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Abstract. Let F be a finitely generated non-elementary Fuchsian group acting in
the disk. With the exception of a small number of co-compact F, we give a
representation of g e F as a product of a fixed set of generators Fo in a unique
shortest 'admissible form'. Words in this form satisfy rules which after a suitable
coding are of finite type. The space of infinite sequences 2, of generators satisfying
the same rules is identified in a natural way with the limit set A of F by a map
which is bijective except at a countable number of points where it is two to one.
We use the theory of Gibbs measures on 2 to construct the so-called Patterson
measure on A [8], [9]. This measure is, in fact, Hausdorff 5-dimensional measure
on A, where S is the exponent of convergence of F.

1. Introduction
Let us begin with a picture and an example. Suppose F is the free group on two
generators a and b. We may obtain a representation of F as a Fuchsian group
acting in the unit disk D as follows: take any four disjoint circular arcs Ca, Ca-\
Cb, Cb-i, orthogonal to the unit circle S1, and let a, b be the linear fractional
transformations which map the exterior of Ca onto the interior of Ca-i, the exterior
of Cb onto the interior of Cb~

l, and map S1 to itself (see figure 1). Then the group
generated by a, b is F and F has fundamental region R, the region outside all four
circles.

Now every element of F has a unique representation as a reduced word in the
generators Y0 = {a, b, a~l, b~1}: namely, a word in which an element of Fo is never
followed by its inverse. Such words can be thought of as paths in the graph G(F)
of F. For consider the orbit F0 of OeD (we assume OeR). Join the vertices gO,
g'O if and only if g~1g'e Fo, and label the directed edge from gO to g'O by g~'g'.
Now if g e F there is a unique path in the graph from 0 to gO and this gives exactly
the representation of g as a reduced word.

It is clear geometrically that the ends of G(T) are precisely the limit set A of F,
and one can define a bijection 2 -» A where 2 is the space of infinite reduced words
in Fo. This map extends the natural embedding F -» F0 of F into D. The shift cr on
2 induces a map /: A-»A. / is described more transparently as follows: if xeA
then f{x) = ex if x e Ce-i, e e Fo. By construction / is conjugate to a Markov shift
of finite type. One also sees that x, y e A, x = gy if and only if fx =fmy for some
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FIGURE 1

«, m; in other words F and / are orfti'/ equivalent on A. If C<. is chosen to be within
the isometric circle of e, then / is expanding; more generally, one shows fN is always
expanding for some N (see § 5).

Generalization
One would like an analogous construction for any finitely generated Fuchsian group
F; this we make in the present paper. The main difficulty is, given a fixed set of
generators Fo of F, to describe a canonical representation of elements of F as words
in Fo. In addition, one wants the rules governing this representation to be of finite
type. For the free group this was trivial because the only relations were ee~x = 1,
e e Fo, In the general case we need an explicit solution of the word problem in F:
This is essentially the work of Dehn [4].

Using Dehn's methods we show that, except for a small number of co-compact
groups F (see theorem 2.7 for a precise statement), it is posible to specify a certain
canonical representation of each g e F as a shortest word in the generators Fo.
Under a suitable coding the rules governing this representation are of finite type.

The map F -» F0 extends to a map TT : 2 -+ A where "L is the space of infinite words
in Fo in canonical form and A is the limit set of F. n is surjective and injective
except at a countable set of points where it is two to one. The shift t ronS induces
a map / : A-» A which is orbit equivalent to F on A.

In [3] we constructed such maps / for groups F where D/T had finite area. For
example, when F = SL (2, Z), / was essentially the continued fraction transforma-
tion. However, we made a direct construction only for groups with very special
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fundamental regions; to pass to the general case we applied the theory of quasi-
conformal maps. Here the maps / are the same but the construction is quite different
and general; in fact for groups V, V with the same abstract generators and relations
the spaces of infinite words 2 r , 2 r are identical and the induced map Ar-»Ar-
exhibits a quasi-conformal deformation of the limit sets. It is amusing to note that
Dehn's solution of the word problem (1912) is essentially the same as the f-
expansion rules derived in [3].

In the last section we restrict attention to groups T with no parabolic elements.
We show that there exists N e N so that fN is uniformly expanding. By applying
the theory of Gibbs measures [1] to £ we show that there is a probability measure
/ ionA and 0 < 8 < 1 so that:

(1) If </>(*) = -log \f'{x)\, x 6 A, then P(S<f>), the pressure of S<f>, is zero.
(2) The measure v which is a fixed point for the Perron-Frobenius operator of

<t> (see [1]) satisfies

dv
v is Hausdorff 5-dimensional measure on A and is also the Patterson measure
constructed in [8] and [9].

(3) (i is equivalent to v and is invariant and ergodic for /, hence ergodic for F.
(4) 5 = 1 if and only if A = S1.
(5) The Poincare series £ exp (sH(0, gO)), where H is hyperbolic distance,

has exponent of convergence 8 and diverges at s = 8.
None of the results of the last section are new except the method of construction

of n (and of course the invariance of //, with respect to /) . Otherwise everything
is contained in [8] and [9]. We should also mention the work of Floyd [5] in which
a map similar to our IT is constructed from an abstract completion of the space of
finite words in Fo onto A.

The author would like to thank Paddy Patterson for conversations which gave
birth to the idea of a connection between his measures and Gibbs states, and
Dennis Sullivan for ideas and encouragements too numerous to mention.

Preliminaries
Let us recall briefly the relevant facts about Fuchsian groups acting in the unit disk
D = {z e C: |z|< 1}. Such a group is by definition a discrete subgroup of the group

of conformal automorphisms of the disk. Its limit set A, the set of accumulation
points of orbits, is a subset of the unit circle S1 ={z : \z\ = 1}. Elements of Y are
called parabolic, hyperbolic or elliptic according as they have one or two fixed
points on S1, or one fixed point in D. We shall always make the assumption that
F is finitely generated.

With the metric ds = 2\dz\/(l-\z\2), D becomes a model for non-Euclidean
geometry in which the straight lines are circular arcs orthogonal to 51. By a
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fundamental region for F we mean a geodesically convex polygon R QD with a
finite number of sides (possibly including arcs of S1), such that no two interior
points of R are conjugate under F and every point in D is conjugate to a point in
R. Many such fundamental regions exist for any given F. Each side s of R n D is
identified with another side s', by an element g(s) e F. The set {g(s): s e dR} forms
a symmetric set of generators for F ([6], § 23).

Let vi be a vertex of R and s\ an adjacent side; then v2
 = g(si)(vi) is another

vertex and s2 = g(si)si an adjacent side. Let s'2 be the other side of R adjacent to
s2. Let vj, = g(s'2)v2, s3 = g(s'2)s'2, and so on. Eventually {vn+u s'n+i) = (vi, Si). Then
g(s'n) • • • g(si) fixes v\. If V\<ED, g(s'n) • • • g(si) is elliptic and has order veN;
otherwise, if vx e S1, it is parabolic ([6], § 27). The relations [g(s'n) • • • g(si)]" = 1
for all elliptic vertices v, form a complete set of relations for F [7].

