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ANALYSIS ON ROOT SYSTEMS 

AMÉDÉE DEBIARD AND BERNARD GAVEAU 

Introduction. A great part of mathematical analysis relies directly on the 
methods of separation of variables and on the successive reduction of 
several variables problems to one-dimensional equations and to the theory 
of classical special functions; for example, the theory of elliptic or 
parabolic equations with regular coefficients (even with non constant 
coefficients) can be done because we know explicitly the fundamental 
solutions of the Laplace operator or of the heat equation; these 
fundamental solutions are functions of one variable; pseudodifferential or 
parametrices methods are thus basically small perturbations of an 
explicitly known problem in one variable. 

On the other hand, there are many problems which are not of this type: 
they are related to the questions of operators with singular coefficients 
and to the global behaviour of the solutions; in that case, the local model 
cannot be reduced to a one variable problem but is fundamentally a 
several variables problem which cannot be treated in a detailed way by 
one variable methods or perturbation analysis of a one variable problem. 
Although a precise definition of what should be "regular singularities" for 
a partial differential operator is not yet understood, we can imagine that 
the singularities of the radial part (in the Cartan decomposition) of the 
Laplace-Beltrami operator of a symmetric space in rank greater than 1, 
should be typical examples of regular singularities. Moreover these 
operators present certain symmetries due to the action of a finite group, 
the Weyl group, and to the underlying root system. In fact, once we have 
fixed the root system on a euclidean space, and once we have fixed certain 
numbers called the multiplicities of the root, we can determine, in a 
unique way, a second order elliptic operators having its singularities on 
certain hyperplanes of R" bounding the so called Weyl chamber (which is 
a cone in R"). This operator comes from the Laplace operator of a 
symmetric space for very precise values of the multiplicities of the roots 
(for example 

dr2 r dr 

comes from a euclidean space only if a is an integer). Our purpose is to 
study such operators and in particular the fundamental solution of their 
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1282 A. DEBIARD AND B. GAVEAU 

heat equation. We can do this only in very few cases. Moreover, even in 
the symmetric space cases, we think that representation theory or Harish 
Chandra theory does not give explicit results and we have treated the 
problem directly. We shall concentrate only on the A and EC root 
systems (leaving aside D and the exceptional systems). Here is the content 
of the paper. 

Section 1 gives general definitions on root systems, Laplace operators, 
volume element and their relation to symmetric spaces. 

Section 2 studies the root system A (with the usual technical difficulty 
associated with the choice of coordinate). We obtain for SU(p + 1) the 
invariant operators, their eigenvalues and eigenfunctions. From this, 
Section 3 deduces the heat kernel in term of 0 functions. Section 4 begins 
the study of the root system BC their eigenfunctions, eigenvalues and 
heat kernel for certain compact spaces. The non compact case is treated in 
Section 8. 

Section 5 gives several formulas for the analysis on a symmetric space in 
horospherical coordinates and Section 6 deduces an explicit expression for 
the quantum propagation of the open Toda lattice (a problem which was 
posed to us by the late Professor Mark Kac). Section 7 gives explicit 
recursion formulas for the heat kernels of ordinary hypergeometric 
equations. Section 9 treats the case of the rank 2 spaces with root system 
B2 (or C2) and symmetric spaces of rank 1. Section 10 applies the 
preceding analysis of Section 5 and Sections 7 and 9 to fundamental 
solution on solvable groups and to the quantum mechanics in the 
exponential potential or in the Morse potential. 

1. Root systems and radial parts of Laplace operators. 

1. Root systems on a euclidean space, a) Let E be a euclidean space of 
dimension p and Sft a root system on E. If x, y are points in E, denote (x, y) 
the euclidean scalar product and if a is a root in SR, we identify a with a 
vector in E so that we can define (JC, a). 

b) Call ^ + the set of positive roots for a certain order and call A the so 
called Weyl chamber 

(1.1) A = {x <= E/(x9 a) > 0 for a G 3t + }. 

c) To each « e l H + w e associate a number pa > 0 called multiplicity of 
the root and we define on E the volume element 

(1.2) v(x) = I I (sin A (a, x))p«. 

d) Let also ex, . . . , en be an orthonormal basis of E and xt = (eh x) the 
corresponding orthonormal coordinate. Call 
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(1.3) A2f= (vp(x)yl 2 ±Ux)±f\ 
j = \ dXj \ OXj I 

Definition. This second order differential operator is called the 
Laplace-Beltrami operator for (E, Sft, p). 

2. Relation to the symmetric space of negative curvature. Let X = G IK be 
a symmetric space of negative curvature, with G a semi simple Lie group 
with finite center, K a maximal compact subgroup. Call © and ÎÎ the 
corresponding Lie algebras, $ the orthogonal complement of S in © for 
the Killing scalar product and %^ a maximal abelian subalgebra contained 
in $J3: 9(^ is a euclidean space of a certain dimension /? (for the Killing 
scalar product) and we shall denote it by E. Now 21^ == E can be obtained 
as follows: consider a complexified Lie algebra © c of © and $ c a maximal 
complex abelian subalgebra in ©c . On § c , there is a natural system 
of complex roots defined as follows: for any h e <pc, we have a linear 
map 

X G © c - » [/Z, * ] G © c . 

We can diagonalize these maps simultaneously, because $ c is abelian, 
and the eigenvalues are denoted a(h): they are linear forms on § c ; as 
eigenvalues they have complex multiplicities equal to 1, and we denote 
by ©(

c
a) their eigenspace (of dimension 1). We denote by ^ c this root sys

tem. Now E = 31^ is just § c n $ (so it is a real abelian subalgebra of s$). 
We can then restrict the linear form a to E, to obtain the so called 
restricted root system di. Each root a has then a multiplicity pa, which can 
be greater than 1, and in this manner, one obtain a triplet (£", 9̂ , p). 

3. Radial coordinate on X. Now the symmetric space X = G/̂ T has a 
natural system of so called radial coordinates: if o is a given origin in X, 
then 

(1.4) X = K A • o 

where K (resp. ,4 ) are the subgroups of G with Lie algebra SI (resp. s)l^) 
and then any point m e X can be uniquely written as 

m = k - (exp x) • o 

where x belongs to the Weyl chamber A of %$ for a given order 9L x is the 
generalization of the radial coordinate in usual euclidean space but: it is 
here in general a /^-dimensional vector belonging to a kind of cone A. 

Now, the riemannian volume element of the space X can be decomposed 
into a part depending only on K and a radial part depending only on x and 
this radial part is 

(1.5) vp(x)dxx . . . dx„ (vp given by (1.1) ). 
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We call radial function a function f on X which depends only of x in the 
decomposition (1.4): this means that / i s a function on X such that 

f(k • m) = f(m) for any m e X, k e K. 

Then using the radial coordinate system, / c a n be viewed as a function / 
on A (or as a symmetric function on 21 for the action of the Weyl group W 
generated by the reflections through the walls of A or by the adjoint action 
of K on 9t^) and the integral of / on X is 

(1.6) Jx f(m)dv(m) = Vol K JA / ( * , . . . xn)vp(x)dxx . . . dxn. 

Moreover the action of the usual Laplace Beltrami operator A2 of X on 
such^ function / i s exactly the action of the operator A2 defined by (1.3) 
o n / : 

(1.7) %2
x)f(x) = Ajfcc). 

In particular A2 is self adjoint with respect to vp which is obvious by 
(1.6) and the formula (1.3). 

Remark. In the first paragraph we have considered general positive pa; 
in fact, for the symmetric spaces, the allowed pa which come naturally 
from the structure of symmetric spaces are extremely special (see below 
for the examples that we treat). 

4. Higher order Laplace operators. On X, one can define other Laplace 
operators as differential operators on X which are invariant by the 
isometries G. One can prove that there are p algebraically independent 
such operators (including the Laplace-Beltrami operator A2 *); because 
these operators are invariant by isometries of G, they transform radial 
functions into radial functions, and one can define for them a radial part, 
which is a differential operator on A; we denote by A3, . . . , A + l these 
radial parts and A^X), . . . , A ^ j the corresponding operators on X. 

One can prove that the higher order terms of these radial parts are 

polynomials in I — I which are invariant by the action of the Weyl 

group W and conversely, any polynomial in I — I which is invar

iant by the Weyl group W is the higher order part of the radial part 
of a Laplace operator in X. Moreover this polynomial defines the 
Laplace operator in a unique way (up to additive constants). Finally these 
operators commute with one another; very few things are known about 
these operators and it is one aim of this work to give rather explicit 
formulas. 

5. Weyl alcove and compact symmetric space, a) Let (E, sJt, p) be as 
before. Then, there is a maximal root aTTiax for the order. Call C the set 
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(1.8) C = {x e E/x e A and 0 < (x, «max) < IT). 

C is a simplex of dimension p and is called the Weyl alcove. We can then 
define 

(1.9) %(x) = I I (sin(a, JC) )p« 

and 

(i.io) k2f = (vp{x)yx ±±U(x)±f) 
/ = [ ÔX: \ ÔX, I 

• ' J J 

which is also called the Laplace-Beltrami operator for the triplet 
(E, % p). 

b) If X = G/K is a compact symmetric space; one can do the theory 
developed in 2, 3, 4. We associated t o l a triplet (E, sJt, p) as before and we 
can define the radial function and radial coordinates x, except now that x 
is restricted to the Weyl alcove C and that vp(x) given by (1.9) 
is the volume element of X in these coordinates; in the same manner 
A2 given by (1.10) is the radial part of the Laplace-Beltrami operator A ^ 
of X. 

6. The Weyl group and the spheres in X. a) Let E be a euclidean space, )R 
a root system; the Weyl group W is the group generated by reflections 
through the hyperplanes (R, x) = 0 for R G 9̂ . It is also generated by the 
reflections through the walls of the Weyl chamber. The Weyl group 
permutes the set of all Weyl chambers; this means that for any w, w' G W, 
wA n w'A is empty if 

w ¥= W and U WK = E. 

In the case of a symmetric space, W is also the group AàK\^ . Once a 
Weyl chamber A is given, this induces an order on E by saying that x ^ 0 
if and only if JC e A and x È= y if and only if JC — y G A. We also say 
that JC > 0 if and only if x GE A. 

b) Let us now take a non compact symmetric space X = G/K. Let 
m e X; then we can consider the orbit Km of the compact group (which is 
the analogue of a sphere in the euclidean case). Then the set of all Km is in 
bijection with the closed Weyl chamber A. In the case where X = G/K is a 
compact symmetric space, we have the same situation, but for the Weyl 
alcove, namely the set of all Km is in bijection with the closed Weyl alcove 
C. 

We shall call "spheres" the orbits of the compact group K. The set of 
spheres is indexed either by Â or by C. 

c) The affine Weyl group W^ is the group of affine isometries in E 
generated by the reflections through the walls of the Weyl alcove C; it 
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contains the Weyl group as a subgroup, but also translations. It permutes 
transitively all the Weyl alcoves C, i.e., if w, W e W^ \ wC n WC is 
empty when w ^ W and the wC induce a paving of E. 

References. For general information and notation about symmetric 
spaces and root systems, see [15], [17], [2] (in case of complex space) 
and [1]. 

2. Invariant operators and their eigenfunctions for the root system A in 
the compact case SU(p + 1). 

1. The root system A and its affine Weyl group. 
a) The root system A Let E be the euclidean vector space of dimension 

/?, (X, Y) its scalar product and #t the root system of type A A basis of 
this system is given by the vectors {Rx, . . . , R } in E such that 

(2 1) ^ ' R'^ = 1 ^ ' ' ^ ' + 1^ = ~ 2 
(Ri9 Rj) = 0 if y ^ i - 1, /, z + 1. 

The Weyl alcove is defined here by 

{ p 
X e E/{R^ X) > 0, 1 ^ i ^ p9 2 (/*,-, X) < 77 

/ = i 

The orthogonal symmetries with respect to the hyperplanes [X e El 
(Rh X) = 0} generate the Weyl group W of this root system which is 
isomorphic to the symmetric group S + 1 of order p + 1. 

b) The affine Weyl group. Call T the group generated by translations by 
vectors 2tnRi in E (considered as an affine space if one wants to be very 
formal) and let W^ * be the semi direct product of W and T ; it is the 
affine Weyl group of A . By the action of W^0) into C, we obtain a pav
ing of E by simplexes which are isometric to C 

c) Description of the paving. Let Œ be the neighborhood of 0 in E given 
by 

(2.3) £2 = U o(C). 

We also denote Rl = 2TTR1 SO that 

Tp = 2 Ztf,, 

Call rG the translation by vector G. Then the paving is 

(2.4) £ = c u 7 . T C (Q ) . 

Moreover if G ^ G', then rc(fi) n TG/(Q) is empty. 
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We shall take as a basis of E the fundamental roots [R^ . . . , R }; then 
any vector X e E has coordinates xt on this basis namely 

(2.5) X = 2 *,•*,, 
/ = i 

Let g be the hypercube 

(2.6) Q = {X e E/lxyl < 77 for any / = 1 . . ./?}. 

Because 12 is a bounded neighborhood of the origin, there exists an integer 
K0 such that 

Q C. U ryP w /S(Q) 

and we have thus a partition of Q 

(2.7) g = u a;„ „, 

with 

a<Vv = ô n T^,»Â<^ 
(it can happen that some a' are empty). 

Now we can also make the action of T on Q to get an obvious paving of 
E and we also have 

+ * o 

"i— KQ 

and a partition of a 

(2.8) a = u a - w 

where 

Q„,. . .», = « n TSf^«,«,(ô)-
But it is clear that 

so that we obtain 

(2-9) V . » , = ^f-,»A<QU -»,»)• 
2. 4̂ change of coordinates in E. 
a) E as an hyperplane in Rp + 1. We consider R p + with its euclidean 

structure and qx...q+x the orthonormal coordinates in Rp . Let 
E be the hyperplane of R/? + 1 with equation 
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p+\ 

2 *,- = o. 
7 = 1 

In this coordinate system, the roots are given by 

(2.10) (R,X) = - U * - q,) 
V 2 

for I G £ with coordinate (qx . . . qp + \), and the basis for roots is given 
by 

(2.11) (RrX) = ~7=(ql ~ fc+i) ' =h..-,p. 

We use here a normalization by l / \ /2 so that ||/^-|| = 1. Let us denote by 
T// + 1 the transposition of the qi and #/ + 1: 

= ( ^ h . - . ^ / - + - h qr.-.,qp + \ \ 

It is clear that rli+x is exactly the element of the Weyl group Wp which is 
the reflexion through the wall (Ri9 X) = 0 

b) Changing the coordinates from E to Rp from £, to q.. Let (e,, . . . , e ) 
an orthonormal basis of E and ( £ ] , . . . , £ ) the coordinates of £ in this 
basis. The roots in this basis can be written 

(2.12) \ 

/ ? , = e} (/?i, * ) = | , 

1 1 1 
R , = — e - -ei + 1, 

2 2 " V2 

<*2, X) = — £ , 
2 

1 1 
- -ii + — à 

2 V ^ • R3 = e2 (R^ x) = i2 
1 1 V5 

K4 = — e 2 —e-\ + ~e4 

2 2 ^ - 2 ^ 
V2 V3 

(** X) = --Ï2 
2 

1 V ^ 
F ^ + " ^ 

2 ^ 2V2 

and for 5 = k = p 

-/F*-*/ 
1 /A : + 1 'k - 1 k + \ 

tk-\ + A / - T — ^ 4 1 2Â- V 2A " " V 2A: '" ' V 2A 

Because ^ — g/ + ] = \/2(Rh X) we have the matrix changing the £/s 
coordinates into the q-s coordinates given by the matrix on the next 
page. 

It is easy to check that 

P+\ 
2 q, - 0. 
/ = l 

If cj . . . c + 1 is the canonical basis of Rp + ] (with respect to which the 
coordinates are qx . . . q' + 1 ) , we have 
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V2 

1 
0 

1 

1 

0 

2 

1 

2 

1 

2 

1 

2 

0 

2V5 

1 1 

V(A + 1 (A + 2) 

1 

y/2 

0 

0 

1 

1 

0 

2 

1 

2 

1 

2 

1 

2 

0 

2\/5 

1 

\/k(k + 1) 

1 

V(A + 1 (A + 2) 

VP(P+ i) 

0 

0 

1 

1 

0 

2 

1 

2 

1 

2 

1 

2 

0 

2^5 

1 

\ A ( * + i) 

1 

V(A + 1 (A + 2) 

0 

0 

1 

1 

0 

2 

1 

2 

1 

2 

1 

2 

0 

2V5 

2 

Vk(k + 1) 

1 

V(A + 1 

0 

1 

1 

0 

2 

1 

2 

1 

2 

1 

2 

0 
V5 Vk(k + 1) 

V(A + 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

F 7 ! 1 

^ A: V * ( * + 1) V (A- + 1)(A + 2) 

\G 
1 

A + 1 V (A + 1)(A: 4- 2) 

fk~T~\ 

VA + 2 

0 

0 

1 1 
r€ , — - ^ r C n 1 V2 ' y/2 

(2-13) ^ ^ 3 - ^ 4 

1 1 1 1 

e" = 2 € l + 2€ 2 " ? 3 " 2 € 4 

and for A fk k ^k p 

i £ , r x 
(2.13) ek 

k 

2 c, 

tf 
1 

P(P + •) 

\£ Pip + O 

^ />(/> + 1) 

p 

' p + 1 

** + !• 

We shall denote the preceding matrix relation by 

(2.14) (q) = M ( 0 

where M is defined above. 
c) Changing the coordinate from £ to x\ recall also that in E, there is a 

third coordinate system 
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X 
p 

2 xtRr 

Define 

(2.15) 

Then 

(É) = A(x). 

A is computed in (2.12). We shall need A~ : 

(2.16) 

l o ( v ^ r 1 \ ^ ( \ A 3 ) _ 1 \/ï(\/Hk + i))_1) V2(VP(P + i))'" 

0 0 2(v / 2)" ' 2 v ^ ( v ^ 5 ) ~ ' 2y/2(y/k(k + \))~l) 2y/ï(y/p(p + 1)) 

0 1 ( V 2 ) _ l 3 x / 2 ( v ^ 5 ) _ 1 3^/2(VA(A + l ) ) - , ) 3V2(v>(/> + •))'" 

0 0 0 4 7 2 ( ^ 4 3 ) " ' 4y/2(y/k(k + l))~l)  

0 0 0 0 Sy/2(y/k(k + \))~X)  

0 0 

0 0 

0 ky/2(y/k(k + \))~X) kV2(Vp(p + D) 

o o : 

o o o 0 p \/2( Vp(P + ' » " 

d) Computation of differentials. Denote 

,,„ . / 3 3 
yutf ) — i , . . . , 

V9ft dap+\ 

*«H£ £) 
vSx/ ' 9A: / 

Then we have 

3 y 3 3£ 

3ft ./ 3^-3ft' 

But 

/7+1 p 

* = 2 ftCy = 2 £•*?;, 
' = 1 7 = 1 

so that 

£; = 2 ft(€y, *?y) 
/ • = 1 
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and 

— = («/, ej) 

and (e/; e) is given by the element of t h e / h column and z'th line of M, so 
that 

(2.17) (dq) = M(3£). 

Moreover from (2.15) we have 

(2.18) (3© = 'A-\dx) 

and combining (2.17) and (2.18) we obtain 

(dq) = MtA~\dx). 

A routine computation gives us the matrix MlA ~ and the expression of 
vector fields by Lemma 1. 

LEMMA 1. For \=r^p-\-\,we have the following formula 

,2,9, 1 - - * ' * ( 2 ( P + i - * ) A _ 2 / A ) . 
\k=r OXk / = l ÔXjf dqr p+l \k=r 

3. The L space of the Weyl alcove. 
a) Symmetry and antisymmetry. Let f:E—> C be a complex function; we 

define the action of the affine Weyl group W^ on / by 

(2.20) (af)(X) = f(a-\X) ) f o r l e £. 

We say that fis invariant if 

of = f for any o e H^0) 

and that it is antiinvariant if 

q/" = (~ 1)° / f o r any a <= P^0 ) 

if (— l)a is the determinant of a. 
We begin to work in (xl9 . . . , x ) coordinates. 

LEMMA 2. f(xx, . . . , x ) is invariant by the affine group if and only if fis 
periodic of period ITT in each xt and if 

°if = f fori = 1,.. .,/> 
where oj is the reflexion through the wall (Ri9 X) = 0. / is antiinvariant by 
Wp ) / / and only iff is periodic of period 2IT in the xl and 

°if = ~f M i = 1,. . . , / ? . 

The proof is obvious because the translation by 2tnRi and the reflexion a • 
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generate W^ ) and precisely we consider the coordinate system of the xf in 
the basis of Rt. Moreover it is clear that 

(-l)a<- = - 1 . 

b) Antisymmetrisation operator A. If / i s a periodic function, of period 
277 in the xh we define 

(2.21) (Af)(xl9...,x)= 2 (-\)°f(o(x]...xp)). 

It is clear that Af is an antiinvariant function by W^\ If / is already 
antiinvariant Af = (p + l)! /and so A2 = (p 4- 1)L4. 

c) The / ( n ) function. Define (n) = (wl5 . . . , np) where n- are integers 
and 

(2-22) /(n)C*i> • • • > X
P) = e x P l ' 2 rijXjY 

\ j=\ ! 

LEMMA 3. If one of the nk is 0, then Af^ = 0. 

Proof. If nk = 0, let Wp(k) be the subgroup generated by ok so that it is 
{7, ok}. Then 

^ = ^ c
 wp(k) • * 

for a suitable subset G a W Then 

(4/;,;))(*,...*J= 2 ( - D V ^ ^ /(«)A-*1 - • -A'p) 

2 ^_ | ^^ / ( ^ / i / n ) _ ^/(^,aAn)^ 

But az n = n = Wn. 

LEMMA 4. The functions Afn^\c (where nk > 0 /br #/7y &) g/v^ a complete 
rl orthogonal system on L (C, dxx . . . dx ) and 

(2.23) \\Af{n)\\û(CÀx) = ( 2 ^ / 2 . 

Proof We take a function / ( m ) and recall the definitions_of S2(n) and S2('n) 

given in (2.7) and (2.8). Because of (2.9) and because / ( m ) / ( m ) is invariant 
by the translation 2 ntRt, we have 

j 0 ( n ) f^)f(m)Màx = J%) f{m>)f(m)(x)dx 

and so by (2.7), (2.8) and (2.9) 

(2 .24) J ^ J(m')J(m)"x = J ^ J(m')J(m)dx-
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But now Q being the hypercube (2.6) in the xt coordinates, the second 
member of this last relation is 0 if (m') — (m) ¥= (0) and so the £m) are 
orthogonal on fi. 

Let § be the Hilbert space of the 277-periodic functions in the xi which 
are square integrable on Œ with the L norm on Q and AQ the subspace of 
antiinvariant functions (which is meaningful because of the definition 
(2.3) of 12 

tt = U a(C)). 

If g is a function defined on C, it has a unique antiinvariant extension 
in E. 

It is clear that if g is antiinvariant, we have 

Mo 8(x)g(x)dx = Jc g(x)g(x)dx 

for any o e W and so the mapping 

(2.25) g e L2(Q dx) -» Ag e A$ 
V(P + !)! 

gives an isometry between L2(C, dx) and AQ. It is also clear that if / , g are 
in £ 

(2.26) (Af\g)L2{Q) = (Af\Ag)L2(C) = (f\Ag)L2(U) 

because by definition of 0, 

(Af\g)L\Q) = JQ Af(x)g{x)dx = 2 Ja{C) Af(x)g(x)dx 

and because Af is antiinvariant 

= 2 ( - i y {cAf{x')ïw)dx' = (^/i^g)L2(C). 

Let now $ ^ be the subspace of £> generated by the function of(n) where 
a e W ;̂ it is clear that 

°f(n) = fto{n)-

It is also clear by (2.24) that 

£(n) H § K ) = {0} if ni9 n\ ^ 0 and (n) * (n'). 

We shall write (n) ^ 0 if all nt ^ 0. It is also clear that for any (nz) e Zp, 
there exists a unique (nr) ^ 0 such that 

7(n) G $(n') 
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because (n) = a(n') for some a e W SO we can deduce that we have an 
orthogonal decomposition 

§ = 2 $(„) 
(n)^0 

(2.27) A® = 2 As5(n) 
(n)^0 

and A<p(n) is generated by the only function 4/(n) which is 0 if one of the nk 

is 0 and is not 0 if all n, are not 0. Moreover using (2.26) and because 
A" = (p + l)!-4, we have 

(4/J„)l4/(„',)/.2(0) = (P + m4fln)\Af(nMc) 
so by (2.26) 

= (P + 1)!(/(„)H2/(»<MQ) 

and because A = (p 4- \)\A 

= ( ( / > + 1)!)2( / („)H/(„ '))L2(0) 

= ((/> + l)!)2 2 ( - l ) a( / („) l /W )) /? ( 0) . 

But if (n) ^ (n'), for all a <= H£, we have 'a(n') # (n) ( (n) > 0, (n') > 0, 
so that a change the "order") and so the 

because of (2.24). 
This means that the 4/(n) ^o r (n) > 0 a r e a complete orthogonal system 

in A. Moreover by (2.26) 

ll4/(n)lli2(C) = (^n)l^n))L2(fi) 

- 2 (-imj/(BMo). 

But 'a(n) is in a different Weyl chamber of that of (n) (i.e., at least one of 
the (ra(n) )A is < 0), so that ra(n) = (n) if and only if o = Id and so the 
integral is (2<7T)p8ald (using (2.24) ), and 

W(JÎ\a = W . 
As a corollary, we can prove. 

LEMMA 5. Let 

f(x) = 2 fl(„)/(„)(A:) 
(n) 

/>£ <3 trigonometric polynomial (#(n) e C). 7 / / zs antiinvariant we have 
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f(x) = 2 a(n)(Af{n))(x). 
(n)>0 

Proof. Because fis antiinvariant, we have 

Af=(p + 1)!/ 

and also 

so that 

But also by Lemma 4, / can be decomposed on the basis of the Af{n) 

with (n) > 0 which gives 

/ = 2J ^(n)4/(n)-
(n)>0 

But 

4 / = 2a a(n)4f(n) 
(n) 

= 2 (S (-l)X(n)kn) 
(n)>0 W ^ " ' 

= (P + 1)! 2 tf(n)^n) 
(n)>0 

and this is equal also to (/? + \)\f so Z?(n) = a(n) for (n) > 0. 

