathbb{N}$. Then $\langle s\rangle$ reg $\langle t\rangle$. Let $\left\{s_{n_{k}}\right\}_{k \in \mathbb{N}}$ be a subsequence of $\langle s\rangle$ such that

$$
\lim _{k \rightarrow+\infty} \frac{s_{n_{k}}}{s_{n_{k}+1}}=0
$$

Set

$$
B:=\bigcup_{k \in \mathbb{N}}\left(\left(-\frac{1}{s_{n_{k}+1}}, \frac{1}{s_{n_{k}+1}}\right] \times\left(\left[-\frac{2}{s_{n_{k}+1}},-\frac{1}{s_{n_{k}+1}}\right] \cup\left[\frac{1}{s_{n_{k}+1}}, \frac{2}{s_{n_{k}+1}}\right]\right)\right) .
$$

Let $\epsilon>0$. There exists $k_{0} \in \mathbb{N}$, such that for any $k>k_{0}$ we have $s_{n_{k}} / s_{n_{k}+1}<\sqrt{\epsilon / 2}$. Set $k(n):=\min \left\{k \in \mathbb{N}: s_{n_{k}} \geq s_{n}\right\}$ and choose n_{0} for which $k\left(n_{0}\right)>k_{0}$. Then for every $n>n_{0}$,

$$
\frac{\lambda_{2}\left(B \cap S\left((0,0), 1 / s_{n}\right)\right)}{4 / s_{n}^{2}} \leq \frac{8\left(1 / s_{n_{k(n)}+1}\right)^{2}}{4\left(1 / s_{n_{k(n)}}\right)^{2}}=2\left(\frac{s_{n_{k(n)}}}{s_{n_{k(n)}+1}}\right)^{2}<\epsilon,
$$

so, denoting by A the complement of B, we get $(0,0) \in \Phi_{\langle s\rangle\langle s\rangle}(A)$.
Since for every $k \in \mathbb{N}$,

$$
\lambda_{2}\left(B \cap R\left((0,0), 1 / s_{n_{k}+1}, 1 / t_{n_{k}+1}\right)\right) \geq 2 \cdot \frac{1}{s_{n_{k}+1}} \cdot \frac{1}{t_{n_{k}+1}},
$$

then

$$
\limsup _{n \rightarrow+\infty} \frac{\lambda_{2}\left(B \cap R\left((0,0), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}}>0
$$

Therefore $(0,0) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$.
Proposition 24. For every $\langle s\rangle \in \mathcal{S}_{0}$ there exists $\langle t\rangle \in \mathcal{S}$ such that $\langle s\rangle$ reg $\langle t\rangle$ and there exists a set $A \in \mathcal{L}_{2}$ such that $\Phi_{\langle s\rangle\langle t\rangle}(A) \backslash \Phi_{\langle s\rangle\langle s\rangle}(A) \neq \emptyset$.

Proof. Let $\langle s\rangle \in \mathcal{S}_{0}$. Define $t_{n}:=(1 / 2) s_{n}$ for $n \in \mathbb{N}$. Then $\langle s\rangle$ reg $\langle t\rangle$. Let $\left\{s_{n_{k}}\right\}_{k \in \mathbb{N}}$ be a subsequence of $\langle s\rangle$ such that $\lim _{k \rightarrow+\infty} s_{n_{k}} / s_{n_{k}+1}=0$.

Set

$$
\mathcal{B}:=\bigcup_{k \in \mathbb{N}}\left(\left[-\frac{1}{s_{n_{k}+1}}, \frac{1}{s_{n_{k}+1}}\right] \times\left(\left[-\frac{1}{s_{n_{k}+1}},-\frac{1}{2 s_{n_{k}+1}}\right] \cup\left[\frac{1}{2 s_{n_{k}+1}}, \frac{1}{s_{n_{k}+1}}\right]\right)\right)
$$

and let A be the complement of \mathcal{B}.
For every $k \in \mathbb{N}$,

$$
\lambda_{2}\left(B \cap S\left((0,0), 1 / s_{n_{k}+1}\right)\right)=2 / s_{n_{k}+1},
$$

