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Beneitez et al. (Phys. Rev. Fluids, vol. 8, 2023, L101901) have recently discovered a new
linear ‘polymer diffusive instability’ (PDI) in inertialess rectilinear viscoelastic shear flow
using the finitely extensible nonlinear elastic constitutive model of Peterlin (FENE-P)
when polymer stress diffusion is present. Here, we examine the impact of inertia on the
PDI for both plane Couette and plane Poiseuille flows under varying Weissenberg number
W, polymer stress diffusivity ε, solvent-to-total viscosity ratio β and Reynolds number
Re, considering the FENE-P and simpler Oldroyd-B constitutive relations. Both the
prevalence of the instability in parameter space and the associated growth rates are found
to significantly increase with Re. For instance, as Re increases with β fixed, the instability
emerges at progressively lower values of W and ε than in the inertialess limit, and the
associated growth rates increase linearly with Re when all other parameters are fixed.
For finite Re, it is also demonstrated that the Schmidt number Sc = 1/(εRe) collapses
curves of neutral stability obtained across various Re and ε. The observed strengthening
of PDI with inertia and the fact that stress diffusion is always present in time-stepping
algorithms, either implicitly as part of the scheme or explicitly as a stabilizer, implies that
the instability is likely operative in computational work using the popular Oldroyd-B and
FENE-P constitutive models. The fundamental question now is whether PDI is physical
and observable in experiments, or is instead an artifact of the constitutive models that must
be suppressed.
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1. Introduction

The addition of polymers to a Newtonian solvent can induce dramatically different flow
behaviours compared with those observed in the Newtonian fluid alone (Datta et al.
2022; Sánchez et al. 2022). In industrial processes, for instance, viscous polymer melts
are susceptible to instabilities which constrain the maximum extrusion rate (Petrie &
Denn 1976), while polymer additives are used in oil pipelines to reduce turbulent wall
drag (Virk 1975). Two particularly important viscoelastic phenomena are the existence of
‘elastic turbulence’ (ET), a chaotic flow state sustained in the absence of inertia (Groisman
& Steinberg 2000; Steinberg 2021), and ‘elasto-inertial turbulence’ (EIT), an inherently
two-dimensional state arising when both inertia and elasticity are present (Samanta et al.
2013; Sid, Terrapon & Dubief 2018; Choueiri et al. 2021). While the initial pathway to
ET in curvilinear geometries is understood (Larson, Shaqfeh & Muller 1990; Pakdel &
McKinley 1996; Shaqfeh 1996; Datta et al. 2022), relatively little is known about what
happens in rectilinear viscoelastic flows.

Initial progress in characterizing ET in rectilinear situations arose through consideration
of Kolmogorov flow over a two-torus, where Boffetta et al. (2005) found a linear instability
leading to ET (Berti & Boffetta 2010). Garg et al. (2018) subsequently discovered a
centre-mode instability in viscoelastic pipe flow at finite Reynolds number Re, which
was later also identified in plane Poiseuille flow (PPF, hereafter referred to as channel
flow) (Khalid et al. 2021a) but notably not in plane Couette flow (PCF). Interestingly,
this instability could only be traced down to Re = 0 in channel flow (Khalid, Shankar &
Subramanian 2021b; Buza, Page & Kerswell 2022b). The finite-amplitude state resulting
from this instability is an ‘arrowhead’ travelling wave (Page, Dubief & Kerswell 2020;
Buza et al. 2022a; Morozov 2022) which has been observed in channel flow EIT (Dubief
et al. 2022) and, in retrospect, ET in two-dimensional Kolmogorov flow (Berti & Boffetta
2010). In channel flow, efforts have begun to establish a dynamical link between the
arrowhead solution and both ET (Lellep, Linkmann & Morozov 2023) and EIT (Beneitez
et al. 2023a). In the latter case in two dimensions, there does not appear to be a
simple dynamical pathway between these arrowhead solutions, where the dynamics is
concentrated near the midplane, and EIT (Beneitez et al. 2023a), which seems more
dependent on a near-wall mechanism (Shekar et al. 2019, 2021; Dubief et al. 2022).