4. Differential operators with constant coefficients on E. 
a) Action of the affine Weyl group. If P is a differential operator of order 

k on £, and if o is an element of the affine Weyl group W^ \ then a acts 
on P by an action denoted do 

(2.28) do(P){f) = o(P(o-xf)) 

where a acts on / b y (2.20). P is said to be invariant if 

rfa(P) = P for any a G wf] 

and antiinvariant if 

£&</>) - ( - l ) a P for any a <= H^0). 

To investigate the invariant or antiinvariant differential operators, it is 
better to use the coordinates qx . . . q• + 1 described in n° 2, although the 
coordinates xl9. . . , x were better suited to investigate functions (because 
these coordinates are adapted to the translational part of the affine Weyl 
group). 
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b) Invariant operators and their action on antiinvariant function. 

LEMMA 6. Let P(YX . . . TC + 1) be a symmetric polynomial in the 
indeterminates Yx . . . Y + x. Then 

I d a 

is invariant by the Weyl group W. 

Proof. The Weyl group W is generated by the reflections ol in the walls 
(Ri9 X) = 0. But we have seen in n° 2 that this reflection is the 
transposition exchanging qt and qt + \\ this means that Wp is the symmetric 
group S +x acting on the #/s and the lemma is proved. 

LEMMA 7. Let P(YX, . . . , Y + x)be a symmetric polynomial in the Yt. Then, 
for (n) > 0 

(2.29) W A . . . , ^— \Af = P(pi9 . . . , 9p+x)Af 
\dqx oqp + xl 

where 

(2.30) pA((n)) = - i ~ — 2 (P + 1 - /)«/ - 2 In,). 

Proof P being invariant by W£ and 4/(n) being antiinvariant, it is clear 
that 

(n) 

is a trigonometric polynomial which is antiinvariant by W. Moreover by 
Lemma 1, (2.19), it is obvious that 

7 - / ( n ) = Pr( (n> )/(n) 

so that 

Now Lemma 5 implies the result, 

c) Example: the usual Laplacian. Let 

p ( i ï . . . ç + 1 ) = 2 y|. 
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Because the basis of the e- is orthonormal on E, we have 

(2.31) 2 ~ = 2 —2 = A. 

In fact we have seen in n° 2 that 

7— = 2 , — («*, ej) 

so that 
^_^ p\2 ^2 p\2 

We obtain that in coordinates (xl9. . . , x ) the Laplacian is 

/> + 1 \~\ w ' 8xJ 
(2.32) A = - ^ — ( S r(/> + 1 - r )—j 

z? 4- 1 V=i c~ 

82 \ 
+ 2 2 r(/> + 1 - /) 

\^r<l^P dxrdxi/ 

and that 4/(n) *s a n eigenfunction of A of eigenvalue 

(2.33) A|g = - ^ — ( 2 r(/> + 1 - #•)#£ 

+ 2 2 /•(/? + 1 - l)nrn\. 

5. Differential operators in radial coordinates for SU(p + 1). 
a) The function %(X). Let 

( (1, . . . , 1) corresponds to the smallest element (n) in the Weyl chamber 
which is not on one of the wall). It is easy to see that 

(2.34) S ( I ) = n (j(RM - *-''(**)) 

because if we denote by x^X) the second member of this equality, then 

K°X) = n (é(aR'X) - e-
i(oR^) 

K £=Ap 
R>0 

but oR is a positive root if and only if (— l)a = 1 so that 
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then \p is antiinvariant. Moreover let 2p(X) be the sum of the positive 
roots: 

(2.35) 2p(X) = n R(X) = X]+ ... + xp. 

Then 

H*) = fo,....nW Rn0V -e-W)) 

and if we use Lemma 5, we see that 

* = A A L . . . , \ Y 

b) The differential operators Q and their eigenfunctions. We denote 

(2.36) P(nJX) = (2/y ( / , + 1)/2 Af^l)(X) 

(n) Af{1)(X) 

where (1) = (1, 1, . . . , 1) and 

(n + 1) = («j + 1, . . . , np + 1) and (n) > 0. 

These are trigonometric polynomials in xu . . . , x which are invariant by 
W Moreover they are orthogonal in 

ISIC, 
(2i)P(P + V 

because 

JcP(")P(n')ni)P(P + V = JcAf(n + l)AAn' + l)dx = fi(n),(n')W 

(Lemma 4 and (2.23) ). 
Then we define the following differential operators. If P is a symmetric 

polynomial in Yj, . . . , Y + x 

,,37, „ ( ' . . . ' ) ' , { ' 

- P(P](l),...,pp + ](l)). 

Then we obtain the following theorem. 

THEOREM 1. The operators Q are invariant by the affine Weyl group 
W^p \ and they have the following properties. 

(i) Q {constant) = 0 

(ii) QpP(n) = (P)\n)P(n) ^here 
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(2.38) {P)\n) = P(P](n + 1 ) , . . . , Pp + l(n + 1) ) 

- / » ( P l ( l ) , . . . , p p + 1 ( l ) ) . 

(iii) They commute with each other. 

Proof. It is clear by the fact that ^ = Af(i) a n d ^y Lemma 7. More
over because the P(n) is a complete orthogonal system in the space 
Lz(Cy S (x)dx), and because they are joint eigenfunctions of all the Q 
these operators commute with each other. 

c) Particular case: the Laplace operator. We take for P = A as in (2.31). 
Then /?(n) is an eigenfunction of <2A with eigenvalue 

(2.39) <A>A(n) = A<°)+1) - A $ (Ag>+1) given by (2.33) ). 

Taking into account the explicit form (2.33) of XLj we obtain 

<A>\ 
<n) " p + 1 

/> 
2 ^ + 1 " 0", 2 

+ 2 2 r(/? + 1 - / K ^ + 2 2 r(p + 1 - r)/2r 

/> 

+ 2 

+ 1 V=i 

2 

1 - r)n2
r 

r(/? + 1 - l)(nr + n{) 

+ 2 2 r(p+\ 
ISr</£/> 

- l)nrn^ - 2 2 r(p + 1 ~ r)nr 

A direct computation gives also 

(2.40) ^ = 
2 

7+" T ( 2 r(p+ 1 -
1 \ r = i 

0 + 2 2 f 

% 
(P -f 1 -

• ' > ) 

*8i = P(P + 1)(P + 2) 

6. 77ze group SU(p + 1) as a symmetric space. We can consider 
££/(/? + 1) = M as the symmetric space M = G IK where 

G = SU(p + 1) X SU(p + 1) 

and T̂ is the diagonal identified to SU(p + 1); G acts on M = SU(p + 1) 
by 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


1300 A. DEBIARD AND B. GAVEAU 

(g\> Si) ' m = g\ ]fn82-

Any m e M has p 4- 1 eigenvalues e/v* 1 ^ /: = /? 4- 1 with 

2 ** = o. 
k = \ 

At the level of Lie algebras we have the Cartan decomposition 

© = ® 0 $ . 

The maximal abelian subalgebra in ^ is the matrices which are diagonal of 
trace 0. Let q^y/l be the diagonal elements. The roots are 

and they have multiplicity 2; we are exactly in the situation of n° 1 and 2. 
Moreover 

%2(*) 
(2i> 

CIXA . . . dx„ 

is exactly dv(x) defined in (1.9) with the pa = 2. By [2], one knows that 
the radial part (in the Cartan decomposition) of the invariant operators 
are exactly the Q described in n° 5 and Theorem 1 describes exactly the 
radial eigenfunctions and their eigenvalues. 

We could have also obtained the same result abstractly because we 
know that the radial eigenf unctions are central functions on SU(p + 1); 
but the characters are a basis of central function and are given by Weyl 
[32]; they are just the p^ny, but the invariant operators on M are 
the operators which are biinvariant on SU(p 4- 1); so the p(n) are 
eigenfunctions of these operators. Here we have obtained, by our explicit 
procedures, the eigenvalues which will be useful in the next section. 

References for Section 2. The study of eigenvalues and eigenfunctions on 
S£/(3) has been done by Koornwinder [18, 19]. For general multiplicities 
of the roots, it was done completely in [6]. See also [32] for another 
presentation without using root systems. 

3. The heat kernels on SU(p 4- 1) and SL(p + 1, C)/SU(p + 1). 

1. The heat kernel on symmetric spaces. Let X = G IK be a symmetric 
space (compact or not compact). We can consider the heat equation 

3/ 
(3.1) 

J\t=0 = JO 
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where f0 is a given function (say C° with compact support) and A ^ is 
the Laplace-Beltrami operator. This solution can be written as 

/ ( / , m) = (Ptf0)(m) = Jx pt(m, rn')f0(m')dv(m') 

where pt(m, m')dv(m') is the heat kernel, dv(mf) being the volume element 
of X. It is clear thatpr(w, ra') = pt{m\ m) because A^ is self-adjoint with 
respect to dv(m') and 

(3.1)' 
= ®2,mMm> m) 

pt(m, m')dv(m') —» 8m(m') if ^ —> 0 

where 8m is the Dirac mass at point m. 
Moreover let g be an element of G such that m = g • 0 (0 being a chosen 

origin in X); the heat equation is invariant by action of G, so that 

(3.2) jpt(g • 0, m')fz(m')dv(m') = f pt(0, m")/0(2o * m»)dv(m''). 

But ^ (0 , m") is invariant also by the action of k G K, SO that finally 
pt(0, m") depends only on the radial part of m" and we can write 

(3.3) Pt(m9 mf) = qt(0, x) 

x e %p being the radial coordinates of g~x • m! where g is such 
that g - 0 = m. 

In the case of a non compact symmetric spaces, (3.2) becomes 

(3.4) / ( / , g • 0) = JA q,(0, x)[fK f0(g • ke*Q)dk}vp{x)dx 

where v (x) is defined in (1.2) (and is the volume element in radial 
coordinate), and in the case of a compact symmetric space 

(3.4)' / (* , g • 0) = jf qt(0, *)( jf f0(gkex • 0)J/c)^(x)Jx 

where v (x) is defined in (1.9). 

In both cases dk is the invariant measure on K of mass 1. Now qt(0, x) is a 
function on 3Ï which is naturally pt(0, kex • 0); so it is invariant with 
respect to the action of the Weyl group in the non-compact case. In the 
compact case it will be invariant by the action of the affine Weyl group. 

Moreover if / —> 0 , we have by (3.1)' that 

qt(0, x)vp(x) dx -» 80(x). 
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Finally, pt(m, m') is symmetric in (ra, mf) and satisfies the heat equa
tion with respect to both variables, so that qt(0, x) satisfies the 
heat equation for the radial operators A2 or A2 (defined by (1.3) or 
(1.10) ). Our problem is to find qt(0, x) in the non compact case with the 
properties 

1) qt(0, x) is invariant on 21 ̂  by the Weyl group W 

(3.5) 2 ) ^ = A i \ on A 
ot 

3) #,(0, x)vp(x)dx -> S0(x) if / -> 0 + on A 

and in the non compact case 

-* - % 
dq, 

\) qt(0, x) is invariant on 91 vp by the affine Weyl group W(0) 

(3.5)' 2) °f = kf\ 
ot 

3) 4,(0, x)vp(x)dx -» S0(x) if / -> 0 + on C. 

In the non compact case, qt(09 x)v (x)dx is a kernel acting on functions on 
A (or on functions on %^ invariant by W), and in the compact case, it acts 
on functions on C (or an functions on 51^ invariant by W^). 

2. The heat kernel on the Weyl chamber or alcove. We can generalize 
the problems (3.5) or (3.5)' by asking for a kernel qt(xy x')\> (x')dx' or 
qt(x, x')vp(x')dx' such that 

fit, *> = h 9 t(x> x')Mx')vpix ')dx 

fit, x) = Jc q ,ix, x')f0(x')vp(x f)dxf 

dt = A 2 / or dt = Kf 

solves 

and / is invariant by action of W or W^ ) respectively and 

/( / , x) -> f0(x) i f / ->0 . 
A A 

Because A2 and A2 are self adjoint with respect to v and vp, we see that 
qt or $, are symmetric and we can ask the problem of finding 

1) qt(x, x') symmetric in (x, x'), invariant in both variables by 
the Weyl group W 

(3.6) 2 ) ^ - A * , 
ot 

3) ^ ( x , x')v (jc')rfjc' -> Ô^JC') if / —> 0 + on A. 
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(Or the analogous problem (3.6)' in the compact case.) 

Remark. The interpretation of this problem in the symmetric space 
is that we start at t = 0 with the uniform mass on the sphere K - ex • 0 and 
we let this uniform measure diffuse by heat diffusion until time t\ then 
qt(x, x')x'p(x') is the fraction of this unit mass uniformly distributed on the 
sphere Kex 0 at time /. 

Now, in general, we shall obtain a formula for qt(x, xr) for x, x' in (or in 
C), but we want to obtain qt(0, x') (recall that 0 is not in A or C but on the 
boundary). We prove the following lemma. 

LEMMA 1. Suppose that qt(x, x') is obtained on A X A (or C X C) and 
satisfies (3.6) and that qt(x, x') has limit when x and x or x' tends to the walls 
of A (or of C) and we denote this limit by qt(x, x') also. Then qt(0, x) 
satisfies (3.5) or (3.5)'. 

Proof of Lemma 1. We shall do it only in the non compact case. First of 
all the condition 1) is trivially satisfied at the limit and 2) also if x' stays in 
A. To prove 3), we take a function /continuous with compact support, 
invariant by W, on %$ and we want to prove that 

lim I f(x')qt(09 x')vAx'W = / ( 0 ) or 

lim lim [ f{x')qt(x, x')vp(x')dx' = / (0) . 

Fix €0 such that for e < c0, 

\\f(x) - f(x') || < h for any x, xf G 5(0, c). 

Now fix such an e and fix x in the ball 5 0 , - : then 

JA f(x')qt(x9 x')vp(x
f)dxf 

= f(x) + X ( 0 , € ) n A ^ ^ " f(x))qt(x9x
f)vp(xf)dx' 

+ J(CB(0,e)^^ (fW ~ f(x))lt(x> x>P(x')dx' c ) ) n A yj v y J v J '*ty"> ; p^ 

because 

/ , qt(x, x')\' (x')dx' = 1. 

Let us now fix c; if x stays fixed in B\ 0, - , then 
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tends to 0 if t —» 0 because 

qt(x, x') -> 8x(x') 

and because the distance from x to x' is bounded from below by e/2; and 
so for h given, there exists t0 such that if f < t0, this integral is less than h. 
Moreover by the definition of e, for any /, we have 

I .Co {f{x>) - fWMx- x>p(x')dx'\ 

< h I qt(x, x')vp(x')dx' = h 

because qt is positive of total mass 1 which proves the lemma. 

3. The formula for the heat kernel for SU(p + 1). We shall now treat the 
problem (3.6)' in the case of SU(p + 1). We can forget about SU(p + 1) 
and treat the problem on the euclidean space E (of dimension/?) with the 
operator A2 = Q^ given by (2.37) (where we take 

p + \ g2 

i = i 3 ^ * 

The volume element is just 

J (x)dx 

(2*y('+1) 

(see part 6 of Section 2) and A2 is self-adjoint with respect to J (x)dx. 
Moreover we look for a function qt(x9 x') which is symmetric in (x, x') and 
is invariant in both variables by the action of the affine Weyl group W^\ 
which means that it is periodic of period 2TT in the JC/S coordinate and 
invariant by W. Then qt(x, x') defines a symmetric kernel on 

\ (2i)P(P + X ) ) 

and has a natural decomposition on the orthonormal basis of the 

1 

( 2 ^ 7 l / * n ) 

(given by (2.36) ) which are eigenfunctions of A2 for the eigenvalues 
(A)\n) g i y e n by (2.39): so we obtain 

<?,(*> *0 = TT—P 2 eA)x*%}(x)p(n)(xT 
(ITTY ( n ) =o 
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e-*$\t 2p{p + ]) 

(3.7) qt(x, *') = 
(2*Y Af{l)(xXAf(1)(x'))* 

X 2 eX^'Af (x)(Af{n)(x')r 
(n)>0 

(where in the last summation we have changed (n + 1) with (n) ^ 0 in (n) 
with (n) > 0 and 

(Ah _ X(0) _ WO) 
A(n) ~ A(n + 1) A(l)-

In (3.7) we can also extend the summation in (n) to (n) ^ 0 because 
we know that Af^n) = 0 if one of the nk is 0. But we also know that any 
(n) G Tf is the image by some a e W of an (n) e A and if a ^ Id 
(or (n) £ A) one of the nk is negative. Suppose that (n) is in TP and 
nk ¥= 0 for all k\ there exists a o <E W unique such that a(n) is in A; but 
then 

(3.8) Af(n) = (-\fAfa(ny 

Also \ |n] is exactly X^n). On the other hand if one of the nk is 0, then 
4/(n) = 0. So we can extend in (3.7) the summation to all TP if we divide 
by the number of elements of W\(p -f 1)! and using (3.8) and denoting by 
Ax, Ax> the action of A on x or x' variables: 

e - 0 2P(P + \) 
qt(x, x') = 

(2irY(p + l)\Af{l)(x)(Af(l)(x')y 

(0), 

(3.9) 

X 2 eX^Af(n)(x)(Af(n)(x^r 
(n)EZ^ 

$,(*, *') 
(277)^/7 + 1 ) U / ( 1 ) ( X ) ( ^ / ( 1 ) ( X ' ) ) * 

x 2 /<%(n)(xx/(n)(xO)* 
<n)eZ" 

Now the series on the left side of (3.9) is a generalized theta function. By 
(2.33) we have 

(3.10) A|°> = - ' (n)M(n) 

where M is the symmetric matrix of Hilbert type: 

kl 
(3.11) M,, = 2 Inf(Ar, /) 

/> + 1 
1 < k,l ^p. 

Now if S is a complex symmetric (p X p) matrix and A" is a vector in 
Cp, we define 
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(3.12) %(S, X) = 2 exp(/V(n)^(n) + 2MT('(II), (X) ). 

Here we have 

(3.13) ?,(*> x') 
( 2 ^ ( p + 1)! 

X (Af(\)(x)Af(l)(xTr[AxAx,e[ — M, 
/77 277 / 

M being defined in (3.11). 
We have now to go to the limit x —» 0. Let us fix x' ¥= 0 in C; we have to 

compute 

v4<p(x) 
lim 

for some given function <p; it is clear that the numerator and the 
denominator of this quotient tend to 0 when x —» 0. Now 4 /m = v> has 
been computed in (2.34) and it is equivalent to: 

Af(\)(x) ~ l l 2/(/£, .x) when x —» 0 

and 

(3.14) lim -££>- = ( n ^ | - r W ) U-0-
*-X) 4/>n(.x) ^ «>o 2/3(7?, JC)/ 

Call 

(3.i5) L = n ( 
/?>o \ 2/9(7*, x) 

ReAp 

this is clearly an antiinvariant operator for W (this is the one of least 
order); then 

(LAvXx)= S (-l)%L(a<p))(x) = 2 (L*)(ax) 

and for x = 0 this is (/? H- l)!(L<p)(0), SO that when x —> 0, we obtain from 
(3.13), (3.14) 

4,(0, x) = 
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X (Af(l)(x) ) U LX,®\-LM,X—-^ 
117 2 

x'=0 

We can now simplify slightly this expression; call 

<p(x - *') = el—M,?—^-
\ im 1m 

we have to compute 

Ax[LxMx ~ x') ] l ^ o = 2 ( - \)°[LxMo-]x ~ x') ] \x,=0 

= 2 {-\)°[Lx,<f{o-\x - ox') ) ] !,,_„. 

But by antiinvariance of L 

LxMo~\x - ax')) = {-\)°LxM°~\x - x " ) ) l y W 

= ( - l ) ' L I W a - | ( i ~ x")))\x„=ax, 

so that 

^LJ<p(a-]x)) Ax[LMx - x') ] I A - ' = 0 

= 2(-l)a(Lx«p)(a [x) 

and finally 

2P(P + i)e-W< I t x\ 
(3.16) 9 r(0, x) = — (Afa)(x) )']AXLX&( — M, — . 

( 2 7 7 / \ ITT Z7T / 

THEOREM 1. The heat kernel of SU(p + X) in radial coordinates is given 
by formula (3.16) with L defined in (3.15) B in (3.12) and M in (3.11). The 
heat kernel of the Weyl alcove C {or the heat kernel on SU(p + 1) between 2 
regular spheres of SU(p + 1) is given by formula (3.13) for x, x' e C. 

4. The heat kernel on the non compact symmetric space SL(p + 1, 
C)/SU(p + 1). SL(p + 1, C)/SU(p + 1) is the non compact dual of 
SU(p + 1). This means that it has the same roots with same multiplicity 2 
and it can be formally obtained from SU(p + 1) by taking purely 
imaginary variables. The volume element is 

(3.17) V(2)(x)dx = l i sinh(^, x)\ dx 

R>0 

and we define as usual 

(3.18) J(x) = EL 2 sinh(fl, JC) 
RGAP 

R>0 
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so that the volume element is 

J2(x) 
v2(*) = ^ T T ? 

It is known from [2] (and in fact it is easy to check directly using (1.3) ), 
that the radial part of the Laplace-Beltrami operator on (E, Ap, (2 . . . 2) ) 
is then 

(3.19) A2 = - U ( A . .. 3 U ) + A<°> 

w i t h A<°> given by (2.40) (the + is due to the fact that / involves now real 
exponentials) and where 

A ( — 9 \ =
 py ^_ 

\ 8 ^ 1 ' " " 8 ^ + 1/ / = i dqf' 

We want to find the heat kernel of problem (3.6) and then (3.5). As 
usual, it is inconvenient to work in the qt coordinates (because they have to 
obey the relation 

P + \ 
S qt = 0). 

/ = l 

We have then to work in xi coordinates, which are not orthogonal. But we 
know from (2.32) that 

(3.20) ké^x) = - — f 2 r(p + 1 - r)g 
0+1 W l 

+ 2 2 r(p + 1 ~ /)£,£/ 

Call pf\x, x') the heat kernel (with respect to the measure dx') of the 
operator A given by (2.32): we have 

A = -(tdx)M(dx) 

and thus 

(3.21) p\e\x, x') = - y - ^ TTn 
Ft (Amt)p/\tet M ) + 1 / 2 

X exp —C(x - x')M~\x - x')) 
At 

where M is the matrix (3.11), and so 
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K<f\x, x') = Ajt
e\x, x') 

at 

p{
t
e\x, x')dxf -> S(x - x'). 

Now if we define 

rt(x, X) = 
J(x)J(x') 

it is easy to see that 

f J2(x') 

is a solution of 

^ = A2ft (A2 given by (3.19)) 
ot 

ft - / 0 if , -> 0 + 

provided that supp f0 c A (and so does not touch the walls of A). We now 
define 

\$]t 2p{P + \) 

(3.22) qt(x, x') = ^ X ^ ^ ° ( J C , *')• 
A (/> 4- 1)! J(x)J(x') x xFt 

It is clear that 

qt{x, x')dv(x') —> S(x — x') 

in A X A because in the summation 

1 
2 2(-i)a(-i)V/W,™') 

(P + l)ï a 

only the terms o = T give a 8(x — x') for functions defined only on A, so 
on functions with support in A, this double summation tends to 8(x — x') 
because we have divided by (p 4- 1)!. 

Moreover qt satisfies the heat equation in A 

(3.23) -q, = A2qt 
ot 

because A2 commute with the action of W, so that 

^ t P{te\°x, x') 
J(x)J(xr) 

satisfies the heat equation in x, (3.23), for any xr and any a e W. 
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Finally it is clear that qt is smooth on 21^ is symmetric in x, x' and is 
invariant by action of W. 

We now have to compute the limit when x —» 0. Then by (3.18) 

J(x)~ I I 2(H,JC). 

#>0 

We can do the same computation as in part 3; we call now 

(3.24) L = I I 
*>o 23(1?, x) 

and we finally find 

>Aur 
(3.25) 9 f(0, x) = 2'<' + 1 ) - — ^ / ^ ( O , *) 

J(x) 

and 

THEOREM 2. 77z<? heat kernel SL(p + 1, C)/SU(p + 1) w g/'v^ 6y 
formula (3.25). Oft z'/ze Wey/ chamber A, //ze /zea/ kernel is given by formula 
(3.22) for x, i ' G À (z7zzs represents the heat diffusion between two spheres 
SU(p H- 1) • ex • 0 tfftd SU(p + 1) • e* • 0 /« /7ze symmetric space). 

References for Section 3. The heat kernel for SU(2) was given by 
Schulman [28] and for the general SU(p) by Dowker [9]. One method is 
slightly different because we proceed through the eigenfunctions. More
over we stress the importance of the matrix M which will be very useful in 
a later publication. 

The Laplace operators for non compact SL(P + 1, C)/SU(p + 1) are 
given by Berezin [2] and their expressions are used by Dynkin to obtain 
the Green's kernel [10]. 

4. Invariant operators, their eigenfunctions and heat kernels for the 
root system BC and certain related spaces. 

1. The root system BC and its affine Weyl group. 
a) The root system BCp. We start with a euclidean space of dimension p\ 

q will denote a point in E, (q^ . . . , q ) its coordinates with respect to an 
orthonormal base ex, . . . , e of E. The root system BC contains by 
definition the following roots 

(i) R\ \q) = qi and their opposites —qi 

(ii) R\ \q) = 2qi and their opposites —2qÉ 

(iii) R\J\q) = qt — qj and R\j\q) = qt + qj with their opposites. 
We choose as positive roots the qh 2qh qt — q- and qt + q- for / < j . The 

Weyl chamber is 
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(4.1) Aq = {qe Ep/0 <qp<qp-x<...< qx). 