hence

$$
\limsup _{n \rightarrow+\infty} \frac{\lambda_{2}\left(B \cap S\left((0,0), 1 / s_{n}\right)\right)}{4 / s_{n}^{2}}>0
$$

so $(0,0) \notin \Phi_{\langle s\rangle\langle t\rangle}(A)$.
Let $\epsilon>0$. There exists $k_{0} \in \mathbb{N}$ such that for any $k>k_{0}$ we have $\left(s_{n_{k}} / s_{n_{k}+1}\right)<\sqrt{2 \epsilon}$. Set $k(n)=\min \left\{k \in \mathbb{N}: s_{n_{k}} \geq s_{n}\right\}$ and choose n_{0} for which $k\left(n_{0}\right)>k_{0}$. Then for every $n>n_{0}$,

$$
\frac{\lambda_{2}\left(B \cap R\left((0,0), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}}<\frac{4 \cdot\left(1 / s_{n_{k(n)}+1}\right)^{2}}{8 / s_{n}^{2}}<\frac{1}{2}\left(\frac{s_{n(k)}}{s_{n_{k(n)}+1}}\right)^{2}<\epsilon
$$

Therefore $(0,0) \in \Phi_{\langle s\rangle\langle t\rangle}(A)$.
We have considered connections between operators $\Phi_{\langle s\rangle\langle t\rangle}$ depending on sequences $\langle s\rangle,\langle t\rangle \in \mathcal{S}$. Now let us mention general results on such operators.

Proposition 25. For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ and for every $A \in \mathcal{L}_{2}$ the set $\Phi_{\langle s\rangle\langle t\rangle}(A)$ is an $F_{\sigma \delta}$ set.
Proof. We first observe that

$$
\Phi_{\langle s\rangle\langle t\rangle}(A)=\bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty}\left\{(x, y): \frac{\lambda_{2}\left(A \cap R\left((x, y), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}} \geq 1-\frac{1}{k}\right\}
$$

for every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ and every $A \in \mathcal{L}_{2}$.
Since for a fixed n the function

$$
\frac{\lambda_{2}\left(A \cap R\left((x, y), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}}
$$

is a continuous function of (x, y) the set

$$
\bigcap_{n=m}^{\infty}\left\{(x, y): \frac{\lambda_{2}\left(A \cap R\left((x, y), 1 / s_{n}, 1 / t_{n}\right)\right)}{4 / s_{n} t_{n}} \geq 1-\frac{1}{k}\right\}
$$

is closed, so $\Phi_{\langle s\rangle\langle t\rangle}(A)$ is an $F_{\sigma \delta}$ set.

Theorem 26. For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ and for every $A, B \in \mathcal{L}_{2}$:
(1) $\Phi_{\langle s\rangle\langle t\rangle}(\emptyset)=\emptyset, \Phi_{\langle s\rangle\langle t\rangle}\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$;
(2) $\Phi_{\langle s\rangle\langle t\rangle}(A \cap B)=\Phi_{\langle s\rangle\langle t\rangle}(A) \cap \Phi_{\langle s\rangle\langle t\rangle}(B)$;
(3) $A \sim B \Longrightarrow \Phi_{\langle s\rangle\langle t\rangle}(A)=\Phi_{\langle s\rangle\langle t\rangle}(B)$;
(4) $A \sim \Phi_{\langle s\rangle\langle t\rangle}(A)$,
where $A \sim B$ means that $\lambda_{2}(A \triangle B)=0$.
Proof. (1), (2) and (3) are obvious. (4) is a simple consequence of the inclusion $\Phi_{s}(A) \subset \Phi_{\langle s\rangle\langle t\rangle}(A)$ (Proposition 19) and the fact that the operator Φ_{s} is a lower density operator (which means it satisfies conditions (1)-(4)).

We now recall results presented in [4]. Let (X, \mathbb{S}, I) denote a measurable space, where \mathbb{S} is a σ-algebra of subsets of X and I is a proper σ-ideal of \mathbb{S}-measurable sets. The space (X, \mathbb{S}, I) is said to have the hull property if whenever $A \subset X$, there is a set $B \in \mathbb{S}$ such that $A \subset B$ and if $Z \in \mathbb{S}$ and $A \subset Z$, then $B \backslash Z \in I$.

