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Abstract

Given a Fredholm integral equation of the second kind, which is defined over a certain
region Q C R2, we define yl

N and y}}, two different numerical approximations to its
solution, using the collocation and iterated collocation methods respectively. We de-
scribe without proof some known results concerning the general convergence properties
otyh and>>" when the kernel and solution of the integral equation are smooth. Then, we
prove rigorously order of convergence estimates fory'N and y" which are applicable in
the practically significant case when Q is a rectangle, and the kernel of the integral
equation is weakly singular. These estimates are illustrated by the numerical solution of
a two dimensional weakly singular equation which arises in electrical engineering.

1. Introduction

In this paper we shall discuss the numerical solution of two dimensional
Fredholm integral equations of the second kind, which take the form

y(t) = /(/) + />( / , s)y(s) ds, / e f i . (l.i)

Here 0 C R2 is a domain (i.e. an open connected set) which is bounded, and B
denotes its closure. The functions k and/are given on fi X fi and fi respectively
and our task is to determine the solution, y.

We shall abbreviate (1.1) using standard operator notation, as

y = / + Ky,
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[2 ] Collocation for integral equations 457

where K denotes the integral operator defined by

Ky(t) = f_k(t, s)y(s) ds, t £ 0,Ja
and we shall assume that (1.1) has a unique continuous solution y on fl.
(Conditions sufficient to ensure this will be described in Section 2.)

We shall use the methods of collocation and iterated collocation to define two
different approximations, yl

N and .y", to y. Specifically, we shall seek y# in the
form

yl
N = 2 «,»,. (i-2)

1 = 1

where (H,, . . . , uN] is a certain set of piecewise constant basis functions defined
on fl, and the coefficients {a,, . . . , aN) are the solution set of the N X N linear
system obtained by demanding that

where {t1,. . . , tN} c fi is some predetermined set of collocation points.
We then define ^ " by the natural iteration,

y\» (1.4)

which, using (1.2), may also be written as

In this paper, we shall examine the convergence properties of yx
N and j " . We

shall state our main results below, but first an explanation concerning the
construction of our basis set and collocation points is needed.

For each J V e N w e introduce a mesh (partition) 11^ of fl, consisting of Â
open, simply-connected, pairwise-disjoint subsets of B, {fl,: i = 1, . . . , ^V}, with
the property that each fi, contains its centroid, and

N

fi = U fi,-
/•-I

For / = 1, . . . , iV, we then define M, to be the function on B which takes the
value 1 on fl,, and 0 elsewhere. We assume that

l i n^ lL^O, asiV-»oo,

where

IIUJVIL = max sup ||; - t'\\m,
' = • N ,,,-ea.
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458 Ivan G.Graham (3]

and we also assume that

t, G 0,,

for / = 1, . . . , N.
It then follows, under fairly mild conditions on k and / , that, for sufficiently

large N,yl/ and.y" are well defined and converge to>> (in the uniform norm).
In addition, it can be shown that, if y is suitably regular, then we have,

while under additional regularity requirements on k and y, we also have,

the final estimate also being dependent on each collocation point tt being chosen
as the centroid of the set fi,, for / = \, .. . , N.

Unfortunately, the regularity requirements on k and y which are needed for
(1.5) and (1.6) to hold are rather strict (particularly in the case of (1.6)), and, in
fact, may not be satisfied in practical situations, where singularities are often
present. The main aim of this paper will be to derive order of convergence
estimates for_y^ a n d ^ " (analogous to (1.5), and (1.6)) which are applicable in
the practically important case when k has a weak singularity along the diagonal
t — s, and when fi is a rectangle.

