LATTICE PARTITIONS WITH A STRAIGHT LINE

BY
D. R. K. BROWNRIGG

Abstract

In [1], the solution of a problem of distinct digital filter enumeration was expressed in terms of enumerating partitions of a rectangular set of lattice points with a straight line, under certain restrictions. Here, firstly, an explicit expression is derived for the number of such partitions in that and a more general case. Secondly, the asymptotic ratio of partitions to square of lattice dimensions is derived for a square lattice.

1. Partitions for a given $\Lambda_{M N}$. Let $\Lambda_{M N}$ be a M by N lattice of points

$$
\left\{p\left(x_{s}, y_{t}\right) ; s=1, \ldots, N ; t=1, \ldots, M\right\}
$$

in the $x y$ plane with unit spacing in x and y.
Let the line $\mathrm{L}(x, y)=a x+b y+c=0$ not pass through any lattice point, so that $L(p) \neq 0$ for all $p \in \Lambda_{M N}$.

Gradients between points in $\Lambda_{M N}$ are given by

$$
G p=\left\{\begin{array}{l}
g(i, j)=\frac{i}{j} ; i=-(M-1), \ldots,(M-1) ; j=-(N-1), \ldots,(N-1), \\
+\infty \text { if } i>0, j=0 \quad i, j \text { coprime } \\
-\infty \text { if } i<0, j=0
\end{array}\right.
$$

Any $L(x, y)$ such that $-a / b \notin G p$ can parition $\Lambda_{M N}$ in one of $M N+1$ ways.

Definition. The partition of $\Lambda_{M N}$ by $L(x, y)$ is

$$
\mathbb{P}\left(L, \Lambda_{M N}\right)=\left\{\left(x_{s}, y_{t}\right):\left(x_{s}, y_{t}\right) \in \Lambda_{M N}, L\left(x_{s}, y_{t}\right)<0\right\}
$$

Hence, for all $\left(x_{s}, y_{t}\right) \in\left(\Lambda_{M N}-\mathbb{P}\left(L, \Lambda_{M N}\right)\right), L\left(x_{s}, y_{t}\right)>0$.
When $-a / b$ increases from $(i / j-\epsilon)$ to $(i / j+\epsilon)$, then for sufficiently small $\epsilon>0$, the possible partitions of $\Lambda_{M N}$ (depending on c) change.

For any subset of q collinear points at gradient i / j, the order in which they can be added to $\mathbb{P}\left(L, \Lambda_{M N}\right)$ is reversed. That is, if a line of gradient $(i / j-\epsilon)$, moved from left to right over the points, produces partitions

$$
\varnothing ; P 1 ; P 1, P 2 ; \ldots ; P 1, P 2, \ldots, P q
$$

then a line of gradient $(i / j+\boldsymbol{\epsilon})$, moved from left to right over the points, produces partitions

$$
\Phi ; P q ; P(q-1), P q ; \ldots ; P 2, \ldots, P q ; P 1, P 2, \ldots, P q
$$

That is, $(q-1)$ new partitions have been created. That is, the number of new partitions is equal to the number of immediate neighbor pairs with separation $\sqrt{i^{2}+j^{2}}$.

Now if $(i / j)=\left(a i^{\prime} / a j^{\prime}\right)$ for integer $i, j, i^{\prime}, j^{\prime}, a$ and $a>1$ then i / j spuriously provides enumeration of new partitions as $(-a / b)$ increases through (i / j), since these partitions are included in those enumerated for $\left(i^{\prime} / j^{\prime}\right)$.

Thus only $(i / j): i, j$ coprime need be considered. That is, $g(i, j)=(i / j) \in G p$.
The nearest neighbour to a point at gradient i / j (i, j coprime) is distance $|j|$ in the x-direction and distance $|i|$ in the y-direction, giving an immediate neighbour pair. Thus for a given row of points there are $(N-|j|)$ such pairs. Also, for a given column of points there are $(M-|i|)$ such pairs. Hence, for $(M-|i|)$ rows of $(N-|j|)$ pairs, given i, j coprime, the number of immediate neighbour pairs in $\Lambda_{M N}$ at gradient (i / j) is $(M-|i|)(N-|j|)$.

