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A large number of turbulence models (stochastic and large-eddy simulation (LES) models)
developed to describe the dynamics of particle-laden turbulent flows are based on the
assumption of local isotropy and use the Kolmogorov constant that correlates the spectral
distribution of turbulent kinetic energy with the turbulent dissipation rate. Compilation of
a large number of experimental data for different flow configurations has revealed that the
Kolmogorov constant is independent of Reynolds number in the limit of high Reynolds
number (Sreenivasan, Phys. Fluids, vol. 7, no. 11, 1995, pp. 2778–2784). However, several
numerical studies, majorly in the area of multiphase flows at low and intermediate
Reynolds numbers, consider that the Kolmogorov constant remains unchanged irrespective
of whether the flow is single phase or multiphase. In this article, we assess the variation of
local isotropy of the fluid fluctuations with the increase in particle loading in particle-laden
turbulent channel flows. We also estimate the Kolmogorov constant using second-order
velocity structure functions and compensated spectra in the case of low-Reynolds-number
turbulent flows. Our study reveals that the Kolmogorov constant decreases in the channel
centre with an increase in the particle volume fraction for the range of Reynolds numbers
investigated here. The estimated variation of the Kolmogorov constant is used to express
the Smagorinsky coefficient as a function of solid loading in particle-laden flows. Then,
a new modelling technique is adopted using the large-eddy simulation (LES) to predict
the fluid phase statistics without solving simultaneous particle phase equations. The new
methodology also helps to qualitatively understand the phenomena of drastic collapse in
turbulence intensity.
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1. Introduction

Particle-laden turbulent flows are encountered in many geophysical and industrial
processes. One of the major focuses in this area is understanding the dynamics of fluid and
solid phases. With the advent of high-speed computational systems, although performing
direct numerical simulations for small system sizes has become possible, modelling still
plays a vital role in studying large-scale systems of practical importance. Most of the
modelling techniques are based on the approximation of local isotropy in the inertial and
dissipation range. Kolmogorov’s similarity hypothesis for the inertial subrange states that
for every turbulent flow at a sufficiently high Reynolds number, the statistics of the motions
of scale (r) in the range, η � r � L, have a universal form that is uniquely determined by
ε and independent of ν (Kolmogorov 1941). Here, L is the integral length scale, η is the
Kolmogorov length scale, ν is the kinematic viscosity and ε is the mean viscous dissipation
rate of turbulent kinetic energy. The spectral energy in the inertial subrange is expressed
as E(k) = Cε2/3k−5/3, where k is the wavenumber and C is the proportionality prefactor
known as the Kolmogorov constant. The Kolmogorov constant is obtained following the
Kolmogorov hypothesis for different types of flows like boundary layers (Saddoughi &
Veeravalli 1994; Sreenivasan 1995), channel flows (Antonia, Zhou & Romano 1997; Choi,
Yeo & Lee 2004), homogeneous isotropic turbulence (Yeung & Zhou 1997; Donzis &
Sreenivasan 2010; Sawford & Yeung 2011), etc. The Kolmogorov constant for different
experiments and simulations have been summarized by Sreenivasan (1995), Yeung &
Zhou (1997) and Lien & D’Asaro (2002). The stochastic turbulence models (Pope 1985,
2011; Thomson 1987; Wilson & Sawford 1996; Heinz 2002; Reynolds 2003; Shotorban
& Mashayek 2006; Marchioli 2017) and other turbulence models like the Smagorinsky
model (Smagorinsky 1963; Pope 2000; Sagaut 2006), as well as other eddy viscosity based
models (Sagaut 2006) use Kolmogorov constant. Another implication of the Kolmogorov
constant (C0) is that the turbulent diffusivity is expressed as Dt = 2σ 4

u /C0ε, where
TL = 2σ 2

u /C0ε is the integral time scale and σ 2
u is the variance of velocity fluctuation

(Tennekes 1979; Sawford & Yeung 2011).
Consolidating a large number of experimental data, Sreenivasan (1995) has reported

the universality of Kolmogorov constant which is independent of the flow geometry and
Reynolds number. At a sufficiently high Reynolds number where local isotropy is satisfied
at dissipation scales and in the inertial range, the Kolmogorov constant attains a universal
value (Yeung & Zhou 1997). However, at low and moderate Reynolds numbers, the
Kolmogorov constant may differ from the universality (Sreenivasan 1995; Yeung & Zhou
1997). In their experiments for channel flow, Antonia et al. (1997) found a lower value
of the Kolmogorov constant. Through the analysis of second- and third-order velocity
structure functions, they have stated that the small-scale isotropy is a necessary condition
for the existence of a universal inertial range. Yeung & Zhou (1997) mentioned that for
the presence of inertial range, isotropy should also be present along with −5/3 scaling.
The Kolmogorov constant may attain a different value if isotropy is not satisfied in the
inertial range. Heinz (2002) discussed the variations of the Kolmogorov constant for
equilibrium turbulent boundary layer and homogeneous isotropic stationary turbulence.
He stated that for stochastic modelling, the value is near two, and anisotropic velocity
and acceleration fluctuations dominate the energy budget. Furthermore, the value is near
six if those contributions disappear. All the above studies address the deviation of the
Kolmogorov constant from a universal value due to the occurrence of anisotropy at low and
moderate Reynolds numbers for unladen fluid flows. A large number of studies (discussed
below) have used different modelling approaches, viz. the LES approach considers the
universality of Kolmogorov constant to address particle-laden flows. It is expected that if
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Local isotropy and modelling for particle-laden flows

there is a modulation/attenuation of turbulence due to the effect of particles, the extent
of anisotropy may change for wall bounded turbulent flows. Therefore, first, we have
discussed the effect of particles on turbulence modulation and then we have focused on
the consequent change in local isotropy.

In the case of the particle-laden flows, the addition of particles modifies the turbulence
intensity in turbulent flows. Here, we briefly discuss the capability of point-particle
approximation-based numerical simulation to predict second moments of fluid phase
fluctuations and drag reduction in particle-laden flows. The various parameters, such as
the ratio of particle diameter to integral length scale, Stokes number, particle Reynolds
number, etc. affect the turbulence of the carrier phase (Kulick, Fessler & Eaton 1994;
Kajishima et al. 2001; Li et al. 2001; Yamamoto et al. 2001; Vreman et al. 2009; Vreman
2015; Yu et al. 2017, 2021; Muramulla et al. 2020). The various authors have attempted
to quantify the regimes of turbulence attenuation and augmentation (Gore & Crowe 1989;
Hetsroni 1989; Crowe 2000; Hosokawa & Tomiyama 2003; Righetti & Romano 2004;
Tanaka & Eaton 2008; Noguchi & Nezu 2009; Luo, Luo & Fan 2016). Various authors
have observed the increase in turbulence attenuation in different flow configurations
(Kulick, Fessler & Eaton 1994; Vreman et al. 2009; Bari, Yunus & Hadi 2010; Zhao,
Andersson & Gillissen 2010; Vreman 2015; Zade et al. 2018; Kumaran et al. 2020;
Muramulla et al. 2020; Rohilla, Muramulla & Goswami 2022), and this has also been
reviewed by Balachandar & Eaton (2010), Kuerten (2016), Elghobashi (2019) and Brandt
& Coletti (2022). It is in debate whether spherical particles can cause drag reduction
or not, which has been observed for point-particle simulations (Yu et al. 2017). A drag
reduction by point-particle simulations has been reported in many numerical studies
(Vreman 2007; Dritselis & Vlachos 2008; Zhao et al. 2010; Muramulla et al. 2020; Laín
et al. 2023), and in experiments by Bari et al. (2010) and Kartushinsky et al. (2005).
Dave & Kasbaoui (2023) performed simulations for particle-laden turbulent channel flows
with a point-particle approach. It is observed that the drag increases and decreases for
the particles having St+ = 6 and 30, respectively. Here, St+ is the particle Stokes number
based on viscous scales. In the case of drag reduction, the particles are aligned along the
streamwise direction in long clusters. This causes the stabilization of streamwise structures
and suppression of bursting events. However, drag reduction has not been observed
in particle-resolved direct numerical simulation (PR-DNS) studies (Picano, Breugem &
Brandt 2015; Fornari et al. 2016; Yu et al. 2017; Costa, Brandt & Picano 2020, 2021),
where either particle inertia is very low or the effect of gravity has not been included.
Yu et al. (2021) performed fully resolved DNS in upward vertical channel flow including
gravity. A decrease in the wall friction is observed for a settling coefficient (ui) less than
0.3 compared with the unladen cases. A further increase in settling coefficient (ui > 0.3)
results in higher wall-friction. Zhu et al. (2020) also observed the low wall-friction for
spherical particles than oblate particles for a particle settling coefficient of 0.3 (figure 2
of their paper). This happens due to the attenuation of the large vortices by spherical
particles. This study was done while keeping a constant bulk flow rate for an upward
channel flow including gravity. Zade et al. (2018) have performed experiments for square
duct with different particle sizes (2H/dp = 9, 16 and 40), Reynolds numbers (Re2H ∼
10 000–27 000) and volume fractions (5 %, 10 % and 20 %) where particles considered are
almost neutrally buoyant. Here, 2H is the duct’s full height. It is found that the friction
factor is significantly high (approximately by 10 %–50 %) compared with a single phase
at a low Reynolds number (Re2H = 10 042). However, an increase in Reynolds number
results in a decrease in friction factor. The friction factor decreases with an increase
in particle diameter for a volume fraction less than 10 %. This leads to drag reduction
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compared with the single-phase flow even at Re2H ∼ 27 000. The decrease in drag is
related to the attenuation of the turbulence. However, a non-monotonic drag modification
is observed for a volume fraction of 20 % with the increase in particle diameter. At this
volume loading, there is a decrease in the fluid fluctuations and Reynolds stress, but drag
is increased due to an increase in particle-induced stress.