For every lower density operator Φ on \mathbb{S} let $\mathcal{T}_{\Phi}:=\{A \in \mathbb{S}: A \subset \Phi(A)\}$.
THEOREM 27 [4]. Let (X, \mathbb{S}, I) be a measurable space having the hull property. Then for every lower density operator Φ the family \mathcal{T}_{Φ} is a topology on X.

For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ we define a family $\mathcal{T}_{\langle s\rangle\langle t\rangle}:=\left\{A \in \mathcal{L}_{2}: A \subset \Phi_{\langle s\rangle\langle t\rangle}(A)\right\}$. Since the assumptions of the last theorem are fulfilled $\mathcal{T}_{\langle s\rangle\langle t\rangle}$ is a topology on the plane.

For a deeper discussion of properties of this type of topology following from the properties of the operator, we refer the reader to [2].

We will need only one additional property of general lower density operators.
THEOREM 28. Let Φ_{1}, Φ_{2} be lower density operators in a measurable space (X, \mathbb{S}, I). Then $\mathcal{T}_{\Phi_{1}}=\mathcal{T}_{\Phi_{2}}$ if and only if $\Phi_{1}=\Phi_{2}$.

Proof. Sufficiency is obvious.
Suppose that $\mathcal{T}_{\Phi_{1}}=\mathcal{T}_{\Phi_{2}}$ but that there exists a set $A \in \mathbb{S}$ such that $\Phi_{1}(A) \backslash$ $\Phi_{2}(A)=\emptyset$. Since Φ_{1} is a lower density operator, $\Phi_{1}(A)$ belongs to $\mathcal{T}_{\Phi_{1}}$ and, by our supposition, belongs also to $\mathcal{T}_{\Phi_{2}}$, which means that $\Phi_{1}(A) \subset \Phi_{2}\left(\Phi_{1}(A)\right)$, but $A \triangle \Phi_{1}(A) \in I$, so $\Phi_{2}(A)=\Phi_{2}\left(\Phi_{1}(A)\right)$. Therefore $\Phi_{1}(A) \subset \Phi_{2}(A)$, which is a contradiction.

By virtue of the above theorem and the properties shown earlier we get relations between topologies $\mathcal{T}_{\langle s\rangle\langle t\rangle},\langle s\rangle,\langle t\rangle \in \mathcal{S}$.

THEOREM 29.
(1) $\bigcap_{\langle s\rangle,\langle t\rangle \in \mathcal{S}} \mathcal{T}_{\langle s\rangle\langle t\rangle}=\mathcal{T}_{0}$, where \mathcal{T}_{0} denotes the ordinary density topology on the $\langle s\rangle \operatorname{reg}(t\rangle$
plane.
(2) $\bigcap_{\langle s\rangle \in \mathcal{S}_{0}} \mathcal{T}_{\langle s\rangle\langle s\rangle}=\mathcal{T}_{0}$.
(3) For every $\langle s\rangle \in \mathcal{S}, \mathcal{T}_{\langle s\rangle\langle s\rangle}=\mathcal{T}_{0}$ if and only if $\langle s\rangle \in \mathcal{S}_{+}$.
(4) For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+} \mathcal{I}_{\langle s\rangle\langle t\rangle}=\mathcal{T}_{0}$ if and only if $\langle s\rangle \operatorname{reg}\langle t\rangle$.
(5) $\bigcap_{\langle s\rangle,\langle t\rangle \in \mathcal{S}} \mathcal{T}_{\langle s\rangle\langle t\rangle}=\mathcal{T}_{s}$, where \mathcal{T}_{s} denotes the strong density topology on the plane.
(6) For every $\langle s\rangle \in \mathcal{S}$ there exist $\langle p\rangle,\langle t\rangle \in \mathcal{S}$ which are not regular to $\langle s\rangle$ and such that $\mathcal{T}_{\langle s\rangle\langle s\rangle} \backslash \mathcal{T}_{\langle s\rangle\langle t\rangle} \neq \emptyset$ and $\mathcal{T}_{\langle s\rangle\langle p\rangle} \backslash \mathcal{T}_{\langle s\rangle\langle s\rangle} \neq \emptyset$.
(7) For every $\langle s\rangle \in \mathcal{S}_{0}$ there exist $\langle p\rangle,\langle t\rangle \in \mathcal{S}$ such that $\langle t\rangle$ reg $\langle s\rangle$, $\langle p\rangle$ reg $\langle s\rangle$, $\mathcal{T}_{\langle s\rangle\langle s\rangle} \backslash \mathcal{T}_{\langle s\rangle\langle t\rangle} \neq \emptyset$ and $\mathcal{T}_{\langle s\rangle\langle p\rangle} \backslash \mathcal{T}_{\langle s\rangle\langle s\rangle} \neq \emptyset$.
Here are some natural properties of the $\mathcal{T}_{\langle s\rangle\langle t\rangle}$ topologies. Property (5) from the next theorem makes property (2) from the previous theorem more interesting since the topology \mathcal{T}_{0} is invariant under similarity but, as we will see, $\mathcal{T}_{\langle s\rangle\langle s\rangle}$ for $\langle s\rangle \in \mathcal{S}_{0}$ is not.