We must also associate to each root a a multiplicity pa; we shall choose the 
following multiplicities: 

(i) the R^ \q) = qt have equal multiplicities px (and also their opposite 
roots) 

(ii) the R) \q) = 2qt have equal multiplicities p2 

(iii) the R^ and R^ have equal multiplicities p3. 
Here the pt are positive or 0 numbers. 
b) Related symmetric spaces. For example, let us consider the case 

p = 2; we have two non compact symmetric spaces with the root system 
BC2 namely 

W R) 
1/(2) 

SU(2, 2) 
S(U(2)xU(2)) 

p, = 0, p2 = 1, p3 = 1 

p, = 0, p2 = 1, p3 - 2. 

c) The Weyl group. As usual, the Weyl group is generated by reflexion 
through the walls of A. It is the semi direct product of the group S of 
permutations of the q-s and/? representatives of the group Z/2Z operating 
on qt by ql -> ±qt. 

d) The affine Weyl group. We define the Weyl alcove by 

(4.2) Cq = {q Œ E/0 <qp<qp_l<...<q]<TT} 

and we define also the group T generated by the translations of vectors 
2^et (so qi —> qf + 27r for z = 1 . . ./?). The affine Weyl group W( J is then 
the semi direct product of the Weyl group and the group T. The images by 
the elements of W^ of the Weyl alcove C generate a paving of E. 

2. The space of functions on C and volume element. 
a) Invariant functions by the affine Weyl group. Let f(q) be a function on 

E. Then / is invariant by the affine Weyl group if and only if 
(i) fis periodic of period 2-77 in each of the coordinates qi 

(ii) fis symmetric with respect to all permutations of the qt 

(iii) / is even with respect of all coordinates qt. Such a function is 
known, when its values on C are known. 

b) The volume element and the associated Laplace operator. On C , we 
shall define the following volume element 

(4.3) dV(p^P3> = n (sin ^)P ,(sin q(p 
i=\ \ 2 / 
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We call # < P > ^ P 3 ) the function appearing in front of Tl*l=\ dqt. We can 
define an associated Laplace operator 

(4-4) A " F ^ à a 4 . l dqJ 
It is clear that A(PlP2'p3) gives a self adjoint operator on L2(C, dV{p^2^]). 

Remark. We remark that in (4.3) and (4.4) we have divided the roots 
appearing in the sine functions by 2. The formulas are not exactly the 
same as the general formulas of Section 1 (1.9) and (1.10). This is only a 
question of tradition. 

3. The change of coordinates xi = cos qt {algebraic variables). 
a) Definition of the "algebraic" variables. In the case of BCp root system, 

it is very convenient to use the so called algebraic variables xt = cos qt. 
Then the Weyl alcove becomes 

(4.5) Cx = {x = (xl9...,xp) G R^ 

- 1 < xx < x2 < . . . < xp < 1}. 

Moreover if fis a function on E it becomes a function (still denoted / ) 
on [—1, +1]77 and f(xx, . . ., JC ) is invariant with respect to the affine 
Weyl group if and only if it is symmetric with respect to all permutations 
of the xi (the periodicity and the evenness of fis taken into account by the 
cosine function). It is also clear that the passage from x-variables to 
g-variables induces a bijection from functions defined on Cx to functions 
defined on C 

b) The volume element in algebraic variables. We call 

(4.6) p, = 2a - 2j8, p2 = 2/3 4- 1, p3 = 2y + 1. 

Then 

pp-(pi,P2'P3) = iy(<*Ay) = W}W2 

with 

This can be rewritten as 

wx = 2^(rr sin2 % ) a ( n cos
2 stf fr sin q, 

\/ = i 2 / \/ = i 2 / /=i 

s in 
lOL — ip 

( s i n ^ , ) 2 ^ 1 
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= 2^-Mfl (1 - x,)Y(fl (1 + X,)Y f l sin q, 
\i = \ ! \, = \ ! t = \ 

Wi = 2-WP-l)/2](2Y+l)/ Yl (*. - X/))
2y+\ 

Moreover 

dqx. . . dqp = ( - 1 ) P ( I I sin qi\dxl . . . dxp 

and we obtain 

LEMMA 1. In coordinates xh the volume element is 

(4.7) dV{a^y) = C I I (1 - Jc,.)a(l + * / 

X I I (*,- - x.)2^xdxx...dxp 

where 
Q = 2^-«-[^-l)/2](2y+l))^ 

We denote 

(4.8) ,www = n (i - Xin\ + xf n (*,. - x ^ 
i = l l=y'</=7> 

c) TTze Laplace-Beltrami operator in algebraic coordinates. 

LEMMA 2. We have in-algebraic coordinates 

or by expanding 

_p_ 

A< 

(4.10) 

«A* = 2 ((1 - x^JL + [,8 - « - ( « + /? + 2)x. 

(2y + 1)(1 - x?) 2 ] 

7 = 1 

Proof. This follows by direct computation. 

• / * ' x / xj 
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Remark. We see that the variables xt are separated if and only if 
2y 4- 1 = 0, but this does not correspond to a symmetric space of type 
BCp (it can correspond for certain values of a and ft to a product of 
compact symmetric spaces). 

4. The case where 2y 4- 1 = 0. 
a) Jaeobi polynomials in one variable. Let a, f$ > — 1. The Jacobi 

polynomials Pj, (jt) are orthonormal for the weight 

pl«>fi = (1 - xf(\ 4- xf on [ - 1 , +1]; 

they satisfy the differential equations 

(4.11) f(l - x1)-^ + [ ) 8 - a - ( a + j8 + 2)x]-f W > 
\ ax ax i 

= -n(n + a 4- 0 + l ) / ^ 

and also the ladder equation: 

(4.12) -fp<^(x) = «/ t+Z^ V ) . 

The preceding differential equation is 

(4.13) ^±U^-^±^A = -„(„ + a + /? + \)Pf». 
Hy 'H' ax \ ax I 

We suppose also that 

l l ^ f t l l ^ ( [ - i , + i]^^) = l' 
b) The case y = - 1 / 2 . In case y = - 1 / 2 , the operator A ( a ^ " 1 / 2 ) 

appears to be a sum of identical independent operators in one variable of 
type (4.11). It is clear that 

(4.14) A < ^ - ( 1 / 2 ) ) n P [ % ) 

-(£ *,(*,+ <* + 0 +1)) n < ^ w 

and the products 

n ^ (* , ) 
are orthogonals for the weight m(a&~(]/2^ on the cube [—1,4-1]/;. If we 
want to obtain an invariant function, we just have to symmetrise with 
respect to the symmetric group S We define an order on the /duplets of 
integers by 
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n\ = "2 = • • • = np-

If «j < n2 < . . . < n , we define 

p 

(4.15) pff'-^\x) = 2 n < f (xk) 
oŒSp k = \ ( } 

where as in Section 2 (n) = (A21S . . . , w ). 
In the case when some integers n- are equals, we need only to sum over a 

subgroup of S . We obtain easily 

LEMMA 3. The polynomials pfy U2)\x) for (n) = (n]9...,n) 
(n} = n2 = . . . = n ) are an orthogonal basis on Cn for the volume 
jT/(a,/3,-(1/2)) of eigenfunctions of A(a'&~(1/2)) with the eigenvalues 

(4.16) A<«f-<1/2)) = - 2 «,(«, + a + /? + 1). 
/ ' = 1 

5. TTze cose 2y + 1 = 2\or y 

p 

1 
= i 

1 

2 
a) Notations. Let us define 

(4.17) <p(x) = I I (*,- - xj) 

et = n (x, - *,) 
/c and / ^ / 

(so 0, does not contain xt) 

,.<»* - (1 - -v,)«(l + » , / . 

It is clear that, from (4.10) or (4.9) we obtain 

(4.18) A*** = £ ^l±tfW\>±). 

b) The polynomials p§f'l/2). For (n) = (nl9 . . . , np) («, ^ n2 = 
. . . ̂  n ) we define the antisymmetric polynomials (with respect to Sp) 

p 

1 1 Pnj+j-\(xa{j)) 

(4.19) ^ , / 2 ) ( ; c ) = 2 (-If-
aeS p <P(*) 

It is easy to see that the <p • pfy \x) are orthogonal on Cx for the 
volume 
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I I (1 " JCf.)
a(l + Xtfdx 

i = \ 

so that we obtain: 

LEMMA 4. The p\^[ (x) are invariant polynomials orthogonal on Cx 

for the volume dV^V2\x). 

Proof. We have 

dV{a^x/2\x) = I I (1 - JC,.)a(l + xtf^xfdx 
i = \ 

from (4.8) in the case y = 1/2, using the definition (4.17) of <p. 

Remark. See also [16]. 

We now want to prove the following result. 

THEOREM 1. The invariant polynomials 

np) nx ^ n2 ^ . . . ^ np) 

are an orthonormal basis on Cx for the volume dV^-' ' ^ of eigenfunctions 
oy ^(a,/5, ) j * o r tne eigenvaiue 

(4.20) X£)* , / 2 ) = - 2 «,.(«,• + a + 0 + 2/ - 1). 

6. Proof of Theorem 1. We abbreviate A ^ ' 1 / 2 ) by A; we have to compute 
4 P & A 1 / 2 ) . Define 

^•'/2) ((«) = («„ 

(4.21) Ô! i(«,iS) 

7 = 1 7 

7 = 1 
ly+y-lV^J 

(4.22) y4 = A 

Then we obtain from the expression (4.18) for A 

i - . f t ^ ? ^ 1 " ' 

Di^fi) £ Qfj^ix) 3 (ff(.+1,,+ 1) v 2 a n°ff-iW 
x «p; 

8x, v/ 

Let us compute each term in the sum 2 giving A : 
/ = ! 

8*,. 

.(<*,£) 
3 _ / (a+l , j8+l) 2 9 -*%+ '•-!(*'•) 

M/ Vi 
dX: % 
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W 
(a+1,0+1) 3 2 3 11 

, — v,- + v/ — ~ 
Ldx,- axi <P/ 

3x 

We have «p? 3,-qp,- * = — 3 ^ , 

But, by equation (4.13) 

1 3 

1 3 

tf^dxV] 
, ( t t+ l , jg+l ) 3 (g, ft) 

3x, «,• + /'-! 

+ « 
( a + l , j 8 + l ) 2 

ax, 

^ ax, 
/ ( « + 1 , 0 + 1 ) 9 p(aj3) \ 

= -(«,- + /' - IX»,- + a + j8 + 0 

3 / (g+i,^+i) 3 
M; 3.x, 

<P/ 
8x 

/ijWa - i8 + *,.(« + p + 2 )^ + (*? - l X < J 
\ d x OX; I 

and so finally 

7 = 1 
2 («,- + i ~ l)(«z- + « + 0 + /) 
i = \ 

+ 2 - ( « - £ + x > + /? + 2 ) ^ + (x7
2 - l A 

1 = 1 * l v 

But we have by definition of q>t 

OX,- 7 - = l A: = l 

dX: dxf 
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= % 

1 i - \ P 

2 
k=i+\ x- — xk k = \ xk — xt 

2-L 
and so 

2 I hi 
i = \ % 3x, 

= 0 

1 = 1 3x; 

^ / 
- 2 x, 

1=1 ^ k = \ xk — Xi 
+ 

A 
2 -

= i + l X-

1 

- ** 

1 9 2
V / _ 
0 

p p 

2 2-
1 

p(p - 1) 

Vi 3xz fc = i /=i (xz — xeX*, - xk) 

1 3 p p p 

2-9-2 2 2 
/ = i <*>, 3A:,- I = I A = I /=i (xz — xk)(xt — x/) 

i^k^i 

because the terms (/, k, /) and (k, /, /) are of opposite sign. 
Finally 

£ 20\)/(3xz
2) £ ' £ 2 

2, xt - = 2 2 2 *,•((*,• - x̂ Xx, - x;)) 
/ = i <P* / = i k=\ / = i 

/>(/> - l)(p - 2) 

- l 

In fact, we have 

P / a 2 

/ = ! 

^ 2(3z
<pf)/(3x/) 1 ^ ^ ^ 2 

2 */ ~ = - 2 2 2 X,<p( (*/ - Xk)(xi - Xf) ) 
% V / = l Ar = l / = l 

and it is clear that Q is antisymmetric of degree p(p — 1)/2; so it is of 
minimal degree (to be also antisymmetric) and it is then a multiple of <p. 
To evaluate the coefficient we compute the coefficient of 

> - l 
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to obtainp(p — \)(p — 2)/3. 
We put together all the formulas obtained 

; _ 1 J J J 

y = i p 

- 2 («/ + / - ix«/ + « + 0 + o 

+ ( q + / l + 2 ) ^ - 1 )
+ ^ - ^ - 2 ) 

the eigenvalue obtained is 

p 

- 2 «/(«/ + a + j8 + 2/ - 1). 
/ = i 

Now it is clear that if a e 5 , we have 

2 «a(/)K(/) + a + J8 + 2a(0 - 1) 
/ = i 

/> 
= 2 «/(«,- + a + j8 + 2/ - 1) 

/ = i 

so that 

with 

A(a,Al/2) = _ £ w > ; + „ + ̂  + 2 / _ j) 
1 = 1 

which proves the first part of Theorem 1. 
We want to compute the norm of 

p$f-u2\x) in L2(CX, dV^-]/2)). 

Let us denote by A the operation of antisymmetrisation with respect to the 
group S acting by permutations on Xx . . . X \ then 

and because of the expression (4.8) for dV^a^XIT) and (4.17) of <p 
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„(<*,/?, 1/2) 
(4.23) \\p^Ui\x)WLhc,MV^>^ 

^(n^-.,(*y-) ûic^n^dxi)' 

As in Section 2, we have 

(4 / lg)L 2 ( [ - i , + i F , n ^ W / ) 

= (Af\Ag)L2(CxMitf,p>dXi) 

= U\Ag)L\ [ - 1 , + l ^ n ^ W , ) 

because 

= 2 (-1)" J f(x)^)Ufiia-pi(xi)dxi 

= (Af/Ag)L2(C^ntlia,p)dXiy 

Then 

(4.24) AlUrffîj-iM 
./ = ! 

ûic^n^dx1) 

A^/^J-^J)) 

X ft^ft-.te))* •([-U + i lMl / i ^W) ' 

If a ^ Id, a term like 

(4.25) L + i r 6 ^ +7-|)(-xa(y)) 

xn^-.^fiM^^^—o 
./=! ' j=\ 

because for every j , one has to compute 
*+i 

(4.26) 
/ : 

D(«,£) D(<*,P) ,/<^V 1 ^ + 7 - 1)0, ) P
V / ) + a(7) - 1 (*/)/* "' (•*/¥*,• 

and this is not 0 if and only if for every j 

(*) rij = no{j) + o(j) - j . 
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But if o ¥= Id, there exists at least one y such that o(j) > j \ then n- ^ «a ( / ) 

and we arrive at contradiction with (*). This implies that if o ¥= Id for at 
least one j the integral (4.26) is 0 by orthogonality of the P\^{xl) with 
respect to ^a^(xt) and so for o ¥= Id, (4.25) is satisfied. 

Using (4.24), (4.25) and (4.23), we deduce 

n^f1/2)(^)iiiv^^->) 

= ft iî ^?-iiiî [-i,-*-i]^c-«^> = i 

if the P^C,Ê_] are normalized with L norm equal to 1. 

7. The heat kernel for A ( a^1 / 2 ) on E. 
a) The Cauchy problem on E. We want now to find the fundamental 

solution of the Cauchy problem on the symmetric function f(x): 

(4.27) 
1 dt 

j\t=o — Jo-

We write this solution as 

(4.28) f{t, x) = jcJ0(x')qt(x, x')dVMU2\x') 

where qt(x, x') is the fundamental solution of 

A = A(«,&l/2) 
dt 

with respect to the volume element JF ( a ^ , 1 / 2 ) . 
b) But the j ^ y ,1; ^ are an orthonormal basis for 

h\Cx, dV{aAl/2\x)); 

we can write 

(4.29) q,{x, X') = 2 W^P^ti 
(n) 

- l y AnfM2)t 
— ^ £ (n) 

<p(x)<p(x') (n) 

x AX(Û p(„;5_,(x,))̂ ( n j*$-,(*p 

where, as before, ^ and Ax> denote antisymmetrisation in x and x' 
respectively. But by (4.20) 
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P 

I 
7 = 1 

AftA1/2) = 2 n,{n, + a + fi + 2j - 1) 

2. 

7 = 1 
2 [ (nj + 7 - !)(«,• + y - l + a + j 8 + l ) 

- / + a + 0 - . / ( « + 0 - 1) ] 

so that 

(4.30) C'^^tH 

where 

A, = ~(a + fi) + (a + fi - i ) £ < £ _ t i ) + ±j2 
2 7=1 

is a constant depending only on a, fi, p and where 

X j ^ = -k(k + a + fi + 1) 

is the eigenvalue of P^.a^(x) for the operator (4.1). 
Let us define k: = ti: + j — 1; then we can rewrite (4.29) as 

K t 

(4.31) 0 , ( JC , JC ' )= 2 e 2 *- 1 ^ ' 
<p(x)<jp(x/) (k) 

0^k{<k2<...<kp 

But 

*,( rr pf%)) = o 

if two of the lj are equal, so that we can extend the summation to the case 

Now let us take any/7-uplet (k) = (k{, . . . , k ) ^ Np. Then there exists 
a unique o ^ S such that 

a(k) = (ko(]) . . . ko(p)) 

satisfies 0 ^ ko(]) ^ ^ fco(/?); then 
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and in the summation (4.31) we can extend the summation to all (k) e Np 

provided that we divide by/?!, so that 

qt(x, x') = 
eKpt 

p\<f>(x)<p(x') 
7AXAX, 2 II 

(k)eN^ y = l 

(4.32) 

qt{x, x') 

X ^ % ) ^ ( x ^ 

K t ( P i + ° ° \ \ 

<P(X)«P(X') x x\jJi\kj=Q
 k> Vj> k> yj'n 

~ j \ . VJ{. v ' 
p\<p(x)<p(x') 

where pt (XJ, Xj) denotes the heat kernel of the operator (4.11) 
(with respect to ^a,^(Xj)dxj). 

Recalling Lemma 1 of 2 of Section 3 and the definition (4.17) of <p(x), 
we see that when x —» 1 in Cx, (1 corresponds to all qt = 0), we obtain 

Ax,Axtlp\a'%,x^ 
qt{\, x) = A' lim 

pl<p(x) x'- «p(x') 

eKp' S. 
L^A^Up^ix.x^l,,. 

p\<p(x) j=\ 7 J 

where 

is the simplest antisymmetric operator for the action of S and this is 

(4.33) qt(0, x) 
eKpt 

<p(x) 

_p_ 

7 = 1 

A^Up^i^Xj) x;=iv7-

and we thus obtain 

THEOREM 2. 77ze heat kernel of problem (4.27) w given by formula (4.32) 
ifx, x' G C, W fry (4.33) if x' = 1, JC G C^. 

We see that the computation of the heat kernel for the operator A(of,^,1/2) 

on a euclidean space of dimension p is reduced to the computation of the 
heat kernel for the operator L ( a ^ in dimension 1 defined by (4.11). 

5. Analysis on symmetric spaces in horospherical coordinates. 

1. The Iwasawa decompositions and horospherical coordinates, a) We 
started in Section 1 with a semi simple Lie algebra % and its complexified 
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form © c ; then we defined for any complex root a in ?ftc a one-dimensional 
subspace © ^ of © c and we defined a nilpotent Lie algebra 

(5.1) 9?(
c
+) = 2 @(c} 

and its real part 

g?(+) = © n K(
c

+). 

Then © is decomposed in 

(5.2) © = 5ft{+) 0 9% 0 S (Iwasawa decomposition). 

b) Then the symmetric space X = G/K (of negative curvature) is 
X = NA • O where O is as usual the origin and N the nilpotent Lie group 
of the Lie algebra 9 ^ + \ Any point m e Xcan be uniquely decomposed in 
(n, a) where n ^ N and a e A and («, log a) are the horospherical 
coordinates of m e X 

2. 77ze Lap lace-Belt rami operator in horospherical coordinates, a) The 
Laplace-Beltrami operator 1/2A^ is the generator of a diffusion process 
on X, denoted ww(f) (to being in some sample path) and so, we have only 
to compute the infinitesimal increment of this process in time dt to find 
1/2A^°. As we want to write A? in horospherical coordinates we shall 
denote 

mM) = ("«(0, ajt) ). 

To be self contained we redo here the computation of [22] (in fact we do a 
slightly simpler computation because we do not need their full result), 

b) We suppose that mJQ) = ra0 so that 

K,(0), a JO) ) = (n0, %) 

(so that m0 = n0a0 • O). The tangent space at O of Xis exactly the space s$ 
and it has an orthonormal basis cls . . . , cw (where n = dim ^ = dim X) 
that we split in €j = ex, . . . , c_ = e which is an orthonormal basis of 91 
and €̂  + j , . . . , €w which is an orthonormal basis of the orthogonal 
complement 9IX of 91 inside $ . Then it is well known, by [22], that the 
stochastic process mjt) is exactly 

mJf) = gjt) ' O 

where g Jit) is the so called horizontal process on G so that the logarithm 
of its increment is a white noise inside ^ , i.e., 

(5.3) gjt + dt)gjt)~l = exp( 2 £ ,G,V^ 4- o ( V ^ ) ) 

where the Gq are gaussian random variables of mean 0 and variance 1. We 
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can assume here that 

(5.4) gJO) = n0a0. 

c) We want to find the processes (njj), ajj) ) for t = dt so that 

(5.5) gjidt) ' O = njdt)ajidt) • O. 

We write 

(5.6) njdt) = nQ exp(A«) ajdt) = a0 exp(Aa). 

Call A'/i = (Ad a ^ A w , so that 

exp(A«)a0 = a0 exp(A'w). 

Then (5.5) becomes, after a simplification by n0a0, (we take (5.6) and (5.4) 
into account) 

(5.7) exp(A'«)exp(A<3) • O = e x p 2 eqGq\/It + 0(A) 

But 

(5.8) exp(A'/i)exp(Aû) - expl A'n + AU + - [AX Aa] I 

(up to terms of order o(dt), we shall from now forget o(dt) once and for 
all). Now 

n i p n n \ 

(5.9) 2 eqGqy/dt = 2 e ^ + 2 €^G, + 2 < G J V ^ 

where €̂  (resp c£) are for q = r + 1,. . . , n the orthogonal projection 
of eq e 3tX into 9? (+) and ® respectively. 31^ is exactly 9? (+) 0 S by Iwa-
sawa's formula (5.2) and so we have 

(5.9)' e x p ( 2 eqGqy/à) 

= exp[( 2 eqGq + 2 c ^ W + f 2 ^Gq)y/â] 
i\q=\ ^ =p +1 ' \q=p + \ ' J 

where we have separated the 21 © 9? (+) part and the ® part. But for any 
k e S of the order of 0(y/dt) 

(5.10) e x p j i ] € ^ V ^ ) o 

= exp( 2 « ^ V S ) • exp(fc) 0 
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/ " 1 T " 1 \ 
= exp 2 €qGqVdi + k + - 2 eqGqy/dt, k\\ • O. 

Now we come back to (5.7) using (5.8) and (5.10) and a k such that the 
term inside the exponential in (5.10) has a projection into S equal to 0. We 
deduce 

(5.11) 2 « ^ V ^ + * + - 2 e / ^ V ^ k 
q= 1 2 L ^ = l 

= A'w + AA + - [AX AU]. 

We can then identify the term in ® of o r d e r y S in (5.11): it is, using 
(5-9), 

2 e'fâVdt + A 

and we impose this to be 0 mod O(dt); so 

A? 

k = - 2 ^qGq-\fdt + 0(<fr).' 
7+1 

Then identifying the 9^( + ) and 31 projections of the equality (5.11) 
mod O(dt) we have 

2 t'G'yfdt + w,(rfO = A'/i 

(5.12) < 

/> + ! ^ ^ 

2 eQGQ^[dt + a,(rf/) = Aa 
<7 <7 

2 € ^ V ^ + *i(<*0 = k 
p+\ 

q q 

where nx{dt), ax(dt), kx(dt) are of order dt in 3l^+\ 51 and ® respectively. 
We put (5.12) in (5.11) to obtain 

0 = nx(dt) + a,(A) - A:,(A) + 
1 

2 < ^ , 2 e G 
P + \ l 

A 

2 L i ^ ?=/> + ! 
(mod o(d0 ). 
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Now take the expectation: because the Gq are independent the fourth term 
is of 0 expectation and in the fifth term only 

2 €G 

survives: so 

(5.13) 0 = E(nx(dt)) + E{a(dt)) - E{kx{dt)) - 2 Wq, ^]E(G2
g)dL 

But e'q is in 9?( + ) and ^ is in ®, so [c ,̂ c£] is in 91. Identifying the 9?( + ), ® 
and 91 parts of (5.13), we obtain 

(5.14) 
kx(dt) = 0 mod 0(dt) 

ax(dt) = \ 2 K, c'']A 
<7=/>+l 

4' -qi 

- K so that by (5.12) and (5.14) and the fact that A'JI = (Ad a0 )An 

(5.15) 
1 2 q=p+\ 

An = (Ad aJ 2 €'qGqV3t). 
K \q=p + \ ^ ^ ! 

d) We now obtain from (5.15) the analytic expression of A(
2 in co

ordinates (n, log a) as follows: 

(5.16) 4*> = A^cl + Z + 2 ((Ad a)?;)2 

?=/> + ! 

with the following notations 

(i) A >̂, = £ * 

is the usual euclidean Laplace operator on the euclidean space 91 = E. 
(ii) Z is the constant vector field on 91 = E 

(5.17) 2 K,e'']. 
q=p + \ 

(iii) At the point («, log a) e ]V X ^ ^ I , we define the vector field 
(Ad a)V ior q = p + 1, . . . , n and 
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n 

2 ((Ada)?;)2 

q=p+\ 

is the differential operator of second order which is the sum of the squares 
of these vector fields. 

(iv) e'q and eq are the projections of eq on 9î ( + ) and ®, eq being an 
orthonormal basis of 9$ and in particular e' generate in TV a left invariant 
vector field denoted V. 

3. Algebraic structure of the nilpotent algebra SSc \ We want to obtain a 
more explicit expression for the last operator appearing in (5.16). For 
a fixed a e A, this last operator is a second order left-invariant operator 
in the nilpotent group N. 

a) Coming back to the complexified Lie algebras. We have seen in (5.1) 
that 

^ (c+ ) = 2 @(c}. 

Moreover ©J?' is a 1-dimensional complex vector space and we define 

@£> = CXa • Xa e © c . 