Costa et al. (2021) performed the fully resolved simulations in a channel flow with a
bulk Reynolds number of 5600 and observed an increase in drag at a particle volume
fraction of 3 × 10−5–3.4 × 10−4. However, they commented that a drag reduction might
be observed at a higher particle volume fraction which has been observed for point-particle
simulations. Also, various efforts have been put to validate the point-particle approach
with fully resolved simulations and experiments (Wang et al. 2019). Costa et al. (2020)
compared the statistics of point particles and fully resolved cases and concluded that
the inclusion of the Saffmann lift improves the particle statistics in the near-wall region.
Mehrabadi et al. (2018) did the comparison of point particle and PR-DNS for decaying
isotropic turbulent flow. The authors found that for comparison of point particles and
PR-DNS, correction for undisturbed velocity and finite Reynolds number are required
in the point particle simulations to match the particle acceleration density function and
second-order moments statistics with PR-DNS at high Stokes number. A Stokes number
(Stη) of 100 is taken in their study (Stη is based on the particle relaxation time and initial
Kolmogorov time scale). For Stη = 1, there is not much difference in the simulations with
and without correction of undisturbed velocity for point particles, and observed a good
match with the particle-resolved simulations for the calculation of fluid kinetic energy
and fluid dissipation rate. For Stη = 100, it is observed that the point particles with the
Schiller–Naumann and undisturbed corrections show a good match with particle-resolved
simulations for the fluid kinetic energy and fluid dissipation rate. Kulick et al. (1994)
performed experiments for particle-laden channel flows for a Reynolds number of 13 800
based on half-channel width. The authors observed a decrease in fluid fluctuations
with increased particle mass loading, Stokes number and distance from the wall. It is
reported that the anisotropy of fluid fluctuations increases with an increase in particle
mass loading. In their study, the particle size is smaller than the Kolmogorov scale.
Peng, Ayala & Wang (2019) performed particle-resolved direct numerical simulations
for turbulent channel flows using the lattice Boltzmann method (LBM). The authors
considered the neutrally buoyant particles with and without rotation. It is observed that
the neutrally buoyant particles affect the inter-component transfer rate of turbulent kinetic
energy, and the energy is transferred from the streamwise component to the other two
components in the buffer region. However, an opposite behaviour happens very close
to the wall with rotating particles. It is worth noting that the authors considered the
particle size larger than the Kolmogorov length scale (dp/η = 43.34 and 21.7 in their
case) and the material density of the particle was very similar to that of the fluid phase.
However, in the present study, particle size is of the order of the Kolmogorov length
scale and particle density is three orders of magnitude higher than the fluid phase. Yu
et al. (2017) performed fully resolved simulations for turbulent channel flows with particle
to fluid density ratio of 1–104.2 (dp/h = 0.1). It is observed that there is almost no
turbulence modulation for a density ratio of one, while the transverse fluid fluctuations
decrease more than the streamwise fluid fluctuations for the density ratio of 10.42 and
104.2. Fornari et al. (2016) performed PR-DNS for channel flow and adopted a particle
to fluid density ratio (ρr) of 1–1000. It is observed that the anisotropy for the fluid
fluctuations is increased in the near-wall zone at ρr = 1000 also. However, significant
turbulence suppression happens away from the wall. Both of the above studies did not
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include the gravity in their work. Uhlmann (2008) performed PR-DNS for vertical upward
channel flows at bulk Reynolds number of 2700. The authors simulated the system with
particle to fluid densities ratio of 2.21 and 10, including gravity. It was observed that
the fluid fluctuations in the streamwise direction increase while the transverse direction
decreases. Xia et al. (2021) performed the PR-DNS for upward and downward channel
flows at bulk Reynolds number of 5746 and particle to fluid density ratios of 2–100.
There is an insignificant change in fluid fluctuations for downward channel flows when
the particle settling coefficient (ratio of particle velocity to friction velocity) is 0.1 and
0.2. However, the transverse fluid fluctuations decrease more than the streamwise fluid
fluctuations for upward flow for similar particle settling coefficients. Vreman & Kuerten
(2018) simulated turbulent channel flow past a moving array of spherical particles with
an overall particle volume fraction of 7.5 × 10−4. They observed that the turbulence
kinetic energy (TKE) decreased significantly throughout the flow domain with an increase
in anisotropy of the turbulence fluctuations. The authors have also mentioned that their
findings are consistent with observations from experiments and point-particle simulations
of dilute particle-laden flows in the limit of high Stokes numbers. Most of the PR-DNS for
channel flow simulations are performed for low particle inertia (Uhlmann 2008; Picano
et al. 2015; Peng et al. 2019; Yang et al. 2021) or without gravity (Fornari et al. 2016;
Yu et al. 2017; Costa et al. 2020, 2021). The wake induced reduction of anisotropy is
possible for high particle Reynolds numbers and when the particle size is much larger
than the Kolmogorov scale, which differs from the scope of the present work. A good
accuracy of statistics between the point particle and fully resolved simulations has been
demonstrated by Fröhlich et al. (2018). The above discussion suggests that there is no
consensus in the literature on the drag reduction in particle-laden wall-bounded flows,
which depends on the parameters like fluid Reynolds number, particle Reynolds number
and also on the particle terminal velocity. More systematic numerical simulations and
their validation with controlled experiments are required to conclude the drag reduction
phenomenon of particle-laden flows and the limitations of point-particle and PR-DNS
methodology.

An increase in turbulence attenuation also leads to a further increase in anisotropy
as a significant decrease is observed in wall-normal and spanwise directions than in
the streamwise direction (Kulick et al. 1994; Zhao et al. 2010; Shringarpure, Cantero
& Balachandar 2012; Gualtieri et al. 2013; Richter & Sullivan 2013; Richter 2015;
Rohilla et al. 2022). Gualtieri et al. (2013) commented that care should be taken while
applying Kolmogorov theory as anisotropy is increased for particle-laden flows. Ferrante
& Elghobashi (2003) and Ahmed & Elghobashi (2000) also discussed the increase in
anisotropy for particle-laden homogenous isotropic and homogenous shear turbulence,
respectively. In a recent study, Rohilla et al. (2022) demonstrated that the LES models,
like Smagorinsky and dynamic Smagorinsky models, perform poorly in predicting the
turbulence modulation and the critical volume loading at which turbulence collapses
completely. The scale-similarity and mixed models are found to perform better than
Smagorinsky and dynamic models in predicting local energy flux (Boivin, Simonin
& Squires 2000). The authors mentioned that the former models could capture the
backscatter and thus perform well. In earlier works, the deviation between DNS and
LES in predicting statistical properties was attributed to the modelling error (Dritselis
& Vlachos 2011; Rohilla et al. 2022). All these observations demand a rigorous analysis
to check the local isotropy of small scales, which is the basis of LES formulation. In
the present study, we want to explore whether particles can alter the extent of anisotropy
in the gas phase, and if so, what is the effect of increased anisotropy on the Kolmogorov
constant? Direct numerical simulation is performed for turbulent channel flow at Reynolds
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numbers 3300 and 5600 based on average gas velocity and channel width to answer
the above questions. The Kolmogorov constant has been computed following different
methods using the simulation results. When the Kolmogorov constant is studied, the
bottleneck and intermittency effects are worth discussing. These effects are studied by
Donzis & Sreenivasan (2010) where DNS is performed for isotropic turbulence for a
range of Taylor Reynolds numbers (Reλ = 38–1000). The authors discussed the scaling
of the bottleneck effect and the related problems in calculating the Kolmogorov constant.
It is reported that the bottleneck effect would vanish at a Taylor Reynolds number of
approximately 2 × 105. Kaneda et al. (2003) observed that the Kolmogorov’s theory
(Kolmogorov 1941) is valid for Reλ < 700, and the scaling is steeper than (−5/3) for
Reλ > 700. Ishihara et al. (2016) proposed the scaling law for higher Reynolds numbers
similar to work by Kolmogorov (1962). Wang et al. (1996) performed high-resolution
simulations for free-decaying and stationary forced turbulence to examine the K62
hypothesis (Kolmogorov 1962). The authors observed that the probability distribution of
averaged dissipation shows an intermittent behaviour in the inertial range. The authors
concluded that their study was in agreement with the K62 hypothesis. In earlier studies,
such as those by Donzis & Sreenivasan (2010) and Yeung & Zhou (1997), it has been
observed that the presence of inertial range is not possible for Reλ < 200. However, the
Kolmogorov constant for lower Reλ can be defined from the peak point of compensated
spectra or second-order velocity structure functions (Jiménez et al. 1993; Sreenivasan
1995; Antonia et al. 1997; Choi et al. 2004). In the present work, the simulations are
carried out at low Reλ where we do not expect a clear inertial range. Thus, the term
apparent Kolmogorov constant is used for the peak point of compensated spectra and
second-order velocity structure functions. A constant value of Kolmogorov prefactor
exists for Reλ > 104 (Lien & D’Asaro 2002). The aim of the present study is not
to comment on the universality of the Kolmogorov constant which is achieved at a
high Reynolds number. It rather highlights the increase in local anisotropy of small
and large scales of turbulence for particle-laden cases that consequently affects the
apparent Kolmogorov constant. The variation of the apparent Kolmogorov constant as
a function of particle volume loading has been used to predict the fluid phase statistics.
In the proposed modelling approach, the variation of the Smagorinsky coefficient is
estimated from the variation of the apparent Kolmogorov constant. The simulations are
performed to predict the dynamics of the fluid phase without solving the particle phase
equations simultaneously, and thus it is computationally less expensive. The present
analysis of variation of the apparent Kolmogorov constant with particle volume loading
and the new methodology will provide insight to develop advanced models for two-phase
turbulent flows. This work is important for the current scenario because many studies are
performed at similar Reynolds numbers (∼ Reb = 5600) (Armenio, Piomelli & Fiorotto
1999; Kuerten & Vreman 2005; Kuerten 2006; Marchioli, Salvetti & Soldati 2008;
Vreman et al. 2009; Dritselis & Vlachos 2011; Zamansky, Vinkovic & Gorokhovski 2013;
Duque-Daza, Ramirez-Pastran & Lain 2021; Rohilla et al. 2022) which are of practical
importance.