The graph G(F) of F may be represented as a net in D. The vertices are the
points gO, g e F (we may clearly assume 0 is not an elliptic fixed point so that
g1—»g0 is bijective), and the edges are the directed lines joining vertices gO, g'O
for which g~xg' e Fo. Such an edge we label g~xg'.

Relations in F correspond to closed paths in G(T). Regions bounded by edges
of G(F) with no edges intersecting the interior we call polygons. If L is a region
bounded by edges we write \L\ for the number of polygons in L, and dL for the
boundary of L. If S cdL is a union of edges we write \S\ for the number of edges
in S.

We always label arcs on S1 in the anticlockwise direction, so that [FO] or (PQ)
means the closed or open interval of points between P and Q moving in an
anticlockwise direction. We write \PQ\ for the length of the arc [PQ].

2. The graph of F
Suppose F is a finitely generated Fuchsian group with a symmetrical set of generators
Fo obtained from a fundamental region R as described above. The relations in F
are of the form

C, = <?,-,- ••<?,,., i = l,...,k, e,eFo.

Any occurrence of generators which occur consecutively in the same order in some
C, we shall call a cycle. An occurrence of more than [rjl] elements of Q in order
we call a long cycle. Occurrences of r, - 1 or r, - 2 elements in order we shall denote
F or F~ cycles respectively.

Any g e F has many representations g = e\... en, e,6F0. We call such a rep-
resentation shortest if it contains a minimum number of generators. Shortest
representations obviously contain no occurrences ee~x, e 6 Fo. Moreover, they
contain no long cycles, for a cycle in C, of length greater than [n/2] can be replaced
by a cycle of length less than [r,/2], using the relation C, = 1.

By a chain in G(T) we mean a sequence of polygons Ph l < / < n , such that
\dPjr\dPi+i\ = l, l < / < n , and such that P/r\Pk = 0, fc-/>2, unless possibly if
Pj+u Pj+2, • • •, Pk-i all have three or four sides. Let L be a chain and let V, W be
vertices of Pi, Pn not lying in P2 or Pn-i. There are two paths in dL joining V to
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V

dLR

FIGURE 2

W. We call the clockwise path from V to W the right boundary, denoted BLR, and
the anticlockwise path the left boundary, denoted 8LL, see figure 2.

In this section we show that, except for a small number of exceptional groups
F, any two distinct shortest representations of g e F are opposite boundaries of a
chain in G(F). The argument follows the ideas of Dehn [4]. We begin with the
assumption that at least five edges meet at a vertex of G(T) and that all polygons
in G(T) have at least five sides. We shall then modify the argument to cover certain
other groups with smaller numbers of generators or shorter cycles, and to include
all non-co-compact groups.

LEMMA 2.1. Let L c G(F) be a bounded simply connected union of polygons, so that
dL has no self-intersections. Then there is a polygon P<=L so that dP n dL has exactly
one connected component.

Proof. Suppose the result is not true. dL is topologically a circle and is the union
of the connected components of dP n dL for polygons P^L. Join components C,
C" corresponding to the same polygon P by an arc A(C, C") lying in
P - {P' c L, P 7^ P'}. To each component C is associated at least one other com-
ponent belonging to the same polygon P. Therefore at least one pair of arcs A, A'
lying in distinct polygons P, P' must intersect, which is impossible. •

MAIN LEMMA 2.2. Suppose that in G(T) at least five edges meet at a vertex. Let L
be a simply connected region in G(T) so that dL has no self-intersections. Then either:

(i) | L | = l ; < v

(ii) L is a chain and the two end polygons have Fcycles in dL; or
(iii) dL contains at least three disjoint cycles of length F~.
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( l) (2)

FIGURE 3

Remark. For later convenience, we mark the points in the proof which require
particular hypotheses on Y with a superscript'"'.

Proof. The steps are illustrated in figure 3.
Let LocL be a polygon chosen as in lemma 2.1 such that dLonSZ. has one

connected component. Let L\ be the union of all polygons in L which have a vertex
in common with Lo, but excluding Lo. Let R1=LouLi. Inductively define Ln to
be the union of all polygons in L with a vertex in common with Ln-\, but not

N

contained in Rn~2, and let Rn =Ln uRn~i. Then L — U Li, say.
;=o

It is clear that if |L,| = 1, / = 1 , . . . , N, then L is a chain and (ii) holds. Otherwise,
suppose |£,| = 1, / = 0,...,/", but |Lr +i |>l . Choose a polygon PczLr+1 so that
S = Rr^iP is a chain. Now choose another polygon ? ' c i r + 1 so that P' nS^ 0 .
Since more than four edges of G(T) meet at a vertex/1' P' can be attached to 5
along only one edge.

In adding P' we reduce an F cycle in dS to an F~ cycle and add an F cycle in dP'.
We now build up L by successively adding all polygons in Lr+\, then all in Lr+2,

and so on. To form Lr+\, we first add all polygons with an edge in common with
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Lr, then those with only a vertex in Lr, making sure that at each stage the polygon
P we add has at least one edge attached to the previous figure L'.

It is clear that in adding a polygon P to an edge of Lr we destroy at most one
F~ cycle in dL' and add an F cycle in d(PuL').i2) (This uses the fact that more
than three edges of G(T) meet at a vertex.)

If we add a polygon P attached to Lr at one vertex and to a polygon P' <= Lr+\
which has an edge in common with Lr, then we destroy at most one F~ cycle in
dP'ndL' but add an F cycle in dP.(3) (This uses that more than four edges meet
at a vertex.)

Since at least five edges of G(T) meet at a vertex/4' the only other possibility is
that we add a polygon P attached to Lr at one vertex V in such a way that the
edges of P at this vertex are one or both attached to polygons P', P"<=Lr+i, such
that at most one of P', P" has an edge in Lr. Therefore we add at least an F~ cycle
in dP and remove at most one from dL', in the polygon P' which was joined to Lr

along an edge. •

COROLLARY 2.3. / / at least five edges meet at a vertex of G(V) and every polygon
in G(T) has at least five sides, then the boundary of any bounded simply connected
region L with dL non-self-intersecting contains at least three long cycles, unless L is
a chain.

We now allow an arbitrary number (necessarily >3) of edges at a vertex in G(T).

LEMMA 2.4. Suppose that in G(T) at least three of the polygons meeting at a vertex
have at least seven sides. Let L be a bounded simply connected region in G{T) so
that dL has no self-intersections. Then either:

(0 \L\ = \;or
(ii) L is a chain; or

(iii) dL contains at least three disjoint long cycles.