The very recent discovery of a new wall-mode ‘polymer diffusive instability’ (PDI) in
plane Couette flow at Re = 0 (Beneitez, Page & Kerswell 2023b), however, has added
another intriguing possibility for the origin of ET. This instability is dependent on the
existence of small but non-vanishing polymer stress diffusion which is invariably present
in any time-stepping algorithm, whether added explicitly to stabilize a numerical scheme
like a spectral method (see e.g. Dubief, Terrapon & Hof 2023) or arising implicitly such as
through a finite difference formulation (see e.g. Zhang et al. 2015; Pimenta & Alves 2017).
The PDI wall mode is primarily confined to a boundary layer of thickness

√
ε, where ε is

the (small) diffusion coefficient, travelling at the wall speed with a streamwise wavelength
of the order of the boundary layer thickness. The instability is robust to the choice of
boundary conditions applied to the polymer conformation equation, and has growth rates
which remain O(1) as ε → 0. Direct numerical simulations (DNS) have demonstrated that
PDI can lead to a sustained three-dimensional turbulent state, thus providing a potential
mechanism for the origin of an ET-like state in the popular finitely extensible nonlinear
elastic constitutive model of Peterlin (FENE-P) (Beneitez et al. 2023b).

While PDI has the potential to be a viscoelastic instability of significant importance,
there is an important caveat: the instability emerges at small length scales which
can, depending on the parameters, approach the order of the polymer gyration radius
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(Beneitez et al. 2023b), violating the continuum approximation. There is thus a question
of whether the instability is physical or actually an artifact of the Oldroyd-B and FENE-P
models. Either possibility has important implications: if the instability is a physical
phenomenon then it provides a pathway to ET and EIT, albeit one which will likely be
challenging to establish experimentally due to the small length scales involved; or, it is an
artificial feature of the popular FENE-P model, which can compromise its predictions. It
thus appears important to now establish the prevalence of PDI across a much wider region
of parameter space than was considered in the initial study of Beneitez et al. (2023b).
Therefore, we here map out the regions where PDI is operative at finite Re, considering
both plane Couette flow and the more experimentally relevant channel flow scenarios. Both
the prevalence of PDI and the associated growth rates are found to significantly increase
at finite Re and are relatively insensitive to the bulk flow geometry. Therefore, PDI is a
candidate to trigger both ET and EIT in simulations using the FENE-P model.

2. Formulation

We consider the following dimensionless equations governing the flow of an
incompressible viscoelastic fluid:

Re
(

∂u
∂t

+ (u · ∇) u
)

= −∇p + β∇2u + (1 − β)∇ · τ , ∇ · u = 0, (2.1a,b)

∂c
∂t

+ (u · ∇) c + τ = c · ∇u + (∇u)T · c + ε∇2c, (2.2)

where u = (u, v, w) and p denote the velocity and pressure fields, respectively, and τ
denotes the polymeric contribution to the stress tensor. Following Beneitez et al. (2023b),
the equations have been non-dimensionalized using the channel half-width H and a
characteristic flow speed U0, taken to be the wall speed in plane Couette flow or the
centreline velocity of the base channel flow. In (2.1a), the Reynolds number Re := U0H/νT
describes the ratio of inertial to viscous forces (with νT = νS + νP denoting the total
kinematic viscosity comprised of solvent and polymer components), and β := νS/νT
denotes the ratio of solvent to total viscosity. The polymeric stress tensor τ may be
described in terms of the polymer orientation through the conformation tensor c as in (2.2).
We emphasize that the inclusion of a polymer stress diffusion term ε∇2c (associated with
diffusivity ε := (Re Sc)−1, where Sc denotes the Schmidt number) is the crucial ingredient
for the PDI identified by Beneitez et al. (2023b). In the inertialess limit, ε = Sc−1 when
the governing equations are non-dimensionalized using viscous scales.