The outline of the article is as follows. In § 2, the fluid and particle phase equations
and the simulation parameters are discussed. In § 3, the simulation results on assessing
anisotropy and second-order velocity structure functions are presented for different
Reynolds and Stokes numbers. The new methodology for the subgrid-scale model to
capture the fluid phase statistics in particle-laden turbulent flows without the particles
is discussed in § 4. The summary of the work is discussed in § 5.
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2. Simulation methodology

In the present investigation, fluid phase is considered to be incompressible and described
by the continuity and Navier–Stokes equation as

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρf

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ f i(x, t)

ρf
, (2.2)

where ui is the velocity, p is the pressure, ρf is the density of the fluid and ν is the kinematic
viscosity. The feedback force density due to the solid phase is considered using the f (x, t)
term. The pseudo-spectral method has been used to solve the Navier–Stokes equation.
A second-order Adams–Bashforth scheme for the nonlinear term and Crank–Nicholson
time discretization has been used for the linear terms. The lift and drag forces are included
in the feedback force term, which can be expressed as

f i(x, t) = −
∑

I

(F D
i,I + F L

i,I)δ(x − xI), (2.3)

where x is the fluid node, xI is the position of the Ith particle, F L
i,I and F D

i,I are the lift
and drag forces on the particle I. Additionally, δ(x − xI) is the Dirac delta function in
three dimensions. The fluid phase momentum equation is not corrected including the fluid
volume fraction term as the particle volume fraction is much lower compared with the
continuum phase volume fraction (φair

v ≈ 1) (Dritselis & Vlachos 2008, 2011; Richter
2015; Vreman 2015; Ghosh & Goswami 2022a,b).

In the present study, the point-particle approach (Bagchi & Balachandar 2003;
Mehrabadi et al. 2018) is considered with drag and lift corrections as discussed in detail
by Muramulla et al. (2020). The point particles are tracked in the Lagrangian frame,
and Newton’s second law describes their motion. The particle–wall and particle–particle
collisions have also been considered. The particle motion is described by

mp
dvi,I

dt
= F D

i,I + F L
i,I +

∑
I /= J

F i,IJ + F i,Iw + mpg, (2.4)

where mp is the mass, vi,I is the velocity of the Ith particle, F D
i,I is the drag force and

F L
i,I is the lift force exerted on the particle. In (2.4), g is the gravitational acceleration,

F i,IJ is the force due to interaction between the Ith and Jth particles, and F i,Iw is the force
due to interaction between the Ith particle and wall. In the present study, the effect of
gravity and lift are included as it is reported that the implementation of the lift force
improves the particle statistics in the near-wall region (Marchioli, Picciotto & Soldati
2007; Costa et al. 2020). Marchioli et al. (2007) explored the effect of gravity and lift
on the particle distribution in wall-bounded flows. The hard-sphere approach is taken to
account the the particle–particle and particle–wall elastic collisions. The inertia corrected
drag law (Naumann & Schiller 1935) is used to calculate the drag force as

F D
i,I = 3πμdp(ũi,I(x, t) − vi,I)(1 + 0.15Re0.687

p ). (2.5)

Although a point-particle approximation has been used, the grid size very near the wall
in the wall-normal direction may be smaller than the particle size in the near-wall region.
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Thus, the fraction of particle surface present in the cell is used to calculate the force on the
grid. The fluid velocity is interpolated at the particle location to calculate the drag and lift.
The detailed simulation procedure for the calculation of the feedback force, corrections
to obtain the undisturbed fluid velocity field at the particle location, and the near-wall
corrections in lift and drag force have been discussed in our earlier work (Muramulla et al.
2020). The implementation of Saffmann lift and correction for undisturbed velocity are
important to accurately predict the spatial particle distribution (Mehrabadi et al. 2018;
Wang et al. 2019; Costa et al. 2020; Brandt & Coletti 2022), which have been included in
this study. The particle-to-fluid density ratios considered in the present study are ≈1000 or
higher. Therefore, the buoyancy and Basset history effects are neglected in the particle’s
equation of motion.

The simulations have been performed in a vertical channel with length 8πδ in
the streamwise (x) direction, 2δ in the wall normal (y) direction and (4/3)πδ in
spanwise (z) direction, where δ is the half-channel width. Wall normal direction is wall
bounded, streamwise and spanwise directions are considered as periodic. No-slip boundary
conditions are applied on the walls. The bulk Reynolds numbers (Reb = ρf × ū × 2δ/μf )
are fixed at 3300 and 5600 based on the channel width (2δ) and average fluid velocity (ū).
For Reynolds numbers of 3300 and 5600, 128 and 64, and 192 and 160 Fourier modes
are used in the streamwise and spanwise directions, respectively (Muramulla et al. 2020).
For wall-normal direction, 65 and 129 Chebyshev modes are used for Reb = 3300 and
5600, respectively. The corresponding Reynolds numbers (Rec) based on the centreline
turbulent velocity and half-channel width are 2000 and 3360, and the Reynolds numbers
(Reτ ) based on unladen frictional velocity and half-channel width are 115 and 180. It is
worth mentioning that the present investigation is performed under the fully developed
turbulent flow condition as the transitional regime for the channel flow occurs in the
range 1300 ≤ Reb ≤ 1800 and 62.5 ≤ Reτ ≤ 73.5 (Patel & Head 1969; Carlson, Widnall
& Peeters 1982; Sano & Tamai 2016; Zhang 2017). Thus, the simulations in our work
are carried out at Reb of 1.8 and 3 times the upper limit of the transitional regime.
The domain lengths (L+

x × L+
y × L+

z ) are 2921 × 232 × 486 and 4562 × 363 × 760 for
Reynolds numbers of 3300 and 5600, respectively. The (+) symbol is used to indicate
that the quantities are normalized with viscous scales. A time step of 0.0033h/ū is used
in the simulations, where h(= 2δ) is the channel width and ū is the bulk velocity of the
fluid phase. The pressure gradient is adjusted to maintain a constant bulk flow rate. The
range of particle Stokes numbers is shown in table 1. In the present work, the particle
diameter (dp) is taken as 39 μm and the particle density (ρp) is changed to have a range
of Stokes number. The fluid phase is considered as air, where the fluid density (ρf ) and
dynamic viscosity (μf ) are 1.179 kg m−3 and 1.75 × 10−5 kg m s−1, respectively. The
ratio of channel width (2δ) to particle diameter (dp) is 54. Simulations are performed for a
range of Stokes numbers (St = 52.73–210.93). Various authors have reported simulations
and experiments for Stokes numbers in this range (Li et al. 2001; Hwang & Eaton 2006;
Vreman et al. 2009; Goswami & Kumaran 2011; Capecelatro, Desjardins & Fox 2015;
Vreman 2015; Muramulla et al. 2020).

3. Results

The simulations are performed for bulk Reynolds numbers of 3300 and 5600 for a range
of volume fractions and different Stokes numbers using a pseudo-spectral code used in
our earlier studies (Kumaran et al. 2020; Muramulla et al. 2020). It is observed that the
turbulence attenuation increases with an increase in volume loading steadily up to a certain
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Reb ρp St

3300 1000 52.73
2000 105.47
4000 210.93

5600 1200 105.47
2400 210.93

Table 1. The Stokes number (St) is defined as St = τp/τf , where τp = ρpd2
p/18μf , τf = 2δ/ū, ρp is the particle

density, dp is the particle diameter, μf is the fluid dynamic viscosity, δ is the half channel width and ū is the
average fluid velocity. Here, Reb is the fluid bulk Reynolds number.

volume fraction, and then there is a sudden collapse in the turbulence intensities (Kumaran
et al. 2020; Muramulla et al. 2020; Rohilla et al. 2022). The particle volume loading
at which turbulence collapse happens is referred to as critical particle volume loading
(CPVL). Other authors have also observed the complete turbulence collapse in different
flow configurations (Mito & Hanratty 2006; Shringarpure et al. 2012; Capecelatro,
Desjardins & Fox 2018; Duque-Daza et al. 2021; Wang, Li & Zheng 2021; Yu et al. 2021).
A detailed analysis of the effect of volume fraction and Stokes number on the turbulence
attenuation is presented in earlier studies (Li et al. 2001; Mito & Hanratty 2006; Dritselis
2016; Capecelatro et al. 2018; Kumaran et al. 2020; Muramulla et al. 2020). In this work,
we quantify the modification in the extent of anisotropy of turbulence fluctuations, which
is associated with the modulation of turbulence due to the presence of the dispersed phase.
The local isotropy of the small scales across the channel width can be assessed from the
ratio of Kolmogorov time scale to mean shear time scale (Corrsin 1957; Antonia & Kim
1992; Saddoughi & Veeravalli 1994). The necessary condition for the small scale to be
isotropic was provided by Corrsin (1957) as