Proof. We copy the proof of 2.2. Starting with Lo, continue forming regions
Ro, Ri, • • • until Rr is a chain but Rr+1 is not. Add P <= Lr+1 so that S = Rr u P is a
chain as before.

Suppose the adjacent polygon in Rr to P is Q. Now take P'<^Lr+\, attached to
R,uP along at least one edge.

If P' is attached only along an edge of Q we have obviously added an F cycle
and destroyed nothing. If P' is attached only along an edge of P with a vertex
V e Q, we have either continued the chain, if \dP\ = 3 or 4, or we have not destroyed
anything. If only three edges meet at a vertex, then P' may be attached along an
edge of P and of Q. But in this case, as all polygons have at least seven sides, we
have added an F~ cycle and reduced an F cycle to an F~ cycle.

Now if \dP\ = 3 or 4, P' continued the chain. Repeat the above argument with
another polygon P" <= Lr+i, keeping the same vertex V. Again either \dP'\ = 3 or 4,
and we continue the chain; or we add an F cycle and destroy nothing, or P" is
attached along an edge of P' and of Q. In the last case, four edges meet at V and
since \dP\ = 3, \dP'\ and \dF'\ are greater than seven so adjoining P" adds an F~
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cycle and destroys nothing. In general, it is clear that we can continue adjoining 3
or 4 sided polygons at V until we reach the last two which both have more than
7 sides, so we have finished. This deals with (1) in lemma 2.2.

We now proceed building up L as in lemma 2.2, but assume only that at each
stage the figure we have is either a chain or its boundary contains at least three
long cycles.

At (2) there is only a problem if only three edges meet at a vertex. Since then
all cycles have length at least seven, adjoining a polygon destroys at most one long
cycle and adds another.

The situation of (3) does not arise with only three edges at a vertex. If there are
four edges at a vertex, the added polygon P may be attached along two edges to
polygons P', P" in Lr+1, say. But then at most one of \dP\, |dP'|<7, so adding P
destroys at most one long cycle; and in this case |dP| > 7 so a new long cycle is added.

Finally at (4), the situation only arises when at least five edges meet at V, and
all polygons meeting at V are attached. Let the polygons at V in Lr+l with edges
in Lr be P', P". Attaching the remaining polygons at V we destroy zero, one, or
two long cycles in dP', dP" according as neither, one, or both of P', P" has less
than seven sides. Of the m polygons we add, in these cases at least zero, one or
two have seven or more sides respectively, so that we always add at least enough
long cycles to compensate for the ones removed. •

LEMMA 2.5. / / Y is a non-co-compact group then any bounded simply connected
region with non-self-intersecting boundary is either a chain or contains at least three
Fcycles.

Proof. The condition Y non-co-compact means that no vertex of G(Y) is in the
interior of L, because L is bounded and at each vertex of G(Y) is at least one
polygon with an infinite number of sides.

We build up chains just as in lemma 2.2. All problems arise when the polygons
we attach are attached to more than one edge of the previous figure. But if we
follow the procedure in 2.2 we note that this can now never happen. •

Remark 2.6. The reader may legitimately ask about the groups not included in the
above lemmas. But it is easy to see that for at least some of these groups, there
are non-chains of arbitrary large size whose boundaries contain no long cycles.
See, for example, figures 4 and 5.

From now on we shall refer to graphs satisfying the hypotheses of any of corollary
2.3, or lemma 2.4 or 2.5 as non-exceptional.

What we have proved is:

THEOREM 2.7. Let Y be any finitely generated Fuchsian group with non-exceptional
graph G(Y). Let L<=G(T) be any bounded simply connected region so that dL has
no self-intersections, and so that L contains at most two long cycles. Then L is a
polygon or a chain.
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FIGURE 4

FIGURE 5

It is easy to deduce from this result that any two distinct shortest representations
of g € T must be opposite boundaries of a chain. This fact is exploited in detail in
the next section.

3. The word problem
From now on we restrict our attention entirely to non-exceptional graphs. We
specify a set of rules for admissible sequences of generators in Fo and show that
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any element in T has a unique shortest admissible representation as a product of
generators in To-

We keep to the notation and terminology introduced above. A cycle E always
consists of a connected part of the boundary of a polygon in G(V). If the generators
occur in clockwise order round P we call E a right cycle; otherwise a left cycle.
Suppose P, Q are polygons with a common edge, and that A sdP, B ^dQ are
both right or both left cycles in dP, dQ with one common vertex (the end of A and
the beginning of B). Then A and B are called consecutive right or left cycles. It
is clear that the right and left boundaries of a chain are sequences of consecutive
right and left cycles (we include the case when the chain contains three or four
sided polygons which meet one side of the chain only in a point).

The point of the next definition is to give a means of identifying the boundaries
of certain special chains which correspond to shortest paths in G{T).

Definition 3.1. A sequence of consecutive right cycles A^A2 • • • An, where A, lies
in the boundary of a polygon with r, sides, is called extreme if:

(i) |Ai| = \r\ if T\ is even, |(/"i — 1) otherwise;
(ii) |A, | = |(r, - 2) if r, is even, or |(r, ± 1) — 1 if r, is odd, for i > 1; and

r

(hi) 0< £ <r(Ai)<l, l < j < n , where cr(Ai) = l if rl is even, 0 otherwise,
i = l

<r(Ai) = 0 if n is even, ±1 if r, is odd, and |A,| = j(r,-.± 1) - 1 , i > 1.
A sequence A i • • • Anx, where A i • • • An is an extreme right sequence and x e Fo

is the element next following An in right-hand cyclic order is called an excessive
right sequence.

A sequence of consective left cycles Bi • • • Bn, where S, is part of a polygon of
r, sides, is called extreme if:

(i) \B\\ = \rx - 1 if rx is even, \(rx — 1) otherwise;
(ii) |-B,| = \(rt - 2) if r, is even, or |(r, ± 1) — 1 if r, is odd, for i > 1; and

r

(iii) - 1 < X r(Bi) < 0, 1 < / < n, where T(B\) = — 1 if ri is even, 0 otherwise and
i = \

T(Bi) = 0 if n is even and ±1 if r, is odd and \Bt\ = \{r,,± 1) - 1 .
A sequence B\ • • • Bnx, where B\ • • • Bn is an extreme left sequence and x

follows Bn in left-hand cyclic order, is called an excessive left sequence.
We can now state the rules for admissible sequences as:

Definition 3.2. A sequence e\ • • • en of generators in To is called admissible if:
(i) ee~l, e e To, never occurs;

(ii) there are no blocks consisting of excessive right- or left-hand sequences.

The idea of these rules is that, whenever there is a choice of shortest paths, the
paths bound a chain and we choose the right-hand boundary.