Firstly consider L only of negative slope and $a>0, b>0$. Then $(-a / b)$ can change through $(-i / j), i=1, \ldots,(M-1), j=1, \ldots,(N-1)$ and so the number of partitions $\mathbb{P}\left(L, \Lambda_{M N}\right)$ is

$$
Z_{M N}=M N+1+\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)
$$

where

$$
b(i, j)=\left\{\begin{array}{l}
1 \text { if } i, j \text { coprime } \\
0 \text { otherwise }
\end{array}\right.
$$

If L can have slope in $[-g, g], g>M$, and $b>0$, then the number of partitions is

$$
\begin{aligned}
Y_{M N}= & M N+1+\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j) \\
& +M(N-1)\{\text { number of new pairs as }(-a / b) \text { increases thro' } 0\} \\
& +\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j) \\
= & 2 M N-M+1+2 \cdot \sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)
\end{aligned}
$$

If L can have slope from $(-g)$ to $(g), g>M$, and a or b can be positive or negative, then

$$
L(x, y)=a x+b y+c=0
$$

and

$$
L^{\prime}(x, y)=-a x-b y-c=0
$$

give different partitions. The the number of possible partitions is

$$
\begin{array}{rlr}
X_{M N}= & \sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j) & a / b<0, a<0 \\
& +M(N-1) & \text { grad. from } 0-\text { to } 0+ \\
& +\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot(b(i, j) & a / b>0, a>0 \\
& +N(M-1) & \text { grad. from }>g \text { to }<(-g) \\
& +\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j) & a / b<0, a>0 \\
& +M(N-1) & \text { grad. from } 0-\text { to } 0+ \\
& +\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j) & a / b>0, a<0 \\
& +N(M-1) & \text { grad. from }>g \text { to }<(-g) \\
& 4 M N-2 M-2 N+4 \sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)
\end{array}
$$

Thus the number of partitions, $\mathbb{P}\left(L, \Lambda_{M N}\right)$, when partitions with all or no points are included, is

$$
T_{M N}=2\left(2 M N-(M+N)+2 \cdot \sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)\right)+2
$$

If the 'sense' of the line is ignored, then the number of possible partitions (with 'all' and 'none' a single possibility) is

$$
R_{M N}=2 \cdot M \cdot N-(M+N)+1+2 \cdot \sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)
$$

A particular case of interest, [1], is the lattice $\Lambda_{\mathrm{MN}}^{0}$, which is centred on the origin. That is, point coordinates are

$$
\left\{\left(s-\frac{(N+1)}{2}, t-\frac{(M+1)}{2}\right): s=1, \ldots, N, t=1, \ldots, M\right\}
$$

In this case, the number of distinct members of a given class (weighted median filters [1]) is given by the number of ways, $F_{M N}$, of partitioning $\Lambda_{\mathrm{MN}}^{0}$ with a straight line of nonpositive slope, passing below and to the left of the origin. If M and N are both odd, one point of $\Lambda_{\mathrm{MN}}^{0}$ is at the origin and

$$
F_{M N}=\frac{\left(Z_{M N}\right)}{2}=\frac{\left(M \cdot N+1+\sum_{i=1}^{M-1} \sum_{j=1}^{N-1}(M-i) \cdot(N-j) \cdot b(i, j)\right)}{2}
$$

If M or N is even, then a sufficiently small shift of an L passing through the origin (not now belonging to $\left.\Lambda_{\mathrm{MN}}^{0}\right)$ will not change $\mathbb{P}\left(L, \Lambda_{\mathrm{MN}}^{0}\right)$. Thus taking $F_{M N}=\left(Z_{M N}\right) / 2$ in such cases would only include half the number of such partitions, all of which should be included in $F_{M N}$.

Let $B_{M N}$ be the number of lines $L(x, y)=a x+b y+c=0$ that pass through the origin and for which each pair

$$
L^{\prime}(x, y)=a x+b y+c-\epsilon=0
$$

and

$$
L^{\prime \prime}(x, y)=a x+b y+c+\epsilon=0
$$

gives

$$
\mathbb{P}\left(L^{\prime}, \Lambda_{\mathrm{MN}}^{0}\right)=\mathbb{P}\left(L^{\prime \prime}, \Lambda_{\mathrm{MN}}^{0}\right)
$$

for some sufficiently small $\epsilon>0$. Then, as the coordinates of points in $\Lambda_{M N}$ are of the form

$$
\left(\frac{(2 \cdot(u-1)+c(N))}{2}, \frac{(2 \cdot(v-1)+c(M))}{2}\right),
$$

where

$$
\left.\begin{array}{c}
u=-\left\lfloor\frac{N}{2}\right\rfloor+s, \quad s=1, \ldots, N \\
v=-\left\lfloor\frac{M}{2}\right\rfloor+t, \quad t=1, \ldots, M
\end{array}\right\} \begin{aligned}
& 1 \text { if } X \text { even integer } \\
& 0 \text { if } X \text { odd integer }
\end{aligned} .
$$

then

$$
B_{M N}=c(M \cdot N)+\sum_{i=1}^{\left[\frac{N}{2}\right]} \sum_{j=1}^{\left[\frac{M}{2}\right]} b(2 \cdot i+c(N), 2 \cdot j+c(M))
$$

where $\lfloor X\rfloor$ is the greatest integer less than or equal to X. (N.B. Consistent as if M and N odd, $B_{M N}=0$.)
Thus

$$
F_{M N}=\frac{\left(Z_{M N}+B_{M N}\right)}{2}
$$

2. Asymptotic Value for $\boldsymbol{\Lambda}_{M}$. Consider

$$
\begin{aligned}
b(i, j) & =\left\{\begin{array}{l}
1 \text { if } i, j \text { coprime } \\
0 \text { otherwise }
\end{array}\right. \\
f(i, j, M) & =\frac{(M-i) \cdot(M-j)}{(M-1)^{2}}
\end{aligned}
$$