(ν

ε

)1/2 � 1
S

or S∗
c � 1, (3.1)

where S = dU/dy is the mean shear rate, ε is the mean energy dissipation rate and S∗
c =

S(ν/ε)1/2. However, Antonia & Kim (1992) reported that this condition is too restrictive
and can be relaxed with Sc∗ ≤ 0.2 for the small scales to be isotropic. Antonia & Kim
(1992) performed a DNS study for channel flow and found a value of S∗

c = 2.5 at the wall,
and it reduces to a low value for y+ > 60. The S∗

c is plotted as a function of wall-normal
position for a particle Stokes number of 105.47 and fluid phase Reynolds number of 3300
at different average volume fractions (φav), which is shown in figure 1(a). It is observed
that the S∗

c is 2.53 at the wall for unladen flow, and a decrease of almost one order of
magnitude is observed away from the wall. The value of S∗

c increases across the channel
width as the particle volume loading is increased. For a particle loading of 9 × 10−4, S∗

c at
the wall is 1.5 times higher than the unladen flow. Spatial averaged S∗

c across the channel
(〈S∗

c 〉s) for the bulk Reynolds numbers of 3300 and 5600 and different Stokes numbers
are shown in figure 1(b). In the case of unladen flows, 〈S∗

c 〉s is higher for Reb = 3300
compared with Reb = 5600 which indicates that the time scale separation is less at lower
Reynolds number. Here, 〈S∗

c 〉s increases with an increase in particle loading for both the
Reynolds numbers. With an increase in particle inertia (St), 〈S∗

c 〉s increases marginally
when the particle volume fraction is high. This suggests an increase in anisotropy of the
small scales for particle-laden cases.
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Figure 1. The ratio of Kolmogorov time scale to mean shear time scale, (S∗
c = S(ν/ε)1/2), for different

volume fractions. (a) S∗
c for Reb = 3300 and St = 105.47. (b) Spatial averaged S∗

c across the channel width
for Reb = 3300 and 5600 with different Stokes numbers (St) and average volume fraction (φ or φav). In panel
(b), the symbols with dashed lines are for Reb = 3300 and symbols with solid lines are for Reb = 5600. In
panel (a), δ is the half-channel width.

It is observed from figure 1 that the local isotropy of small scales decreases across the
channel with an increase in solid volume fraction. However, it is important to calculate
the Taylor Reynolds number (Reλ) across the channel flow, which is defined as Reλ =
[(20/3)(k+2

/ε+)]1/2 (Choi et al. 2004; Yu et al. 2021). Here, k+ and ε+ are the fluctuating
kinetic energy and dissipation rate normalized with viscous scales. The Taylor Reynolds
number is plotted for a range of volume fractions at Reb = 3300, St = 105.47 and Reb =
5600, St = 210.93, figure 2(a,b). The Taylor Reynolds number is almost constant away
from the wall for the unladen case, and a decrease is observed near the channel centre
region. The Taylor Reynolds number of 25 was observed in the channel centre by Yu
et al. (2021) for Reb = 5746 which is almost the same in our case also for the Reb =
5600 unladen case. The Reλ decreases across the channel with an increase in particle
volume loading. The horizontal dashed line across the graphs is plotted at Reλ = 20, and
two dashed vertical lines refer to y+ = 15 and 50. The three different channel locations
are chosen for the assessment of local isotropy. These locations are y+ = 15, 50 and 115
for Reb = 3300, and are y+ = 15, 50 and 180 for Reb = 5600. The wall-normal distance
(y+) is normalized with unladen frictional velocity and kinematic viscosity. The y+ = 15
and 50 are chosen to have a Reλ > 20 for all the considered cases as Sreenivasan (1995)
also has collected the experimental data for Reλ > 20 only. The channel centre location is
also taken for the assessment as the particle affects the turbulence intensities more in the
channel centre than the near-wall region (Kulick et al. 1994). The Reλ at these locations for
both the Reynolds numbers is plotted in figure 2(c,d) for the considered Stokes numbers.
For laden cases, a large decrease in Reλ is observed in the channel centre region as the
volume fraction is increased. The decrease in Reλ is less and remains above 20 at y+ = 15
and 50 with an increase in volume loading, except just before CPVL. The Stokes number
effect on the Reλ with an increase in particle volume loading is negligible except near the
CPVL.

The local isotropy at the small scales can also be checked using the expressions of
the second-order velocity structure function and the mean energy dissipation rate for the
homogeneous isotropic turbulence. In the limit of small r, the moment of longitudinal
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Figure 2. The Taylor Reynolds number (Reλ) is plotted in the wall-normal direction for a range of volume
fractions in (a) Reb = 3300, St = 105.47 and (b) Reb = 5600, St = 210.93. The Reλ at three channel locations
and different Stokes numbers is plotted over a range of volume fractions for (c) Reb = 3300 and (d) Reb = 5600.

velocity fluctuation is defined with the following expression (Kolmogorov 1941):

〈(δu′
x)

2〉r−2 =
(

∂u′
x

∂x

)2

, (3.2)

where r is the distance between the two points and δu′
x = u′

x(x + r) − u′
x(x) with u′

x
being the longitudinal fluctuation. The mean energy dissipation rate (ε) for homogeneous
isotropic turbulence (Pope 2000) is expressed as

ε = 15ν

(
∂u′

x

∂x

)2

. (3.3)

Using the above two equations for local isotropy of the dissipation range, the following
relation holds:

〈(δu
′∗
x )2〉(r∗)−2 = 1

15 . (3.4)

Here, (*) denote the non-dimensionalized quantities. Additionally, δu′
x is normalized using

Kolmogorov velocity scale, uk = (νε)1/4, and r is normalized with Kolmogorov length
scale, η = ν3/4/ε1/4. Using DNS, we have computed 〈(δu

′∗
x )2〉(r∗)−2 and compared the

unladen cases with (3.4) and also with the experimental data reported by Antonia et al.
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(1997) for both the Reynolds numbers, as shown in figure 3(a). A good agreement is
observed for different wall-normal locations and Reynolds numbers. Figure 3(a) shows
that for both Reynolds numbers, the channel centre location is nearly isotropic for unladen
flows. However, the near-wall region deviates from the isotropic condition, which has
been reported in experiments (Antonia et al. 1997). In figure 3(b–d), we present the
effect of particle volume loading on local isotropy at three different channel locations
for St = 210.93 and Reb = 5600. It is observed that the deviation from the local isotropy
increases with an increase in particle volume loading at y+ = 15 and 180. There is
negligible change in the profiles at y+ = 50 (figure 3c) in spite of a very similar decrease
in Reλ at both y+ = 15 and 50, shown in figure 2(c,d). Similar observations are followed
for a Reynolds number of 3300, which are not shown here for brevity. The isotropy of
the inertial range is unlikely to be achieved if there is a deviation from isotropy at the
small scales (Antonia et al. 1997). Thus, it is expected that the decrease in the local
isotropy of small scales with an increase in particle volume loading will affect the local
isotropy at inertial range and the Kolmogorov constant. Here, we examine that effect
via second-order velocity structure function and compensated spectra. The reduction in
isotropy for particle-laden flows is related to the extent of attenuation of the different
components of fluid velocity fluctuations. It is observed that the decrease in the transverse
velocity component is more than the streamwise component (Kulick et al. 1994; Zhao
et al. 2010; Gualtieri et al. 2013; Richter & Sullivan 2013; Richter 2015; Rohilla et al.
2022) as the particle volume fraction is increased. Richter & Sullivan (2013) mentioned
that inertial particles reduce the ability of the carrier phase to transfer the momentum flux
in a wall-normal direction. This increased anisotropy may affect the Kolmogorov constant
for particle-laden cases, which is analysed hereafter.

The second-order velocity structure function in the inertial range is defined as
(Kolmogorov 1941)

〈(δu′
x)

2〉 = C2(εr)2/3, (3.5)

where ε is the mean viscous dissipation rate and δu′
x = u′

x(x + r) − u′
x(x), with u′

x being
the longitudinal fluctuations. The r is described as η � r � L, with L as the integral
length scale. In the above expression, C2 is the Kolmogorov constant and angular brackets
denote the time averaging. An equivalent relation in terms of scaled variables can be
written as 〈(δu

′∗
x )2〉 = C2(r∗)2/3. The second-order velocity structure function for the

unladen case is plotted in figure 4 using the scaled form of (3.5). The (∗) denotes the scaled
variables. To validate our results, the profiles are plotted for both the Reynolds numbers
at two locations, one in the near-wall region (y+ = 15) and the other at the channel centre
(at y+ = 180 for Reb = 5600 and at y+ = 115 for Reb = 3300). Figure 4(a) shows the
validation for unladen flows against the experimental data for channel flow reported by
Antonia et al. (1997), and simulation data for isotropic turbulence reported by Yeung &
Zhou (1997) and Donzis & Sreenivasan (2010). There is a good agreement between the
experimental data and the present DNS results for both the channel locations and Reynolds
numbers. The simulation data of isotropic turbulence (Yeung & Zhou 1997; Donzis &
Sreenivasan 2010) predict a higher value of C2 due to higher Reλ used in those studies.
In figure 4, the peak value of C2 (from the plateau in the inertial range where statistical
properties are only dependent on the mean energy dissipation rate) is considered as the
apparent Kolmogorov constant (Sreenivasan 1995; Sreenivasan & Antonia 1997; Donzis
& Sreenivasan 2010). The majority values of C2 (peak value of the second-order velocity
structure function) reported in the literature are 2 or more (Saddoughi & Veeravalli 1994;
Antonia et al. 1996; Yeung & Zhou 1997; Choi et al. 2004; Donzis & Sreenivasan 2010;
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Figure 3. The second-order velocity structure functions multiplied with r∗−2 are plotted for (a) unladen cases,
and for a range of volume fractions (φ) at (b) y+ = 15, (c) y+ = 50 and (d) y+ = 180 for Reb = 5600 and
St = 210.93. The dashed black line is the (1/15) ordinate.