These results will be obtained in Theorem 10 of Section 4. As an illustration
of the kind of information contained in Theorem 10, consider the prototype
equations,

y(t)=f(t)+fo"f\t-s\°-y(s)ds, , e [ 0 , l ] x [ 0 , 4 (1.7)

with 0 < a < 1, and

y(t) = f(t) + f f1 \n\t - s\y(s) ds, t e[0, 1] x[0, d], (1.8)

where |JC| denotes the length of any vector x e R2, a n d / is twice continuously
differentiable on [0, 1] X [0, d]. Theorem 10 then predicts that, for these proto-
type equations,

II y - An ill =

and

where, in the case of equation (1.7), /? is any number satisfying 0 < fi < a, and,
in the case of equation (1.8), ft is any number satisfying 0 < ft < 1. Here nw(T) is
a family of rectangular meshes on $2 = [0, 1] X [0, d], which depend on a
parameter T in such a way that, as T -» 0, N(T) —» oo, and, as T -» 0, the subsets
of fl given by n ^ ^ shrink in size in a suitably uniform manner.
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The theoretical section of this paper is organised as follows.
In Section 2, we discuss the basic properties of yl

N and y", when $2 is the
closure of any general bounded domain, and we describe a set of circumstances
under which (1.5) and (1.6) hold. In Section 3, we consider the case when Q is a
rectangle, and when the kernel, k, of (1.1) has a weak singularity along the
diagonal t = s, and we discuss the regularity of the solution to the resulting
equation.

In Section 4, we prove the main result of the paper, Theorem 10. The
ingredients of the proof are the regularity results of Section 3, two technical
lemmas (Lemmas 6 and 8) concerning the approximation of functions over
rectangular domains, and Lemma 9, which describes a special property pos-
sessed by the collocation points {:,, . . . , tN) when, for each / = I, . . ., N, tt is
chosen to be the centroid of Q,-. These lemmas are also given in Section 4, prior
to Theorem 10.

It may be observed from (1.3) and (1.4), that the calculation of yl, requires the
evaluation of the two dimensional integrals,

{Kui(t):i=\,...,N}, (1.9)

at each of the collocation points, while the calculation of ,y" at an arbitrary
point ( 6 Q , requires, in addition, the evaluation of each of the integrals (1.9) at
that point. Due to the choice of the piecewise constant basis set, the integrals
(1.9) have the particularly simple form

Kut{t) = [ k(t, s ) d s , i - 1, . . . . AT,

and may even be calculated analytically, if k is not too complicated. Thus the
methods given here are demonstrably simple in construction and implementa-
tion, and yet possess quite respectable convergence rates, provided the basis set
and the collocation points are carefully chosen. For these reasons we propose
that these methods are attractive from a practical point of view, and to illustrate
this point we use them to solve a two dimensional integral equation which arises
in electrical engineering. This illustration is described in Section 5.

To date, the literature contains very little analysis on numerical methods for
equations of the type (1.1). We remark, however, that the one dimensional
analogues of the methods proposed here have been well studied. Results analo-
gous to ours for one dimensional equations with smooth kernels and solutions
are obtained by Sloan, Noussair and Burn [10], while Chandler [1] and
Schneider [9] have studied product integration (of which iterated collocation is a
special case) for one dimensional equations with weakly singular kernels.
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2. Some general convergence results

In this section, it is our aim to state two theorems, Theorems 1 and 2, which
describe the general convergence properties of yl

N and y". The proofs of these
theorems are given in [5].

In order to state these results, we must first introduce some function spaces.
We denote by LM(fl) the space of essentially bounded functions on fi. This
space is a Banach space under the norm

11*11,0 = ess sup |*(0|.
tea

Also, we let C(fl) denote the set of functions which are bounded and uniformly
continuous on Q. Any function <f> G C(fl) has a unique continuous extension to
the whole of Q, and will henceforth be considered to be defined on Q. C(fl) is a
Banach space under the norm

/68

For m G N, we let C""(S2) denote the space of all functions <£ G C(fi), which
have the property that

for all multi-indices y satisfying |y| < m. (We use here the standard notation for
multi-indices, see [7, p. 19]). Also, for 0 < /} < 1, we let Lip(8(fi) denote the
space of all functions </> G C(fl), which have the property that

sup |*(/ + h) - *(/)| < C\h\",
tea

for all non-zero h G R2, with C independent of h. Both C""(fi) and Lip^fl)
become Banach spaces when equipped with an appropriate norm [7, p. 25], but
the definition of this norm will not be required in this paper. The above spaces
are defined analogously when fi C R", for any n > 2.