One verifies immediately that an admissible sequence contains no long cycles
and no left cycle of length \\Ct\. Thus we have in particular chosen the right-hand
path round a polygon. If e\ • • • en is any path in G(T) we may without increasing
the length replace it by a path in which there are no cancellations ee~ , no long
cycles, and no left cycles of length IICl- Such a representation we call standard.
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LEMMA 3.3. Let e\ • • • er be an admissible sequence. Then e\ • • • er is a shortest
representation of g = e\- • • er.

Proof. We can regard the sequence of directed edges e\,..., er from 0 to gO as a
path in G(T). Suppose that / i • • • /, is also a path from 0 to gO and that ( < r . We
may assume / i • • • /, is in standard form. We may also assume e\¥^f\ (otherwise
keep cancelling on the left until e, # / ; ) . Suppose that / i • • • fp = e\ • • • es but
/ i "••/<! ^ei • • • e, for q + t<p+s. Then the paths e\ • • • es, f\ • • • fp from 0 to hO,
h = e\ • • • es, only meet at 0 and hO. Apply theorem 2.7 to the region L enclosed
by these paths. Since e\ • • • es, / i • • • fp are in standard form dL can contain at most

N

two long cycles and is therefore a chain LJ Pi- Write dLR, BLL for the clockwise

and anti-clockwise paths from 0 to AO respectively, and dPR =a i ) , n5L R , dPf'=

Suppose first / i • • • fq is 9LR and ei • • • es is dLL. Then

\dPR | < \\dPx | if \dPx | is even

and

because otherwise f\ • • • fp is not a shortest path. Likewise, since e\ • • • es is
admissible,

l ^ l ^ l l ^ i l - l if \dPi\ is even

and

f h - l ) otherwise.

Adding, and using \dPR\ + \dP^| = | d P i | - 1 , we see we have equality in all cases.
Thus both dPR, dP\ are extreme, and

Let

dLR = dPf U • • • <JdPR, dL1;

and let

a(dLR)= i cr(dPR), r(dL^)= I r(dPf).
i=l i = l

Now assume inductively that for 1 < k < r < n, dLR and dLk are extreme; and that

\dLR | - \dLi\ = l\o-{BLR) - T(dL£)\.

In particular, we have

|aLf_,|-|3Lj--i| = l o r O .

Suppose first \dP,\ is even. Since / i • • • fp is shortest, and

|aLf_,|2=|aL^-i| + l, \dP

Since e\ • • • es is admissible,
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Adding, we see we have both equalities. It is now easy to check that the inductive
step follows.

Suppose |dPr| is odd. A similar argument shows that if

\dL^\-\dL^\ = l,

\dP?\=U\dPr\-3) and \dP?\

and that otherwise

? | l ) and |d/»f| =
One checks again that the crs and TS work.

Finally, adding Pn we obtain a contradiction: if \dLR-i\-\dL^-i\ = 0 we have

Suppose |dPB| is even. Since dLL is admissible, \dP^\<^(\dPn\-2). Since dLR is
shortest, \dP* | == \\dPn |. Adding, we must have equality. But then \dLR \ > \dLL\ which
is not the case.

If |dPB| is odd, \dPn\<l(\dPn\-3) and |3P^|<2(|3Pn|-l). Adding gives a contra-
diction.

A similar argument works if |dLB_i | - \dLn-i | = 1.
We conclude e\ • • • es was a right-hand boundary. Going through an exactly

similar argument again shows that e\ • • • es is shortest. •

LEMMA 3.4. Let /i • • • fs be any sequence which is a shortest path from 0 to gO,
S ~ / i ' ' ' fs- Then there is an admissible sequence e\ • • • es with e\ • • • es = g.
Proof. We may assume /i • • • fs is in standard form. If it is not admissible it must
contain an excessive sequence of consecutive cycles. This sequence forms one
boundary of a chain of polygons P\,... ,Pn joining VeP\ to WePn. Keeping the
notation of lemma 3.3, one verifies that dLR, dL^ are both extreme paths and that

\dLR | - \dLr\ = k\<r{dLR) - T(dLf)\, 1 < r < n.

Suppose first that the excessive sequence in /i • • • fs is dLR. Then cr(dLR-i) = 1,
|3P«| is odd and |aP*|=2(|aPB|-l). But then |3LB|-|3LB| = 1 so/j • • • fs was not
shortest.

So the excessive sequence must be the boundary dLB. Then cr(dLB_i) = 0, \dPn\
is odd and |3PB | = 2(|3PB| -1) . But then \dLR\ = |dLB | and dLR is extreme, so we can
replace dLB with the equal admissible path dLR. •

THEOREM 3.5. If a finitely generated Fuchsian group T has non-exceptional graph
G(T), then every geT has a unique shortest admissible representation as a product
of generators in Fo.

Proof. By lemmas 3.3 and 3.4 it is enough to show that, if e\ • • • es =/i • • • fs are
both shortest admissible sequences, then they are equal. By the argument of lemma
3.3 we may restrict to sequences e\ • • • es = f\ • • • fs where ex • • • ep ̂  f\ • • • f,, p + r <

N

2s. As in that lemma these sequences bound a chain L = (J P- Following the

argument in 3.3, we see that, since/i • • •/, and e\ • • • es are both shortest and both
admissible, they must both be 8LR. But then they are equal. •
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4. Infinite words and the limit set
We keep to our assumption that F has a set of generators Fo with non-exceptional
graph G(F). We call a word x\ • • • xn, xt e To, admissible, if it satisfies definition 3.2.

Let 1F = {x\ • • • xn: x, £ Fo, x\ • • • xn is admissible}. By theorem 3.5, the natural
map TTF :1F ^ D, nF(xi • • • xn) = x\ • • • xn0, is a bijection onto TO.

Let
2 = {(x,)*i: *i • • • xn€2Fforalln}.

We aim to extend nF to a map IT : 2 -» A, the limit set of F.
For x=x\- • • xne.~LF write |JC| = n. For w, u e£> let H(w, u) be the hyperbolic

distance of u, v and £•(«, v) the Euclidean distance.

PROPOSITION 4.1. (i) / / F has no parabolic elements, there is a constant a > 0 so that

H(O,xO)>a\x\ forxe1F.

(ii) / / F has parabolic elements, there are k, n0 e Ĵ so that

H(0, xO)>2log\x\ — k, whenever xeJ.F,\x\> no-

Proof. This is [5], § 4. •

Put a metric p on J.F as follows:
if F has no cusps, p(x, y) = exp (-n) if x, = y,, / < n, xn+i # yn +i ;
if F has cusps, p(x, y) = n~2 if x, = yi, / < n , xn+i * yn+1.