Sawford & Yeung 2011). However, a lower value of C2 occurs due to lower Reynolds
number (Sreenivasan 1995) or if there is a deviation of isotropy in dissipation (Antonia
et al. 1997) and inertial range (Yeung & Zhou 1997).

In figure 4(b–d), the second-order velocity structure function profiles are shown as a
function of different particle volume loadings at three channel locations and Reynolds
number of 5600 with particles St = 210.93. It is observed that at y+ = 15 and 180
(Rohilla & Goswami 2022), there is a decrease in the value of the scaled second-order
velocity structure function (〈(δu

′∗
x )2〉r∗−2/3) at all the r∗ locations for an increase in

volume fraction. The peak value for unladen flow is 1.2 and it decreases nearly to 0.4
for φ = 0.0027 for the unladen flow, which indicates that the two-point correlation of
fluid velocity fluctuation becomes weaker with an increase in the solid volume loading,
shown in figure 4(d). At y+ = 15, with an increase in solid volume fraction, a maximum
of 25 % decrease in Taylor Reynolds number is observed, figure 2. Therefore, the decrease
in the peak value of the second-order structure function (〈(δu

′∗
x )2〉r∗−2/3) may be due

to the increase in anisotropy across the channel width. However, no significant change
is observed in the second-order structure function at y+ = 50 location, figure 4(b). The
length scale associated with the peak location of the second-order structure function
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Figure 4. The second-order velocity structure functions multiplied by r∗−2/3 are plotted for (a) unladen cases,
and for a range of volume fractions (φ) at (b) y+ = 15, (c) y+ = 50 and (d) y+ = 180 for Reb = 5600 and
St = 210.93. The dashed black line is the 1.2 ordinate.

(Lpeak) from figure 4 and integral length scale calculated via the streamwise spatial
correlation (LI) for Reb = 5600 and St = 210.93 show that at the near-wall region, LI/η is
of the order of the channel half-width for the lower volume fractions, and it increases with
an increase in particle volume fraction. The physical length scale associated with the peak
value of the second-order structure function is almost two orders of magnitude higher than
the Kolmogorov length scale. However, scale separation is much lower at the central zone.

In figure 5, the peak values (C2) of the second-order velocity structure functions are
plotted for three channel locations, y+ = 15, 50 and at the channel centre (at y+ = 180 for
Reb = 5600 and at y+ = 115 for Reb = 3300), for a range of solid volume fraction (φav). In
figure 5(a–d), the C2 is plotted for both the Reynolds numbers and Stokes numbers given in
table 1. It is observed that the apparent Kolmogorov constant (C2) decreases significantly
with an increase in volume loading at the near-wall (y+ = 15) and the channel centre for
both the Reynolds numbers and Stokes numbers considered here. Also, it is observed that
the effect of particle loading to reduce C2 is more significant in the channel centre location
compared with the near-wall region (y+ = 15) of the channel. Interestingly, a cross-over
occurs as the volume loading is increased, and the C2 value becomes lower at the channel
centre than the near-wall region for all the Stokes numbers. The larger decrease of C2 at
the channel centre is due to the larger decrease in Reλ at this position (figure 2c,d) and an
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Figure 5. The peak of second-order velocity structure function (from figure 4) is plotted at different channel
locations as a function of solid volume fractions for (a) Reb = 3300 and St = 52.73, (b) Reb = 3300 and
St = 105.47, (c) Reb = 3300 and St = 210.93, (d) Reb = 5600 with St = 105.47 and 210.93.

associated increase in the anisotropy. The change in C2 for the y+ = 50 is non-monotonic
and remain almost constant.

Figure 6 presents a consolidated picture of C2 at different channel locations for all the
Stokes, Reynolds numbers, and volume fractions. For y+ = 50, shown in figure 6(a), the
variation of C2 with an increase in volume loading is non-monotonic with an insignificant
variation over the range of volume fraction. A linear decrease in C2 with volume fractions
is observed at y+ = 15 and at the channel centre, as shown in figure 6(b). The observations
suggest that the apparent Kolmogorov constant is a function of the particle volume fraction
(φav) and the wall-normal location for particle-laden turbulent flows at low Reynolds
number. The effect of Stokes number on the variation of the apparent Kolmogorov
constant seems insignificant for the range reported here. Thus, from the analysis of the
second-order structure function, it is observed that the apparent Kolmogorov constant
remains unaffected in the initial part of the log-law regime, and a decrease is observed
close to the wall and in the channel centre with an increase in particle volume loading.
It is interesting to note that the value of Reλ and the variation in Reλ with an increase
in particle loading are almost similar at y+ = 15 and 50 for both the Reynolds numbers
(figure 2c,d), but there is almost no change in the C2 at y+ = 50 as shown in figure 6(a).
However, a significant decrease in C2 is observed at y+ = 15. It is worth noting that
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Figure 6. The peak of the second-order velocity structure function (from figure 4) is plotted at Reb = 3300
and 5600 for different volume fraction cases at (a) y+ = 50, (b) y+ = 15 and channel centre. The symbols with
lines are for Reb = 5600 and symbols without lines are for Reb = 3300. The symbols for Reb = 5600 in panel
(b) are the same as those in figure 5(d). The black and red dashed lines in panel (b) are the fitting curves for
Reb = 5600 and Reb = 3300, respectively.

for unladen flow, the Reλ is 25 in the channel centre for Reb = 5600, and a similar Reλ
occurs for the near-wall region for φ = 1.5 × 10−3, figure 2(d). However, C2 near the wall
(for φ = 1.5 × 10−3) is 20 % lower than the C2 at the centre for unladen flow. Similar
observations are followed for other Reynolds numbers and locations as well. All the above
observations suggest that C2 is not only a function of channel location and Reλ, but it is
also a function of particle volume loading.

The spectral representation of turbulent kinetic energy is given as (Pope 2000)

Ê(k) = 1
2 〈û′

i(k)û
′∗
i (k)〉, (3.6)

where û′
i(k) is the Fourier transform of u′

i(x, t) over the homogenous directions and
û

′∗
i (k) is the complex conjugate of û′

i(k). Here, 〈·〉 denotes the ensemble averaging. The
energy spectrum density, E(k), is calculated using (3.6). In figure 7(a), the normalized
energy spectrum density (E+ = E(k)/(uτ ν)) is compared with earlier studies (Del Álamo
& Jiménez 2003; Del Álamo et al. 2004; Hoyas & Jiménez 2006; Trofimova et al.
2009; Andrade et al. 2018) for verification at two channel locations of y+ = 15 and 50
which shows a good agreement. The Kolmogorov constant (C) is also plotted using the
compensated spectra, C = E(k)k5/3ε−2/3 at y+ = 15, 50, and at the centre of the channel
(for y+ = 150 for Reb = 5600 and y+ = 100 for Reb = 3300) for both the Reynolds
numbers and different Stokes numbers, shown in figure 7(b–d). Figures 7(b) and 7(c)
show that there is almost no variation in C at y+ = 15 and 50 for Reb = 5600 and at
y+ = 50 for Reb = 3300 for all the Stokes numbers. However, a non-monotonic variation
is observed in C for Reb = 3300 at y+ = 15. This is in contrast to the behaviour of the
apparent Kolmogorov constant (C2) obtained via second-order velocity structure function
where a monotonic decrease in C2 is observed with an increase in particle volume loading.
Figure 7(d) shows that the value of C decreases almost linearly from 1.3 to 0.4 for a
change in φ from 2 × 10−4 to 2.7 × 10−3 for Reb = 5600 and approximately to 0.8 at
φ = 0.0011 for Reb = 3300. The observations from the second-order structure function
and compensated spectra are consistent away from the wall (at y+ = 50) and the channel
centre region for both the Reynolds numbers and all the Stokes numbers reported here.
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Figure 7. (a) Energy spectrum density at y+ = 15 and 50 for Reb = 5600 compared with different DNS results
for the unladen cases. The apparent Kolmogorov constant (C) plotted from compensated spectra for Reb = 3300
and 5600 at channel locations of (b) y+ = 15, (c) y+ = 50 and (d) y+ = 100 for Reb = 3300 and y+ = 150 for
Reb = 5600. In panels (b–d), the symbols with lines are for Reb = 5600, the symbols without the lines are for
Reb = 3300. The black and red dashed lines in panel (d) are the fitting curves for Reb = 5600 and Reb = 3300,
respectively.