We define 0'MC —» @c the complex conjugation in © c with respect to 
the real part © of © c . It is known (see [22], Lemma 4.3) that ( 3 t ^ ) c 

(i.e., the complexified space of the orthogonal complement in s$ of 3IŜ ) 
is generated by the elements Xa — 6Xa. Then it is easy to see that 
the projection of Xa - 0Xa in 9?(

c
+) is 2Xa. 

b) Computation in the real nilpotent algebra 9^ + ) . Now, two roots of 
the maximal abelian subalgebra $ c of @c may have the same restriction 
to the %y part. Recall that here St is the restricted root system of 9tc. 
We can then split W ' in the eigenspaces of the roots 

(5.18) 9? (+) = 2 5ft(+)(a) 

gfj( + )(«) b e m g the space of all X such that 

(5.19) [h, X] = a(h)X for any h e 91. 

Then 9? (+ ) ( a ) is the vector space generated by the 

{Xp/p e 2ic and 0 | a = a}. 

We have 

dimR gfc(+><<«> = Ptt. 

It is also known (see [15] ) that 
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[®(
c
a), ©$f>] c @£+/?) if a + fi is a root in 3tc 

= 0 if a + /? is not a root. 

From this it follows that 

f [K(+X«)f sRC+Xft] c K(+)(«+ft if « + ^ is a root in 31 
(5.20) 

0 if not. 

c) Decomposition of $l^\ We call a fundamental root a positive root 
a e 9? which is not a non trivial linear combination of other roots. It is 
known that any positive root is a linear combination with positive or 0 
integers coefficients of the fundamental roots and this decomposition is 
unique. We call g + the set of all fundamental roots. 

We can decompose 9? (+) as follows: 

(5.2i) 9?(+) = »! e as2 e 933 e . . . 
where the 93- are vector subspaces defined as follows 

f 93, = 0 + 9? (+ ) 'a 

(5.22) 

93, = + 0 .+ . 5R(+)'tt 

where @ + + . . . + g + ) n 9 ? + ( g + taken 5 times) is the set of positive 
roots which can be written as the sum of s fundamental roots (not 
necessarily different). Then for i,j > 0 we have by (5.20) 

(5.23) [33/, S,.] c 33,+J, 

4. Structure of the nilpotent part of A2 . 

a) Coordinates on N. We shall define exponential coordinates on TV 
as follows. For any a e 9 ^ , the subspace 9t^+^'a is generated by Xa -, 
y = 1,. . . , pa (these X • are the XpS in @c such that /$]% = a). Then any 
element in JV can be written as 

exp ?+ 3 ^^ 
where (èaj) *s t r l e s e t °f exponential coordinates. 

Among these coordinates, we distinguish a special subset that we call 
fundamental coordinates which are the £ for a e g , J = 1, • • • , Pa 

(they are the coordinates on 93 j). The multiplication law in N can be 
expressed as 
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where 

(5.24) exp(2 ZJX.J) exp(2 taJXaJ) = exp(2 £;',,*„,,). 

By Campbell-Hausdorff, the first member is 

(5.25) exp 

where the dots in (5.25) denote terms containing at least two brackets of 
the Xaj. In particular, if a is a fundamental root, Xa- cannot appear in the 
bracket or in the dot in this last expression (5.25). So we obtain by 
identifying to (5.24) 

(5.26) %d = ÇaJ + £aJ if a G S + . 

Then if a e ($ + + g + ) n $1+ and is of the form a = /? + y where 
/?, y e g + , we define 

(where we use (5.20) ) and CJ^'7 are constants. We can identify (5.25) and 
(5.24) for a <= @ + 4- g + ) n 9Î+ to obtain 

(5.27) £/J + y,/ = ^ + Y,/ + £j8 + y,/ 

+ \ 2 ( « j ^ - ^ f ^ C ^ for A y E S
 + 

(because the higher brackets denoted by dots in (5.25) do not give 
contribution to the computation of these terms). 

b) Left invariant vector fields on N. Let Xa, be the left invariant vector 
field on TV associated to X •; if fis a function on TV and if (£ •) = £ is a 
point in TV, we have by definition 

(^«,/XO = r|-/«'-€)le=o-

If a is a fundamental root, we deduce from (5.26), (5.27) 

(5.28) {Xajm = - f - ( £ ) + \ 2 ( C ^ - Clf%,k-V— + . . . 

where the dots in (5.28) involve derivatives d/d£or where /? is a 
root which is a combination of three or more fundamental roots, (i.e., 
Xpr G as3 0 $B4 0 . . . ). We have also that if a = fi + y where /3, y are 
fundamental roots 
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(5.29) (Xfi+yJf)(Q = TT—(Q + • • • 

with the same meaning as before for the dots in (5.29) and in general Xnf 
involves only derivatives of / w i t h respect to the £ak where Xak e 3S5 and 
s = s0 and Xpj e 3S5 (i.e., a is a root which is longer than /?). 

c) The vector fields £' /or g = >̂ -f 1 , . . . , /? C/ÂÏÛ? £/ze nilpotent part 
ofA(

2
X). Recall that the (Xa - 0Xa)a^+ give a basis of 9 1 ^ (orthog

onal complement of 21^ in $) . They are not orthonormal, (but see [22], 
Lemma 4.3 of Chapter II); also we have that the orthogonal projection on 
9? (+) of Xa - exa is 2Xa\ finally the £ appear as linear combinations of 
the 2Xaj and the £̂  as the same combinations of the 2Xa •. Now the action 
of Ad Û on Xaj is obvious; in fact 

Ad a = exp(ad log a), 

and so 

(5.30) (Ad a)(XaJ) = exp[ (a, log a)} • Xaj 

because 

(ad log a)Xaj = [log a, xaj\ = (a, log a)Xaj 

by definition of the root a. 
Let us write now 

(5.3i) I; = 2 <'7X,7 

«J 

where the d"J are constants. Then by (5.30), 
(Ad a ) | ; = 2 d* exp[ (a, log a) ]X^ 

« j 

and so 

(5.32) 2 ( (Ad a ) Q 2 = 2 ( 2 < exp[ (a, log a) ]*„,,) 

and when we compute the squares in (5.32) we can consider the 

d"J exp[ (a, log a) ] 

as constants with respect to the differential operators Xpk. 

5. Restriction of the nilpotent part of Aj - to a special class of func
tions. Suppose now that we want to compute Â  7 on the function / 
on X = N A • O in the horospherical coordinates. Then / becomes a 
function f(n, h) where n e N, h <E A (so that the corresponding point of X 
is m = ne • O). 
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We define the following class of functions on X. We say that a function 
/ i n X is a fundamental function if, in horospherical coordinates on X, f 
depends only on the 31 part and on the fundamental coordinates 

(£a,y)«<Eg + ,7 = l . . . p a 

of the exponential chart of N. 
In particular, we see that on such fundamental function we have from 

(5.28) 

(5.33) (Xajf)(è, h) = - f f e h) if a G g + 

and from (5.29) and its obvious generalization 

(5.34) ( J ^ / ) ( £ , h) = 0 if a e SR+ n Cg + . 

In that case the nilpotent part in (5.32) becomes extremely simple 
namely 

n 

(5.35) 2 (Ada?;)2/ 

<?=/> +1 \ a e g + y = l d g a j / 

In particular, we take a fundamental function 

/ = /(tta,y)«Gg+,7-=i...ptt, A) 

and we define its partial Fourier transform with respect to the 
fundamental variables (£a ;)aGg+ as 

(5.36) / ( ( | a J ) , A) 

/

n 

e , ' 2 - 6 8 + ^- , ^/ ( «„,>*) I I Ûdt^j. 
« e ^ + 7 = 1 

Then we obtain if a = exp h from (5.35) 

(5-37) ( 2 (Adtfpy)((ty) , /0 

?=/> + l \ « G S + 7 = 1 / 

Remark. It is clear that the class of fundamental functions is 
intrinsically defined; we could have defined such a function / b y saying 
that 
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f(n0 • m) = f(m) 

for any m e X and any n0 e exp(932 © 2?3 © . . . ) c N; 

in horospherical coordinates, this means that 

f(n0n, h) = f(n9 h) for any n0 e= exp(3S2 © £ 3 © . . . ); 

this implies that f{n;h) depends only on the fundamental coordinates of 
n. It is also clear that the operator A ^ transform a fundamental func
tion into a fundamental functions and that the heat semi-group é ^ 
leaves also invariant the class of fundamental functions. 

6. The volume element in horospherical coordinates and the vector Z. 
a) We shall need in the next chapter an explicit analytical expression of 
the volume element of the symmetric space X in horospherical coordi
nates. Let m = (n, log h) the horospherical coordinates of a point m in X; 
here n is in the nilpotent group N, and h is in the abelian group A and log h 
is an element of 5t^. This means that if O is the fixed origin of X, 

m = n - h • o = n • exp(log h) • o. 

We start with a volume element dv(0) at point o; then dv(m) at point 
m is obtained by transport of dv(0) by n • exp(log h). Now, let n' = 
1 + v + . . . and h' = 1 + £ + . . . be very small elements of N and A. 
Then n • h acts on n'h!o (which is very near o) by 

(5.38) n • hn'h'o = (nhn'h~x) • (hh') • o. 

But 

hn'hT = exp(ad log h) • n' 

= 1 + exp(ad log h) • v 4- . . . 

But 

Pa 

v = 2 2 "« / where ^ , G ©<a> 

and then by definition 

exp(ad log h)v = 2 2 é>(a'log/î)^ , 

This means that the jacobian of the mapping 

n' -* hn'h~x 

at «r = 1 is exactly 
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Pa 

I I I T exp(a, log h) 
aegft + j=\ 

and this is 

(5.39) exp 2 PaoL, log h ) . 

It is then clear by (5.1) and (5.2) that the jacobian of the translation by 
n - h at point o is given by (5.2); this implies immediately: 

LEMMA 1. The volume element of X at point m = (n, log h) in 
horospherical coordinates is 

(5.40) dv(m) = exp — 2 P««, log h\d(\og h)dn 

where d(\og h) is the usual Lebesgue measure on 21^ and dn is the invariant 
measure on N. 

b) We can also compute the measure dn in the exponential chart given 
previously. For any a e R + , any j = 1 . . . pa the multiplicative law of TV 
in exponential coordinates (£a ) is given by 

^>a,y ^>a,y ^>a,J 

where the dots indicate expressions in the £ ĵ and i-pj involving only roots 
which are strictly smaller than a (i.e., roots ft such that a = fi -f other 
positive roots). This implies that the translation (left or right) by a fixed 
element of N has a jacobian matrix (in these exponential coordinates) 
which is upper triangular with entries 1 on the diagonal, and then dn is the 
Lebesgue measure 

(5.4i) dn = n î l e -

in the £aJ. 

c) We can now come back to the Lap lace-Beltrami operator &r2 *• We 

know that A ^ is self-adjoint with respect to the volume element. In 
particular, the abelian part A + Z must be self-adjoint with respect to the 
abelian part of the volume element, namely 

/ Pa \ 

exp - 2 2 P««, log h )d(\og h). 

This implies that Z must be necessarily 

(5.43) Z = - 2 paa 
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so if we compare to the expression of Z given in (5.17), 

LEMMA 2. — Z is the sum of the positive roots counted with their 
multiplicities. In particular we see that we obtain the following identity: 
if (ek)k=p + x n is an orthonormal basis of the orthogonal complementary 
®% ofW% in% then 

n 

2 Pcfl = - 2 vk^k\ 

where ek = e'k + c£ and e'k e 9?(+), c£ e ®. 

References for Section 5. Information about Iwasawa decomposition is 
given in [15]. Karpelevic gives expression for the abelian part of the 
Laplace operator [17]. M. P. Malliavin and P. Malliavin give the complete 
expression of the Laplace operator in horospherical coordinates [22]. 

6. Quantization of the open Toda lattice. 

1. The structure of the Lie algebra ̂ ^(p 4- 1, C). SL)SZSP(P + 1, C) is the 
Lie algebra of complex ( / ? 4 - l ) X ( J p 4 - l ) matrices with trace 0. If M, M 
are two such matrices, the Killing scalar product is 

(6.2) (M\M') = Tr MM. 

A Cartan subalgebra of S^^(p 4- 1, C) is the abelian algebra 3E 
of diagonal matrices of trace 0. 

A maximal compact subalgebra is the algebra ® = 6^%{p 4- 1) of 
antihermitian matrices of trace 0 and we can write 

sese{p 4- i, c) = ® e sp 
where 3̂ is the vector space of hermitian matrices of trace 0. Then the 
algebra 21^ is the set of diagonal matrices of trace 0 with real elements on 
the diagonal. 

The nilpotent algebra Sft^ is the algebra of upper triangular matrices 
with 0 on the diagonal 

a) If h is an element in 36, h has diagonal elements denoted qt/\/2 
with 

P + \ 
2 ft = 0. 

1 = 1 

The roots are the linear forms on 9E 

(6.2) RtJ(h) = - ^ ( f t ~ qj) (i * j) 

such that if M;/ is the matrix with 1 on the i{ line and / column and 0 
y J 

elsewhere, we have 
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[h, M, ' 1 = ^/î(q' ~ q')M'J-
The positive roots are the one with /' < j and they correspond to the 
nilpotent algebra Sft ; we have the decomposition 

9?(+) = e @u, 

where @>{R ) is the vector space CM- considered as a two dimensional real 
space. The roots are of multiplicity 2. 

c) s$ is considered as the tangent space at point 0 on 

X = SL(p + 1, C)/SU(p + 1); 

its metric at point 0 is given by the Killing form so that for M e S^, we 
have with M = (m-) 

||M||2 = Tr M2 = 2 ntijinji = 2 | m / 

because M is hermitian. This has to be considered as a real scalar product. 
An orthonormal basis of ^ is then given by the following elements: the 
matrices Pkh Qkl 

k I 

(6.3) Pk/ = ( ^ _x j (zeros elsewhere) 
/\(V2)" 

k I 

' (V2)" 

' ( \ / 2 ) - ' 
(zeros elsewhere) for k < / 

and an orthonormal basis (ek) of sils^, k = 1 . . .p. Because of the 
computations given in the preceding chapter, we need to compute 
the projection of the Pkl and Qkl on ^ + , which we call Pk/ and Qk/ 

in accordance to the notation of Section 5. We have trivially 

(6.4) P'kl=V2Mk/ Q'kl=V2iMkl 

because Pkl — Pkl and Qkl — Q'kl are antihermitian matrices and are 
in Û. 

2. The Laplace operator acting on fundamental functions on SL(p + 1); 
C/Su(p + 1). In our case the fundamental roots are the roots R- + 1 for 
j = 1, . . . ,p; for each /', the fundamental coordinates of an element of 
nilpotent group N are 2p real coordinates £• which define the general 
element of the corresponding root space @^ ^(asa 2-dimensional real 
vector space) by 
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Now we take the orthonormal basis Pkl and Qkl (k < I) of 9$. The only 
Pk/ and Q'kl corresponding to the fundamental variables will be Pjj+\ 
and Qjj+\ because of (6.4) and they correspond to the vector fields 

y/2— + ... and A / 2 — + • • • 

respectively, where, as usual the dots are derivatives with respect to non 
fundamental variables. Finally the Laplace operator in horospherical co
ordinates acting on fundamental functions /wi l l be 

(6 .5) 4*>/ = A/ + Zf + 2 ± e^r^'M^ + *\f 
J=\ ^J ~.,J 

and by Fourier transforming the fundamental variables we obtain 

(6.5)' èipf = A/ + Zf - 2 2 ,W(t,2 + # ) / 

Here, as we have seen in Section 5, — Z is the constant vector field on 31 
which is the sum of the positive roots. We can write 

(A + Z)f = e -0/2)(Z "W^ft-zWztff 
and the heat equation 

A 

3 / 
(6.6) 

becomes 

(6.7) 

k-
t = 0 = m 

= /o 

Bg 

dt 7 = 1 
n = Ag - 2 2 exp(V%. - </,•+,) Xij 

A2XA 

Slr=0 = #0 

where / denotes, as in Section 5, the Fourier transform of / w i t h respect 
to the fundamental variables and where 

(6.8) 
„(I/2)(Z,<7) + (1/4)||Z||2? 

7 
go = J1'2™/» 

3. The fundamental solution of the problems (6.7) and (6.6). 
a) The heat kernel on X. We call, as in Section 3, /?(ra(1), f|ra(0)) the heat 

kernel on 
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X = SL(p + 1, C)/SU(p + 1) 

with respect to the volume element dv(ni *) of X This means that the 
function 

(6.9) f(u m{])) = JxP(m{l\ t\m{0))f0(m
{0))dv(m(0)) 

satisfies the heat equation 

(6.10) 
f / ( / , m<») = A</>/«, m<") 
at 

/ ( 0 , m<°») = /0(m<°>). 

We also know by Section 5 that this heat kernel respects the class of 
fundamental functions; this means that if we take a function 

/0(</0 ) , tf<°>), (T / 0 ) ) ) 

on X depending only of the abelian part of the Iwasawa decomposition 
and of the fundamental variables (£J ') and (ir ') of the nilpotent group, 
then its transform by (6.9) is a function 

/(W>,(€(1W>)) 
depending only of the coordinates (g(1), (^1)), (T/ ] ) ) ) of m(1). 

We also know that the volume element is in horospherical coordinates 

dv(m^) = e^W^dn 

where dn is the invariant measure on TV, and in our case it is easy to see 
that dn is the Lebesgue measure with respect to the exponential chart. For 
fundamental functions, we can rewrite (6.9) as 

(6.11) / W > , ( £ ( 1 W > ) ) 

MXR2P K(é]\ (è(\ (n(\ t\é°\ e\ J0))M<f°\ è(0\ u(0)) 

with 

dè(0) = n <> d^ = n <> -\d^ *,<»> = ft 
7 = 1 y - l 

and 

(6.12) K<4\ $<'>, r/1', /|^°), ?°\ T,<°>) = fp(m^\ t\m^)d\(niQ)) 

where d\{rrf )̂ is the Lebesgue measure with respect to all the 
non-fundamentals exponential coordinates on N. 

The function (6.11) satisfies 
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,6,3) *ir^ + Z)f+1%^^-«<Ak + k^ 
[ A-o - /o</", I"», nm). 

If we do the Fourier transform in the fundamental coordinates and 
define 

h, <p\ È<», ^) 

= Jf(t, f\ è(l\ T / V ^ ' ^ + ^ ' V ' W 1 ' 
A 

we see that / satisfies (6.6) and is 

(6.14) f(t, </», i O , #•>) 

X /„(/», |<°», #VZ^< 0V°W0W0 ) 

where 

(6.15) 1(^'>, |(1U(1), %(°U(0U<0)) 

^ /^ 1 ) , |< 1 )>^ , \^ 0U<°) , r ,< 0>) 
W 

X exp / 2 «]')!)') + ,j'>i}j'> - {fif - rf f>) 

x ^ 'W» x ^ V » . 
b) Let us now suppose that 

(6.16) /0(^(0), 1(0)^(0)) = ^ ( 0 ) ) 

depends only on q^°\ Then the corresponding f0 is 

(6.i7) ué«\ «w >̂) = ^rn^n^) 
and from (6.11) (or (6.14) ) we have 

(6.18) f(t,q(]\(l0)),(v(]))) 

where 

(6.19) #(</», |<», #'>, %(0>) 
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= j K{f\ «<•>), (r,")),^0», 0,0) 

c) Finally the solution of problem (6.7) is given by 

THEOREM 1. The solution of problem (6.7) is the integral formula 

(6.20) fa </») = I G{U é{\ t(1>, f ^ ^ ' 

(6.21) G(/, <7(1), |<'>, W » ) 

= £ ( < / » , | ( 1 ) , 7) ( , ) , %(0))e(l/2)(Z,<?«
l» + ,<°>) + (./4)||Z||2, 

a«<i Â' w g/v^« by the Fourier transform (6.19) of K defined by the integral 
(6.12). 

Proof. We use (6.8); this formula converts problem (6.7) into problem 
(6.6) for which we have the solution given by formula (6.18) (in which 
we take <p0(</0)) = f0(é

0)) )• Then 

&t, ? ( 1 )) = ^2XZ^+(XM)m
2if(t9 J», ( | ( D X (^(1))) 

t(\/2)(Z,é\(\/4)\\Z\\2t f fc,(\) U\) Mi) , (Ok 
/» 

Xe-(l/2)«Z, (?<»)).o(^(0) )e(Z, (?<°>)^(0)_ 

4. TTze hamiltonian of the open Toda lattice and its propagator. The open 
Toda lattice is a system of p + 1 point particles on a line with coordinates 
q\, . . . , q' + 1 and momentum /?l5 . . . ,/k + i interacting via the pair 
potential 

(6.22) V(q) = 2 2 1 ? expV2(^ - ,?, + ,) 
7 = 1 

where the £ are given coupling constants. The interaction is exponential 
through nearest neighbours. The hamiltonian of the system is 

p + i 

H(p9 q) = 2 /72 + V(q) 
7 = 1 

and as a classical system, it is a completely integrable system which has 
been integrated in explicit form by Olshanetsky and Perelomov in [25]. 
The hamiltonian H(p, q) can be quantized and gives the operator 

p + \ . 2 

(6.23) - / / = 2 - V(q). 
7 = 1 dq} 
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Because the interaction is by pairs, the total momentum is conserved; 
it is 

>£ 3 

and we can suppose that it is 0 by changing the reference frame. The wave 
function / i s defined on Rp and satisfies 

f(qx + a,..., q+] + a) = f(qx, ...,q+]) 

because 

j - \ dqj 

We can reduce to the case where / is defined on the hyperplane 

(6.24) E = \q e Rf + 1 / 2 % = 0 

which is in the usual hyperplane where the root system A lives (see 
Section 3). 

For fixed coupling constants £ we want to solve the problem (6.25) 

9<JP 

(6.25) dt 
= -Hip 

<Pl/=0 = Vo 

where <p0 is a function on </ '. We can solve (6.25) by a kernel 

If we write explicitly — i / in (6.25) using (6.22) and (6.23) we see that the 
problem (6.25) is identical to problem (6.7) with all T) = 0: 

(6.7) 7 = 1 

A<p - 2 2 | 2 exp(V^(^ - 4, + i) ) <P 

<Pl,=0 — <Po 

and, by Theorem 1, this is solved by the kernel 

(6.26) P(4X\ ( | ) , ^<0)) = Gif, q{]\ ( | ) , 0|</0)) 

and we obtain 

THEOREM 2. For fixed coupling constants (£•), the Cauchy problem for 
the Schrbdinger (or heat) equation 
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(6.25) 
1* = -*, 
i 9/ 

<Pl/=0 = VO 
V 

is given by the formula 

(6.27) „(/, <7(,)) = l <p0(é
0))P(é]), ( | ) , / r |< ?

< (W , , 

where 

(6.28) P(éV\ (Ij), >t\é0)) = ^ H ^ + Z W ^ I I z i f , 

/ 
,(D ftOh („0)\ itUO) X K(f\ «<"), (V), i/|<T, 0, 0) 

X ^ - ^ V W 0 

a«J tf(<7(1), £(1), T?(1), ?k(0), 0, 0) w given by 

(6.29) *(<7(1), £( l), T / ' \ ^ ° ) , 0, 0) 

= h-rPi»*", M"\ o, o, À < V 
where nv ' is the point of X with horospherical coordinates 

m<'> = (év\ £<'>, Î/ ( I ), X<" = 0) 
„2_ 

X being the nonfundamental coordinates on N (so they belong to Rp p) and 
p(nr \ t\nr ') is the heat kernel on X which depends only on the radial 
coordinates ofnv ' with respect to m> > in the radial decomposition of X (so, it 
depends only on p variables). p(nrt \ t\nr ') has an explicit expression given 
in Section 4 in term of radial coordinates. 

5. Transforming the radial coordinates in horospherical coordinates, a) If 
we want to obtain slightly more constructive expression for the kernels, we 
must first take the heat kernel p(nf[\ t\m^) in radial coordinates, and 
then do the two integrals involved in (6.28) and (6.29). For this, we need to 
change radial coordinates into horospherical coordinates. In our case 
where 

X = SL(p + 1, C)/SU(p + 1), 

X can be identified with the space of hermitian positive definite 
matrices of order (p + \) X (p + I) with determinant 1. The action of 
a g e SL(p 4- 1, C) on x e X is just 

g ' x = g X g* 

where g* is the adjoint matrix of g. Moreover any matrix x positive 
definite hermitian of determinant 1 can be represented as the product 
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for a g e SL(p + 1, C) which is defined uniquely up to the right 
multiplication by an element k e SU(p + 1). The radial coordinates of x 
are very easy; they are just the eigenvalues of the matrix x. 

b) To find the horospherical coordinates, we write any x as the 
product 

x = z(x)h(x)z*(x) 

where z(x) is an upper triangular matrix with 1 on the diagonal (in 
particular it is in N), and h(x) is a diagonal matrix 

h = 

0 

"p+h 

The expression of the hk are given in term of x by 

1 
;hi 

> - i 
-•A Kh. lp + \ 

where the A (x) are the lower principal minors of the matrix x of order j : 
this means that 

A/ = 

y' + W+i x, y + l,/> + l 

V/7+1 

(in particular A0 is 1, because x is of determinant 1). Then \/h(x) is the 
abelian part of x in the horospherical coordinates. 

References to Section 6. Olshanetsky and Perelomov [25] give the ex
pression for the classical motion of the non periodic Toda lattice 
using the horospherical decomposition of SL(p + 1, C)/SU(p + 1). 
In [26] they study other quantum systems with potential sin h~ (qt — q^), 
s in _ 2 (^ — q-). . . but they do not give the time dependent propagator. We 
cannot obtain these systems using the symmetric space we study here. 

7. The heat kernels on the non compact symmetric spaces of rank 1. 

1. The symmetric spaces of rank 1 and their root systems. 

a) General notations. Let X = G IK be a symmetric space of rank 1. In 
the Cartan decomposition G = KEK, E is a commutative group of 
dimension 1 with a natural euclidean structure coming from the metric 
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(7.1) 

of X. Let E be a euclidean space of dimension 1, q will denote a point in E 
and also its coordinate with respect to a half length vector. The root 
system contains at most two positive roots 

BSX\q) = q with multiplicity p} 

R^2\q) = 2q with multiplicity p2. 

We give below the possible lists of multiplicities and corresponding 
symmetric spaces. 

b) Real hyperbolic spaces. The real hyperbolic space is 

SO(n9 \)/SO(n). 