To close equations (2.1)–(2.2), the FENE-P constitutive model is used to relate τ and c:

τ := f (tr c) c − I

W
, f (s) :=

(
1 − s − 3

L2

)−1

, (2.3a,b)

where I is the identity matrix, L denotes the maximum extensibility of the polymer chains
and W := U0λ/H, the Weissenberg number, describes the ratio of time scales for polymer
relaxation (λ) to the flow. In the limit L → ∞, the simpler Oldroyd-B model is obtained.
Inspection of (2.1)–(2.3) reveals five parameters of interest governing the flow dynamics:
Re, W, β, ε, L.

We analyse the linear stability of (2.1)–(2.3) by perturbing them about their base
state: u = U + u∗, p = P + p∗, τ = T + τ ∗, c = C + c∗. Our coordinate system (x, y,
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z) is aligned with the streamwise, wall-normal and spanwise directions of the channel,
respectively. The base state (U(y), Cxx(y), Cyy(y), Czz(y), Cxy(y)) satisfies

−∂xP + βU′′ + (1 − β) ∂yTxy = 0, (2.4a)

f (trC) C − εWC ′′ −
⎛
⎝2WU′Cxy + 1 WU′Cyy 0

WU′Cyy 1 0
0 0 1

⎞
⎠ = 0, (2.4b)

where primes indicate derivatives in the wall-normal (y) direction. We use pressure
gradients ∂xP = 0 and ∂xP = −2 for plane Couette and channel flow, respectively. While
we here compute the base flow accounting for the presence of a finite diffusivity ε in
(2.4b), it is worth noting that the presence of diffusion in the base flow is not required to
induce PDI; the instability still arises if ε = 0 in (2.4b) as the inclusion of ε /= 0 does not
significantly change the base state except in the limit of large ε = O(1).

Normal mode solutions of the perturbed flow are sought using the ansatz φ∗(x, y, t) =
φ̃(y)eik(x−ct), where real-valued k denotes the streamwise wavenumber and c = cr + ici is
a complex wave speed, with instability arising if ci > 0. The perturbed state is governed
by the following system of seven equations for (ũ, ṽ, p̃, c̃xx, c̃yy, c̃zz, c̃xy):

ikũ + ṽ′ = 0, (2.5a)

Re
(−ikcũ + ṽU′ + ikUũ

) + ikp̃ − β
(
−k2ũ + ũ′′

)
− (1 − β)

(
ikτ̃xx + τ̃ ′

xy

)
= 0,

(2.5b)

Re (−ikcṽ + ikUṽ) + p̃′ − β
(
−k2ṽ + ṽ′′

)
− (1 − β)

(
ikτ̃xy + τ̃ ′

yy

)
= 0, (2.5c)

[
εk2 + ik (U − c)

]
c̃xx + ṽC′

xx + τ̃xx − εc̃′′
xx − 2

(
ikCxxũ + Cxyũ′ + c̃xyU′) = 0, (2.5d)

[
εk2 + ik (U − c)

]
c̃yy + ṽC′

yy + τ̃yy − εc̃′′
yy − 2

(
ikCxyṽ + Cyyṽ

′) = 0, (2.5e)
[
εk2 + ik (U − c)

]
c̃zz + ṽC′

zz + τ̃zz − εc̃′′
zz = 0, (2.5f )

[
εk2 + ik (U − c)

]
c̃xy + ṽC′

xy + τ̃xy − εc̃′′
xy − ikCxxṽ − U′c̃yy − Cyyũ′ = 0. (2.5g)

By expanding the variables in (2.5) in terms of a basis of Chebyshev polynomials, an
eigenvalue problem is obtained which may be solved using standard Python libraries
(Beneitez et al. 2023b). A basis of N = 300 polynomials was used here to target
the eigenvalues associated with PDI via an inverse iterations algorithm, which yielded
sufficient convergence. Representative eigenvalue spectra are shown in figure 1 for plane
Couette (PCF) and channel (PPF) geometries, illustrating the results using bases of both
N = 300 and N = 400 Chebyshev polynomials to demonstrate convergence. The unstable
PDI mode emerges with characteristic wave speeds in the vicinity of |cr| ≈ 1 and cr ≈ 0
for PCF and PPF geometries, respectively.