The larger decrease in the apparent Kolmogorov constant at the channel centre compared
with the near-wall region with an increase in particle loading is associated with a higher
decrease of Reλ, figure 2(c,d), and the ratio of the fluctuating velocity to the Kolmogorov
velocity at the channel centre. The ratio of kinetic energy to the square of the Kolmogorov
velocity scale is plotted as a function of the wall-normal direction in figure 8(a,b) for
different particle volume loadings. It is observed that the ratio decreases faster in the
channel centre than in the near-wall region with an increase in volume loading. It is worth
noting that the maximum turbulence production happens near the wall, and the dissipation
due to the particle is maximum at the channel centre (Muramulla et al. 2020). A decrease
in the ratio of velocities signifies the reduction in scale separation of the large and the
small scales; consequently, it will increase the small-scale anisotropy.

4. New modelling approach based on modified energetics

From the above analysis of the compensated spectra and second-order velocity structure
function, it is observed that there is a non-monotonic decrease in the apparent Kolmogorov
constant across the channel in the presence of dispersed particles. However, a significant
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Figure 8. The ratio of fluctuating turbulent kinetic energy (k) and square of Kolmogorov velocity scale
(uk) plotted across the channel width for different volume fractions. (a) Reb = 3300, St = 105.47 and
(b) Reb = 5600, St = 210.93.

variation of the apparent Kolmogorov constant, especially in the channel centre, happens
constantly with an increase in particle volume loading. This observation can be used
to model the effect of particles on the fluid phase without actually adding the discrete
solid phase. The use of the Kolmogorov constant appears in the classical Smagorinsky
model (Smagorinsky 1963). In the Smagorinsky model (LES approach), the eddy viscosity
term models the subgrid-scale dissipation. This eddy viscosity is represented in terms of
Smagorinsky coefficient which is calculated from the Kolmogorov constant (Sagaut 2006).
The filtered continuity and momentum equations for LES are written as

∂ũi

∂xi
= 0, (4.1)

∂ũi

∂t
+ ∂ũiũj

∂xj
= − 1

ρf

∂ p̃
∂xi

+ ν
∂2ũi

∂xj∂xj
+ ∂(ũiũj − ũiuj)

∂xj
. (4.2)

Here, p̃ is the filtered pressure, ũi is the filtered velocity, ν is the kinematic viscosity and ρf
is the fluid density. The subgrid scale (SGS) stress term, (ũiũj − ũiuj), in the Smagorinksy
model is expressed as

−τ ij = ũiũj − ũiuj = 2νtS̃ij, (4.3)

S̃ij = 1
2

[
∂ũi

∂xj
+ ∂ũj

∂xi

]
, (4.4)

where νt is the eddy viscosity and S̃ij is the filtered strain rate tensor. The eddy viscosity
is written as

νt = (Cs
̃)2|S̃|, (4.5)

|S̃| =
√

2S̃ijS̃ij. (4.6)

In (4.5), Cs is the Smagorinsky coefficient, |S̃| is the magnitude of the strain rate and

̃ = (
̃1
̃2
̃3)

1/3 is the cube-root volume of the grid size. Here, 
̃1, 
̃2 and 
̃3 are the
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grid spacing in the x, y and z directions, respectively. The relation between the Kolmogorov
constant and the Smagorinsky coefficient is given as (Sagaut 2006)

Cs = 0.23
C3/4 . (4.7)

Therefore, the variation of the Kolmogorov constant (C) causes a modification in
the Smagorinsky coefficient Cs. The apparent Kolmogorov constant decreases with an
increase in the particle volume loading, which results in an increased Cs. Thus, the
simulations are performed for single-phase flow with higher Cs values for the Smagorinsky
model without adding the particles. In this context, it is worth noting the earlier
work of Yeo et al. (2010) who performed the fully resolved simulation for bubbles,
neutrally buoyant and inertial particles in homogenous turbulence, and commented on
the possibility of representing the particle feedback effect with an additional effective
viscosity.

The present exercise aims to capture the effect of particles using a single-phase
simulation by varying the Smagorinsky coefficient without adding the particles to the
system. Although we have observed that the variation of the apparent Kolmogorov
constant is a function of wall-normal location, as a first approximation, we consider a
single Kolmogorov constant approximation across the channel as a function of particle
concentration. Use of a uniform concentration across the channel would be a good
assumption for the range of Stokes number used here, which is also evident from the DNS
results, shown later. It should be noted that the particles increase the anisotropy across
the fluid fluctuations and an anisotropic inhomogeneous modelling approach should be
taken to model the fluid phase accurately, which is left as a future scope. However, the
present method of modelling the dynamics of the fluid phase in a two-phase flow using
a single-phase simulation is computationally less expensive. It provides insights into the
mechanism of turbulence modulation. Simulations are performed with the Smagorinksy
model which has been used in our earlier work (Rohilla et al. 2022). The number of
grids used is 128 × 65 × 64 and 64 × 65 × 32 in the streamwise (x), wall-normal (y) and
spanwise (z) directions for bulk Reynolds numbers of 5600 and 3300. Here, Cs = 0.125 is
used in the unladen flow simulations and the Van Driest damping is implemented to avoid
high dissipation in the near-wall region (Rohilla et al. 2022).

First, we have increased the value of Cs in LES to determine the effect of Cs on
the fluid phase fluctuations. Then, we have presented the variation of second moments
of fluctuation simultaneously as a function of Cs and particle volume loading (φav). In
figure 9, the temporal evolution of the normalized sum of the fluid fluctuations is plotted
for Reb = 5600 with different Cs values. The simulation with a lower Cs value reaches
a stationary state quickly. For high Cs such as 0.30, the sum decreases initially and
reaches the stationary state after a long time. For Cs = 0.35 and higher values, the sum
of fluid fluctuations continuously decreases, representing a decay of the intensity of fluid
turbulence. In figure 10, the profiles of fluid fluctuations are plotted along the wall-normal
direction for a range of Cs. It is observed that the streamwise fluid fluctuations initially
increase with an increase in Cs, and a sudden decrease happens at Cs = 0.35. However,
a continuous decrease is observed for Reynolds stress, wall-normal and spanwise fluid
velocity fluctuations, and a complete collapse of turbulence is observed at Cs = 0.35.
As the transverse fluctuations are decreased, there is a decrease in momentum flux. The
non-monotonic behaviour in the streamwise fluid fluctuations has also been reported by
Zhou et al. (2020) where the authors performed the DNS of particle-laden channel flow.
An increase in the streamwise fluctuations was observed at a solid volume fraction of
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Figure 9. The average of fluid fluctuations (normalized with the t∗ = 200 value) across the channel evolved
over the time for a range of Cs. The t∗ is normalized with channel width and fluid bulk velocity.

1.8 × 10−4, and a decrease was observed with a further increase in volume fraction.
The authors mentioned two competitive phenomena. First, the near-wall vortices become
weaker, leading to the larger spacing between the streaks. This effect causes a decrease in
streamwise fluctuations. However, in the second case, the streaks become more organized
and aligned in the streamwise direction. This phenomenon increases the streamwise
fluctuations. A continuous decrease in the wall-normal and spanwise fluctuations was
observed by Zhou et al. (2020). In the present study, an increase in Cs leads to an
initial increase in the streamwise fluid fluctuations. Then, a sudden turbulence collapse
is observed at a higher Cs = 0.35. It is to be noted that we have used a constant value
of Cs across the channel. A further analysis using inhomogeneous Cs is expected to
provide more quantitative modulation of fluid turbulence. The present simulation shows
a monotonic decrease in the Reynolds stress, wall-normal and spanwise fluid fluctuations
(figure 10b–d), as reported by DNS studies (Li et al. 2001; Vreman 2015; Muramulla et al.
2020; Zhou et al. 2020).

Figure 10 shows that the Reynolds stress and other components of fluctuations are a
strong function of wall-normal distance. Therefore, we define the channel-averaged second
moments of velocity fluctuations (4.8) and present the effect of variation of Cs:

〈�〉s = 1
δ

∫ δ

0
dy〈�〉. (4.8)

Here, 〈�〉s is the averaged quantity over half-channel width (δ). The average fluid
fluctuations across the channel as a function of Cs are plotted in figure 11(b,d) for both
the Reynolds numbers. For DNS, the average fluid fluctuations as a function of φav for
both the Reynolds numbers are shown in figure 11(a,c). The Stokes numbers considered
are 105.47 and 210.93 for Reb = 3300 and 5600, respectively, for DNS. The average
fluid fluctuations decreases with an increase in particle volume fraction, and a complete
turbulence collapse is observed at φav = 10−3 and 2.8 × 10−3 for Reb = 3300 and 5600,
respectively, shown in figure 11(a,c). It is observed that the fluid fluctuations, except the
streamwise fluctuations, decrease with an increase in Cs value, and a drastic collapse
of more than one order of magnitude is observed at Cs = 0.20 for Reb = 3300 and at
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Figure 10. The profiles of fluid fluctuations in the wall-normal direction. The simulations are performed with
Smagorinksy model with increasing Smagorinsky coefficient (Cs) for Reb = 5600. (a) Streamwise fluctuations,
(b) wall-normal fluctuations, (c) Reynolds stress and (d) spanwise fluctuations. The symbols in panels (b–d)
are the same as those in panel (a).