We will use the following notation: for $A \in \mathbb{R}^{2}$ and $x, y \in \mathbb{R}$, write $A+(x, y)$ for $\{(a+x, b+y): a, b \in A\},-A$ for $\{(-a,-b): a, b \in A\}$ and $(x, y) \cdot A$ for $\{(x a, y b): a, b \in A\}$.

Theorem 30. For every $A \in \mathcal{L}_{2}$ and for every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$:
(1) for every $x, y \in \mathbb{R}$, if $A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$ then $A+(x, y) \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$;
(2) if $A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$ then $-A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$;
(3) for every $m, p \in \mathbb{R}$, such that $|m| \geq 1$ and $|p| \geq 1$, if $A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$ then (m, p) $\cdot A \in$ $\mathcal{T}_{\langle s\rangle\langle t\rangle} ;$
(4) for every $A \in \mathcal{L}_{2}$ and for every $\langle s\rangle,\langle t\rangle \in \mathcal{S}_{+}$such that $\langle s\rangle$ reg $\langle t\rangle$ and for every $m \in \mathbb{R} \backslash\{0\}$, if $A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$ then $(m, m) \cdot A \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$;
(5) for every $\langle s\rangle \in \mathcal{S}_{0}$ there exists a set $A \in \mathcal{L}_{2}, A \in \mathcal{T}_{\langle s\rangle\langle s\rangle}$ such that for every $m \in \mathbb{R}$, $|m|<1$, the set $(m, m) \cdot A$ does not belong to $\mathcal{T}_{\langle s\rangle\langle s\rangle}$.

Proof. Properties (1)-(4) follow from the definition of the topology $\mathcal{T}_{\langle s\rangle\langle t\rangle}$ and Theorem 29 point (4). We give the proof only for (5).

Fix $\langle s\rangle \in \mathcal{S}_{0}$. Let $\left\{s_{n_{k}}\right\}_{k \in \mathbb{N}}$ be a subsequence of $\langle s\rangle$ such that

$$
\lim _{n \rightarrow \infty} \frac{s_{n_{k}}}{s_{n_{k}+1}}=0
$$

Let

$$
X:=\bigcup_{k=1}^{\infty}\left[\frac{1}{s_{n_{k}+1}}, \frac{1}{\sqrt{s_{n_{k}} s_{n_{k}+1}}}\right]
$$

As was mentioned at the beginning, the one-dimensional version of a density topology with respect to a fixed sequence was considered in [1]. The definitions of the operator $\Phi_{\langle s\rangle}$ and the topology $\mathcal{T}_{\langle s\rangle}$ for the fixed sequence $\langle s\rangle$ are analogous to those in the two-dimensional case so we omit them.

The set $Y:=(\mathbb{R} \backslash X) \cup\{0\}$ belongs to $\mathcal{T}_{\langle s\rangle}$ (see [1, proof of Theorem 3]).
Define

$$
A:=\bigcup_{y \in Y \backslash \mathbb{R}_{-}}((\{-y, y\} \times[-y, y]) \cup([-y, y] \times\{-y, y\}))
$$

An analysis similar to that in [3, proof of Theorem 2.6] shows that $A \in \mathcal{T}_{\langle s\rangle\langle s\rangle}$.