We then introduce the following assumptions on k and/, the given quantities
in equation (1.1).

Cl. sup f \k(t, s)\ ds < oo,

and

lim [_\k(t, s) - k(t', s)\ ds = 0, t' G fi.
'-»'' •'a
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C2. The homogeneous version of (1.1),

y(t)= f_k(t,s)y(s)ds

has no non-trivial solutions in C(Q).
C 3 . / E C(fi).

REMARK. The assumption Cl is a convenient condition which ensures (see [3])
that K is compact as an operator from L^Sl) to C(Q), and hence, also from
C(S2) to C(fi). This fact, combined with C2, C3 and the Fredholm Alternative
[6, p. 497] ensures the existence of a unique solution y e C(Q). Sufficient
conditions for any given kernel to satisfy Cl have been investigated in [3].

We then have the following theorem.

THEOREM 1. Let Cl, C2 and C3 be satisfied. Then, for sufficiently large N, y*N

exists in Loo(J2),_y" exists in C(S2), and

\\y-ylr\\oa<Cl\\y-PNy\\OB^0, as N-* oo,

and

\\y ~ y"\L < C2\\Ky - KPNy\\x^Q, as N -» oo,

where Cx and C2 are independent of N, and PN is the interpolator projection given,
for <J> G C(Q), by

PN* = 2 H'M- (2-1)
i - i

REMARK. From (1.3) and (1.4), it may be easily seen t h a t ^ and>»" coincide at
the collocation points {;, , . . . , tN), and we may think of >>" as a natural
continuous interpolation to the piecewise constant approximation yjy.

Theorem 1 is a natural starting point from which we may derive order of
convergence estimates for \\y — y^\\x and ||.y — y^W*,' m t e r m s °f t n e mesh
diameter lin^y^. We shall see below that a large part in obtaining good
convergence rates is played by the special set of points given by /, = (f,,, ti2), say,
where

i = 1, • • . , N, (2.2)

where At is the area of fi,. That is, /, is the centroid of R,, for each / = 1, . . . , N.
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Then, the following result is a consequence of Theorem 1.

THEOREM 2. Let C l , C2 and C3 be satisfied.

(i) / /> e C'(fi). '*<?« (1-5)
(ii) Ify e C'(fl), 3y/9/,, 3y/3f2 G Lip,(fl), A: e Lip ,(8 X B), a/jrf f/ie co//oca-

f/Ywi points are chosen according to (2.2), //ie« (1.5) a/«/ (1.6) hold.

REMARK. The proof of Theorem 2, which is given in [5], uses Taylor's series
methods, and hence requires that both k and y be fairly smooth. If k is weakly
singular, however, then k is not even continuous, and it is obvious, before we
even consider the regularity of y, that Theorem 2(ii) will be inapplicable to this
case. The analogues of (1.5) and (1.6), for the weakly singular case, are proved in
Section 4, using approximation theoretic arguments which are more sensitive to
the regularity of both k and y than the Taylor's series methods. Before we can
prove these analogues we need an accurate characterisation of the regularity of
the solution y of (1.1), when k is weakly singular. This is the purpose of Section
3.

3. Regularity results for weakly singular equations

In this section, we describe the regularity of the solution >> of (1.1), when k is
weakly singular. Throughout this section and Section 4 we shall assume that

Q=[0, 1] x[0,d],

for some d > 0.
To define what is meant by a weakly singular kernel, we introduce the new

assumption on k:
Cl'. k(t, s) = \pa(\t - s\), for some 0 < a < 1, with ta(x) = B(x)xa~\ 0 < a

< 1, and «//,(*) = B(x)\n x, where B G C'[0, R], with R = sup u e S | / - s\.
Our regularity theory forj> requires that/(the inhomogeneous term of (1.1))

be suitably smooth, and so we also introduce
C 3 ' . / e C2(fi).

REMARK. It is shown in [5] that Cl ' implies Cl. Since, C3' trivially implies C3,
it follows that any results which are true under Cl, C2 and C3, will also be true
under Cl', C2 and C3'.