Following Beneitez et al. (2023b), we choose boundary conditions that set ε = 0 at
the walls in the governing equations to match the typical configuration used in DNS.
While Sc ∼ O(106) is characteristic of polymer diffusion in a typical solvent like water
(yielding ε = 1/(Re Sc) ≈ 10−9 − 10−6 depending on Re), in DNS much larger values of
ε ≈ O(10−3) are often employed to achieve numerical stability (see e.g. § 2.2 of Dubief
et al. 2023). Thus, it is commonplace to set ε = 0 at the walls in order to recover the
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Figure 1. Eigenvalue spectra, plotted in terms of the real cr and imaginary ci components of the complex
wave speed, obtained by solving the system (2.5a)–(2.5g) using the Oldroyd-B constitutive model at Re = 1000,
ε = 10−5 and β = 0.9 for (a) plane Couette flow (W = 44.7, k = 37) and (b) channel flow (W = 22.1, k = 52).
These parameters are chosen to roughly lie on the corresponding neutral curves plotted in figure 2(a). Results
using bases of N = 300 and 400 Chebyshev polynomials are depicted by blue and red markers, respectively, to
demonstrate convergence of the discrete unstable PDI modes highlighted in the zoomed inset above each panel.

idealized limit ε → 0 (Sureshkumar, Beris & Handler 1997; Samanta et al. 2013; Dubief
et al. 2022).

3. Results of linear stability analysis

The results of our linear stability analysis are presented for both the Oldroyd-B (§ 3.1)
and FENE-P (§ 3.2) constitutive relations, delineating the trajectory of neutral curves
(characterized by growth rate σ := kci = 0) associated with PDI in the four-dimensional
parameter space spanned by (Re, W, β, ε). For a given point in parameter space, we
perform a sweep over wavenumbers k to ensure that we are tracking the most unstable
mode. The results for plane-Couette (PCF) and channel (PPF) geometries are overlaid
on the same axes using blue and red colouring, respectively. To promote a collapse of the
curves for both geometries, the Weissenberg (W) axis is scaled by the respective wall shear
rates: U′

wall = {1 (PCF), 2 (PPF)}. As described in § 1, the PDI is a wall mode confined
to a boundary layer of thickness O(

√
ε) and so its behaviour will primarily be influenced

by the wall shear. However, we will demonstrate that this collapse of geometries fails in
certain scenarios (such as for large ε), when the boundary layer grows sufficiently large to
be influenced by the non-uniform shear profile away from the wall. In the case of finite Re,
we also demonstrate that curves associated with variable Re and ε may be collapsed based
on Sc = 1/(εRe).

3.1. The Oldroyd-B case
The trajectory of neutral curves in the Re–W–ε volume are presented in figure 2 for
various β ∈ [0.7, 0.98]. Figure 2(a) considers the Re–W plane at a fixed ε = 10−5,
while figure 2(b) considers the ε–W plane at three fixed Re ∈ {0, 1000, 5000}. Regions
of stability and instability are found to the left and right of each curve, respectively.
For a given β, increasing Re > 0 is found to promote instability at progressively lower
values of both W (figure 2a) and ε (figure 2b). Notably, in the inertialess limit (Re = 0),
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Figure 2. Curves of neutral stability for plane Couette (‘PCF’, blue) and channel (‘PPF’, red) geometries,
using the Oldroyd-B constitutive relation for five values of β ∈ [0.7, 0.98]. (a) The Re–W plane for fixed
ε = 10−5, noting that the PCF and PPF curves are virtually indistinguishable. (b) The ε–W plane at three fixed
Re = {0, 1000, 5000}. In panels (a,b), the W axis is scaled by the wall shear rate: U′

wall = {1 (PCF), 2 (PPF)}.
(c) The streamwise wavenumber k of the PDI, as a function of ε, along each of the neutral curves in panel (b). (d)
A collapse of the Re = {1000, 5000} curves for both geometries from panel (b) based on the inverse Schmidt
number 1/Sc = εRe. By plotting 1/Sc rather than Sc, small ε occurs at the bottom of panel (d) facilitating
an easier comparison with panel (b). (e, f ) Colourmaps of the trace of the polymer conformation tensor
tr(c) (red and blue denote positive and negative values, respectively), with contours of the stream function
superimposed, for PPF eigenfunctions in the upper half-channel with β = 0.9, at locations indicated by the
square and triangular markers in panels (b,c). One wavelength λ = 2π/k of each eigenfunction is shown.