For $m=0$ it is obvious that $(m, m) \cdot A \notin \mathcal{T}_{\langle s\rangle\langle s\rangle}$.
Without loss of generality we assume now that $m \in(0,1)$.
Let k_{0} be a positive integer such that $\sqrt{s_{n_{k}} / s_{n_{k}+1}}<m$ for $k>k_{0}$. Then the set $m \cdot Y_{m}$, where

$$
Y_{m}:=\left(\mathbb{R} \backslash X_{m}\right) \cup\{0\} \quad \text { and } \quad X_{m}:=\bigcup_{k=k_{0}}^{\infty}\left[\frac{1}{s_{n_{k}+1}}, \frac{1}{\sqrt{s_{n_{k}} s_{n_{k}+1}}}\right]
$$

does not belong to $\mathcal{T}_{\langle s\rangle}$ (see [1, proof of Theorem 4]) and, again following ideas from [3, proof of Theorem 2.6], we get that the set

$$
(m, m) \cdot\left[\bigcup_{y \in Y_{m} \backslash \mathbb{R}_{-}}((\{-y, y\} \times[-y, y]) \cup([-y, y] \times\{-y, y\}))\right]
$$

does not belong to $\mathcal{T}_{\langle s\rangle\langle s\rangle}$, so neither does the set $(m, m) \cdot A$.
The next theorem expresses the connection between $\mathcal{T}_{\langle s\rangle\langle t\rangle}$ and the product topology $\mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$.

Theorem 31. For every $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ the product topology $\mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$ is contained in $\mathcal{T}_{\langle s\rangle\langle t\rangle}$.
Proof. Let $\langle s\rangle,\langle t\rangle \in \mathcal{S}$ and let $E \in \mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$. Fix any point $\left(x_{0}, y_{0}\right) \in E$ and a subsequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ of the sequence of all natural numbers. Define $R_{k}:=$ $R\left(\left(x_{0}, y_{0}\right), 1 / s_{n_{k}}, 1 / t_{n_{k}}\right)$.

Since $E \in \mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$, there exist sets $A, B \subset \mathbb{R}$, such that $A \times B \subset E, x_{0} \in A \subset$ $\Phi_{\langle s\rangle}(A)$ and $y_{0} \in B \subset \Phi_{\langle t\rangle}(B)$. Therefore for every $\epsilon>0$ there exists $k_{0} \in \mathbb{N}$ such that for every natural $k, k>k_{0}$,

$$
\frac{\lambda_{1}\left(\left(-1 / s_{n_{k}}, 1 / s_{n_{k}}\right) \backslash A\right)}{2 / s_{n_{k}}}<\frac{\epsilon}{2} \quad \text { and } \quad \frac{\lambda_{1}\left(\left(-1 / t_{n_{k}}, 1 / t_{n_{k}}\right) \backslash B\right)}{2 / s_{n_{k}}}<\frac{\epsilon}{2} .
$$

Since

$$
\begin{aligned}
& P_{k} \backslash E \subset\left(\left(\left(-1 / s_{n_{k}}, 1 / s_{n_{k}}\right) \backslash A\right) \times\left(-1 / t_{n_{k}}, 1 / t_{n_{k}}\right)\right) \\
& \cup\left(\left(-1 / s_{n_{k}}, 1 / s_{n_{k}}\right) \times\left(-1 / t_{n_{k}}, 1 / t_{n_{k}}\right) \backslash B\right),
\end{aligned}
$$

it follows that

$$
\lambda_{2}\left(R_{k} \backslash E\right) \leq \frac{\epsilon}{2} \cdot \frac{2}{s_{n_{k}}} \cdot \frac{2}{t_{n_{k}}}+\frac{2}{s_{n_{k}}} \cdot \frac{\epsilon}{2} \cdot \frac{2}{t_{n_{k}}}=\epsilon \cdot \lambda_{2}\left(R_{k}\right) .
$$

Hence $\left(x_{0}, y_{0}\right) \in \Phi_{\langle s\rangle\langle t\rangle}(E)$.
THEOREM 32. For every $\langle s\rangle \in \mathcal{S}_{0}$ and $\langle t\rangle \in \mathcal{S}$ the topologies $\mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$ and $\mathcal{T}_{\langle s\rangle\langle t\rangle}$ are different.