PROPOSITION 4.2. The map TTF:1F^D is continuous. If F has no cusps, E(xO, y 0) s
yp(x, y)" for some y, a > 0.
Proo/. The formula ds = 2\dz\/(l - \z\2) for the hyperbolic metric gives

, PeD.

Let Dr = {z eC: \z\sr}, r< 1, and suppose the geodesic arc connecting P,QeD
lies entirely outside £>r. Then

Since hyperbolic circles are convex (they are off-centre Euclidean circles), if
H(0, P) > L then B%(P) s Bf(P), where B%, Bf are hyperbolic and Euclidean balls
of radius K, e, and

e = \K sech2 \{L - K) < c exp (-L)

where c is independent of L.
Let K = max {//(0, eO): e e Fo}. Suppose F has no cusps and p(x, y) = exp (-«),

x = xi • • • xN, y = yi • • • yM 6 1 F . Then

N-l

E(xO, yO) < X ^ U i • * • xn+r0, xi • • • xn+r+i0)
r = 0

M - 1

+ I £(yi • • • yn+ro, yi • • • yn+r+i0).
r = 0

By proposition 4.1,
H(0, xi---xn
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and so

BK(XI • • • Jcn + r0)cBf (Xl • • • Xn+r0), where 0 = c exp ( -a(n +/•)).

Since / / (x i • • • xn+r0, x\ • • • xn+r+i0)<K,

E(xi • • • xn+r0, xi • • • xn+,+i0)<c e x p ( - a ( n + r ) ) .

A similar relation holds for y. Thus i?(jcO, yO) < y exp (-an) = yp(x, y)a for suitable
y. If F has cusps a similar argument gives

for sufficiently large n.
The metric p F extends to a metric p on 1 u 2 F in a natural way and makes 2 a

compact metric space.
TTF extends to -IT : £ -»I? and it is clear that TT(2) £ A. D

We now investigate the map ir more closely. First observe:

LEMMA 4.3. Suppose geT0,e = eie2 • • • e S and geie2 • • • 6 2. TTien 7r(geie2 • • •) =
g7r(eie2 • • • )• Afore generally, if exe2 • • • el, / i / 2 • • • fmen+1 • • • e S , and /i eT,
hei- • • en=fi- • • fm, then hir(eie2 • • •) = TT(/I/2 • • • )•

Proo/.

w(geie2 • • •) = lim •n{geie2 • • • en0)
n-*oo

= g lim ir(e\e2 • • • en0)
n-»oo

= gw(e).

The second statement is proved similarly. •

Any element e = (e,)/*Lie£ can be thought of as defining an infinite path
0, eiO, e i e 2 0 , . . . in G(T) which converges to n(e) € A. Two paths, e, f never meet
in D as this would contradict the uniqueness of representation of g e Y by elements
of SF.

By an extreme right or an extreme left path in 2 we mean a sequence (ei)T=i
such that every finite sequence e\ • • • en, is an extreme right (or left) sequence
whenever en, en+i are elements of consecutive cycles; or is the right or left boundary
of a polygon in G(T) with an infinite number of sides. Geometrically this means
that starting at 0 along the edge d , we turn as far as possible to the right (or left)
at each stage, subject only to the constraint that the path be admissible. More
generally, if a\ • • • ap is an arbitrary sequence in LF, we call the sequence
a i • • • ape\ • • • e 2, the extreme right path following ai • • • ap if at each stage after
ap we turn as far as possible to the right (left) subject to the constraint that
a\ • • • ape\ • • • en be admissible. We denote the endpoints of the right and left
extreme paths following «i • • • ap, p(di • • • ap) and A(ai • • • ap) respectively.

For e i - - - e n e 2 F , let Z(ex • • • en) = {x el: xx = eu ..., xn = en}, and let
• • en), A(ei • • • <?„)].
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PROPOSITION 4.4. n(Z(ei • • • en)) c I(d • • • en) whenever e\ • • • en e 1F.

Proof. Let a,be1 be the extreme right- and left-hand paths following
0, e\0,..., ei • • • en0 respectively. Suppose eeZ(ei • • • en). If e coincides with a
or b the result is obvious. Otherwise there exists m > n so that a, = et, i < m, and
am+i 5̂  em+i. Since a is an extreme right path, em+\ must point to the left of am+\.
Having diverged from a, e cannot meet a or b again in D. This forces the result. •

PROPOSITION 4.5. \I(d • • • en)\ -* 0 as n -» oo.

Proo/. By proposition 4.2,

r=O

or

£(p(«i • • • en), \(ei- • • en)) ̂  y exp (-an)

according as F has or has no cusps. •

It is clear by an argument similar to that of proposition 4.4 that the intervals /(e,),
/(£,-), eit ej€.Y intersect in at most one point, and this only if A(e,) = p(e/) or vice
versa. It is also clear that

• • en)s/(«i • • • em), m<n,

whenever e\ • • • en € 2F.

PROPOSITION 4.6. n is bijective except on pairs of points e , / e 2 such that e, =/i,
/<m, em+i^/m+i, p(em+ij = A(/m+i) «n^ such that e,f coincide with the extreme
right and left paths following d • • • em+i andf\ • • • fm+\.

Proof. It is clear that the images of such points coincide.
Suppose tr(e) = vif), e,fe1, and suppose e{=U i^m, em+i^/m+i. Then by

proposition 4.4, n(o-me)el(em+1) and 7r(erm/)e/(/m+i).
By lemma 4.3, ir(o-me) = em

1 • • • ei1ir(e) = ir(amf). Since em+i^fm+1, one or
other pair of endpoints of I(em+i), /(/m+i) must coincide at the point ir(o-me).
Hence the result. •

LetO= U /(a) and define/: Q-»Q by / (xHa" 1 * for xe / ( a ) .

If I(a)nl(b) ^ 0 , a # b, we allow / to be two-valued at the common endpoint.
It is clear that ir{ae) =f(ir{e)), e € 2, provided that we take the appropriate value
for / at endpoints.

OO

PROPOSITION 4.7. A s (~) f'"Q. {We always take the natural value for f at end-
points.) n'°
Proof. Since A is F invariant and / is piecewise equal to elements of F it is enough
to show Ac(J,

Suppose xeA, x}LQ. Let p(a), \(b) be the endpoints of the closest intervals
I(a), I(b) of Q to x, so that x e (A (a), p(b)) and (A (a), p(b)) n Q = 0 . Since xeA
there is a point gO in the open region T enclosed by the extreme left-hand path
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following 0, aO (ending in A (a)), the extreme right-hand path following 0, bO
(ending in p{b)), and the arc [A(a), p(b)]. But then gO is connected to 0 by an
admissible path which must lie entirely in T. This is impossible, since such a path
must start along 0, aO or 0, bO would have to lie to the left of the extreme left
path from a and the right of the extreme right path from b. •

PROPOSITION 4.8. (i) Ifeo---ene1F then

/(e0 • • • en-i) nf^Iiei • • • en) = I(e0 • • • en).