Beneitez et al. (2023b) found that the neutral curves tracked a roughly fixed W ∼ β/(1 −
β) for ε � 10−2 (see their figure 2b) leading to the disappearance of PDI at finite W
in the limit β → 1. Here, for Re > 0, our figure 2(b) demonstrates that while for small
ε = O(10−7) the neutral curves do indeed still track a constant W, they then begin to
significantly deviate to lower W beyond ε � 10−6, with the Re = 5000 case deviating at
lower ε than the Re = 1000 case. Inertial effects thus play a significant role in promoting
a greater prevalence of PDI in the parameter space. In figure 2(d), we demonstrate that
the Re = {1000, 5000} curves plotted in figure 2(b) may be collapsed for both geometries
based on the Schmidt number Sc = 1/(εRe).

The streamwise wavenumbers k associated with the neutral curves in figure 2(b) are
plotted in figure 2(c) as a function of ε. At Re = 0, k follows the 1/

√
ε scaling reported
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by Beneitez et al. (2023b) for all ε, whereas for Re > 0, k deviates significantly from this
scaling to plateau to a roughly constant value for ε � 10−5, with the unstable modes at
higher Re being more tightly confined to the wall (as indicated by a larger k). This deviation
from the 1/

√
ε scaling for Re > 0 corresponds to the previously noted deviation of the

neutral curves away from a constant W in figure 2(b), where the curves begin turning to
lower W in the vicinity of ε ≈ 10−6 − 10−5. The behaviour of k in figure 2(c) also explains
the mismatch in the collapse of the PCF and PPF curves in figure 2(b) at higher ε for
Re = 0 (see solid lines). Specifically, at higher ε, k becomes sufficiently small at Re = 0
such that the instability is no longer strongly confined to the wall (see square eigenfunction,
figure 2e) and so the local wall shear, U′

wall, does not accurately describe the non-uniform
shear profile influencing the instability. Conversely, the curves for Re = {1000, 5000} do
remain collapsed at high ε, as the wavenumbers k in figure 2(c) plateau to sufficiently large
values such that the instability remains confined to the wall (see triangle eigenfunction,
figure 2f ). In figure 2(c), it is also worth noting that the prefactor of the PPF scaling (1/5)
is roughly twice that of the PCF scaling (1/8), thus indicating that PDI is more tightly
confined to the wall in the channel geometry.

3.2. The FENE-P case
We now consider how a finite polymer extensibility L modifies the behaviour of the
instability as compared with the Oldroyd-B case (L → ∞) presented in § 3.1. Focusing
first on L = 200, figure 3 illustrates the much richer behaviour of the neutral curves for
the FENE-P case, presented in an analogous manner to figures 2(a–d). In the Re–W plane
(figure 3a), a finite L introduces two notable differences compared with Oldroyd-B. First,
the neutral curves for a given β now have a left-hand and right-hand branch and so the
range of instability is bounded by an upper value of W. Second, there is now a critical value
of β (≈ 0.865 for both geometries) above which the neutral curves no longer intersect the
Re = 0 axis, at fixed ε = 10−5. Therefore, inertial effects are once again demonstrated to
promote PDI, generating instability at finite Re for ultradilute polymer solutions (β → 1)
that would otherwise remain stable at Re = 0.

Neutral curves in the ε–W plane for the inertialess case Re = 0 are shown in figure 3(b),
exhibiting notable differences to the Oldroyd-B Re = 0 curves presented in figure 2(b).
While for Oldroyd-B the plane Couette and channel curves adopt roughly the same shape,
the FENE-P curves display dramatically different behaviours at large ε. Specifically, the
plane Couette curves have an inverted ‘U’-shape, highlighting that the instability ceases to
exist at large ε for certain β (e.g. see the β = 0.86 curve which reaches a maximum value
at ε ≈ 6 × 10−3). Conversely, the channel curves are roughly ‘U’-shaped, and the range
of instability only increases with increasing ε.