Cs = 0.35 for Reb = 5600, shown in figure 11(b,d). The decrease in Reynolds stress,
wall-normal and spanwise fluctuations (figure 11b,d) with an increase in Cs is similar to
the decrease observed for DNS (figure 11a,c). The complete turbulence collapse observed
in fluid fluctuations is similar to the collapse observed for particle-laden cases by Mito
& Hanratty (2006), Shringarpure et al. (2012), Capecelatro et al. (2018), Kumaran et al.
(2020), Duque-Daza et al. (2021), Muramulla et al. (2020) and Rohilla et al. (2022).
However, once turbulence is collapsed, the fluid fluctuations do not remain constant or
increase as happens in the case of particle-laden cases due to particle-induced fluctuations
(Capecelatro et al. 2018; Kumaran et al. 2020; Yu et al. 2021). The volume fractions (φeq)
which correspond to different Cs values are plotted in figure 12, where fluid fluctuations
(shown in figure 11) predicted by Smagorinksy model are compared with DNS. The
Kolmogorov constant, computed using the second-order velocity structure function and
compensated spectra, is found to decrease linearly in the channel centre location, shown
in figures 6(b) and 7(d). The equivalence between the Cs (used as the Smagorinsky
coefficient) and the particle volume loading has been derived as follows. From the value
of Cs (0.125) used for the unladen flow, C is calculated using (4.7). It is assumed that the
variation of C as a function of φav follows the same functional form as that of C2 versus
φav , shown in figure 6(b). Therefore, we can estimate C and C2 for a range of particle
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Figure 11. The average fluid fluctuations normalized with fluid bulk velocity (ū) in (a,b) Reb = 3300 and
(c,d) Reb = 5600. (a,c) The average fluid fluctuations are shown for particle-laden DNS (Muramulla et al.
2020). (b,d) The average fluid fluctuations are shown for the Smagorinksy model over a range of Smagorinsky
coefficient (Cs). The dashed lines with closed symbols are for the Smagorinksy model and the dashed lines
with open symbols are for the DNS. The legend is as follows: black line, streamwise; red line, Reynolds stress;
blue line: wall-normal; and magenta line, spanwise fluctuations.

volume loading (φav). The equivalent volume fraction (φeq) which corresponds to Cs is
plotted in figure 12 along with the average volume fraction (φav). For Reb = 3300 and
5600, the turbulence collapse was observed at φav = 10−3 and 2.8 × 10−3 , respectively,
for particle-laden DNS (Muramulla et al. 2020). However, the turbulence collapse for the
present simulations is observed at φeq = 1.4 × 10−3 and 3.2 × 10−3 for Reb = 3300 and
5600, which is very close the critical loading predicted by DNS.

In the present study, an attempt is made to capture the effect of change in particle volume
loading in a two-phase flow by a fluid phase only simulation with a modified Smagorinsky
coefficient. Therefore, it is expected that the total dissipation caused by the viscous term
and modified eddy viscosity term in the present simulation should be similar to the total
dissipation by the mean viscous term and dissipation due to feedback force exerted by the
particles. Therefore, we have compared the total dissipation predicted in these two cases.
The kinetic energy balance equation of the mean fluid flow in the stationary state for the
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Figure 12. The average fluid fluctuations (shown in figure 11) for the Smagorinsky model and DNS are
compared in (a,b) Reb = 3300 and (c,d) Reb = 5600. Here, Cs is represented in terms of equivalent volume
fraction (φeq). (a,c) Streamwise fluid fluctuations and (b,d): cross-stream, wall-normal and spanwise fluid
fluctuations. The dashed lines with closed symbols are for the Smagorinksy model and the dashed lines with
open symbols are for the DNS. The legend is as follows: black line, streamwise; red line, Reynolds stress; blue
line, wall-normal; and magenta line, spanwise fluctuations.

particle-laden flow can be described as

− Ux
1
ρ

∂P
∂x

− ∂(u′
xu′

yUx)

∂y
+ u′

xu′
y
∂Ux

∂y

+ ν
∂

∂y

(
Ux

∂Ux

∂y

)
− ν

∂Ux

∂y
∂Ux

∂y
− Ux

ρpf φc

ρf τp
(ux − vx) = 0. (4.9)

Here, P is the mean pressure, ui is the instantaneous velocity, Ux is the mean velocity

and u′
i is the fluctuating velocity. Additionally, ρf u′

iu
′
j is the Reynold stress, τp is the particle

relaxation time, φc is the volume fraction in the respective grid, f is the drag coefficient,
ρp is the material density of the particle and ρf is the fluid density. In (4.9), the first term
is the energy due to pressure work, the second term is the divergence of energy fluxes due
to Reynolds stress, the third term is the energy used for the turbulence production, the
fourth term is the divergence of energy flux due to fluid viscous stress, the fifth term is the
viscous dissipation (εm) due to mean shear and the sixth term is the loss of energy due to
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the particle drag (Fp). The filtered mean kinetic energy equation for unladen fluid flow is
written as

− Ũx
1
ρ

∂P̃
∂x

− ∂(ũ′
xũ′

yŨx)

∂y
+ ũ′

xũ′
y
∂(Ũx)

∂y

+ (ν + νt)
∂

∂y

(
Ũx

∂Ũx

∂y

)
− (ν + νt)

∂Ũx

∂y
∂Ũx

∂y
= 0. (4.10)

Here, P̃ is the mean filtered pressure, ũi is the instantaneous filtered velocity, Ũx is the

mean filtered velocity, ũ′
i is the filtered fluctuating velocity and ρf ũ′

iũ
′
j is the filtered

Reynold stress. The terms in (4.10) are similar to those in (4.9) with filtered quantities. The
dissipation in the mean kinetic energy equation (4.9) is caused by the last two terms, mean
viscous dissipation and particle-induced dissipation. However, the dissipation in (4.10) is
due to the last term which is due to molecular (εm) and eddy viscosity (εeddy). Thus, these
two dissipation terms should be comparable to predict fluid phase dynamics accurately
when a single-phase simulation supplants the two-phase simulation.

Figures 13(a) and 13(c) show the terms due to mean viscous dissipation, dissipation
due to particle drag and input energy due to pressure work for particle-laden DNS cases
(Rohilla et al. 2022). In figure 13(b,d), the Smagorinsky coefficient (Cs) is varied, and
input energy due to pressure work, the dissipation due to mean viscous and eddy viscosity
are plotted using the Smagorinsky model for the unladen flow. It is observed that with
an increase in Cs, the mean viscous dissipation decreases. However, the dissipation due
to eddy viscosity increases. The dissipation due to particle feedback in figure 13(a,c) is
comparable and shows a similar trend with the dissipation by the modified eddy viscous
term in figure 13(b,d). Also, the total dissipation in the present unladen simulations is
comparable to the total dissipation caused by the particle-laden DNS. It is to be noted that
the total dissipation (mean viscous and particle induced dissipation) is almost constant in
all the cases, which has also been reported previously (Rohilla et al. 2022). In the case
of homogenous isotropic turbulence, it was observed by Squires & Eaton (1990) that the
total dissipation was constant for all the cases. For the mass loading of one, the decrease
in the viscous dissipation was nearly 50 %, and another 50 % dissipation was caused by
the particles. A decrease in the input energy is observed for the particle-laden DNS,
figure 13(a,c), and in the case of single-phase Smagorinsky simulations, figure 13(b).
In figure 13(d), a decrease in the input energy is observed at a low value of Cs, and
a non-monotonic variation is observed before the turbulence collapse. The difference
between input energy and the total dissipation, which is used in the turbulence production,
is plotted in figure 14, and is compared with DNS (Rohilla et al. 2022). Here, Cs is
represented in terms of equivalent volume fraction (φeq). A decrease in the difference (diff )
is observed with an increase in φeq for the low Reynolds number (Reb = 3300). However, it
is not monotonic at moderate Reynolds number (Reb = 5600). A sudden collapse occurs at
φeq = 0.0014 and 0.0032 for Reb = 3300 and 5600, respectively. The turbulence collapse
happens at φ = 0.001 and 0.0028 for DNS at Reb = 3300 and 5600, respectively. The
critical volume fraction predicted by the Smagorinsky model closely matches with DNS
at both Reynolds numbers.