If $(M-1)=K \cdot D, K>0, D>0, K$ and D integer then for any k, l integer: $k=1, \ldots, K, l=1, \ldots, K$ let

$$
\begin{gathered}
U_{k l}=\max (f(i, j, M)), L_{k l}=\min (f(i, j, M)) \\
(k-1) \cdot D+1 \leqslant i \leqslant k \cdot D,(l-1) \cdot D+1 \leqslant j \leqslant l \cdot D
\end{gathered}
$$

then

$$
\begin{aligned}
& U_{k l}=\frac{(M-((k-1) \cdot D+1)) \cdot(M-((l-1) \cdot D+1))}{(M-1)^{2}} \\
& L_{k l}=\frac{(M-k \cdot D) \cdot(M-l \cdot D)}{(M-1)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
U_{k l}-L_{k l}= & \frac{(D-1) \cdot(2 \cdot M+D-1-D \cdot(k+l))}{(M-1)^{2}} \\
& \leqslant \frac{(D-1) \cdot(2 \cdot M+D-1-D \cdot(1+1))}{(M-1)^{2}} \\
& =U_{11}-L_{11}=\frac{2}{K} \cdot\left(1-\frac{1}{2 K}-\frac{1}{D}+\frac{1}{K D}-\frac{1}{2 K D^{2}}\right)<\frac{2}{K}
\end{aligned}
$$

Therefore, for any $\epsilon>0, K_{0}$ can be chosen s.t. $\left(2 / K_{0}\right)<\epsilon$ and so

$$
U_{k l}-L_{k l}<\epsilon \quad \text { (if } K \geqslant K_{0} \text {) }
$$

Thus

$$
\begin{aligned}
L_{k l} \sum_{i=(k-1) D+1}^{k D} \sum_{j=(l-1) D+1}^{I D} \frac{b(i, j)}{D^{2}} \leqslant & \sum_{i=(k-1) D+1}^{k D} \sum_{j=(l-1) D+1}^{I D} \frac{f(i, j, M) \cdot b(i, j)}{D^{2}} \\
& <\left(L_{k l}+\epsilon\right) \sum_{i=(k-1) D+1}^{k D} \sum_{j=(l-1) D+1}^{I D} \frac{b(i, j)}{D^{2}}
\end{aligned}
$$

Now

$$
E_{M}=\sum_{i=1}^{M-1} \sum_{j=1}^{M-1} \frac{b(i, j)}{(M-1)^{2}}=\left(2 \cdot \sum_{i=1}^{M-1} \sum_{j=1}^{i} \frac{b(i, j)}{(M-1)^{2}}\right)-1
$$

as

$$
b(i, i)=\left\{\begin{array}{l}
1 \text { if } i=1 \\
0 \text { otherwise }
\end{array}\right.
$$

Therefore

$$
E_{M}=\frac{2}{(M-1)^{2}} \sum_{i=1}^{M-1} \phi(i)-1, \quad \phi(i) \text { is Euler function }
$$

and

$$
E_{M}=\frac{2}{(M-1)^{2}} \Phi(M-1)-1
$$

and from thm. 330 in [2]

$$
E_{M}=\frac{6}{\pi^{2}}+0\left(\frac{\log (M-1)}{(M-1)}\right)
$$

That is,

$$
\lim _{M \rightarrow \infty} E_{M}=2 \cdot \lim _{M \rightarrow \infty} \frac{\Phi(M-1)}{(M-1)^{2}}-1=\frac{6}{\pi^{2}}
$$

Thus for any $\zeta>0$ and for sufficiently large D_{1}, then for any $D>D_{1}$,

$$
\left|\frac{\sum_{i=1}^{k D} \sum_{j=1}^{k D} b(i, j)-\sum_{i=1}^{(k-1) D} \sum_{j=1}^{(k-1) D} b(i, j)}{\left(k^{2} \cdot D^{2}-(k-1)^{2} \cdot D^{2}\right)}-\frac{6}{\pi^{2}}\right|<\zeta
$$

That is,

$$
\left|\frac{2 \cdot \sum_{i=(k-1) D+1}^{k D} \sum_{j=1}^{i} b(i, j)}{(2 \cdot k-1) \cdot D^{2}}-\frac{6}{\pi^{2}}\right|<\zeta
$$