At finite Re, as for the Oldroyd-B curves in figure 2(d), the FENE-P curves shown in
figure 3(c) at Re = {1000, 5000} are again found to collapse for both geometries based
on the Schmidt number Sc = 1/(εRe). Comparing figures 2(d) and 3(c) reveals two main
differences in the structure of the FENE-P and Oldroyd-B curves. First, for β ≈ 0.925, in
both geometries a pinch-off phenomenon occurs for the FENE-P case where the neutral
curves form a ‘bubble’ of instability within the ε − W plane in an otherwise stable
region. Second, in the limit of ε → 0 (Sc → ∞), the neutral curves behave differently
as compared with the Re = 0 case reported by Beneitez et al. (2023b). In particular, there
now appears to be a critical value of β ≈ 0.865 (note the similarity to the critical β in
figure 3a corresponding to lift-off from the Re = 0 axis) at which the two branches of the
neutral curve asymptotically approach each other in the limit of small ε. Curves associated
with β greater than this critical value are thus observed to turn back at higher ε (see e.g.
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Figure 3. Curves of neutral stability using the FENE-P constitutive relation with a fixed extensibility L = 200,
presented analogously to the Oldroyd-B curves in figure 2 for various β. Curves are shown in (a) the Re–W
plane with a fixed ε = 10−5, (b) the ε–W plane for fixed Re = 0 and (c) the 1/Sc = εRe vs W plane, which
collapses curves obtained at Re = 1000 and 5000 for both geometries. By plotting 1/Sc rather than Sc, small
ε occurs at the bottom of panel (c), facilitating an easier comparison with panel (b). Panel (d) illustrates the
dependence of the optimal streamwise wavenumber k on ε for the PPF curves in panel (c) at Re = 1000.
Left-hand and right-hand branches of the curves in panel (c) are distinguished in panel (d) using solid and
dashed lines, respectively. Comparison with the Oldroyd-B curves in figure 2(c) reveals that the left-hand
branches behave similarly to the single Oldroyd-B branch, deviating from the 1/

√
ε scaling at large ε, while

the right-hand branches retain this scaling to the highest ε considered.

the β = 0.9 curves, figure 3c), suggesting that, at finite Re, PDI will not exist in the limit
ε → 0 for all β. We note another possibility, however, which is that an ‘hourglass’-like
pinch-off behaviour occurs, in which the critical curves touch at some finite ε (appearing
here to be around Sc ≈ 104), but then separate again for lower ε. The concave-up neutral
curves (e.g. β = 0.9) seen here, might then be reflected as concave-down branches at much
lower ε and instabilities for such β could then still exist in the ε → 0 limit. As ε → 0
isolates the instability to an increasingly thin boundary layer at the wall, significantly
increased computational power is required to resolve the neutral curves for Sc > 104 and
so we do not further consider this behaviour here. It is also worth noting in figure 3(c) that
while increasing Re does not significantly influence the horizontal position of the neutral
curves along the W axis, the increase in inertial effects does induce a significant downward
shift of the curves in ε (by a factor proportional to Re), thus increasing the prevalence of
PDI in parameter space.

981 A2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.21


Inertial enhancement of the polymer diffusive instability

0

1000

2000

3000

4000

5000

6000

7000

8000

Stable

Unstable

ε = 10−3

ε =10 −4
ε = 10−5

ε = 10−6

L = 200, β = 0.87 L = 200, β = 0.87

10−2

10−1

100

101

1
/S

c

Stable

Unstable

1022 × 101 4 × 101 6 × 101
0

1000

2000

3000

4000

5000

6000

7000

8000

Re

Re

Stable

Unstable

L = 600

L = 200

L = 150

ε = 10−5, β = 0.87

101 102

1022 × 101 4 × 101 6 × 101 1022 × 101 3 × 101 4 × 101 6 × 101

0.5

0.6

0.7

0.8

0.9

1.0

β

ε = 10−5, Re = 1000

Stable

Unstable

L = ∞
L = 600

L = 200

L = 100

L = 60

PCF
PPF

W · U′
wallW · U′

wall

ε = 10 −3 – 10 −6

ε 
= 

10
−4

ε = 10−5
ε = 10−6

ε =
 10 −

4

ε =
 10 −

3 ε 
=

 1
0

−
3

(a) (b)