Its compact dual is the sphere SO(n + l)/SO(n) X SO(\). In this case 

(Pi = n - 1 

c) Hermitian hyperbolic spaces. The hermitian hyperbolic space is 

SU(n, \)/SU(n). 

Its compact dual is the complex projective space SU(n + \)/SU(n) X 
SOO). In this case the multiplicities are 

| P l = 2(/i - 1) 

U = I-
d) Quaternionian spaces. This is Spin, 1)/Spin) X 5/7(1) with compact 

dual the quaternionian projective space Spin + \)/Spin) X 5/7(1). The 
multiplicities are 

fPl = 4(« ~ 1) 

U = 3-
The projective Weyl chamber is, in all these cases, q > 0. The Weyl 

group is just q —» g and g —> —g. 

Remark. We leave aside the exceptional space of rank 1. 

2. Volume element and Laplace operator. We can treat these spaces as 
particular cases of BC spaces with/7 = 1 and we have just to look at the 
computations of Section 4, 2. 

a) In q coordinates. The volume element on the euclidean maximal 
algebra E is 

(7.2) dV(p^p2) = (sin - ] '(sin q)p2dq 

in the compact case and 
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dyiP^Pi) = Umh-Y\smhq)^dq. 

Calling W{p^p2) the function appearing in front of dq, we have for the 
radial part of the Laplace operator 

1 9 fciPvPi) = 

I 8a/ H^Pl-p2>8a\ dq) 

in the compact case and 

(1 -X\ \(P\>Pl) ! _ | M/(P|.P2>A| 
(Li) * W^dqV dq) 

in the non compact case. 

b) In algebraic coordinates. Let us define x = cos q in the compact case 
and x = cosh q in the non compact case. Then —1 < x < + 1 o n > 1 
in the compact case or non compact case respectively. We define as in 
(4.6) 

P, = 2« - 2fi 

P2 = 2p+ 1. 

Then we have as in Section 4, 3 

dy{p^i) = (1 - X)a(\ + xfdx 

in the compact case and in the non compact case we have just to change 
1 - x to x - 1. Call /x (^ ) this function (1 - x)a(\ + xf. Then the 
Laplace operator in this coordinate is in the compact case 

-fi)dx\ dx) 

(7.4) and in the non compact case; 

^ = (x - \)a(x + \f 
and: 

(i^dxV ^ dxl 
= - L ( ^ » . 

If we develop this computation, we obtain 

(7.5) L^ft = ± 
f d2 

(1 - x2)-^ + (0- a - (a + j8 + 2)*)— 
dx J 

with the sign + in the compact case and — in the non compact case 
(remember also that the interval of definitions are [ — 1, + 1 ] and [ 1, + oo[ 
respectively). We can summarize this by the table 
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spaces of rank 1 P\ Pi a P 

SO(n, \)/SO(n) n — 1 0 
n - 2 1 

SO(n, \)/SO(n) n — 1 0 
2 2 

SU(>u \)/SU(n) X SO(\) 2(n - 1) 1 n - 1 0 

Sp(n, \)/Sp(n) X Sp(\) 4(n - 1) 3 2n - 1 1 

(7.6) 

Remark 1. With these conventions, the hyperbolic distance from the 
origin to a point q is 

r = - . 
2 

The Laplace-Beltrami operator acting on function of r is 

—^ + (n — 1) coth r— 

for the hyperbolic real space 

d2 d 
—j + 2( (n - 1) coth r + coth 2r)— 
^ dr 

for the hyperbolic hermitian space. 

Remark 2. The spaces SO(2, \)/SO(2) and SU(\, l)/SU(\) X SO(\) 
coincide with the hyperbolic space of real dimension 2. Their multiplicities 
are (1,0) and (0, 1) respectively, but it is clear that this means a change of 
coordinate q —> 2q to identify them at the level of their radial parts. 

3. Action of (I + x)p on L{a^\ Let us denote by L{a^] the hyper-
geometric operator 

fW) 1 d 
(i - syp 

2\A(a,i8) 

= (1 - x 2 W + (£ - « - ( « + £ + 2)*)—. 
dx~ dx 

Let w(x) be some test function and v(x) = (1 + x)pw(x); we have 

(1 + xf 
du dv 

dx dx 1 4- x 

nd~u d^v 2p dv p + p 
(1 4- * ) p — T = —y - - + — ^yv 

dx2 dx2 \ + xdx (1 + JC)2 

so that 
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(1 + xfL(aJi)u 

2.d
2v 

(1 - xz)—} + (/? - a - (a + /? + 2)x - 2p(l - x) ) 
dx 

dv 

dx 

P(P + 1)-
1 

1 + X 

The term in v can be rewritten as 

1 

P(« + P + 2) 
P - a 

1 4- x x J 

(2p(p + 1) - p(a + £ + 2) - p(j8 - a) ) 
.1 4- x 

+ ((a + £ + 2)p - p(p + 1)) 

Choosing p = ft makes disappear the term v/(l 4- JC) and gives 

v^f («,/?), dzv 
(1 + xfL^u = (1 - x z W 

-j8 - a - (a - 0 4- 2)x) 
dv 

dx 

4- 0(a 4- l)v. 

LEMMA 1. We /zave f/ze exchange property 

(7.7) (1 H- xft{a^u 

= L ( a ' - / Î ) ( ( l 4- JC/W) 4- 0(a 4- 1)( (1 4- x^t / ) . 

4. TTze Riemann-Liouville integral. 

LEMMA 2. We /zave z7ze exchange property 

I d\n 

(7.8) 
Wx 

oL' (a,0) 

= [#«+"./>+") - «(a + £ + 2) - «(« - l ) ] o — . 
dx" 

To see this it is sufficient to prove it for n = 1 where the property is 
almost obviously by direct computation. 

Let us now introduce the Riemann-Liouville integral (see [27]) 

(7.9) (I{p)f)(x) = - i - J] f(t)(x - tf-'dt. 
T(p) J a 

If / is a C°° function, I^f can be analytically continued in all the 
complex plane in p and it is well known that 
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Identity - / ( 0 ) 

± = 7 ( -D 
dx 
j(p)jip') = J(P + P') 

LEMMA 3. We have the exchange property 

(7.10) I^oL^M = L ( " - ^ - p W ( p ) + p(a + j8 - p - l ) / ( p ) . 

Proof. For p = — n (n a positive integer) this is Lemma 2; so Lemma 3 is 
obtained by analytic continuation. Another way is to compute directly, 

replacing — by I^~ ^ in jSa^ and using the identity 
dx 

I^\xg(x)) = */ ( p )(g(*)) - I(p+]\g(x))T(f)J^\ 
r(p) 

We can now combine Lemmas 1 and 3: let us compute firstly: 

(i + xfi^t^ = (l + xyi«*-w-°>iM 

+ (1 + x)p6(a + p - $ - l)I(0). 

Then using Lemma 1 with p = ft — 6, we have that this is 

ft*-e,e-fi)(l + xy»-«/(») 

+ 08 - 0)(a - « + 1)(1 + xf~eI{B) 

+ (1 + xf-08(a + p - B - \)I(ff). 

In particular, if we now want that /? stays constant after these operations, 
we must choose ft = 6/2, p = —6/2, and we obtain 

LEMMA 4. We have 

(7.11) (1 + xyPl^L^ 

= H°-2W{1 + xyty2fi) + p(a _ 3 ) ( 1 + ^)-^/(2/») 

(i + xf-'fiH^n 
= L < « - w - « ( l + J C ^ - ' / O + [«/? + / ? - 20](1 + *)"-*/<*>. 

COROLLARY 1. WTzeft /? = —1/2, we obtain 

(7.12) (1 + x)U2—ta'-U2> 
dx 

= £(«+l.-l/2) (1 + x ) l / 2 ^ _ I ( a _ 3 ) ( 1 + x)l'2_d_. 
dx 2 dx 

This relation means that, when we put x = cosh 2r, we obtain 
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COROLLARY 2. 

1 (7.13) — L _ - ( ^ + („ - l )co thr - ) 
sinh r dr\dr drl 

—2 + (JI + 1) coth r— 
dr dr I sinh r dr 

1 
sinh r dr 

5. Application to the heat kernel of hyper geometric equations. Let us now 
consider the hypergeometric operator lja^ on [1, +oo[; it is formally 
self-adjoint with respect to ^a^\ We want to study 

(7.14) 

du 

It 
= _#«-P./>-P>„ 

(Recall L{aJi) = - L ^ . Define 

Then 

8v 

a7 
_lia-pS-9)v _ p ( a + £ _ p + 1 ) v 

l^Qi P)^\XQ\X) be the heat kernel for -hL ( a ^ with respect to the volume 
element ^a^\x)dx. Lemma 3 proves that 

( v(,,x0) = I ^ j p^\xQ\x)^x)m^\x)dx^ 

J <p(x) = I(~PH(x) 

(here 1^ denotes 7^p) acting on the variable x), so that we obtain: 

(7.15) u{t, x0) = / ^ ( / ^ ( x o l x X / r ^ X ^ y ^ V ^ ) ^ 

X e -p(a + p-p+\)t 

Now the kernel 1^ depends on the origin a of the integral (7.9) (except 
when p = —n,n positive integer). But if \p is compactly supported in 
[1, -foo[, the solution of the heat equation tends to 0 at oo. This forces us 
to choose a = oo in the definition of I^p\ Finally we obtain the following 
theorem. 

THEOREM 1. Suppose that we know the heat kernel p\a^\x0\x) of L(a,^) 

on [1, +oo[ (with respect to the volume element p^\x)dx) with boundary 
conditions 0 at oo. The solution of the problem (7.14) vanishing at oo for 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


1350 A. DEBIARD AND B. GAVEAU 

IJOL p,# p) -s gjven by formuia (7.15) with Tp* given by (7.9) where we have 
done a = oo for the origin of integrals. 

Let us also use Lemma 4: we obtain 

THEOREM 2. The solution of the heat equation 

<!H L(a~^e~^u 
dt 

u\t=Q = xp 

is given by 

(7.16) u(t, XQ) = (1 + xo^-'l^f p^ix^x) 

X 4"%(1 + x)$-^(x))^\x)dxy
a'3+'i-2e)'. 

We can also prove the following result when the source is at point 1. 

THEOREM 3. The heat kernel 

p\a+X--U2\\\x) 

with source at point 1 is given by 

(7.17) p\a+x--ul\\\x) 

= ~ ( V I ) ~ ' ( 1 + x)]/2-(p\a<-u2\\\x))e+<u2)(a-y)'. 
a 4- 1 dx 

Proof The heat kernel is symmetric (because we take it with respect to 
the volume element 

l/a+l'-v2\x)dx). 

So it has to satisfy the heat equation in x for — / / a + 1 ' _ 1 / 2 ) . Using Cor
ollary 1 of Lemma 4 it is easy to see that the second member of (7.17) 
satisfies the heat equation. We have then to check that for any function 
xp G C°° with compact support around 1, 

_(V2) „ + (l/2)(a-3)/ J (I _i_ -\l/2 ^ e + (l/2)(«-3>, j°~(l + J C ) 1 7 2 ^ ^ " 1 ^ ! ^ ) ) 
a 4- 1 ^ * Jx 

X ;P(X)(JC - l ) a + 1 ( l 4- X)~l/2dx 

tends to t//(l) if / —» 0 + ; but by integration by parts this means that 

1 /*°° d 

J, p{ru2\\\x)-mx)(x - \f+v)dx -*^(i). (a + 1)V2 • " Jx 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


ANALYSIS ON R O O T SYSTEMS 1351 

The integral can be rewritten as 

1 r°° 

(a + \)y/l 
j°; p\^\\\x)^-^\x) 

X W(x)(\ + x)U2(x - 1) + (a 4- 1)IKJC)(1 + X)1 /2]JJC. 

But 

p{
t
a^]/2\\\x)^~l/2\x)dx ^ 8(x - 1), 

which is the result claimed. 

6. //e#/ kernels for the real hyperbolic spaces. 

a) Some notations. We want to find, as in Section 3, 1, the heat kernel 

P{
t
X\mm')dv(rn') 

(dv(mf) = volume element of X). Taking for m the origin 0 of X, we are 
reduced to computing the heat kernel of the radial part A(PlP2) (see (7.3) ) 
with source at q0 = 0 and with respect to dV^Php2\q). We shall denote 
by 

P{
t
p^p2\0\q)dV{p^p2\q) 

this kernel. We now change the coordinates putting 

x = cosh q ^ 1 

and we define 

p{^\\\x)^\x)dx = P{p^\0\q)dV{p^\q). 

Then p)a^\\\x) is the heat kernel (with respect to nia^\x)dx) with source 
at point 1 in [1, +oo[, vanishing at oo and (a, ft) are related to the 
multiplicities by 

P l = 2(a - P) p2 = 2/3 + 1. 

b) We also remark, that one can define ^p2\q\qf) for any qy q' > 0. 
This kernel has a meaning in the symmetric space X (see Section 3, 2): 
in fact, if we have at time 0 a uniform distribution of heat on the sphere 
£(0, q) of centre 0 and radius q, then 

P^p2\qW)dV(p^\qf) 

will be the amount of heat obtained by diffusion at time / on the sphere 
5(0, q'); clearly P^t

Px'p2\q\q') is the fundamental solution of A(PlP2) with 
pole q; it is also clear that if we know P\p]'p2\0\qr), we are in prin
ciple able to compute P)Pl,p2\q\qf) for any q, q' > 0: in fact if we know 
P)PhP2\0\q') we know the heat kernel of X completely and so we 
know P\Px'p2\q\q') using its interpretation given above in term of heat 
diffusion in X. 
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c) The case a = /} = - 1 / 2 . In this case P] = p2 = 0, dVm\q) = <fy: 
this is the degenerate case of R considered as a symmetric space with its 
euclidean structure. The heat kernel of R is 

-(\m-m'\2)/4t 

Pt (m\mf)dmf = ;— dm'. 

Now, 

A (0,0) . 

*r 
q being twice the distance to the origin, say O. It is then clear that 

P^{))(0\q')dq' = 2F?(0WW 

(because we restrict ourselves to q' > 0 in the trivial Weyl chamber R ). 
The sphere S(Q, qr) is the set {q\ —q'}. Looking at the interpretation we 
see that 

le-(Vl-cf\2)/\^t - ( k + <7'l2)/16rv 

(7.18) P^{\q\q')dq' = — + — U ' 
\ \/4iTt yAirt J 

which is the heat kernel on R + with Neumann condition at O. (q, q' = 0). 
Then 

(7.19) / ,<- | / 2-- , / 2W)M (- ' / 2-- | /V)^' = P{r\qW)dq' 
with 

x = sinh q, xf = sinh q''. 

d) The case a = 1/2, £ = - 1/2. By the table (7.6), this is the case of the 
three dimensional real hyperbolic space H3. 

This case was treated in [8] using a series expansion; we found there 
the following formula 

(7.20) PJV) = _ • -/*-^>/W^L 
(4<7Tty/z \sinh 

in terms of the radial hyperbolic distance. This formula can also be 
checked directly. Because r = q/2 the formula gives 

(7.21) /f-%) = —^e-'e-^'M-^-
' (A-ntf12 \sinh #/2 

with respect to the volume element 

dV(U)\q) = (sinh - W 

going to algebraic coordinates, we obtain 
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(7.22) p^X/1\x)^-m\x)dx = P^%)dV^\q) 

with x = cosh g. 
e) The case a = 0, /? = —1/2. This is the case of the two dimensional 

hyperbolic space H2 with multiplicities (1, 0). But we can also consider it 
as having multiplicities (0, 1) and with a = 0, ft = 0. Then we can apply 
Theorem 1 with p = —1/2, a = /? = —1/2. The solution of the heat 
equation — L> ' ) with initial data \p is by formula (7.15) specialized to this 
case, 

«(/,*o) = /l; , /2)(/^r , /2-"1/2)(^)(/(
v

, /2V)(x) 

X j u < - , / 2 - l / 2 , ( x ) ^ ) e - ' / 4 . 

Now we know that 

j(-\/2) = ^1/2)^-1) = j(\/2)d_. 

dx 

we can rewrite the preceding equality as 

«<'- ^ = ^ / r - ^ = /r^i" , /2'~ , /2)^) 
r / n 2 ^ *o vi - *oy ^ 

X 1^ -^=dW^l/2^]/2\x)dx 

e-t,4 

/

oo f + oo 

x/;|( ,r i / 2 ' - / 2^)) 

Vie - X0)(7) ~ x) 

and the heat kernel is then 

(7.23) Pr\Xo\x) = e — j+0°di /; dn^,-w2--w2\&n)) 
y / I ( - 1 / 2 '" 1 / 2 ) w 

V(£ - *o)(* ~ ^) 
where/? |~ I / 2 ,~1 / 2 )(£|T7) is given by the formula (7.19). We can take the 
limit when x or x0 tends to 1; in that case, we see that the interval of 
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the first integration in (7.23) is [1, x]; moreover we also have inside this 
integral 

fcc-,)-"^-!)-"*; 
so the intermediary integral in (7.23) is of the type 

"1 + e a(rj) 
/ , , ch\ 

1 VÔF7^) VI + e - V 
where x = 1 4- e and a is a C function. This is 

/ ; 
'+< q(n) - a(l) 

= flt? + a(l) 
1 VOJ - 1X1 + « - 1) 

1 

V(T? - 1 ) ( T + £ - T , ) " 

The first term tends to 0 and the second term is a( 1)77/3; so we obtain 
in (7.23) 

(7.24) Pr\m = Ç^ r -JL=ip{
t-

m'-V2)m. 
Let us write x = cosh q, £ = cosh q' and use (7.19) and (7.18) to get 

,,2\ 

„(0,'V„x _ e lm f°° e~'" " "V 
(Airtf1 J <? Vcosh q' - cosh q ' 

(7.25) p^\q) = 7—m J , , , ,=dq' 

which is the formula given (without proof) by McKean in [23]. Then we 
obtain 

(7.26) I*m(q) = PfA\q/2) 

(see remark 2 in 2). In particular with the radial distance r, 

(7.27) Pf2(r) = P?>\). 

f) The general Lobatchevski space. We shall obtain now the heat kernel 
of L(A%_1/2) and L{k + l/2'~V2) for k integer by applying recursively 
Theorem 3 formula (7.17) to/>(,1/2 '~1/2) and/> (,a~1/2) to get 

(7.28) /?((- + 2-2) /2 , - l /2) ( l k ) 

= ~ ( ^ r l ( l + x)1 / 2-(p ( /w-2 ) / 2 ' -1 / 2 )( l |x))e- ( 1 / 4 ) ( ' ,-8 ) / . « dx 

This formula gives the passage from a real hyperbolic space Hn of 
dimension « to the one H „ + 2 °f dimension n + 2. Moreover, using (7.13), 
we can obtain directly the recursion formula for the heat kernel in the 
variable r (hyperbolic instance) by 
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(7.29) P?»+\r) = -e-"<—\- ^"(r). 
sinn r dr 

Remark. If we want 

rik--]/2\x\x>) and pf+^--V2\x\x>), 

we can obtain them by two methods: 

1st method. We start with 

,r , /2-- , /2W) 
given by (7.19) and (7.18) and apply repeatedly (7.16) with /? = —1/2, 
9 = - 1 , a = - 1 / 2 , to get 

P?/2-~U2\xW) 

and then again /? = —1/2, 6 = — 1, a = 1/2 to get 

P?,X-U2\xW). 

Then we start from p^°\x\x') (which is equivalent to 

/f-1/2)(*,W) 
up to a trivial change of variable of the type 

JC| = cosh - Arg cosh xl J; 

then we apply to 

/>ri/2W) 
the formula (7.16) respectedly with /? = —1/2, 6 = — 1, a = 0 to get 

^•~1/2W)... 
2 method. Knowing 

pf--V1\\\x), 

we know the heat kernel of the corresponding Lobatchevski space and 
then we know (in principle) how to compute 

and also 

/>ri/2W) 
for k "integer" or "integer + - " . 
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7. The heat kernels of hermitian and quaternionian hyperbolic spaces. 

a) The hermitian hyperbolic spaces. In the table (7.6) of 1, they 
correspond to a = n — 1, ft = 0 (pl = 2(n — 1), p2 = 1) and n = 2. We 
start with the real hyperbolic space a = n — 3/2, /? = —1/2 and apply 
Theorem 1 with p = —1/2: we obtain 

Prm(xW) 
in terms of 

/><"~3/2-- | /2W) 
through 7 (~ ' ) and by the same reasoning as the one leading to formula 
(7.23), we get 

-(H-5/2)(l/2)f r + oo 

(7.30) p^°\x0\x) = / ft 
77 J x0 

I 
If we want/?;" ' '(1|JC) we obtain by the same line of reasoning as the 

one leading to (7.24) 

(7.31) P
{rm(\\x) 

£ / «* a ^ ( / i -3 /2 , -1 /2 ) / ^ - 3 / 2 ' - 1 / 2 ) ( f l l ) . 
3V2 •/* V ? ^ ^ ^ 

b) 77ze quaternionian hyperbolic spaces. These correspond to a = 2n — 1, 
/? = 1. We can then apply Theorem 1 with p = - 1 to/?p"~2,0)(jc|jc')-
But 

/<-- ' > = 
d 

dx 

so 

rf "-'•Vu') 

X 

*2*( 

1 

{p?n-
-2,0)( 

X 
(1 4 - x')(l -*? w-1 

the extra factor 

1 

(1 + x' )(1 - X')2"-
1 

(x|£))(x' - { ) ( 1 - O 2 " - 2 
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coming from the fact that the kernel is taken with respect to the weight 
jtr n ' \x')dx'. If we want to find the kernel with source at x = 1, we see 
that 

e2nt±p{2n-2,yxW) 

dx' 

satisfy the heat equation Ù "_ 1 '1 ) by Lemma 3 (7.10); moreover if we 
consider 

e2nt 

2(2n - 1) J ] dx! 

by integration by parts we get 

Int 

/

oo Â 

, — (p?"-2-0)(l\x')Mx')(\ + x')(l -x'?"-]dx> 

j™P?n-lfi\\W){^')(\ - x ' ) 2 " - 2 ^ - ^ 

<2„-"2 '0)(l|x')(l - x')2"-~2dx' -» d(x' - 1) 

?"' " U , ( l | * ) = 
e2nt 

2(2n -
_ ^ - 2 . 0 ) ( l k ) . 

l)flfcc 

2 

2(2« — 1) dx I 

which tends to \p(l) if t —» 0 + because 

so that 

(7.32) 

References. The heat kernels for Rank 1 symmetric spaces have been 
obtained in [21]. Our method gives the general hypergeometric equation. 
See also [23] and [8]. 

8. The heat kernels on certain symmetric spaces with the root system 
BCp. 

1. Preliminary notations on the Laplace operators, a) We consider, in this 
chapter, symmetric spaces with the root systems BC . This root system has 
already been described in Section 4, 1. We recall that E is a euclidean 
space of dimension p, q a point in E with coordinates (ql9 . . . , q„); the 
roots are 

r 

R\ \a) = at with equal multiplicities p{ 

(R \\ 1 ^ 2 ) (# ) = ^Qi w ^ e c lu a l multiplicities p2 

4!)fa) = ft - % R?w = ft + ft 
with equal multiplicities p3. 
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b) The positive roots are qh 2qt, qt — q- (/ < j) and qt + qj (i < j). We 
have also define to Weyl chamber and the Weyl alcove 

\ = {q e Ep 0 < qp < qp„x < . . . < qx) 

and the volume element 

(8.2) </F<PbP2.P3) = H (sin ^)P ,(s in ^ 

X I I I sin. ^ 
i^/%%> \ \ 2 

and in the non compact case 

4/ ~ ty\ . [<li + ^/\\P3 -^ 
sin 

/ = ! 

(8.3) JF(P^P2 'P3) = f l sinh - '(sinh qf2 

7 = 1 ^ 2 / 

x n (sinh(^)si„h(*^)r fi *, 
\^i<j^P \ \ 2 / \ 2 / / / = i 

c) Calling # (P l 'p2 'p3) and W{p^2^] the density of the volume 

</J>(PHP2-P3) and JK(P"P2'P3) 

with respect to Lebesgue measure, we define the Laplace-Beltrami 
operators 

(8.4) 

A<pnp2p3) = . 1 v A ( ^ ( P I ^ P 3 ) A 
^P„P2.P3) ~ i dq, \ ty 

^(Pbp2,p3) = î v A ( J ^ ( P I ^ P 3 ) A 

d) We also defined in the compact case the algebraic coordinates 
xt == cos qh the Weyl alcove becoming 

C, = {X G ff - 1 < X! < X2 < • - - < Xp < 1). 

The volume element becomes 

(8.5) dVia^y) = C f l (1 - jcf.)
a(l + *,-) £ 

X I I (xt- xA2y+x dx}...dxp 

where C is a constant (see (4.7) ) and 

(8.6) P l = 2a - 2/3 p2 = 2£ + 1 p3 = 2y + 1. 
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Call ra(a,^,y) the density of dV{a^y) with respect to Lebesgue measure. The 
Laplace operator is 

P ( 
(1 - xj)~ + 

OX; 

(8.7) A<̂ > = ^ 2 f ( d - *?)^> A) 

j8 - a - (a + 0 + 2)jt, 

+ (2y+ 1X1 - ^ ) i — ^ - 1 ^ - 1 . 

e) In the non compact case the algebraic coordinates are 

Xj = c o s h qt. 

The Weyl chamber becomes 

Cx = {X <E RP 1 < Xp < Xp_x < . . . < JCj}. 

The volume element is 

(8.8) dV(a^y) = I I (Xi - l)a(x,- + 1)^ 
/ = i 

X I I (xt - X:)2yJrXdxx . . .dx 

with the convention (8.6) on a, /?, y and we call m(a^,Y) the density of 
dy(a&y) with respect to Lebesgue measure. The Laplace operator 
becomes 

(8.9) A«^> = - ^ £ A ( t f - 1^ -Ar ) » ) 

and formally we have 

(8.10) A{aAy) = - A ( ^ Y ) . 

f) Let us also recall that we have obtained in Section 4 the 
eigenfunctions of j\(a&±l/2ï a n c j the heat kernels of these operators. 