(ii) Ife0 • • • en-ie1Fbute0 • • • en&2-Fthenf"I(e0 • • • en-i)nl(en) is either empty
or consists of only one or other endpoint ofl(en).

Proof, (i) f\ne0 • • • en-i) - eo1- Suppose first e0 • • • en does not lie on the extreme left
path following 0, e00. Since A (e0 • • • en) is the end of the extreme left path following
0, eo0,..., e0 • • • en0, /(A(e0 •••«„)) is the end of the extreme left path following
e^10,0, eiO,. . . , e\ • • • en0. A(ei • • • en) is the end of the extreme left path following
0, CiO,..., e-i • • • en0. Since e0 • • • en is not extreme, /(A(e0 • • • en)) = \(e\ • • • en).

Applying similar reasoning to the right endpoints, it is clear that if e0 • • • en is
neither the extreme right nor the extreme left path following e0 • • • en-\, then

and

f^Iiei- • • en)nl(eo- • -en-i) = I(e0- • • en).

Now suppose e0 • • • en is the extreme left path following 0, eo0. Then

A(e0- • • en-1) = \(e0- • • en),

and

eo JA (e0 • • • en) € [p(ei • • • en), A (ei • • • en)].

Since neither e0 • • • en~i nor e0 • • • en can be extreme right paths, by the reasoning
above

eolp(eo- • • en) = p(ei • • • en)

and

e^pieo • • • en-i) = p{ex • • • en-i).

Since

it is easy to see that this forces

rll(e\ • • • en)n I(e0 • • • en-i) = I(e0 • • • en).

We argue similarly if e0 • • • en is an extreme right path following 0, eo0.
(ii) Suppose e0 • • • en-\ e SF but e0- • • en£ 1F.
Using (i) repeatedly,

f _ - i - i

/ |/(e0--•«„_!) — en-i • • • e0 .

fip(e0 • • • en-i)) is the endpoint of the extreme right path following e^-i • • • e^O,
e^-i • • • ei10,..., 0. Since e0 • • • en£ 1F, the edge 0, en0 lies either to the right of
the extreme right path following eZ-i • • • eo 1 0 , . . . , 0 or to the left of the extreme
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left path. Suppose for definiteness we are in the first case. Then one sees that the
points p(en), \(en), f" (p(e0 • • • en-i)),f(X(e0 • • • en-i)) occur in anticlockwise order
round S1 and the only possible coincidence of points is \(en)=f"(p(eo • • • en-i)).

COROLLARY 4.9. (i) If e0 • • • en e 2 F then H / rI(er) = I(e0 • • • en).
r = 0

(ii) If e0- • • en-\ e1 F , e0 • • • enf£lLF then (~\ f~rI(er) = 0 or is an endpoint of
I(e0 • • • en-i).
Proof, (i) This follows easily from 4.8(i) by an inductive argument.

(ii) Apply (i) to I(e0 • • • en-i) and then apply 4.8(ii). D

THEOREM 4.10. TT(S) = A = f l F'Q-
r = 0

Proof. We have already shown

Suppose x e (~) f'rI(er). By corollary 4.9(ii), either e0 • • • en e SF for each n, or there
r=O N

is an N so that ^0 • • • ^JV-I e 2,F, e0 • • • eN& 2 F and O / rI(er) = {x} is an endpoint

of 7(e0 • • • eN-i). Since endpoints of such intervals are by definition endpoints of
admissible paths in G(T), and hence in w(T), in the second case we have finished.

Otherwise, eoe\ • • -el. Let y = n(eoei • • •). Then y e /(eoei • • • en) for all « by
4.4 and x e 7(e0 • • • en) by 4.9. Since by 4.5, |/(e0 • • • en)\ -» 0 as n -* oo, x = y. D

REMARK 4.11. The above shows that the /-expansions of a point in A coincide
with the representation as a point in TT(2), except perhaps at endpoints of intervals
I(e0 • • • en). Further investigation would show these are exactly the points where /
is two-valued and where TT fails to be bijective, and in fact the two representations
agree everywhere.

Let W = {v(x) G A: x € 1, x = B\B2 • • •}, where (Bi)T=i is a sequence of consecutive
left or right cycles, and where B2B3 • • •, is extreme. W is finite and invariant under
<x, hence /(W) £ W, whichever value of / we choose. (We include the case when
B2B3 • • • is the left or right boundary of an infinite sided polygon in G(T), and the
case |Bi| = 0.)

THEOREM 4.12. 2 is conjugate to a subshift of finite type, by a map which is bijective
except at a countable number of points.

Proof. W includes the endpoints of all the intervals I(g), g e Fo, since these are
extreme left or right paths. Therefore W partitions Q into a finite number of
intervals 3s = {/,}f=i. Since f(W) s W, we have /(/,) n / , = 0 or /(/)) 2/y, for all /, j .
Let A = {(ir)7L0: / (4) 2/,r+1, r = 0 , 1 , . . . }. A is a subshift of finite type [1]. Write

= e e To if /(//) £ I(e). Define

^:A + X by *((/,))
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n

This is possible since (/r) € A implies f~l /~7,r contains more than one point for each
r = 0

n, so that by corollary 4.9, c^('o) • • • <M/«) £ SF. <A fails to be bijective only at points
where n(tl/(ir))e A has more than one /-expansion (relative to Q). But this is only
a countable set. •

Let E = {x € A: w is not bijective at x}.

T H E O R E M 4.13. f and T are orbit equivalent on A — E; i.e., ifx, y eA-Ethenx = gy,
g e F, if and only if f"x = fmy for some n, m s 0.

Proof. From the definition of / one has fx = fmy implies x = gy, g e T. Since YE c E,
it is enough to prove the converse for g e Fo. If x = 7r((e,)), (et) e 2, and for some
n, ge0 • • • en =f0 • • • fm where f0 • • • fmen+\ • • • e S then by lemma 4.3 one has y =
gx = gir((e,)) = TT(/O • • • fmen+1 • • •) so that / m ( y ) = w(en+ien+2 • • •) =f"(x).

Thus we only need investigate the cases in which the situation of lemma 4.3 fails.
This means that eo^g1, and that geo • • • en is excessive whenever eo • • • en is
extreme.