(c) (d)

Stable

Figure 4. (a) Dependence of the β = 0.87 neutral curve presented in figure 3(a) on variable ε, with fixed
L = 200. (b) A collapse of the curves in panel (a) based on the inverse Schmidt number 1/Sc = εRe, plotted
analogously to figures 2(d) and 3(c) such that small ε appears at the bottom of the plot. The PCF curves exhibit
a perfect collapse and are virtually indistinguishable, whereas the ε = 10−3 and 10−4 channel curves intersect
the Re = 0 axis in panel (a) and thus diverge to infinite Sc in panel (b). (c) Dependence of the β = 0.87 neutral
curve presented in figure 3(a) on variable L, with fixed ε = 10−5. (d) Neutral curves in the β–W plane for fixed
ε = 10−5 and Re = 1000.

The streamwise wavenumbers k associated with the FENE-P channel (PPF) neutral
curves at Re = 1000 in figure 3(c) are presented in figure 3(d) as a function of ε, to
compare with the scaling of the Oldroyd-B curves in figure 2(c). As for Oldroyd-B,
the left-hand branches follow the 1/

√
ε scaling reported by Beneitez et al. (2023b) for

ε � 10−5, when the neutral curves are roughly independent of W in figure 3(c). In contrast,
the right-hand branches follow this k scaling for the entire range of ε considered here,
thus explaining the slight mismatch in the collapse of the right-hand branches of the two
geometries at low ε in figure 3(c) (see e.g. the right-hand branches of the β = 0.7 and 0.8
curves); in this regime, k has become sufficiently small such that the instability is no longer
confined to the wall and thus the wall shear U′

wall is not entirely suitable for scaling the W
axis. In figure 3(d), we also note that for β � 0.864, the pinchoff value seen in figure 3(c)
at Sc = O(104), the neutral curves turn back to higher ε before the 1/

√
ε scaling regime

is reached.
In figure 4, we further consider the behaviour of the neutral curves presented in

figure 3 by varying parameters that were previously held fixed. While the Re–W plane
was considered with a fixed ε = 10−5 in figure 3(a), in figure 4(a) we focus on the
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β = 0.70

Figure 5. Growth rates σ := kci of the most unstable mode as a function of Reynolds number Re obtained at
a fixed W corresponding to either the intersection of the neutral curve with the Re = 0 axis or the minimum
of the neutral curve in Re for cases in which there is no intersection with Re = 0. Growth rates are shown for
neutral curves spanning various β in (a) figure 2(a) (Oldroyd-B, fixed ε = 10−5) and (b) figure 3(a) (fixed
L = 200, ε = 10−5), and neutral curves at fixed β = 0.87 spanning (c) various ε in figure 4(b) (fixed L = 200)
and (d) various L in figure 4(c) (fixed ε = 10−5).

β = 0.87 neutral curve and demonstrate its dependence on variable ε, where it is found
that decreasing ε pushes the region of PDI to progressively higher Re. In figure 4(b), we
collapse the curves from figure 4(a) based on the Schmidt number Sc = 1/(εRe). A near
perfect collapse is observed for the PCF curves, while some channel (PPF) curves diverge
to Sc → ∞ due to their intersection with the Re = 0 axis in figure 4(a). Additionally,
having only considered a fixed polymer extensibility L = 200 in figure 3, in figures 4(c,d)
we consider the influence of variable L on the neutral curves in the Re–W and β–W
planes, respectively. In figure 4(c), decreasing L induces a turn-back of the neutral curves
at progressively higher values of Re, decreasing the extent of PDI in the Re–W plane.
Figure 4(d), at fixed Re = 1000, displays the same qualitative features as those reported in
the inertialess limit by Beneitez et al. (2023b) (see their figure 2c), again demonstrating
that decreasing L decreases the prevalence of PDI in the β–W plane.