2. Root systems B C' BC' The root system BC is a mixture of two 
simpler root systems B and C. We refer to Araki for the following 
classification. 

a) System B The positive fundamental roots are 

a\ = Q\ ~ fe «2 = ?2 - ft» • • • > «,-1 
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with the Dynkin diagram of fundamental roots 

Let us recall that in a Dynkin diagram of fundamental roots, if a, ft are 
two roots, the notation a — ft means that ||a|| = \\ft\\ and a => ft means 
that ||«||2 = 2||/?||2. 

b) System C The positive fundamental roots are 

a\ = ft - ft> «2 = ft - ft- • - ap-\ 

= %-\ - qP> a
P = 2 ^ 

and the Dynkin diagram of the fundamental roots is 

a\ - ai - «3 - ••• - <*p-\ <=*y 

c) System BC . BC is a mixture of B and C^; formally it is Bp but 
2a has also a positive multiplicity, so that it is a non reduced root 
system. 

d) System D By definition D has only the roots ±{qt ± qf) with equal 
multiplicities: then it can be considered as a special BC (or B and C ) 
with pj = p2 = 0 and a = ft = —1/2. The positive fundamental roots 
are 

a\ = ft ~ ft> a2 = ft ~ ft- • • > <*/?-l 

= fy-i - fy> <V = Qp-\ + fy-

D exists only for/? ^ 3; for/? = 2, it degenerates in a product. 
e) Recall also that in general 

P] = multiplicity of ql = 2a — 2ft 

p2 = multiplicity of 2qt = 2/? + 1 

p3 = multiplicity of qi ± g' • = 2y + 1 

P] = 0 for a pure Cp system 

P2 = 0 for a pure 2? system 

PjP2 ^ 0 for a genuine 5C^ system. 

3. Classification of the symmetric spaces with the BC root systems. We 
list below, for clarity, the Cartan's classification only for BC root 
systems, (see [1], [15] ). 

a) Notations. © is a semi simple real Lie algebra, g = ® © ^ is its 
Cartan decomposition and © its complexification. £ is the Cartan 
subalgebra in © c , 3Ê  (or sometimes 91^ or 36 ~) is the subalgebra of 36 
contained in ^3. 
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b) Type BDI or SO0(p, q)/SO(p) X SO(q). We suppose here/? ^ q. 
The rank is/?; the space dimension is 2pq\ Dim dc = [(\/2)(p -f q)]. This 
type splits in 2 subtypes: 

Subtype DI. p + q = 21 even. 
a)/> = 2 = /. 

X = 2% 

root system Z) 

all multiplicities are 1 

p, = p2 = 0, p3 = 1 

« = 0, )8 = — , y = 0 
2 

£) /? < 4, p = # - 2fc, / > /c > 0. 

root system B 

p, = 2(/ - /?), p2 = 0, p3 = 1 

a = / - p - 1,0 = -I , y = 0. 

Subtype BI. /> + ^ = 2/ + 1 odd. 

root system i? 

P, = 2(1 - p) + 1, p2 = 0, p3 = 1 

a = / - p, P = - - , y = 0. 

c) 7>/?é> A III or SU(p, q)/S(U(p) X U(q) ). We suppose/? ^ q. The 
rank is/?; the space dimension 2pq 

Dim 3E = JP + # — 1. 

Subtype A III-l./? ^ # - 1. 

genuine BCp system 

Pi = 2(q - p), p2 = 1, P3 = 2 

a = / - 2/? + 1, j8 - 0, y = - . 

Subtype A III-2. /? = q. 

Cp type system 
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Pi = 0, p2 = 1, p3 = 2 

a = 0, p9 = 0, y = - . 

d) Type D III. SO*(2rt)/£/(rt). (Compact SO(2n)/U(n)). The rank 
is [ (l/2)w], the dimension n(« — 1) 

Dim 3E = /I. 

Subtype D IH-1. n = 2/?. 

C^ type system 

P! = 0, p2 = 1, p3 = 4 

3 
a = 0, j8 = 0, Y = -• 

2 

Subtype D III-2. w = 2/? + 1. 

genuine BC system 

p l = 4, p2 = 1, p3 = 4 

a = 2, £ = 0, Y = "• 
2 

e) Type C II. £/?(/>, q)/Sp(q) X £/>(<?). We assume/? ^ 4. 

Rank = /? dim = Apq 
dim X0 = p + q. 

Subtype C II-2. p = q. 

Cp type system 

P l = 0, p2 = 3, p3 = 4 

a = 1,0 = l , y = ^. 

Subtype C\\-\.p < g. 

genuine 5 C type 

Pi = 4(/ - 2/?), p2 = 3, p3 = 4 

a = 2(/ - 2p) + 1, 0 = 1, Y = ^. 

f ) 7 > ^ C I . S/>(/>, R)/U(p). 
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Rank = p 

type cp p, = o, p2 = l, p3 = l 

a = £ = y - 0. 

Remark. See the table at the end of this section. 

4. Heat kernels for y = 1/2 and general p. 

a) Ztoctf systems for y = 1/2. According to Araki-Helgason classifica
tion, the BCp root system with y = 1/2 are 

a = 0, fi = 0, y = ^S£/(/>,/>)/£(£/(/>) X £/(/?)) 

a = / - 2/> + 1, j8 = 0, y = -

SU(p9q)/S(U(p) X !/(*))(/> =M). 

b) /fai/ fo?/7n?& o/A (a 'A1/2). Call 

«K*) = I I (*/ - *•). 

THEOREM 1. The heat kernel 

(with respect to the volume element rrra^ \x')dxf) is given in the non 
compact Weyl chamber Cx by the formula 

(8.10) p^V2\xW) = f[\ AXA, Û p^ixjlxj) 
p\<p(x)<p(x') j = \ 

where 

D(P + 1 ) -£-

2 j=\ 

(ii) p] \xJ\XJ) is the heat kernel of the one dimensional operator Lx^\ 
(iii) Ax is the operation of antisymmetry on the variable x. In the case 

where xf —•» 1, we obtain 

(8.11) p^xn\\\x) = ^MXLX, Up^ix^) 
<p(x) 

where 

dv) LX,= n ( A - A ) 
\^j<i^P \dxj 3A:-/ 

(simplest antisymmetric operator). 

p 
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Proof. The proof is easy; in the non compact case we cannot use the 
eigenfunction expansion. But we know by Section 4, 7 what is the heat 
kernel of A(a '^1/2) (formulas (4.32) and (4.33)) for the corresponding 

compact cases. If we change all the sin — ' — (R root) to - sin —!  

2 a 2 
we can compute easily the heat kernel for real a and everything will be 
holomorphic in a. Changing a = 1 into a = i, A(a'^,1/2) is turned into its 
non compact version A^a'^' ' ^ and the heat kernel becomes the one for 
the non compact case. But the heat kernel of fta&x/2) i n the compact 
case was an antisymmetric combination of the one-dimensional heat 
kernel p\a^ of L ^ \ By analytic continuation, lja^ changes into 
]\<*,P) a n c j p(<*,P) m t o p(a>P) which gives the formulas described. 

References. The above classification is taken from [1] and [15], and 
[31]. 

space r ank 
D i m e n s i o n of 

the space 

root 

sys tem Pi Pi P3 a P Y 

SOQ(p,q)/SO(p) X SO(q) 

p = q P 2P2 
DP 

0 0 1 0 
1 

2 
0 

SO0(p,q)/SO(p) X SO(q) 

p < q,p + q = 2/ P 2pq Bp 2(1 - p) 0 1 
1 

l - p - -
2 

1 

2 
0 

SO0(p, q)/SO(p) X SO(q) 

p < q p + q = 11 + 1 P 2pq BP 
2(1 - p) + 1 0 1 I - p 

1 

2 
0 

SU(p, q)/S(U(p) X U(q)) 

p < q P 2pq BCP 2(q - P) 2 I - 2p + \ 0 
1 

2 

SU(p,p)/S(U(p) X U(p)) P 2P2 
CP 

0 2 0 0 
1 

2 

SO*(4p)/U(2p) 2p 4p(4p - 1) Cp 0 4 0 0 
3 

2 

SO*(4p + 2)/U(2p + 1) 2/7 + 1 (2p + \)2p BCP 
4 4 2 0 

3 

2 

Sp(p, R)/U(p) P CP 
0 1 0 0 0 

Sp(p,p)/Sp(p) X Sp(p) P V CP 
0 3 4 1 1 

3 

Sp(p,q)/Sp(p) X Sp(q) 

p < q P 4pq BCP 
4(1 - 2p) 3 4 2(1 - 2p) + 1 1 

3 

2 

9. The heat kernel on the symmetric spaces of type B2 and C2. 

1. Notations. We shall consider below only rank 2 spaces of type B2 and 
C2 (pure type). Our main result is to obtain an exact formula for the heat 
kernels of all these spaces. We shall denote by (x, y) the algebraic 
coordinates. They satisfy 

1 ^ y ^ x. 
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We shall also denote briefly by JC a point (x, y). Apart from that, the 
notations are exactly as in Section 8, 1 for the Laplace operators, 
multiplicities of roots, etc. 

2. The particular cases of rank 2 spaces: raising operators. We present 
below several intertwining computations. Let us consider with Koorn-
winder ( [19] formula (5-1) ) the operator 

3 , .?v+i 3 \ 2 y + l _ 
+ —(x - yy 

dy dx) 
More explicitly we have 

:>2 
(9.2) D{1} = + 

3Z 2y + 1 / 3 3 
-dxdy 2(x — y) \9y dx> 

LEMMA 1. We have the following formula 

(9.3) tfMjWW = H«+W+WD™ - (la + 2,8 + 2y + 5)D(l\ 

Proof There are two ways to prove this formula. The first one is to 
commute D^f} with L^^ by direct algebraic computations (in the same 
spirit as in Section 7); the second way is to use Koornwinder results; 
because we are in the compact situation, we can use the Koornwinder's 
Jacobi polynomials pfy of degree (n, k) where n > k. These 
polynomials satisfy, according to Koornwinder, 

f(a,AY)n(a,AY) 
^ Pn,k 

= (-n(n + a + 0 + 2y + 2) - k(a + 0 + /c 4- 1) ) X /^ a / ' y ) 

and 

* W Y ) = *(« + T + l^-Jl'/Ji'^. 
Using these two formulas it is easy to see that (9.3) is valid for all 
pfy and so on all functions. 

LEMMA 2. We have 

(9.4) (rf?yfra>M = l(«+rf+r>y\rfiy>y 

- (2r(a + j8 + y - f r + 1) + r)(D{y})r. 

The particular case y = . In that case 

(9.5) Z)<A"~2>/2> = - * - + JLZ±.(± - A ) . 
dxdy 2(x — y) \dy dx! 
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Let us denote x — y =-- u, x + y = v. then 

(9.5') *(?-»<»=# -I* +1^1.1 
3v \du u du 

Let us also recall that u > 0 because we are working in the Weyl chamber 
x ^ y and u = x — y. Then we can interpret £>^n~2)/ ) as the 1-time, 
n space variables wave operator 

(9.6) D„ + ) = ^ - A R „ 

acting on radial functions /(v, w), v being the time variable, u the radial 
distance to the origin in R*\ (n â 2). Moreover v ^ 2 because x and / are 
greater than 1. 

3. The fractional powers of the wave operator. Following [27], let us now 
define the fractional powers of the wave operator D„ + 1: these are 

(9.7) (/&,/)(/>) = — l -— jD AQ)r0
PQ"-ldQ i i IU tr, 

'„ + !(*) 
where 

H-+IW = «(-^-.rgjrfiil^). 
Z> denotes the forward light cone of vertex at P e R + X R", rP^ is the 
classical Minkowski distance from P to (). 

Remark. We work here with the forward light cone although Riesz 
works with the backward light cone. 

This integral converges (for / w i t h compact support) for 0 > n — 1 and 
satisfies 

for such values of 0, 6''. Moreover 

which gives an analytic continuation in 0 and it is proved that 

I^lx = Identity 

and with this analytic continuation (9.8) holds for any 0, 6''. Moreover 

r ( - 2 r ) _ n r 
^ n + l — *—'«-h 1 
/(2A-) _ rj~r 

It is also clear that for / w i t h compact support in the forward light cone 
of vertex 0, l\X\ / n a s compact support in the same cone. Moreover, if / 

(9.9) 
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is a function of the time v and the radial distance u in R", Iy+X fis also 
a function of v, u (and not of polar angles in R"). In particular using the 
change of variables 

(9.10) x — y = u, x + y = v 

we can define j\X\ a s t n e restriction of the Riesz operator l\X\ t o func
tions of v, u, but read as functions of JC, y for x ^ y. 

Remark, v is evidently not the time of the heat kernel py^,y^ that we 
want to construct; but it is the time-like variable in the Weyl chamber of 
the abelian subalgebra. 

Now n = 2y + 2, so that we obtain 

LEMMA 3. We have the intertwining property 

(9.11) f® L{aM = //«-(0/2),j8-(0/2),Y)j(0) 

+ (-*(„ + „ + , - < + , ) - » ) * , 

Proof. By Lemma 2 this formula is valid for 9 = — 2r, in which case 

•/£# = <P(?Y 

by (9.9) and the definition of ^+3- Recall also that 

£(«,£?) = _£(«,AY) 

(because of the passage of compact to non compact). By analytic 
continuation we obtain the lemma. 

4. The exchange property between B2 and C2 root systems. Our next step is 
a very peculiar property of the root systems in a two dimensional space. 
Consider two examples E and E of a 2-dimensional space R , E with 
coordinates (q]9 q2) and E with coordinates (Q{, Q2) and let us consider 
the linear transformations inverse of each other: 

Q\ =Q\ ~ Ql 2<7, = 0 1 + 0 2 
(9.12) 

Q2 = Q\ ~ 42 2q2 = Q\ + Ô2 

Let us now consider on E a. C2 root system with multiplicities 
(pj, p2, P3), so that pj = 0. The Weyl chamber {0 ^ g2 — #1} becomes the 
Weyl chamber {0 ^ Qx S £>2}. 

We then see that the system C2 transferred to E by the transformation 
(9.12) becomes a system i?2 according to the following table C2 —» i?2 
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c2 on E' c2 on E' 

<?, Pi -0 ^Qi = Q\ ± Vl P\ = P3 

2ft Pi ^ ^ / 2Qi Pi = 0 

<?! + Qi , / ^ *"<2i ± Qi P3 = P2 

the multiplicities becoming p\ = p3, p3 = p2. Coming back to the a, /?, y 
and a\ /?', y', we obtain 

a = y 
1 

(9.14) J /?' = - - (recall that a = j8 for C2) 

x Y' = £ 

Conversely we can go from B2 to C2 

C2 system in £ X 

(9.15) 2(?/ 

B2 system in E 

(9.16) 

<i\ + ^2 

a' = fi' = y recall that £ 

y = a. 

for B, 

Let us consider these transformation properties on the specific root 
systems described in 2 of Section 8 for the multiplicities corresponding to 
symmetric spaces: 

(9.17) 

C2 system 1 corres ponds to 1 # 2 system 

a = fi = 0 Y = 
1 

2 
a' 

1 

2 
/?' = 

1 

2 
Y = 0 

a = p = 1 y -
3 

2 
a' 

3 

2 
/?' = 

1 

2 
y' = 1 

a = P = 0 y = / -- 2 -
1 

2 
a' = / - 2 -

1 

2 
P = 

1 

2 
Y' = 0 

a - P = -
2 

y = 
1 

2 
a' 

1 

2 
P' -

1 

2 

1 
Y' = 2 

a = P = 0 y = 0 a' = 0 P' = 
1 

2 
Y' = 0 
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Now, we have to do the change of coordinates (9.12) on the Laplace 
operators. We start with the C2 root system in variable (#,, q2), 
multiplicities (pj = 0, p2, p3), so that 

2 

A(°.P2.P3> - 1 y JL M/0.P2.P3) A 

But 

JL _ J_ + JL J L _ J JL 
3^i _ 30i 9Ô2 9 ^ ~ dQ2 9£, ' 

The Laplace operator becomes 
1 

w 
[ ( A + M((slnh(&JLM 
i\90! 3(?2Ml V 2 / 

X sinh — sinh ^ + 
1 2 2 J \9g, 9£2 

+ (_L-J_)((a i n h(ÇL+ft) ï 
\8g2 30,711 \ 2 / 

X 
l 2 2 J \30, 9£2 

-mr 
but this is exactly twice the Laplace operator of the B2 root system in 
coordinates (£),, g2) a n d multiplicities (p\ = p3, p2 = 0, p'3 = p2). We can 
summarize all this by the following lemma. 

LEMMA 4. By the transformation (9.12), the C2 root system transforms to 
B2 root system', the multiplicities transform according to table (9.13); the 
(a, /?, y) transform according to (9.14) and the Laplace operator becomes 
twice the Laplace operator of the B2 system. 

5. Deduction of certain heat kernels in rank 2: formal schemes. 
a) What we already know. We know how to compute the heat kernel of 

A<a,p,Y) j n the case of rank 2 and y = —1/2 (in this case, we know 
that A ( a ^~ 1 / 2 ) is just the sum L{*^] + L ^ of two indépendant opera
tors and the heat kernel e* is just the product of two heat kernels in the 
independent variables x and y). We also know how to compute the heat 
kernel for y = -h 1/2 by Section 8, Theorem 1. So we basically know 
(a, 0, ±1/2). 

b) Deduction by change of variables. 1°) If a = /?, in which case we have a 
C2 root system, we can treat by (9.14) 

(9.18) [a! = ± ^ , j 8 ' = ~,y' = a 
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from a = /?, y = z t - by the change of variables 

Q\ = <1\ - <l2 

Qi = Q\ + 42-

2*) If ft = —1/2, in which case we start from a i?2
 r o o t system, we can 

treat by (9.1 15) 

(9.19) 
(-

' = J8' = 
i 

2' 
Y' = «) 

from (a ,J8 = = - 1 / 2 , y = ± 1 / 2 ) by the change of variables 

4\ 
g. + 

2 

_e, + 

_Ô2 

02 
2 

c) Deduction by J2y + 3- If Y' is an integer or an integer +1 /2 , 
we can apply the operator J2y + 3 t o t n e c a s e (9.17) and (9.18) to obtain 

\ 2 2 2 2 

from (9.17) by J^y + 3 or 

(9.21) (a" = j8" = ~\ ± \ i 

from (9.18) by Jly> + 3 whatever 0 is. But the case (9.20) corresponds also 
to a C2 system and so we can apply a change of variable to (9.20) 

Q\ = Q\ ~ Qi 

Qi = q\ + ^2 

to obtain 

,9.22, ( , - . , _ - 1 , - ^ 1 ) 

from (9.20). 
d) Finally we can summarize this by the table 

/ 

+I) C 2 H^K 1 
, OL 

2 / * I 2 2 

e î . « 1 \ 
2 ~ 2' , a 

2 2 / 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


ANALYSIS ON ROOT SYSTEMS 1371 

(9.23) e î e \ \c2 
— — —, —— — —, a 

-*B2( i e î 

2 2 2 2 / 2' 2 2 

i e \\JP ( 
2 2 2 / 1 

P 1 
2' 2 

P « 1\ 
2' 2 2/ 

the applications of / are submitted to the conditions that a and 
— 0/2 — 1/2 are integers or integers 4-1/2. The arrows 

C7 -^ B7 J 

mean the operation by which we can pass from the left to the right of the 
arrow. 

e) The cases of symmetric spaces. We come back to the table (9.16); 
in that table, we can find the heat kernel of any symmetric space with 
y = 1/2. If we can find on a given line the (a, fi, y) of the column, we can 
find also the one of the other column by the operation C2 <=̂  B2. 

1st line. This can be treated easily because one of the elements in that 
line contains y = 1/2. 

2nd line. The left element a = 13 = \, y = 3/2 can be obtained as 

/ 0 1 6 1 

\ 2 2 2 2 

3 rd line, a = 0 = (i, y = I — 2 — - can be obtained as 

with a = 3/2, 0 - - 3 , app ly ing / 3) to ( - 1 / 2 , - 1 / 2 , a). 
1 

2 

/ 0 1 0 1 
— — - , — — - , a 
\ 2 2 2 2 

with a = I - 2 - 1/2 and 0 = - 1 applying J~l) to ( - 1 / 2 , - 1 / 2 , 
a). 

4l line. This is trivial because it contains an element with y = 1/2. 

5 th line, a = fi = y = 0 can be obtained as 

10 I _0_\ 
\ 2 2' 2 2' a 

with 0 = - 1 , a = 0 applying / _ 1 ) to ( - 1 / 2 , - 1 / 2 , a). We can 
summarize all this by the lemma following: 

LEMMA 5. // is possible to obtain an explicit form for the heat ker
nel A(a'^Y) in the cases given by the schemes (9.22). In particular, all heat 
kernels of non compact symmetric spaces of pure types B2 or C2 can be 
obtained explicitly. 
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6. Explicit expressions for the heat kernels: analytic formulas. 
a) Transformation C2 —» B2 in algebraic coordinates. We denote (qx, q2) 

the coordinates of a C2 system, (Q]9 Q2) the coordinates of the B2 system 
corresponding to (qx, q2) by 

(9.24) Qx= qx~ q2 Q2 = qx + q2. 

We denote x- = cosh qi9 Xt = cosh Qt the corresponding algebraic 
coordinates; they are related to each other by (9.24). We proved in Lemma 
4 that the Laplace operator A ^ ' y ) of the C2 system becomes 2A (/ , / 3 'y ) of 
the i?2 system by (9.24); the indices x, X refer to variables in which these 
operators are written. The jacobian of (9.24) is 2. This is also the jacobian 
of x —» X, so that the volume element transforms according to 

dV{M^\Q) = 2dV{p^p\q) 

dV^'^'^XX) = 2dVMy\x). 

The correspondences 

p^ pf and (a, 0, y) -> (a', /?', y') 

are described in 4 and 5. Let us start with the heat equation 

If we perform the change of coordinates j c - > I w e obtain 

I o/ 

^ A Y ) ( J C | A > / ( ^ ) ) - < / K ( ^ Y ) ( * ' ) -> « ( * - X') 
^ 2 

so we deduce 

(9.25) p\a'^\X\X) = ^ f Y ) ( * k ) . 

Remark. p\a™ is always taken with respect to the volume element 
dV{afiy)(x')\ in the same manner, p{-x'^',y,){X\X) is taken with respect to 
the volume element dV^a^y\X). As a corollary we deduce 

THEOREM 1. We have 

(9.26) p\±u2--x/2-a\x\x') = V 2 r ± 1 / 2 W ) 
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with the usual correspondence X = X(x), X' = X'(x') given through the qt 

and Qt coordinates by (9.24). 
We have also 

(9.27) p\ l (« , - l /2 , ( - (» /2) ) - ( l /2 ) ) i (X\Xr) 

_ l
 n(-(#/2)-(I /2) ,(-((9/2))-( l /2) ,«) , 

~ 2P2t (x\xf). 

Proof. This is the first line and second line of (9.23) and the formula 
(9.25). 

b) Application of the J operator. Let us consider the Cauchy problem 

' _3 

dt 

Define 

Then 

r(a-(0/2)J-(e/2)M 

'\t=0 Un. 

v = e{~B{a + fi + y-{6n)+\)-{en))tu^ 

9/ 
(a-(d/2),p-(6/2),y\} ^(« + >8 + y - | -T- l) + | ) v 

l/=0 

Define w by 
r(#) 

then we have 

"a7 

'l/=0 

r(<*,fi,y^ 

r^~e) u 

using Lemma 3 (9.11); this means that 

(9.29) u(t, x) = ^<K«+e+y-m) + i)He/2))t 

X A ^ f P?*\x\xWi;°!3s u0)(x>)rn^\x')dx> 

(this is true provided y is integer or integer +1/2). The notation ^2y+3,jc 
means the operator J^+ 3 acting on * variable. We shall denote by 

j{
2-%{x'\x")dx" 

the kernel of J2Z+3yX' (with respect to the Lebesgue measure). The domain 
of integration is (in the space R2 y + 3) the light cone with vertex at a point 
corresponding to xf by the rule given in 3 (which point precisely we choose 
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does not matter because of rotational invariance in the space like 
direction). When we write 

j(
2~%{x'\x")dx" 

the situation is here asymmetric; in fact by that notation we mean that 

l A;%(x'\X")f(x")dx" = (I(
2y%f)(v', U') 

where / is the space-time function rotationally invariant in the space-like 
direction, 

u' = x\ — x\ and v' = x\ 4- x'2 

and 12^+3 has been previously defined. In the previous integral, x' and x" 
are both in the Weyl chamber with vertex at 1 in R . With these 
conventions made, it is obvious by (9.28) that we have the following 
theorem. 

THEOREM 2. For y integer or integer 4-1/2, the heat kernel of 

r(a-(0/2),j8-(0/2),Y) 

is given by the formula 

(9.29) p{rm)^m)-AAx') 
e0(.a + P + y-(0/2) + (3/2))t 

-^~ f fjt+^)P(r^mx ~ m(a-(0/2) , j8-(0/2) 

c) Remarks on the integrations in (9.29). Consider the light cone of vertex 
(v', I ') e R2^+3 corresponding to x\ Let (v", | " ) be a generic point in this 
light cone, 

r2 = (V - v")2 - |I' - I ' f 
the square of the Minkowski distance, so t h a t ^ â 0 and v" — v' > 0. Let 
u' = || ' | , u" = | |" | and a the angle between £' and | " ; then 

r2 - (v' - v"f + u'1 + u"2 ^ , , 
— 1 ^ cos a = = 4 - 1 

lu'u" 
which implies in particular 

r2 - (v' - v")2 + (1/ - u")1 = 0 

and because r > 0, we get 

v" - v' ^ |i/' - u"\. 

This, in turn, implies that the domain of integration in (u'\ v") variable 
is contained in the shadowed domain: 
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This implies that the domain of integration in the x" variables is 
obtained by rotating by —77/4 and is contained in the domain T(x'): 

(rco ) 

Conversely the point x" corresponding to a backward light cone with 
vertex at x' will be contained in the following domain A(jt'): 

(A(x') ) 

This means that in (9.29) the double integral is taken 
1°) in £, on a domain of the type T(x') with vertex at x 
2#) in 7], on a domain of the type A(JC') with vertex at xf 
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d) We want now to obtain more explicit expressions for these formulas. We 
shall begin in the next two sections by the case when 6 = —2r with r a 
positive integer. In that case, 

'g+3 = (^y 
and we shall have a simplification similar to the one found in Section 7, 
6 and 7, if we put the source of heat at point 1. 