But for any i, the unit values of $b(i, j)$ are approximately uniformly distributed in j. Thus

$$
\left|\frac{\sum_{i=(k-1) D+1}^{k D} \sum_{j=(1-1) D+1}^{I D} b(i, j)}{D^{2}}-\frac{\sum_{i=(k-1) D+1}^{k D} \sum_{j=1}^{i} b(i, j)}{\left(k-\frac{1}{2}\right) \cdot D^{2}}\right|
$$

can be made as small as required for sufficiently large D.
Thus for any $\delta>0$, there exists D_{0} s.t. for all $D \geqslant D_{0}$

$$
\left|\sum_{i=(k-1) D+1}^{k D} \sum_{j=(1-1) D+1}^{I D} \frac{b(i, j)}{D^{2}}-\frac{6}{\pi^{2}}\right|<\delta
$$

So

$$
L_{k l}\left(\frac{6}{\pi^{2}}-\delta\right)<\sum_{i=(k-1) D+1}^{k D} \sum_{j=(l-1) D+1}^{I D} \frac{f(i, j, M) \cdot b(i, j)}{D^{2}}<\left(L_{k l}+\epsilon\right) \cdot\left(\frac{6}{\pi^{2}}+\delta\right)
$$

Now,

$$
\begin{aligned}
\frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{l=1}^{K} L_{k l}=\frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{l=1}^{K} & \frac{(M-k \cdot D) \cdot(M-l \cdot D)}{(M-1)^{2}} \\
& =\frac{K^{2} \cdot(2 \cdot M-(K+1) \cdot D)^{2}}{4 \cdot K^{2} \cdot(M-1)^{2}}=\frac{1}{4}\left(1-\frac{1}{K}+\frac{2}{K D}\right)^{2}
\end{aligned}
$$

So

$$
\frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{l=1}^{K} L_{k l}\left(\frac{6}{\pi^{2}}-\delta\right)=\frac{1}{4}\left(1-\frac{1}{K}+\frac{2}{K D}\right)^{2} \cdot\left(\frac{6}{\pi^{2}}-\delta\right)=\mathscr{L}
$$

and

$$
\frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{l=1}^{K}\left(L_{k l}+\epsilon\right) \cdot\left(\frac{6}{\pi^{2}}+\delta\right)=\left(\frac{1}{4}\left(1-\frac{1}{K}+\frac{2}{K D}\right)^{2}+\epsilon\right) \cdot\left(\frac{6}{\pi^{2}}+\delta\right)=\mathscr{R}
$$

and as ϵ, δ can be as small as required for large enough K, D (e.g. choose $\epsilon=(2 / K))$ then if $K=D$, then as $M \rightarrow \infty, K \rightarrow \infty$ and $D \rightarrow \infty$.
Thus \mathscr{L} and \mathscr{R} can be made as close to $\left(6 / 4 \pi^{2}\right)=\left(3 / 2 \pi^{2}\right)$ as required.
So

$$
\begin{aligned}
\frac{1}{K^{2}} \sum_{k=1}^{K} \sum_{l=1}^{K} \sum_{i=(k-1) D+1}^{k D} & \sum_{j=(l-1) D+1}^{l D} \frac{(M-i) \cdot(M-j) \cdot b(i, j)}{D^{2} \cdot(M-1)^{2}} \\
& =\sum_{i=1}^{M-1} \sum_{j=1}^{M-1} \frac{(M-i) \cdot(M-j) \cdot b(i, j)}{(M-1)^{4}} \rightarrow \frac{1}{4} \cdot \frac{6}{\pi^{2}}=\frac{3}{2 \pi^{2}}
\end{aligned}
$$

as $M \rightarrow \infty$ with $K=D$ and $K D=(M-1)$.
So

$$
\lim _{M \rightarrow \infty} \frac{\sum_{i=1}^{M-1} \sum_{j=1}^{M-1} f(i, j, M) \cdot b(i, j)}{\sum_{i=1}^{M-1} \sum_{j=1}^{M-1} f(i, j, M)}=\frac{6}{\pi^{2}}
$$

and as M increases

$$
\begin{array}{ll}
T_{M M} \sim \frac{6 \cdot M^{4}}{\pi^{2}} & Y_{M M} \sim \frac{3 \cdot M^{4}}{\pi^{2}} \\
Z_{M M} \sim \frac{3 \cdot M^{4}}{2 \cdot \pi^{2}} & F_{M M} \sim \frac{3 \cdot M^{4}}{4 \cdot \pi^{2}}
\end{array}
$$

References

1. Brownrigg, D. R. K., The Weighted Median Filter, CACM, Vol. 27, No. 8, (1984), pp. 807-818.
2. Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, O.U.P. (1979).

University of London
Goldsmiths' College