Proof. Let $\langle s\rangle \in \mathcal{S}_{0}$ and $\langle t\rangle \in \mathcal{S}$. Then $\mathcal{T}_{\langle s\rangle} \subset \mathcal{T}_{\langle t\rangle}$ (see [1]). Define $G:=\left(\mathbb{R}^{2} \backslash \Delta\right) \cup$ $\{(0,0)\}$, where $\Delta=\{(x, x): x \in \mathbb{R}\}$. Then $G \in \mathcal{T}_{\langle s\rangle\langle t\rangle}$ is a set of full measure. If $G \in$ $\mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$ then there exist sets $A \in \mathcal{T}_{\langle s\rangle}$ and $B \in \mathcal{T}_{\langle t\rangle}$ such that $(0,0) \in A \times B \subset G$. Let $C:=A \cap B$. Then C is nonempty and C is open in $\mathcal{T}_{\langle t\rangle}$, so $C \backslash\{0\}$ cannot be empty. Then $(C \times C \backslash\{(0,0\}) \cap \Delta \neq \emptyset$, but $C \times C \subset G$, which is impossible, so $G \in \mathcal{T}_{\langle s\rangle\langle t\rangle} \backslash \mathcal{T}_{\langle s\rangle} \times \mathcal{T}_{\langle t\rangle}$.

For the sake of simplicity we have presented all results in \mathbb{R}^{2} but they can be easily generalized to Euclidean spaces of dimension higher than two. In \mathbb{R}^{m} we consider sets of m sequences from the family $\mathcal{S}:\left\{\left\langle s^{p}\right\rangle: p \in\{1, \ldots, m\}\right\}$. For such a set we can define a density operator which for measurable set $A \subset \mathbb{R}^{m}$ is the set of all points $\left(x_{1}, \ldots, x_{m}\right)$ for which

$$
\lim _{n \rightarrow+\infty} \frac{\lambda_{m}\left(A \cap\left(\left(x_{1}-1 / s_{n}^{1}, x_{1}+1 / s_{n}^{1}\right) \times \cdots \times\left(x_{m}-1 / s_{n}^{m}, x_{m}+1 / s_{n}^{m}\right)\right)\right)}{2^{m} / s_{n}^{1} \cdots s_{n}^{m}}=1
$$

Following Saks (see [5]), a set of sequences $\left\{\left\langle s^{p}\right\rangle: p \in\{1, \ldots, m\}\right\}$ will be called regular if there exists a positive number α such that

$$
\frac{\min _{p \in\{1, \ldots, m\}} s_{n}^{p}}{\max _{p \in\{1, \ldots, m\}} s_{n}^{p}}>\alpha \quad \text { for } n \in \mathbb{N}
$$

Having defined these notions we can prove theorems analogous to the two-dimensional case. The same line of reasoning applies to higher-dimensional versions.

References

[1] M. Filipczak and J. Hejduk, 'On topologies associated with the Lebesgue measure', Tatra Mt. Math. Publ. 28 (2004), 187-197.
[2] J. Hejduk and A. Loranty, 'On lower and semi-lower density operators', Georgian Math. J. 17(4) (2007), 661-671.
[3] G. Horbaczewska and E. Wagner-Bojakowska, 'Some modifications of density topologies', J. Appl. Anal. 7(1) (2001), 91-105.
[4] L. Lukás, J. Maly̌ and L. Zajiček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics, 1189 (Springer, Berlin, 1986).
[5] S. Saks, Theory of the Integral, Monografie Matematyczne, VII (Stechert, New York 1937).
[6] W. Wilczyński, Density Topologies, (ed. E. Pap) (North Holland, Amsterdam, 2002), Chapter 15 in Handbook of Measure Theory, pp. 675-702.

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