Suppose e0 • • • en is extreme and ge0 • • • en excessive. Then ge0 • • • en is the right
N

or left boundary of a polygonal chain L = LJ Pi, and g lies in the same polygon as
;=o

e0- Let C = g~1c0 • • • cs be the opposite boundary of L to e0 • • • en. Using the
notation of lemma 3.3, one verifies by an easy inductive argument that dL*-i,
3LN-I are both extreme and

Now taking all possible combinations in turn: C the right or left boundary; |dPjv|
odd or even; |dL£- i | - |d£/v- i | = O or 1; one verifies that either Cen+ien+2 • • - e l
or that gco • • • cs_i e 2 F , g~ Co • • • CS£1.F and n = s. For example, suppose that C is
the right boundary and \dL%-i\-\dLk-i\ = 0. Then if \dPN\ is even, \dP$,\ =
\(\dPN\-2), so IdPjvHll&Pjvl. and Cen+i • • • is admissible because cs^e~n\\ or
eo • • • en+i would be excessive, and Cen+i is not excessive because en+\ ^ e~n

x. If
\bPN\ is odd, \dPJi\ = l(\dPN\-3) so \dP%\ = U\dPN\ +1). Then n = s, g 'Vo • • • cn_i is
extreme and g~lc0 • • • cn is not admissible.

In the first case (Cen+\ • • - e £ ) , we are in the situation of lemma 4.3. Other-
wise consider enen+i---e1 and apply cn. Either there are tn\,m2 so that
fmi(enen+i • • • )=fmHcnen+i • • • ) , in w h i c h c a s e , s ince ge0 • • • en = c0 • • • cn,

7 \&0 ' * " ̂ n^n + l ' ) / V̂ *0 " * * Cn€n + \ * )

\ Clt tM -*- 1 * * " /

^~ I \@ € 4-1 * * * )

or we have «i and c'o • • • c'ni so that

cnenen+i • • • eni = c'o • • • c'ni, cn c'o • • • cj,,-i S I F , cn c'o • • • c'nif*1F-

On repeating this argument, either we eventually find fk(ge0 • • •) =f'(e0 • • •) for
some k, I, or we see that for infinitely many n, eoei • • • en is the left (or right)
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boundary of a chain in G(T) whose opposite boundary is also admissible, so that
e0 • • • en • • • lies in E.

Remark 4.14. The above proof also shows how to describe the action of F on A
as an action on 1. The effect of certain g 6 Fo on points in E is to 'flip' an extreme
left path into an extreme right path, and vice versa.

5. The critical exponent S
In this section we shall restrict our attention to groups F with no parabolic
elements (and of course with non-exceptional graphs). We show the existence of
a number S with the properties listed in the introduction. We keep the notation
of previous sections. We shall work mainly on the sequence space A. Let AF =

n

{io • • " in- Pi f~rI(ir) is an interval}. The corresponding cylinder sets in A we denote
r = 0

Z(i0 • • • in)-
Let

THEOREM 5.1. There exist N e N and /3>1 so that (fN)'(x) > /3 for allxef] f'Q-

Proof. Pick ;0 • • • /„ e AF. Let

F=f\m0-- • („> = ^(in-iY1 • • • *l>{ioYX-

Let

k = sup \f\x)lf{y)\.
x.ysO

For x, y e I(i0 • • • /„),

1J'(fr(x)) _ /"(£)(/'(*)-f(y))
f'ifiy)) f(f(y))

some gel(ir • • • in)

By proposition 4.5,

\I(ir • • • in)\ ^ y exp (-a(n -r)).
n

Hence X |1 -f'(fr(x))/f'(fr(y))\ is bounded independent of x, y or n and therefore
r=0

so is n \f'(frx)/f'(fry)\- Therefore
r = 0

|F'Ge)/F'(y)|£ci, x, yeI(i0- •• /„) . (5.1.1)

Since F:I(i0 • • • /„)-»/(/„) is a bijection,

f F'(y)dy = \I(in)\.
J / ( i 0 • • • i»)

Using (5.1.1),

c~lM{jo' • • in)~
l^\I{io- • • /„)!=£ cM(/o- • • L)'1 for some c > 0 , (5.1.2)
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where

M(i0 •••/„) = sup {\F'(x)\: x € J(i0 • • • /„)},

and using \I{i0 • • • in)\
s y exp (-an),

|F'(x) |>c2exp(an), xel{io •••/„). (5.1.3)

In particular, choosing c2 exp (aN) > 1 gives the result. D

Remark 5.2. We shall later need to modify this result and replace the intervals
I(io • • • in) by slightly larger intervals / ( / 0 • • • in), as follows. Given /(/)=>/(/),
I(i) eSP, a family of open neighbourhoods of /(/) , set / ( / 0 •••/„) = F~lJ(i0) where
F = (/'(/n)~

1 • • • iM'o) ' is an extension of the F in 5.1. Choose the /(/) small enough
that

\(fN)'(x)\ > p' > 1 for all x e /(/„ • • • iN).

We deduce that

for a constant ki, some A < 1 and all sufficiently large n. The proof of 5.1 then
shows that (5.1.1), (5.1.2), (5.1.3) all hold with different choice of constants and /
replacing /.

COROLLARY 5.3. There exists a constant a>0 such that Bs(x)^J(io • • • in) for
any x e I(i0 • • • in) and i0 • • • /„ e AF, where F = *l>{iny

l • • • if/Uo)'1 as above, and
8 = a\F'(xT\

Proof. Find e > 0 so that B e (y)s / ( / 0 ) whenever yel(io)s^. B,,(F
F-1J(io) = J{io • • • U whenever TJ sup {|F'(y)|: y e / ( i 0 • • • /„)}< e. Using (5.1.1)
gives the result. D

Define <^>:A->R by

LEMMA 5.4. <f> is Holder continuous on A, i.e. there are constants d>0, v<\ so
that \4>{x) — <f>(y)\sdvn+l whenever Xi = y,-, /' = 0 , . . . , n.

Proof.

M? !/'(*)!-log lf(y)ll =

<|y — x| sup
fix)

xn)\.

Now use the proof of 4.5. •
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We can now apply the theory of Gibbs states [1] on A to define S and /x (see
introduction).

n - l

Let Sn<t>(x) = £ (f>(o-rx) and note that for x eZ(i0 • • • in~i),
r = 0

Sn<f>(x) = -l

For s > 0, let

n

Zn(s<(>)= £ m(/0

where m(i0- • • iB-i) = inf {|/"'(JK)| :xeZ( i 0 • • • i»-i)}. By [1] p. 30,

= l im(l /n) log ZB(
rc»oo

exists and is called the pressure of s<l>. P(stp) is a decreasing function of 5 and
CO

X Zn(s<t>) converges if P(s<(>)>0, diverges if P(s(f>)<0. Y.Zn(s<f>) is a Dirichlet

series, so there must be a unique S so that P{8<j>) = 0.
According to [1] there is a probability measure fi on A such that:

There are constants K\, Ki so that

exp {8

whenever io • • • ' n - i e AF and x e Z(/'o • • • in-i)-

/j, is invariant and ergodic for o\ (5.4.2)

There is a positive Holder continuous function h on A, and a probability measure
v, so that n = hv and i?/i = /i, £6*v = v, where SB is the operator

&f(x)= 1 exp (<£(y))/(y), (5.4.3)

/ a function on A, andif* the dual of if. Notice that (5.4.1) and (5.4.3) use P(S<f>) = 0.