3.3. Growth rates
While we have thus far considered the behaviour of the neutral curves associated with PDI,
it is also informative to consider how the growth rate of PDI evolves with Re in regions of
instability. Starting with each β curve in figure 2(a) (Oldroyd-B), we first fix the value of
W at which the neutral curve intersects the Re = 0 axis, and where the growth rate is thus
zero by definition. At this fixed W, we then increase Re incrementally and track the growth
rate of the most unstable PDI mode, as shown in figure 5(a). In figure 5(b), we repeat this
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process for the FENE-P curves presented in figure 3(a). As some FENE-P curves do not
intersect the Re = 0 axis, in these cases we fix W to correspond to the minimum Re of
the neutral curve, and then increase Re from there. In figures 5(c,d), we again repeat this
process for the neutral curves plotted in figures 4(b,c), respectively.

In all cases, for neutral curves that intersect the Re = 0 axis, the growth rate is observed
to grow linearly with Re as one moves away from the neutral curve, emphasizing the
intensification of PDI due to the presence of inertia. Notably, the streamwise wavenumber
k remains virtually constant during this scaling, until Re � 103 at which point the most
unstable k beings to vary and the linear scaling breaks down. For the subset of FENE-P
curves that do not intersect the Re = 0 axis (e.g. β = 0.87, 0.88, 0.90 in figure 4b), it is
also intriguing that the growth rates display a dramatic increase with Re to quickly join the
linear Re scaling of the curves that do intersect the Re = 0 axis. We note that the relative
vertical translation of the various curves in figure 5 is due to differences in slope between
the neutral curves at their intersection with the Re = 0 axis; at a fixed W, these differences
in slope will govern the rate at which one moves away from the neutral curve as Re is
increased, and hence the observed difference in the growth rate magnitudes.

4. Conclusions

In this study, we have demonstrated that the PDI is active in both plane Couette and channel
flows with or without inertial effects, and that the instability intensifies with increasing
Reynolds number Re. Through exploration of a variety of dimensionless parameters, we
have found that PDI is operational across large regions of the parameter space including
those relevant to many prior experiments (Choueiri, Lopez & Hof 2018; Qin et al. 2019;
Choueiri et al. 2021; Jha & Steinberg 2021). In particular, increasing Re enhances the
prevalence of the instability, promoting instability at progressively smaller values of
both W and ε than in the inertialess limit. Our results therefore significantly extend the
conclusion of Beneitez et al. (2023b) that PDI could also present a possible transition
mechanism to EIT as well as ET in FENE-P fluids.

The eigenfunction for PDI is a wall mode, confined to a boundary layer of thickness√
ε. As a result, the neutral curves for plane Couette and channel flow are found to

nearly overlap in most regions of parameter space when W is scaled by the wall-shear
rate. This collapse breaks down when the streamwise wavenumber k approaches O(1),
as the instability is no longer confined to the wall and thus feels a non-monotonic shear
profile in the channel’s interior, as occurs for large ε at Re = 0 (but notably not at higher
Re, see figure 2c), and small ε at high W in FENE-P fluids. The finite extensibility of
the polymer chains (L) is also found to have a significant impact on the prevalence of
PDI, as compared with that predicted by the Oldroyd-B model. Considering L = 200,
we found that for sufficiently high β, the instability is suppressed at Re = 0 and only
appears at progressively larger Re (figure 3a). Similarly, beyond a critical value of β, the
instability may also be suppressed at small values of ε (figure 3c). Given that PDI emerges
as a wall mode, we have also confirmed its presence in cylindrical pipe flow as well as
Taylor–Couette flow.

The length scale associated with PDI raises some intriguing questions. As indicated
by Beneitez et al. (2023b), PDI can emerge at a length scale roughly of the order of
the polymer gyration radius, where the continuum assumptions of the FENE-P model
may not hold. It is thus possible that PDI is an unphysical feature of the widely used
FENE-P model, which would have significant implications for computational studies of
ET, EIT and polymer drag reduction using this model. Until now, such studies may have
been unknowingly influenced by PDI, due to the ubiquity of stress diffusion in numerical
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schemes, either introduced explicitly as a regularization term or arising implicitly through
the discretization scheme. Assessing the relevance of PDI to real viscoelastic fluids is now
a key challenge to be confronted.
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