7. The adjoint of (D_)r. All functions are defined on the Weyl 
chamber 

C(l) = {(xx,x2)\l =i x2 ^xx} 

but they extend smoothly to [1, +oo[ X [1, +oo[ as invariant functions 
by the action of the Weyl group, which, in the algebraic coordinates 
X; = cosh qi reduces to the permutation of xx and x2\ so the 
functions we consider are smooth symmetric functions on [1, +oo[ X 
[1, + oo[. The following lemma was proved by Koornwinder [18] in the 
compact case: 

LEMMA 6. Let 

^\X) = ((1 - xx){\ - x2))
aa\ + xx)(\ + x2)f 

and let 

(9.30) D(f^ = (^(x) y ' o IPJ o M<a + ^+]\x). 

Then we have the following formula for qp, \p, C°° and defined on Ax, with 
compact support 

(9.31) JK (D{m)(xl9 x2Mxl9 x2)m
{a+l>fi+l>y\xx, x2)dxxdx2 

= JA Mxx, x2)(Z>^'Y)
v)(*i, x2)m

{aAy\xx, x2)dxxdx2 

for y > - 1 / 2 , a > — 1. 

Proof. By definition of m ^ + 1 ^ + 1 ' 7 ) and of D^f* we are reduced to 
proving 

(9.32) ( ( A ( ( X i _ X 2 ) 2 y + . ^ L 
JK \dxx \ ' 2 8*2 

3x9 \ dxi ' ' V 2 X U A , 

/ , 
^.^jJU,,,-^.» 
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+ ±l(X] -X2fy+^))dxxdx2 
dx2 \ dxx / / 

where 

<b(xl9 x2) = / i ^ + 1 ^ + 1 ) (x„ x2Mxl9 x2). 

Consider the integral 

J-* \ôx] ôx2 ôx2 ax] J 

Then the two members of (9.32) are equal to I up to boundary terms. But 
for a > — 1, the boundary term on x2 = 1 will be 0 and for y > —1/2, the 
boundary term o n i , = x2 will also be 0. By iteration of Lemma 6, we 
obtain 

COROLLARY. Under the hypothesis of Lemma 6, we have also for any 
integer r 

(9.33) fK ( ( Z ^ W X * , , x2Mxl9 x2)nla+r*+r«XxX9 x2)dx}dx2 

= lKHxx,xiwW* 

. . . o ^+r~l^r'Uy)q>)(xl9 x2)m
(a^y\xl9 x2)dxxdx2. 

8. Reduction of the analytic expressions of the heat kernel for 0 a negative 
even integer. Let us now come back to Lemma 2; this can be rewritten 
as 

+ '(2r(a + 0 + y + r + l ) + r^D^f. 

It is clear that the function 

(9.34) e-M°+fi+y+r+\ ) +r)>(D(1))rJ«S,y){X \x) 

is a solution of the heat equation 

8/ * 

We want to find the singularity for / —> 0 + ; let <p be a C°° function with 
compact support around 1 in Ax and consider the integral: 

By (9.33) this is 
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/ , 
^ • ^ ( l k K D ^ o ^ + ' - ^ ' ^ o 

oD(«+'-\S+^\.y)(f)(x)m(aAi)(x)dx^ 
' + 

But 

p^y\l\x)mta^y\x)dx 

tends to 5(1 — x) if / —> 0 , so this integral tends to 

(9.35) (If?™ o D<« + ^+^> 0 . . . 0 £ < ; + ' - ^ + ' ' - ^ V ) ( l ) . 

Let us compute the number (9.35). First we have: 

LEMMA 7. Let f{xx, x2) be a C°° function on [1, + oo[ X [1, -hoof 
symmetric in x,, x2. Then 

(9.36) - ^ B U t y ' + ur + ^f) 
ft 

= (a' + 1)(1 + ^0(1 + x2)(a' + 2 + 2y) / + g 

where g is a C°° symmetric function vanishing at (1, 1) of the form 

0 ~ *i)gi + (1 - x2)g2. 

Proof We compute 

1 

((1 - x ^ l ~ * 2 ) ) a ' ( 0 + *i)(l + x2)f 

a2 2y + i / a a 
X + ' dx{dx2 xx — x2 \'àx2 3. )x 

X ( ( ( 1 - xx)(\ - x2)f
 + \(l + x,)0 + x2)f+ 1 / ) 

= (a' + 1)2(1 + xx)(l + x2)f 

+ (14- x,)(l + ^2)(2y + D(a' + 1 ) / 

+ (2y + 1)(1 - ^ ( 1 - x,) 
x \ ~ X2 

a a \ _ , _, , . . e f + \ 4 

dx2 dxA 
x - - - ( ( i + x,)(i + *2)r 7) 

+ 0(1 - x,, 1 - x2). 

Here the first two terms give 

(1 + *,X1 + x2)(«' + !)(«' + 2 + 2y)/; 
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the third term is smooth i n i , , x 2 because 

((1 +x,)(l + x2)f
 + lf 

is symmetric in xx, x2 and C°°; the last term is also symmetric and C°° in 
JC,, JC2 and comes from action of 

92 on^'+1^'+ly 
dx}dx2 

and is of the form 

(1 - Xj)<p + (1 - X2)\P. 

Now, to compute (9.35) we apply recursively Lemma 7 (9.36): we 
obtain 

! D ( Y U a + r,j8 + r y 
(a + r - l , j8 + r - l ) x y - ' x ^ 

= (a + r)(a 4 r 4 1 4- 2y)(l 4 x,)(l 4 x2)f 4 g, 

with gj as in Lemma 7; then 

2 )(a+r-2, j8 + r-2,Y)/2 )(a + r - l , i 8 + r - l , y ) A 

= (a + r - l)(a + r + 2y)(l 4 JC,)(1 4 x2) 

x z^-^-^y+g, 
= (a + r)(a 4 r - l)(a 4 r 4 1 + 2y)(a 4 r 4 2y) 

X ((1 +^0(1 +* 2 ) )Y+g 3 

where g2 and g3 are as in Lemma 7. So we finally obtain 

(9.37) D(fy) o . . . o D f î + r - , ^ + , - 1 ^ v l i 

= (a 4 r)(a 4 r - 1) . . . (a 4 1) 

X (a 4 r 4 1 4 2y) . . . (a 4 r 4 2y) X 22,'<p(l). 

This implies, using (9.37), and the beginning of this part, the following 
theorem. 

THEOREM 3. The heat kernel 0f zja+r^+r,y) (with r integer) at pole 1, is 

- ( 2 r ( a + j3 + Y + r + l ) + r ) f 

(9.37) Tr 

(a 4 r) . . . (a 4 l)(a 4 2y 4 r 4 1) . . . (a 4 2y 4 r)22' 

x ( Z ) ( 2 ) ) ^ ^ ) ( l | x ) 

^ ^ a + ^+ r 'Y )(l | -x). 
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Remark. Unfortunately, this formula is not sufficient to obtain heat 
kernels for symmetric spaces of rank 2, because we need the action of 7 ( ' 
for 0 integer (positive or negative) and Theorem 3 gives the action for 0 
even integer only in which case 

On the other hand, in Theorem 3, y does not need to be integer or integer 
+ 1/2. 

9. Limit behaviour of the heat kernel for xf —» 1. 
a) Simplifying (9.29) for x' —» 1. We suppose below that y is "integer" or 

"integer -f 1/2". We come back to Theorem 2 formula (9.29) and we want 
to examine the behaviour of 

p^2),fi-(em.y){xW) 

when x' —» 1 = (1, 1). We have an integral in TJ over the domain A(x') 
shown on the figure of part 6. This domain shrinks to 1 when x' —» 1 but 
the denominator 

m{a-m)S-(0n),y)(x>) 

tends to 0. We shall show below that the same phenomenon as in Section 

7, 6 occurs, namely that when — 0 > 2y + 1, the integral 

has the limit Q^a'^'Y)(£|l) when x' —> 1 (C being a fixed constant 
independent of £). We assume below — 0 > 2y -f 1 = n — 1 (which is the 
condition under which l\~% is absolutely convergent (see part 3). 

b) Computation of the integral (9.38) for JC' —> 1. Let us fix a point 
xf = (x'0, y'0) (XQ, y'0 > 1); by a translation of coordinates we shall 
assume that x'0, y'0 > 0 and tends to 0 and x'0 > y'0. Then 

^ V ) = (^o>'o)a((2 + 4)(2 + y'o)f(x'o - y'o)2y+l-
Call as usual 

uo = *o ~ >& vo = 4 + y'o 
which is in a light cone; call (£Q, VQ) a space-time point with 

llol = "o-
Obviously (£Q, VQ) is in the forward light cone. Call A(£Q, VQ) the 
intersection of the forward light cone with vertex (0, 0) with the backward 
light cone with vertex (£Q, VQ). We study the integral 

A c W (vo '(«)= UA^-vY - ift-ry 
2 _ (Ï, _ 7,2x(-0-*-l)/2 
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X m(aAy\l v)dldv 

when 

do , y'o) -> o. 

This integral depends only on ||Q| = u'0 and v0. We shall make (§,, v'0) tend 
to 0 according to a straight line and we shall study 

7(A|0,Av0) A - ^ 0 + . 

It is clear that when À —» 0 + 

/(AÉ&, Av0) ~ 7(0, \v'0). 

But because 

w (a 'AT)(i, v) ~ (u)2y+\v2 - u2)a, 

W Vo) ~ £(oyo)((
V0 - V)2 - l I l Y V ^ V - M

2)<V^V 

where p = —0 — n — 1 and so this last integral is the integral over the 
triangle 

v 

EL 
U 

fT((v0- vf - u2f/2u2y+>2 - u2fdudv 

which can be split into two integrals 

(9.39) J"*'2 dv f0 ( (v0 - v)2 - u2fu2y+n(v2 - u2fdu 

+ fV° dv r ° V((v0 - v)2 - u2fu2y+"(v2 - u2fdu. 
J v0/2 J 0 

Both integrals in (9.39) are absolutely converging because p > — 2 and are 
equivalent to 

and so 

/(Aft, Av̂ ) ~ cA
2«+2Y+2+"+P if x -> 0 + . 

But we obviously have 
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with 

-0 = p + H + 1 

so that 

I(Xl'0, Xv'0) and m ^ - " , / 2 ) ' ^ , e / 2 ^ ) ( ^ , \v'Q) 

have the sum equivalent when X —» 0. 
We thus obtain: ' 

LEMMA 8. 77H? integral (9.38) r^ntfe to Q(/*^Y)(£|1) w/ze/i x' -> 1 when 
-0 > 2y 4- 1. 

c) 77z£ Ziê tf kernel for — 0 > 2y + 1. 

LEMMA 9. L ^ ws suppose that — # > 2y + 1 a^d y integer or integer 
+ 1/2. 772£/7 we /zave 

(9.40) p<,"-<''2>-*-<*/2>-rt(jc|l) 

= Ccfta + /» + 1r-(fl/2) + (3/2))/ j f ( j t ) y -g + 3(x |£ ) / ,^
) «| l )d£ 

where C is a constant depending only on a, /?, 0, y. When 0 = — 2r, we find 
again (9.37). 

Proof This is obvious from Lemma 8 and Theorem 2. 

d) The general case 0 < 0. We are now able to treat the general case, i.e., 
when we remove the condition — 0 > 2y 4- 1. We maintain 0 < 0. 

THEOREM 4. Le/ us suppose 0 negative and y integer or integer +1 /2 . 

(9.41) ^ " - ^ • " - ( " ^ ( x l l ) 

C depending only on a, /?, 0, y. 

Proof We know by Lemma 3, formula (9.21) that the second member of 
(9.41) is a solution of the next equation 

A = L(a-(0/2)J-(0/2ly) 
dt 

Let us prove that it has the correct singularity at / = 0 when x —» 1. Let / 
be a C°° function with compact support near 1. We study for t —> 0 

/A xxW-l"2)J,-m)-y\x)dx /r(v) jtampTAy)(è\m. 
This is also 
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(9.42) jA( p\^M\)di j m /(x)y^+3(x|0W
,a-(e/2)-^(('/2,-)(x)^ 

where the second integral is extended on a domain of type A(x). Now, the 
integral: 

is of the type studied above in (9.38) except that 6-^—6 and 

0 „ n 6 
OL-+OL - - /3 —> /3 — — 

2 2 

and y is unchanged. It was shown that it is equivalent for £ —» 1 to 
m(a,#,Y)^ provided that 6 > 2y -f 1. In particular we obtain that there 
exists a constant C depending only of a, /?, y, 6 such that 

l i m „(«Ay),~ - W> 

for 0 > 2y -f 1. But, by Riesz theory, the integral is analytic in 6 for all 0 if 
/ i s C°°. In particular, the function O 

L. /^^Î+JWO™""- '"^-""' ' ' 1 ^)* 
* * * - î te 

is analytic in 0, C°° in £ and takes the value Cf(\) for £ = 1; we can 
rewrite (9.42) as 

(9.44) fA( p^\& 1 )m(a^\mè, 6)dt 

But 

p^GWW^iSdt -> S(£ - 1) if, -> 0+, 

so that (9.44) tends to $(1, 0) = Cf(\) which proves that 

p(«-m^-(en).y)(m^a-m),fi-(9n),y){x)dx ^ ^ _ V) 

so Theorem 4 is proved. 

References. The definition of D^ comes from [18]; the definition and 
properties of the fractional wave operators come from [27]. 

10. Kernels of elliptic invariant operators on certain solvable groups and 
applications to quantum mechanics. The purpose of this section is to apply 
the preceding analysis to obtain explicit constructions for heat kernels on 
certain solvable Lie groups. The case of nilpotent Lie groups has been 
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treated in very special cases in [12], but apparently, few things are known 
for non nilpotent solvable Lie groups. 

1. A general construction : going from a symmetric space to a solvable 
group or its quotient. 

a) The symmetric space in horospherical coordinates and its associated 
solvable group. We consider a root system (E, 0̂ , p) such that its 
multiplicities correspond to a non compact symmetric space X = G/K. 
Then, in horospherical coordinates, we obtain 

X = NA • o 

where N is a nilpotent group, A is an abelian group (isomorphic to E) and 
Sx = NA is a solvable group which is the semi direct product of A and N. 
It is clear that the Laplace-Beltrami operator of X written in horospherical 
coordinates (which are just the coordinates of Sx) induces a left invariant 
Laplace operator on Sx (see Section 5 for the analysis in horospherical 
coordinates). 

We have seen that we can compute the heat kernel of X in a more or less 
explicit form in radial coordinates, in the following cases: 

(i) X = SL(p + 1, C)/SU(p + 1) in which case 

(£, SR, p) = (R'\ Ap9 p) 

with all pa = 2 (see Section 3). 
(ii) All symmetric spaces of rank 1, in which case/? = 1, and there are 

at most two roots (see Section 7). 
(iii) (E, 9t, p) = (Rp, BCp, p) where y = 1/2 (see Section 8), which 

includes in particular SU(p, p)/S(U(p) X U(p) ). 
(iv) (£, 9t, p) = (R2, B2 or C2, p) (see Section 9). 
In all these cases, the solution of the heat equation, the Green kernel, 

eigenfunctions . . . for the solvable group Sx is obtained by a change of 
variables in the radial expression for the heat kernel, Green kernel, 
eigenfunctions . . . of X 

b) Generalization to other solvable groups of type SXn-\. We now come 
back to the notations of Section 5. In this section, we obtained the 
following decomposition of the nilpotent algebra 

(10.1) SR( + ) = 2 ^ ( A ) 

where ^ ) is the sum of the root spaces ©(a) where a is a positive root 
which is the sum of exactly k fundamental roots; in particular sl^(1) is the 
sum of the fundamental root spaces. Let us now fix n > 1 and define 

(io.2) m{„t\ = 2 %{k) 
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which is an ideal of 9^ * due to the root structure of 9?̂  + ) (more pre
cisely the "filtration" induced by the root system, see Section 5); in 
particular, the quotient algebra 

(10.3) £>„_, = 3ti+)/9l[t\ 

induces a solvable group SXn-\ with the Lie algebra 31 -f Q,7_i. 
Let us quickly prove this assertion; first £in_, is naturally a Lie algebra 

because of (10.3) and the fact that 9 ? ^ is an ideal. Then if A e 31, we 
obtain that 

[A,Xa] = a(A)Xa 

for Xa e ^ - ^ l by definition of a root so that 

and the bracket by 3Ï induces a natural structure of Lie algebra 
on 31 + £}„_, which is a quotient of 31 + 9^ + V^ tV» in par
ticular SXn_x is a quotient of Sx by the nilpotent Lie group with 
Lie algebra 9l(

nt\. 

Example 1. Let us take n = 2; then £}, is an abelian algebra generated 
by the ®(a) for a fundamental roots and S^, is a semi direct product of 
two abelian algebras. Its Laplace operator is 

(10.4) A, = 2 -^ + 2 2 ,2^>-V-
* ' 7 = 1 a ^ / « G S + y = i 9 * t t J 

Here the q are the coordinates of A (in horospherical decomposition), 
the pa are the multiplicities of root a, g + is the set of fundamental roots 
and the x -9j = 1 . . . pa are the variable in @(a). 

Example 2. Let us take « = 3 (if this is possible); then £}2 is a nilpotent 
Lie algebra of rank 2 (this means that two or more bracket operations give 
0) and SX2 is a solvable Lie group which is a semi direct product of an 
abelian group and a nilpotent Lie group of rank 2; its Laplace operator 
is 

(io.5) ASw = i : | , + s i / ^ 

P/* PI2 

j8e(3++S + )n9ty = l 9 ^ , y 

Here x@j are the variables of © ^ and ( g + + S + ) n 9î is the set of 
positive roots which are the sum of exactly two fundamental roots; the 
Xa j are vector fields on N/N2 which are left invariant. They are first order 
operators, linear combinations of 
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with 

d A 9 

and xak  

àxaJ ' àxpj 

S + and p e ( S + + S + ) n 3t. 

(We refer to Section 5 for the proofs of all these assertions.) 
c) Deduction of the kernels for SXn_x. We shall start with the heat kernel 

of Sx = N • A. An element n e N has the exponential coordinates 

n = (xkjkj 

where (xk •)• e 93^ (see Section 5); then the Laplace-Beltrami operator 
Ax acts on functions f0 which do not depend on the (xkj)k^nj exactly as 
the operator As ; in particular it leaves this class of functions invariant. 
Then the heat kernel on SXn_x is obtained by integrating out all these 

(Xk,j)k^nJ 

(10.6) PSxnJq{]\ (4!}-)*<„, t\<f°\ (4°})A<„) 

- jpMx\ (4> ^0). 0© ) n n dxkJ. 
k^n j 

Remark. Our procedure here is exactly the opposite one of Karpelevic in 
[18]. In this article, Karpelevic defined the heat kernel on the abelian part 
of the Laplace operator of X in horospherical coordinates (which is 
a constant coefficient operator) to study the boundary behaviour on a 
symmetric space. Our procedure is to use information on X (in radial 
coordinates) to deduce the kernels on solvable groups. 

2. Generalization to other solvable groups, a) Until now our construction 
applies only to solvable groups which are the quotient of the solvable Lie 
group Sx associated to a symmetric space X by a nilpotent Lie algebra. But 
in general, for a symmetric space, the multiplicities of the roots, and so the 
dimension of the vector spaces appearing in the horospherical decomposi
tion of Sx and its quotient, are rather special numbers. 

We shall now prove that it is rather easy to overcome that difficulty by 
using adapted Fourier-Bessel transforms. 

b) Let us start with a root system (£, Sft, p) which does not correspond to 
a symmetric space because its multiplicities p are not the correct ones for 
such a space. Moreover let us consider the operator 

(10.7) A, = i^+ 2^1-4-

(only restricted to the fundamental roots) and the heat problem with heat 
kernel 
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satisfying: 

(10.8) 
du 
— = A,w 
dt ' { «|,_0 = %<" - ^)S(y^ - / » ) . 

Let us also consider a symmetric space X with the root system (E, 9i, p') 
such that p« ^ 0 for all a e $ + ; we have 

(io.9) A5 = 2 -* + 2 <*"•*> 2 - V 
** 7 = 1 9 ^ / « e ^ + 7 = 1 à***,] 

and we suppose that we know the heat kernel of A5 . 

pSxM^ < *& ^(0>< *S>-
We can integrate out all the x\^j such that the corresponding pa in (10.7) 
is 0; we obtain a heat kernel 

P'M1\ ^!jt\é
0\ x^} 

for 

A', 
i = l Hj «eS+ 7 = 1 3^«J 

It satisfies 

(10.9) 

9v 

3; 
A',v 

l/=0 
M) _ j l O t ^ J l ) % ( " - q^)8(x(l> - x ,u)). .(OK 

Now, both/?, and/)', depend only on the euclidean distances 

\W - y?\2 = 2 1^- " J©2 and 
7 = 1 

Ul!) - £0 ) l2 
^_J | * a j * ( 0 ) l 2 

Moreover if we perform a Fourier transform 

^ = n syj 
„(D i n y a

; variables onpx and a Fourier transform 
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$> - n s^ 
in x^}- onp\, they satisfy 

£ s(>, = ( i £ - s+ ^»(i - sPJ)) \w\M»Pt 
at \j=\ dqj a e^ + 7 

vO) 

(10.8) 

ftO) (1) where the y a j are conjugate variables of j ^ j and 

./ = ! 

and with the same kind of notations 

(10.9) 

d_ 

dt syy, = ( 2 E l 
7 = 1 3 ^ 

2/^o-Vl^W. 
«eft 

syy.1,-0 - «tf0 - ««v 2 *^. 
At this level it is completely clear how to go from (10.9) to (10.8), in fact 

where 0a is the angle between (x^j) and (X^J)J for every a e $ + and in 
the same way we have 

KO) ,0) I,A,(0| 
(îo.io) o ^ / w ^ ijri,0j i/«wuo 

„(°)l ^°h 

= ^ o . ) r „0) KA,0) (°)| ^ h = (^M)(t,q{[\\y{:i0J\yTlr)) 
d ) \ - i It is now sufficient to perform the inverse Fourier transform (JV j)~ to 

obtain the result. This can be expressed through Bessel functions. Explicit 
examples will be given in part 4. 

3. The easiest example: semi direct products of two abelian groups and the 
real hyperbolic spaces. 

a) The groups S . The groups Sp are the solvable Lie groups with the Lie 
algebra generated by the left invariant vector fields 

where y and x- are real. 
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Example. In the case/? = 1? *S] is the group of affine transformations in 
the real line namely 

O, b):t e R -> at 4- b a, b > 0. 

If we define a = e* then we have the law 

(fc b) • (f, i') = (f + £', A ' + i) 
with left invariant fields 

3£ db 3b 

Defining b = ev and £ — r] = x, £=ywe obtain the realization 

—, ey—. 
dy 3x 

In the general case we define the left invariant operator 

( io . l i ) ^ = ^ + ^ 2 - j . 
F 3y 7-=i 3xy 

b) The heat equation on S As usual we are interested in the Cauchy 
problem for the heat equation on S 

d2u 
, — = -f- t/-y > 

(10.12) J 

du d2u 

9/ 
+ P 

P 

2 3/ 

d2u 

9/ 7=1 
u\t= =0 = "o 

We shall denote the heat kernel by 

K(x^,/]\ r|x«V°>) 
so that the solution of (10.12) is 

(io.i3) „(*<v>, /) = j[,+1 ̂ ' ) ,y>, /î °),y°)) 

x«o(^°),y°)>-^W0) 

with respect to the invariant measure epy dx^ ^dy^ ^ on this group. 
c) Consider now the hyperbolic space of dimension n + 1; we realize 

this space as the upper half space 

Hn + X = {(yu...,yn + 0 eR" + ,,>>„+, > 0} 

with the metric 

A2 = * i + . . . + *5+, 
yl+\ 
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The volume element is 

If 

dv=y;i'\+[)dy,...dy„ + l. 

H+l 

7 = 1 

is a 1-form. The adjoint S of the exterior differential d is given on IT by 

"V ( V X A A 
7 = 1 tyy» 

and so 

«+1 a*. 
0,7 = - 2 , J » + l — + (« - l)>'„+1Wn+1. 

7 = 1 ty 

The Laplace-Beltrami operator is then 

(10.14) Af= -Sdf^yU, 2 M - (H - 1)^ + , 9 / 
7 = 1 ty v " " ' " ' ^ H + I 

But ^/z + i is positive on Hn+X and we can define 

(10.15) yn + i e - . 

With this change of coordinate we obtain 

y = i ty dy dy 

and we rewrite 

92 / 3 / —~ — n — 
dy2 dy 

Let us now define 

(10.16) g(yx,...,yn,y,t) = e 

Then the problem 

(10.17) j 9 / 

dy 4 

-(«/2)_v-(«2/4)/ y ^ i , . . . , ^ , ^ / ) . 

A/ on// ,7 + i 
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is equivalent to the problem 

(10.18) 
9<7 32g 2 ^ d2g 

dt dy2
 j=l dyj 

^ gl,=o = go-
For n even, the heat kernel of the space Hn + ] is known (see Section 7). 

We call r the hyperbolic distance between two points of Hn +, and 
denote 

p(m(i\ t\m{0)) = p(r(m(]\ m(0)), t) 

the heat kernel of (10.16), with respect to the volume element of //„+i 

f(m{]\ t) = f p(m{\ t(m(%f0(m
(0))dv(m(0)). 

Using (10.16) we obtain the solution of (10.17) by the formula 

(10.19) g(yu...,y„,y,t) 

= e-l'"2*-<'?"*fp(yl,...,y„ey,t\y
0

i,...,ylef) 

x&o? ^ y v ' " ' 2 » ^ . . ^ 
because 

dv(m^) = -^dy, . . . dyn + x = e n>dyx . . . dyndy 

and we obtain 

THEOREM 1. The heat kernel of problem (10.12) with p = n is 

(io.20) *(**/>,,.., 4!\ y{l\ t\xf\..., 4°\ y0)) 

__ -{n/2)/l) + (n/2)y{0)-(n2/4)tn,(\) (\) py
(X) ,i y(0) (0) 

(0) — ^ f ' V ^ l * • • • •> x
n •> e > ' l A l ' • • * ' xn ' 

^ ) 
where p is the heat kernel of Hn + , . 