Applying (5.4.3) to the characteristic function of Z(i0), where a0 = if/(i0), we obtain

\s whenever xef(I(a0)). (5.4.4)j ( x )
dv

ApplyingF=/" toZ(/0 • • • /n_i) and using (5.4.1) and (5.1.1) we obtain constants
K[, K'2 so that

- 1 - \I(io---in-l)\
i

THEOREM 5.5. The Hausdorff dimension of A is S. The S-dimensional Hausdorff
measure of A is finite and equivalent to ft.

Proof. The proof is essentially that of lemma 10 of [2]. One has only to read
J(io • • • in) for D(x0 • • • xn) and A for y, and replace lemma 9 by corollary 5.3. •

PROPOSITION 5.6. For g e T and xeA, {dg*v/dv)(x) = \g'(x)\s. fj. (and hence v) is
ergodic for T.
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Proof. Let x = ao«i • • •, gx = bobi • • • be the /-expansions of x, gx relative to Q.
By theorem 4.12 except for a countable number of x, there exist n, m so that
an+r = bm+n r > 0 , and g = b0 • • • bman • • • a0 = en+m+\ • • • e0, say.

By (5.4.4) we have

~^(y) = \a'{y)\s for aeFo.yeA,
dv

w h e n e v e r y = c o c i • • • e 2 is s u c h t h a t acoci • • • e S . T h u s

Ergodicity follows from (5.4.2) and theorem 4.13. D

COROLLARY 5.7. 0 < 5 < l , and 8 = 1 if and only if A = S1 and D/Y is compact.

Proof. Since S = Hausdorff dim (A), 0 < 5 < l .
If S = 0, v is F-invariant. But it is easy to see that this is impossible unless V is

an elementary group. (If v is invariant for a hyperbolic element then all the mass
of v is concentrated at the fixed points.)

If 5 = 1, then v is equivalent to Lebesgue measure, so A = S \ Conversely, if
A = Sl, Hausdorff dim (A) = 1 = 5. D/T is compact since we are assuming that T
has no cusps. D

COROLLARY 5.8. v is 8-dimensional Hausdorff measure hs on A.

Proof. By 5.7, hs is equivalent to v. It is clear that hs transforms according to the
same law as v (look at the change in measure for small balls near x). Hence dhs/dv
is a F-invariant function on A. Ergodicity of F with respect to v gives the result.

COROLLARY 5.9. v is the so-called Patterson measure constructed in [8] and [9].

Proof. [9] theorems 7 and 8, and [8] theorem 7.2. D

It follows from [9] that 5 is the exponent of convergence of F. We shall prove this
directly from our constructions.

LEMMA 5.10. The Dirichlet series

I |/(io-••/-)!"' and I |J(a0 • • • a.)!"'

have the same exponent of convergence.

Proof. We have

I(a0- • • an) = UU('o- • • /„):*(!,) = a,, 0s;rs=n}.

Let p(n) be the number of sets in this union. It is clear that the argument of theorem
5.1 applied to I(a0 • • • an) will give

-,M'(a0 •••an)~1^ \I(a0 • • • an)\ <c'M'(a0 • • • an)~\
c
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where M'(a0 • • • an) = sup {F'(x): x e I(a0 • • • an)}. Using (5.1.1) applied to
I(a0 • • • an)3l(io • • ' in), one obtains a constant c" so that

c , , l / ( i o » , . ) | „ (5

\I(a0 • • • an)\

whenever 7(/0 • • • /„) £ I(a0 • • • an).
Hence p(n)< const, independent of n. Now

I |/(/o • ' • I'-)!"' = I ( I |/(lO • • • in)\")

" • • • o r

< const. X | /(a0 • • • an)\~
s.

a0 • • • O B E I F

The reverse inequality is similar. •

LEMMA 5.11. There is a constant d > 0 so that

1 _ \±\UQ Un)\ ___

~logH(0,ao---an0)~

whenever a0 • • • an e "LF.
Proof. Let a be the angle between the non-Euclidean lines joining ao • • • an0 to
A(ao""fln) and p(a0 • • • an). We have 0 < a 0 s a < a i < 7 r independently of «
(apply the transformational • • • a^1 and consider the corresponding paths starting
at 0). Let H(0, a0 • • • an0) = r. Rotate the disk so that the points A(a0 • • • an),
p(a0-•• an) are symmetrically placed with respect to the real axis and then apply
the transformation

/ cosh \r -sinh \r\
V -sinh \r cosh 2/"/

This carries the non-Euclidean rays a0 • • • an0, A(a0 • • • an) and a0 • • • an0,
p(a0 • • • an) to radii through 0 at an angle a. One computes easily that there is a
constant d' so that

d'~x exp T < |7"(exp (i«))| s d' exp r

for all sufficiently large r and 0 < «i. This gives the result. •

COROLLARY 5.12. The Poincare series X exp (-sH(0, g0)) and the Dirichlet series

X |/(/o • • " in)\~' have the same exponent of convergence.

Proof. This follows immediately from lemmas 5.10, 5.11 and the fact that
ao • • • an € J.F runs exactly once over all elements of F. D

COROLLARY 5.13. The Poincare series £ exp (—sH(0, g0)) diverges at s = 8.

Proof. By lemma 5.11, (5.10.1) and (5.4.5) X exp (SH(0, g0)) is comparable to
|g|=»

I / t ( / ( l o - • • / „ ) ) = 1. •
' < > • • • ' n

https://doi.org/10.1017/S0143385700001280 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001280


360 C. Series

REFERENCES

[1] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in
Math. no. 470. Springer: Berlin, 1975.

[2] R. Bowen. Hausdorff dimension of quasi-circles. Publ. Math. IHES 50 (1979), 1-25.
[3] R. Bowen & C. Series. Markov maps associated with Fuchsian groups. Publ. Math. IHES 50 (1979),

153-179.
[4] M. Dehn. Transformation der Kurven auf zweiseitigen Flachen. Math. Ann. 72 (1912), 413-421.
[5] W. Floyd. Group completions and limit sets of Kleinian groups. Inventiones Math. 57 (1980),

205-218.
[6] L. R. Ford. Automorphic Functions. McGraw Hill: New York, 1929.
[7] B. Maskit. On Poincare's theorem for fundamental polygons. Adv. Math. 7 (1971), 219-230.
[8] S. J. Patterson. The limit set of a Fuchsian group. Ada Math. 136 (1976), 241-273.
[9] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. IHES

50(1979), 171-202.

https://doi.org/10.1017/S0143385700001280 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001280