The feedback term from particle-laden DNS and eddy viscosity-based dissipation due to
modified Cs from the Smagorinksy model is compared in figure 15. Here, the dissipation
due to eddy viscosity for the unladen simulation (νt(dŨ/dy)2 for the Cs = 0.125 case)
is subtracted from the Fp to depict the equivalent particle dissipation only. The feedback
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Figure 13. The terms from the mean kinetic energy equation are presented in (a) Reb = 3300, St = 105.47,
(b) Reb = 3300, (c) Reb = 5600, St = 210.93 and (d) Reb = 5600. Panels (a,c) are particle-laden DNS cases
where εm is the mean viscous dissipation, Fp,DNS is the dissipation due to particles and sum is the addition
of feedback and mean viscous dissipation. Panels (b,d) are single-phase simulations where the Smagorinsky
coefficient is varied, εm is the viscous dissipation at mean flow, εeddy is the dissipation due to eddy viscosity
and sum is the addition of eddy and viscous dissipation. Here, IE is the input energy from pressure work.

term in DNS is taken for St = 105.47 and 210.93 for Reb = 3300 and 5600, respectively.
The feedback term as a function of volume fraction (φav) from particle-laden DNS and
as a function of equivalent volume fraction (φeq) is plotted from the Smagorinsky model.
As the turbulence collapse happens at different φav and φeq values for particle-laden DNS
and Smagorinsky coefficient (figure 12), the φav and φeq are divided by the φav,cr and
φeq,cr, which are the critical loadings for DNS and the Smagorinsky model, respectively,
where turbulence collapse is observed. The Smagorinsky model predicts the feedback
term and the trend with reasonable accuracy for both Reynolds numbers. For Reb = 3300
in figure 15(a), the Smagorinsky model accurately predict the dissipation at low φeq, but
underpredicts particle dissipation near the φeq,cr. In the case of moderate Reynolds number
(Reb = 5600), the prediction by the Smagorinksy model matches with DNS, figure 15(b).
In the case of the Smagorinsky model, it is to be noted that particles act as a source/sink
in particle-laden cases depending on the local relative velocity. However, in the case of
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Figure 14. Difference of input energy (IE) and total dissipation (sum), which are plotted in figure 13,
diff = IE − sum. (a) Reb = 3300 and (b) Reb = 5600. The subscripts are as S, Smagorinsky model and DNS,
direct numerical simulation.
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Figure 15. The dissipation term in DNS due to particles and an equivalent dissipation in the Smagorinksy
model due to modified Cs are compared. Here, Cs is represented in terms of equivalent volume fraction (φeq).
(a) Reb = 3300 and (b) Reb = 5600. The volume fraction (φav or φeq) is normalized with a critical volume
fraction at which turbulence collapse is observed in individual cases.

modified average Cs, it will be a dissipative effect only. Therefore, further analysis is
required so that Cs can be expressed as a function of Reynolds number, Stokes number
and wall-normal distance to capture the effect of particles more accurately. This will be an
interesting future scope.

The mean velocity, the gradient of mean velocity and the pressure gradient across the
channel are plotted in figure 16. The plots are shown for the simulations performed with
the Smagorinsky model with varying Cs for Reb = 5600, and the particle-laden DNS for
Reb = 5600 and St = 210.93. The mean velocity profiles in figure 16(a,b) show that the
mean velocity decreases in the buffer region and increases in the channel centre with an
increase in Cs. However, the extent of decreases predicted by modified Cs is more than
that predicted by DNS, shown in figure 16(b). In the case of the mean velocity gradient,
a significant decrease is observed in the near-wall region for the Smagorinsky model
(figure 16c) compared with the DNS case (figure 16d). The Smagorinksy model captures
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Figure 16. The streamwise mean velocity (a) for Reb = 5600, (b) Reb = 5600, St = 210.93, mean velocity
gradient (c) for Reb = 5600, (d) Reb = 5600, St = 210.93, and pressure gradient (e) for Reb = 5600. The
streamwise velocity in panels (a,b) are normalized with unladen frictional velocity (uτ ). The mean velocity
and pressure gradient in panels (c–e) are normalized with fluid bulk velocity and channel width. In panels
(a,c), the simulations are performed with different Cs for the Smagorinsky model. Panels (b,d) show the results
from particle-laden DNS for St = 210.93. The pressure gradient for a range of φav and φeq is compared in panel
(e) where the legend is S, Smagorinsky model and DNS, direct numerical simulation.

the qualitative behaviour of the pressure gradient, which is observed in particle-laden
DNS, figure 16(e). Here, Cs is denoted in terms of the equivalent volume fraction (φeq).
Thus, the variation of Cs in the Smagorinksy model captures the effect of particles
qualitatively, and further analysis will lead to new LES models in the future.
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The particle statistics are also presented for both the Reynolds numbers, as shown in
figures 17 and 18. It is worth noting that the simulations to predict the particle properties
are performed as one-way coupling. Modulation of fluid properties due to the presence of
particles is embedded in our new modelling technique through the modified eddy viscosity
term. The particle mean velocities predicted by LES match well with the DNS results for
a range of volume fractions and the velocity profiles are flat across the channel width,
as shown in figure 17(a) for Reb = 3300. The unladen mean fluid velocity for DNS is
also plotted. It is observed that the particles lead the fluid in the near-wall region while
lag in the channel centre. The particle fluctuations scaled with averaged fluid velocity
fluctuation are plotted in figure 17(b,c). The streamwise particle fluctuations are higher
near the wall and decrease away from the wall. The wall-normal particle fluctuations
are flat across the channel width. The streamwise velocity fluctuation decreases, while
wall-normal fluctuations increases as the solid loading is increased. This happens due to
increased particle collision frequency and the transfer of momentum from the streamwise
direction to the other directions. The relative particle fluctuations predicted by the modified
Smagorinsky model (present model) deviate by a maximum of 20 % compared with
the DNS results for lower volume fractions. Near the critical loading, the deviation
increases as the DNS predicted fluid fluctuation is much lower than that predicted by
the LES. The particle concentration scaled with the average value is plotted along the
wall-normal direction. The normalized particle concentration profiles are almost flat across
the channel width and the profiles predicted by the LES model agree well with the DNS
results for a range of volume fractions, as shown in figure 17(d). For Reb = 5600, the
particle mean velocity profiles are also flat for a range of volume fractions, and the
modified-Smagorinsky model predicts the mean velocities with a deviation of less than
3 % compared with the DNS results. For Reb = 5600, a similar trend is observed for
the particle velocity fluctuations as for Reb = 3300 (figure 18). A maximum deviation
of 20 % is observed. The scaled particle concentration profiles are almost flat and are in
good agreement with DNS. The results for the prediction of second moments of particle
velocity fluctuations may be improved if an inhomogeneity and Stokes number dependence
are included in the Cs prediction.

5. Conclusions

Direct numerical simulations are performed for particle-laden turbulent channel flows at
two bulk Reynolds numbers and different Stokes numbers over a range of particle volume
fractions. It is observed that the local isotropy of small and large scales decreases with an
increase in particle volume loading. We report the variation of the apparent Kolmogorov
constant with an increase in volume loading at low and moderate Reynolds numbers
due to an increase in anisotropy of fluid velocity fluctuations. In the near-wall region
(y+ = 15), a decrease in the apparent Kolmogorov constant is observed when estimated
via the second-order velocity structure function, while it remains unaltered if estimated
using the compensated energy spectrum. Both analyses show no variation in the apparent
Kolmogorov constant at y+ = 50. Additionally, an almost linear decrease in the apparent
Kolmogorov constant is observed in the channel centre region for the considered Reynolds
numbers and Stokes numbers. The Kolmogorov constant increases from the wall to the
channel centre for unladen wall-bounded flows. However, the present study reveals that in
the case of particle-laden flows, the apparent Kolmogorov constant at the channel centre
is lower than that at the near-wall region (y+ = 15) for a high volume fraction. Thus, from
the present study, it can be concluded that the apparent Kolmogorov constant for turbulent
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Figure 17. The particle properties are plotted in the wall-normal direction for Reb = 3300 and St = 105.47.
The particle mean velocities (v̄x) are scaled with fluid bulk velocity (ū), the particle fluctuations are scaled
by average fluid fluctuations and the wall-normal distance is scaled with channel half-width (δ). The φeq
for the Smagorinsky model is represented by φ itself in the legends. (a) Mean velocity, (b) root mean
square of streamwise, (c) wall-normal fluctuations and (d) particle concentration. The particle concentration
is normalized with an average concentration across the channel width. Unladen DNS in panel (a) shows the
unladen fluid mean velocity for DNS. The legend in panel (c) is the same as that in panel (b).

channel flows is not only a function of wall-normal location but also a function of particle
volume loading.

The present analysis highlights two important points related to modelling particle-laden
turbulent flows. First, the increase in local anisotropy of fluid fluctuations with an increase
in particle loading depicts that inhomogenous anisotropic models will be a better choice
to capture the dynamics of particle-laden turbulent flows at high particle volume loadings.
Second, the variation of the apparent Kolmogorov constant as a function of particle volume
fraction is to be considered to predict fluid phase dynamics. In the proposed modelling
approach, the variation of the Smagorinsky coefficient is estimated from the variation
of the Kolmogorov constant. The simulations are performed to predict the dynamics of
the fluid phase without solving the particle phase equations simultaneously. The new
method captures the qualitative trend of turbulence attenuation and the sudden collapse of
turbulence similar to the behaviour observed for particle-laden turbulent flows. However,
the model quantitatively shows some deficiency in capturing the fluid phase fluctuations
and equivalent particle feedback dissipation. This happens as the Smagorinsky model is
based on isotropic scalar eddy viscosity formulation. Development of an anisotropic eddy
viscosity model as a function of particle loading, Stokes number, etc., will be an interesting
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Figure 18. Particle properties plotted in the wall-normal direction for Reb = 5600 and St = 210.93. The particle
mean velocities (v̄x) are scaled with fluid bulk velocity (ū), the particle fluctuations are scaled by average fluid
fluctuations and wall-normal distance is scaled with channel half-width (δ). The φeq for the Smagorinsky
model is represented by φ itself in the legends. (a) Mean velocity, (b) root mean square of streamwise,
(c) wall-normal fluctuations and (d) particle concentration. The particle concentration is normalized with an
average concentration across the channel width. Unladen DNS in panel (a) shows the unladen fluid mean
velocity for DNS.

future scope. It is worth mentioning that the present study is conducted at low and
moderate Reynolds numbers. Nevertheless, the demonstrated variations of the apparent
Kolmogorov constant in the case of low-Reynolds-number particle-laden turbulent flows
will be helpful in developing better turbulence models in LES and the stochastic modelling
approach.
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