4. Another expression for the heat kernel of the preceding solvable 
group. 

a) We want to obtain a slightly more explicit computation of the heat 
kernel of problem (10.12). Let us first remark that in (10.12), we can 
restrict ourselves to the case when the initial data is a radial function of 
the Xj i.e., 

u0(xu ...,xp,y) = u0(p,y) 

where 

-(M 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


1392 A. DEBIARD AND B. GAVEAU 

because the heat kernel K is a function only of 

vO) v(0)i 

Moreover we have only a simple expression for the heat kernel of the 
Lobatchevski space H3 for which 

(10.21) p(r, t) = (4770~ 3 / 2 ^^~ ( r 2 / 4 ) / — ! — 
sinh r 

Let us take the Fourier transform in (x-)-x of (10.12) and denote $ 
the Fourier transform in these/? variables; we obtain 

(10.12) 

and 

d%pu d\u 

dt 3 / 
e P %pu 

- ( I *?) 
1/2 

where the x- are the dual variables of the Xj. 
Let us also take the Fourier transform of (10.17) for n = 2 and denote 

S 2 this Fourier transform with respect to the two variables yx, y2. 
We obtain 

(10.17) 

where 

3g2g 32S2g 2yA2cv 

3/ 3/ 

S2gUo = S2g0 

a = iy\ + y\f\ 
We also reduce ourselves to the case where g0 is a function of 

o = (y] + ^ ) , / 2 

and j . The solution of (10.20) is 

(10.22) @2g)( j>„ j)2, J O 

= *->-< jkhhe'Ay^y) 

where we have used (10.18), the Plancherel Formula and the definition 

(10.22) hyly2e
yt\y°lyl ?y°) 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


ANALYSIS ON ROOT SYSTEMS 1393 

= 7^2 / e^W-J^p^ y29 ey, t\yl yl e>")dy\dy\dyxdyi) 

= q(à, 0, e>\ t\6\ ey°) 

where 

o2 = 2 ^(*0)2 = 2 c^)2 

and 0 is the angle between the vectors (yx, y2) and (>>]), y2)- Then 

(10.23) ( S 2 g ) ( ô , ^ 0 

= e-y-' / © r f o X ^ / ) ( / T « A 0, e\ t\&°9 e v > ) 

X e~y°o0do0dy°. 

In (10.23), let us replace o by p, a0 by p°, g2£o by S/?wo m t n e r ig n t 

hand side. On the left hand size, we obtain (gpu)(p, y, /), solution of 
(10.12). Let us take the inverse Fourier transform g~ in thep variables 
x]9 . . . , x \ we obtain 

(10.24) u(p,y,t) 

= e-y-1 / GVOXPO, y°)%pl / r «(P. ^ *y> 'IP°> ^ W 

X <?~v p0dp0dy°. 

On radial functions, we obtain 

®"" l , p ) ( p ) = =^io ^ " ' ^ 

X jsP.te-il^osada(e,ai,...,ap_^ 

where 

^ ( ^ « i , • • • ,<*p-2) 

= sin'7- 0 sin77- «j . . . sin a 3d0daY . . . da 2 

in the volume element of the unit sphere and 

0 ^ 0, al9 . . . , a ^ ^ 77 0 ^ a ^ ^ 2TT. 

Introducing the Bessel function 

^-2)/2(PP) = (PP) (^2 ) / 2 / ! ! (1 - | 2 ) ( ( , -2 , /2 , - ( . /2 ) e - ,p^ 

we see that 
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„ , f + oo 
(10.24) ( 5 - ' v ) ( p ) = - £ - i I Pp"Vw<P)(PP) (2"'' ) /V (-_2) /2(piS). 

(277/ ^ 

On the other hand 

(VoXPo/) 

/

+oo 

0 p£ " ] t/p0W0(p0, / ) (p 0p 0 ) ( 2 _/? ) / 2 / ( p _ 2)/2(P()P()) 

and the heat kernel of (10.12) is then given by 

(10.25) ^ - e - - " - ' J0 Po^Po(PoPo)<2"',)/2-/(p-2,/2(PoP(») 

f OO 

o pp~'dpippr-p)/iJ{p-2)/2(Pp) 

X 

/

+oo 

al funct 
given as in (10.20). 
on the radial function t/0(p0, y ) with g being defined as in (10.22) and p 

5. Quantum mechanics in the potential e }. The Schrôdinger equation for 
the one dimensional quantum problem in the potential e2x is 

(10.26) / dt dx 

where £ is some coupling constant. This is equivalent to (10.17). First we 
consider the problem in imaginary time r = it. In (10.17), ^0 = g2£o anc* 
does not depend on £2 = a2; this means that g0 is a function of j>° 
and a Dirac mass at the origin in y®, y\, and (10.22) becomes 

/
+ OO 0 0 

where 

# & eF, /|0, 0, e>'°) 

/

2?7 / * + OO 0 

o j o Jtoxxtptpj», e>\ t\0, 0, ey )Pdpcl6 
;0 

where/?(^j, _y2> ey> t\®, 0, e v ) is the heat kernel of the Lobatchevski space 
H3 and (p, 0) the polar coordinates of (yx, y2). It is clear that this function 
is independent of 0 and we obtain 

/
-t-oo () 

0 J0(£p)p(p, e>\ t\0, 0, e>- )Pdp 
with 
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o( ) = '» T« 
The remaining problem is to express the variable r in (10.21) in terms of 
(p, e}\ ey ; r is the hyperbolic distance between the points 

(0, 0, . . . , 0, ey°) 

and 

(p, 0 , . . . , 0 , é>v). 

If p = 0, the geodesic is the^-axis, the metrics is just dyn + xlyn + x and so it 
is dy and the distance is\y — y\. If p ^ 0, we can consider that we are in 
the two dimensional Lobatchevski plane with coordinates (£, TJ); then if 
f = £ + nj, the group £X(2, R) acts by the isometries 

be = 1. 
( : ft-

flf + b 
c£ + d 

tfd 

isotropy group of Z'TJ0 is 

/cos \0 -Vo And 

W 1 sin 0 COS 0 

The point p 4- it] can be put on the 77-axis by such a transformation; it 
then becomes the point ii\' and 0 must be chosen so that 

(p + Z'TJ)COS 6 — Tj0 sin 6 
in = ~j 

(p 4- ZT7)T70 sin 6 + cos 6 

from which we deduce 

Pi' = (V ~ V)0?o ~ rfvi) 

and 

, Î?O + V2 + P2 - V(TJ2 + T]2 + p2)2 - 4T?
2T?

2 

2T7 

The distance between the two points is then 

.,0 (10.29) r : 

- log 

y 

e2v° + e2y 4- p2 - \ V V o + ^ 4- p2)2 - 4é>2(-vo+v)^ 

THEOREM 2. 77ze kernel of the Schrôdinger equation (10.26) is given by 
(10.27), where p is given by 
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/

'+oo 0 

0 M£P)P(P, ey, t\0, 0, e>- )Pdp 
where p is 

•°- - -3/2-t-r2/4t (10.31) p(p, ey\ f|0, 0, ey ) = ( 4 ^ 0 " " ^ " ^ 
sinh r 

and r is the function (10.29) of p, _y uwdf̂ y . 

6. Second example', the semi direct product of an abelian group with a 
Heisenberg group. 

a) The group R X H2n + \. In this section, we consider the semi direct 
product of the real line (with coordinate v), with the Heisenberg group 
H2n + \ of dimension In + 1 with coordinates x••, yj(j = 1 . . . n) and u for 
its center. The multiplicative law on this group is defined as follows 

1°) on R, this is first the usual addition law 
2*) on Hln + \, this is just the law of the Heisenberg group (see [12] ) 
3°) the action of R on H2n +1 is 

e\(zj\u) = ((ev/2zJ)J,e
vu). 

The basis of left invariant vector fields on H2n + \ is 

(.0.32) ^ l l i t ^ b . l l i V l » - 1 
2\'èxi 'eu J 2 \dyi du' du 

so that [Xh Y;] = — U (see [12] with a different normalization). The basis 
of the Lie algebra of the semi direct product is then 

(10.33) - , ev/2Xi9 e
v/2Yi9 evU 

3v 

and the left invariant laplacian is 

(10.34) Ln= ̂  + ev 2 (X2 + if) + e2vU2 

and the heat equation is 

3 / 

(10.35) a, LJ 

j\t=o = Jo-

b) The hermitian hyperbolic space: abstract realization. We also consider 
the hermitian hyperbolic space of complex dimension n + 1 ; this is 

£„ + 1 = SU(n 4- 1, \)/U(n + 1); 

its rank is 1 and its roots are R^l\q) = q with multiplicity px = 2« and 
^ \<l) = 2q with multiplicity p2 = 1 (see Section 7, 1). The structure of 
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the nilpotent Lie algebra of this space is an Heisenberg structure of real 
dimension In -f 1 ; in fact 

where @^d) has dimension 2n, (&R(2) has dimension 1 and moreover if X, Y 
are in ®Rd), then [X, Y] is in © ^ and thus defines a non degenerate 
bilinear antisymmetric form on (BRo) which can be reduced to a canonical 
form. 

In particular, the expression of the Laplace-Beltrami operator in 
horospherical coordinate will be Ln + Z where Ln is defined as in (10.34) 
and Z is the vector field on the abelian subalgebra which is the sum of the 
positive roots counted with their multiplicities (see Section 5). 

c) The hermitian hyperbolic space: half upper space realization. Now, 
there is a well known realization of £n + \ as the upper half space 
realization in C* + 1. We refer to [4], [5] for the following computations. In 
C + 1 we define 

n 

h(x) = Im z0 - 2 \zk\
2 

k = \ 

(coordinates z0, . . . , zn) and we define 

Xw + 1 = {z e Cn + X\h(z) > 0} 

and we define the Bergmann metric on din+ x (see [4], [5] ); then dcn + ] is the 
space defined in the previous paragraph. If we define 

00.36) {j-_««5 

the Laplace-Beltrami operator of Xw + 1 is exactly 

(10.37) As = L„ -(„+ 1 ) 1 

Moreover the invariant riemannian volume element is 

(10.38) e'
(n + l)v ( i l dXjdy^dudv. 

3E,? + 1 is invariant by the group ££/(« + 1, 1) of biholomorphic isometries. 
We shall only need the action of the elements of the solvable subgroup of 
SU(n -f 1, 1) (i.e., the semi direct product of R, the abelian subgroup 
of SU(n + 1, 1) with the Heisenberg subgroup H2n + \). 

Let (z0, z b . . . , zn) be a point in 3£w + 1; (so that h(z) > 0) and v e R: 
then v acts on (z0, . . . , z ) by 
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(10.39) v • ( z 0 , . . . , z„) = (e%, ev,lz„ ..., é"\) 

(dilatations subgroup). 
K 0 , ? ! , . . . , ïn) is in /f2w + 1, its action on (z0, . . . , z„) is 

(10.40) ( t / , f l 5 . . . , ^ ) - ( z 0 , . . . , z , ) 

= (z0 + u + i 2 |fA.|2 + 2i 2 z,f„ z, + £ls . . . , z„ + £„) 

so that the function h = ev is conserved. Moreover, on (3tez0, z b . . . , zn) 
the action of (w, f l5 . . . , f„) is just the left multiplication of the Heisenberg 
group H2n + \ namely 

(", fi, . . . ,?n)(8tez0, zl5 . . . ,z„) 

= I w + SRez0 + 2Sm 2 S/7, ^i + ? ] , . . . , *„ + f J -

The heat kernel /?£ (ra, /|m(0)) of A^ (with respect to the volume 
element (10.38) ) generates the heat kernel Kn(m, t\ni0)) of Ln as in part 3 
because 

( 4 - (» + D-V 
\3v2 3v" 

= c((» + l ) /2 )v 9 ^ c - ( (H + l)/2)vy^ _ ( " + l) y 3 ( e - , ( „ + l ) /2)v / ) _ ( « _ + ^ 

3v2 4 

so that 

(10.41) ^ ( v , ^ ^ , ^ , ^ ^ ^ ^ , ^ ) 

= e - ( (w+l ) /2 ) (v -v ( 0 ) ) - ( (« + l)2/4)/ 

x (v, M, x , , „ ,|v<°>, «(0», *<0), j f ) 

is the heat kernel of (10.35) with respect to the invariant volume 

n 

e~{n + X)vdvduYldxldyl 

on the solvable group R X H2n + \. 

d) Expression of p% and of the distance between two points. Now, we 
have to express p% in term of horospherical coordinates. But, we have 
obtained an expression for p% (m, t\m^) in Section 7, 7 in terms of a 
kernel p(r(m, w/0)), /) of the hyperbolic distance between m and ni \ 

The only thing which remains to be computed is an explicit expression 
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of the hyperbolic distance (m, nf *) between two points m and ni> * of Hn + j 
in terms of their coordinates v, w, z and v(0), i/°\ zj0) respectively. Let us 
write 

m(0) = „(0) . v(0) . 0 

m = n • v - O 

where O is the origin of the symmetric space, here the point 

O = (z0 = /, z1 = 0, . . . , zn = 0) 

in C" + 1 and rf ^ (resp. n) the unique element of H2n + \ which gives the 
nilpotent part of rrP^ (resp. m) and v* ) (resp. v) the abelian part of ra( ^ 
(resp. m). The action of these respective elements are given by (10.39) and 
(10.40). It is clear that 

r(m, m(0)) = r( ( H ( 0 ) _ 1 « ) • v • 0, v(0) • 0). 

Moreover 

^ = ( M ' ° » , z f , . . . , z f » ) 
( „ ( 0 ) ) - ' = ( - H ( 0 ) , - ^ . . . , - , ( 0 » ) 

(««V'" = (« - M
(0) 

A7 

iZY'zr Z] ~~ z^' • • • ' z « ~~ z i 2 S m 2 7 ( 0 ) ^ - - ^(0) * " ' ( 0 ) | 

J = 1 

The action of a nilpotent element conserves the value of h or v, so 

r(m, m(0)) = rf(v, w - w(0) 

- 2%m 2 ^ , z, - zf\ . . . , z„ - z<0>), ( / > • / , ( ) • . . 0)) 

and then using the isometric action of — v ^ given by (10.39) 

r l | v - v < ° \ * - H t i - « < 0 ) 

- (v ( 0 ) ) /2 / 7 _ JO) . - ( v ( 0 ) ) / 2 , _ J 0 k 

7 = 1 

We have then to compute the hyperbolic distance from a point m! of 
Hnjr j to the origin O of 3£w + 1. The best way is to use the Cayley transform; 
this is a mapping 

C:z e Xn + x^Z(z) e Bn + X 

where Bn + x is the unit ball 
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2 |Z/ 
7 = 0 

-/? + ! of Cn , which is a holomorphic isometry from 3EW + j into Bn + j when 2?w + , 
has the Bergmann metric; moreover the origin O e £ „ + I is sent by this 
mapping into the origin Z = 0 of Bn + ] (see [4] for the precise definition of 
the Cayley transform). We have 

r(m, 0) = rBn+i(C(m), 0). 

But it is clear that the distance of Z to O in Bn + X is only a function of 
\Z\ and that the geodesies is the line segment joining 0 to Z with the clock 
given by the Bergmann metric. This distance is easily seen to be: 

rB(Z,0) = Arg tanh |Z | . 
n+ 1 

Using this last formula, the exact value of C given in [4], and the 
coordinates v, u, z • in dcn + j , we obtain 

r((v, u, zx . . .zn\ 0) 

= Arg tanh 

(l + ev + 2 1** ' ) " 
+ u2 - 4ev 

I (• + • ?v + 

« 

2 
£ = 1 

W ' ) ' • 
u2 

so that the distance between m and m<0) is 

(10.42) r(m, m(0)) = 

where 

(10.43) R(m, m(0)) 

= 1 - 4ev 

Arg tanh(#(ra, raiU') ) , ( 0 K x l / 2 

«(0) 

+ e~ 
«(0) 

2 
7 = 1 

z- — z 1J J 
(0)|2 

-2v(l r/0) 2Sm 2 z<°̂ J 
7 = 1 ' 

7. Quantum mechanics in certain Morse potentials. 
a) Schrodinger equation in a Morse potential. The Cauchy problem for 

the Schrodinger equation in a Morse potential is 

}2 

(10.44) J 

1 3^ / 3Z \ 
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where v denotes the spatial variable and 

V(v) = -X2ev - /32e2v 

and —X2, fi2 are constants. (V(v) is called a Morse potential [20]). We 
shall treat this problem by a similar method as the one used in 5 ; in part 5 
we have related the quantum mechanics in the potential e2x to the real 
hyperbolic space. Here we relate the quantum mechanics in the Morse 
potential to the hermitian hyperbolic space. 

First, we come back to T = it to work with the heat kernel and heat 
equation. We then look at the Fourier transform ?suf of (10.35) where we 
take w = l . This is 

(10.35) I 

dt dv1 
+ ev i / a z 

4\dxz ay 
J a 

yip— + xi/3— 
dx dy 

-fPtf+f^ZJ-<?*?% J 

S*i/l/ = 0 = Sw/o 

where 

» „ / = / / ( v . u, x, y)<spudu 

(/? is the conjugate variable ofw). 
b) Reduction of (10.35). (10.35) has a separation of coordinates. More 

precisely the coefficient of ev in the second member of (10.35) is a 
differential operator in je, y which we shall denote by H p. In mathematics 
it is the Fourier transform with respect to u of the subelliptic laplacian of 
the Heisenberg group (see [20] and [12] ) and in physics, it is just the 
hamiltonian of a particle of charge fi in a constant magnetic field in 
the direction z ( [20], [13] ). This operator has a spectrum (because we 
do not consider the z part of the motion). If — À^ is an eigenvalue and 
<PA (/?, x, y) is the corresponding eigenfunction of 7/g, we have 

(10.45) //, :/*% \ 8 % -

Now, because of the separation of variables, if we suppose that, at time 
/ = 0, we have 

(SJo)(v, 0, x, y) = % 0 6 , x, y)g0(v) 

then at any later time / > 0, we have 

(10.46) (S„/)(v, H, x, y, t) = % G 8 , x, y)g(v, t, ft 

where g(v, t, ft) satisfies 
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(10.47) 

9/(v, U 0) 
dt 

( ^ - \l ev - /?V")g(v, /, P) 

g(v, t = 0,p) = g0(v) 

which is of the form (10.44) with the identifications i//0 = g0, \p = g. Now 
we shall define the solution of (10.47) by 

(10.48) g(v, t,fi = f g0(v0Mt, v|v0, j8, Xp^-^dvo 

(where we have stressed the /? and Xn dependence of the propagator 77 of 
(10.47)). 

Now, we use the definition of Kx\ it is clear by (10.41), (10.42) and 
(10.43), that Kx is a function 

KX(U v, u ~ UQ, X9 y\v0, x0, y0) 

(so that it depends only on u — w()), and we have 

/(v, w, x, y, t) = J Kx(t, v9u - UQ9 X9 ^|v0, x0, j>0) 

x R/T0 W ^ A ) » *0' ^o)^o(vo) K«o) 

X e~~2v°dv0du0dx0dy0 

= ^~ J e~l^Kx{U v, u - n0, x, ^|v0, x(), >>0) 

X dp0dv0du0dx0dy0. 

Then 

1 
g(v, /, )8) 

<p\X& x>y) 
(%J(v,u,x,y,t))(P) 

1 1 
/ • 

,i(Pu-P0u0) 

X Kx(t9 v9u - UQ9 x, y\vQ, x09 y0) 

x vx«(0o> x09y0)g0(v0)e"2vodfidp0dudu0dx0dy()dv0 

J 8M#iC, v, w, x, j |v 0 , x0,j>0 
2 7 7 % ( A * > J 0 

and we finally obtain 

)(£) 
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77(7, v|v0, /?, \fi) 

J éPuKx(t, v, u, x, _y|v0, x0, j>0) 

X <pX/j(/3, x0, y0)dx0dy0du 

and the second member of this formula is independent of JC and y. In 
particular we can choose for x, y the value 0, 0 and so 

( 1 0 . 4 9 ) 77(/, V|V0, /? , \p) 

1 

2ir%(j8, 0, 0) 
f ^"Kfi, v, u, 0, 0\v09 x0, y0) 

X Vx^(/?, x0, y0)dx0dy0du. 

The kernel ÀTj is, in principle, computable by (10.41) 

*,</, v, u, 0, Olvo, W o ) = e-«-+'>/2X»-*>-((»+i>V*, ( r ) 

where 

and 

Arg tanh(#1/2) 

* = 1 - 4é?v-yo[(l + e+<v-vo> + e"vo|z0|2)2 4- e-2v«t?]-\ 

The functions <px (/?, x0, j>0) are in principle known by the theory of 
harmonic oscillators and/?^ (r) is computable by the methods of Section 7 
using a Riemann-Liouville integral. 

References. The Heisenberg group was treated in [12] from the point of 
view of the heat equation for subelliptic operators. Explicit formulae for 
Schrôdinger propagators in certain potentials (like cosh - 2 * or 8(x) ) were 
obtained in [14]. 

R E F E R E N C E S 

1. S. Araki , On root systems and an infinitesimal classification of irreducible symmetric spaces, 

J. Math . Osaka City Univer. 13 (1962), 1-31. 

2. F . Berezin, Laplace operators on semisimple Lie groups, Amer. Math . Soc. Transi . 21 

(1962), 239-338. 

3. A. Debiard , Polynômes de Tchébychev et de Jacobi dans un espace euclidien de dimension p, 

C.R. Acad. Sci. Paris 296 (1983), 529-532. 

4. Espaces Hp au dessus de l'espace hermitien hyperbolique de Cn (n > 1) II , J. Funct . 

Analysis 40(1981) , 185-265. 

5. Comparaison des espaces Hp géométrique et probabilistes au dessus de Vespace 

Hermitien hyperbolique, Bull. Sci. Maths . 103 (1979), 305-351. 

6. Système différentiel hypergéométrique de type BC, to appear . 

7. A. Debiard and B. Gaveau, Quantification du réseau de Toda ouvert, C.R. Acad. Sci. Paris 

301 (1985), 943-946. 
8. A. Debiard , B. Gaveau and E. Mazet, Théorèmes de comparaison en géométrie rieman-

nienne, Publi. R.I .M.S. Kyoto 12 (1976), 390-425. 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x


1404 A. D E B I A R D A N D B. G A V E A U 

9. J. Dowker , Quantum mechanics on group space and Huygens' principle, Anna ls of Physics 

(NY) 62 (1971), 361-382. 

10. E. Dynkin , Non negative eigenfunctions of the Laplace-Beltrami operator and hrownian 

motion in certain symmetric spaces, Dokl . Akad. N a u k SSSR 141 (1961), 288-291. 

11. R. Gangol l i , Asymptotic behaviour of spectra of compact quotients of certain symmetric 

spaces, Acta . M a t h 121 (1968), 151-192. 

12. B. Gaveau , Principe de moimdre action, propagation de la chaleur et estimées sous 

elliptiques sur certains groupes nilpotents, Acta. M a t h 139 (1977), 95-153. 

13. B. Gaveau and G. Laville, Particules chargées dans un champ magnétique et fonctions 

holomorphes, Springer Lecture No tes 919 (1981), 123-130. 

14. B. Gaveau and L. Schulman, Explicit time dependent Schrôdinger propagator, J. Phys. (A) 

79 (1986) , 1833-1846. 

15. S. Helgason, Differential geometry and symmetric spaces (Acad. Press, 1962). 

16. S. Kar l in and J. McGregor , Determinant of orthogonal polynomials, Bull. Amer. Math . 

Soc. 65 (1962) , 204-209. 

17. F. Karpelevic , Geometry of geodesies and eigenf unctions of the Laplace-Beltrami operator 

on symmetric spaces, T rudy Moscow Math . Obsv. 14 (1965), 48-185. 

18. T. H. Koornwinder , Orthogonal polynomials in two variables which are eigenfunctions of 

two algebraically independent partial differential operators I, II, Proc. Kon Ned Akad. 

V Wet (Amste rdam) 77 (1974), 48-66. 

19. Orthogonal polynomials in two variables which are eigenfunctions of two 

algebraically independent partial differential operators III, IV, Proc. Kon Ned Akad. V 

Wet (Amste rdam) 77 (1974), 357-381. 

20. L. L a n d a u and E. Lifschitz, Mécanique quantique (1983). 

2 1 . N . Lohoué and N . Richmeyer, Die resolvents von A auf symmetrischen raiimen von 

michtkompakten typ, C o m m . Math . Helvetici 57 (1982), 445-468. 

22. M. P. Mall iavin and P. Malliavin, Factorisation et lois limites de la diffusion horizontale au 

dessus d'un espace symmétrique, Lee. N o t e 404, 164-217. 

23. H. P. M c K e a n , An upper bound to the spectrum of A on a manifold of negative curvature, J. 

of Diff. Geomet ry 4 (1970), 359-366. 

24. A. Nikiforov and V. Ouvarov, Eléments de la théorie des fonctions spéciales (1976). 

25. M. A. Olshanetsky and A. M. Perelomov, Explicit solutions of classical generalized Toda 

models, Inv. Math . 54 (1979), 261-269. 

26. Quantum systems related to root systems, and radial parts of Laplace operators, 

Funkt . Anal . i. Priloz 12 (1978), 57-65. 

27. M. Riesz, L'intégrale de Riemann Liouville et le problème de Cauchy, Acta. M a t h 81 

(1949), 1-95. 

28. L. Schulman, A path integral for spin, Phys. Rev. 176 (1968), 1558-1569. 

29. Techniques and applications of path integrals (J. Wiley, N.Y. , 1981). 

30. I. G. Spr inkhuisen-Kuyper , Orthogonal polynomials in two variables. A further analysis of 

the polynomials orthogonal over a region bounded by two lines and a parabola, Siam. J. 

Math . Anal . 7 (1976), 501-518. 

3 1 . M. Suguira, Conjugate classes of Cartan subalgebra in real semisimple Lie algebras, J. 

Math . Soc. J a p a n (1959), 374-434. 

32. H. Weyl, The classical groups and their representations (Princeton Univ. Press, 1952). 

Université Paris XIII, 
Paris, France; 
Université Paris VI, 
Paris, France 

https://doi.org/10.4153/CJM-1987-064-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-064-x