Equations satisfying Cl', C2 and C3' are the subject of a detailed singularity
analysis in [5]. Among the results proved there, we find the following theorem.
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T H E O R E M 3. Let C l ' , C2 and C 3 ' be satisfied. Then the solutiony of (I.I) has the

following properties.

(i)y e C(fi).
(ii) 3y/3/,, 9y/dt2 e Lip^fi),

where /? is any number satisfying 0 < fi < a.

It is clear then, that in the case that Cl ' , C2 and C3' are satisfied, and
fi = [0, 1] X [0, d], the conditions of Theorem 2(i) are satisfied, but the condi-
tions of Theorem 2(ii) are not satisfied, either by y or k.

4. Order of convergence estimates for weakly singular equations

In this section, we analyse the rates of convergence to zero of the quantities
\\y — ylrWn, and \\y — >""lioo' m t n e c a s e when Cl ' , C2, and C3' are satisfied,
and when fi = [0, 1] X [0, d\.

When proving boundedness results, we use C to denote a generic constant;
the numerical value taken by C may vary from instance to instance.

Since the piecewise constant functions {u,, . . . , uN), which were used in the
definition of yx

N and y™, are really just two dimensional splines (of order 1 or,
equivalently, of degree 0) it is reasonable to expect that a tight numerical
analysis of yx

N and y" will require some two dimensional spline approximation
theory. Appealing to Munteanu and Schumaker [8] for such a theory, we must
first define a certain family of rectangular meshes on fl = [0, 1] X [0, d\.

DEFINITION 4. For each r e (0, 1], let there exist integers p{j), q(r), and meshes

and

n^ T ) : 0 = yo(r) <yx{r) < • • <>>9 ( T )(T) = d,

with the property that, for some constants C,, C2,

C,T < A,(T) < A » < C2T, i = 1, 2, T E(0, 1],

where

A,(T) = ^ _ i m i n ^ ^ ( X / T ) - X , _ , ( T ) ) ,

A , (T) = max (XJ(T) — X , _ , ( T ) ) ,

A2(T) = min (> / (T) — > ' / _ 1 (T) ) ,
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464 Ivan G. Graham I91

and

A 2 ( T ) = max
1=1, ? ( )

In addition, suppose that, for 0 < T < | ,

{xj(2r):j = 0, . . . ,p(2r)} C {Xj(r):j = 0, . . . ,p(r)},

Qtid

{y,(2r): / = 0, . . . , 9 ( 2 T ) } C {y,(r): 1 = 0,..., q(r)}.

Then, with N(T) = p(j)q(j), we have, for each T S (0, 1], a mesh 11^,) o« S, given
by

n M T ) = {(* , -_ , ( T ) , X , ( T ) ) X ( ^ _ , ( T ) , ^ ( T ) ) : y = 1, . . . ) J P ( T ) ; 1=1,..., q(r)}.

We call such a family of meshes {11^^: T G (0, 1]} an "A/. S. family of meshes on
Q".

We shall refer to the mesh II^(T) as being made up of the subsets 0 , (T) (or Q,
when T is understood), for i = 1, . . . , A^(T), where, for definiteness, we adopt
the indexation convention

fy/-iMr)+/T) = (XJ-I(T),XJ(T)) X {y,-X{r),y,{T)),

fory = 1, . . . ,P(T), and / = 1, . . . , <?(T).

REMARK 5. Let {11^^: T G (0, 1]} be an M.S. family of meshes on Q.
(i) For each / = 1, . . . , 7V(T), the collocation point /„ defined by (2.2) then

turns out to be the centre of the rectangle fl,(T)-
(ii) It is clear from the definition of nN(T), that

A^(T) -» oo as T -» 0,

and

C,T < nn^^ii^ < C2T,
so that

linMT,IL->0, asr^O.
(iii) Four examples of M. S. families of meshes are given in [8]. A particularly

simple example is the case where, for T £ (0, 1], /J(T) is chosen to be the integer
which satisfies

and q(r) is set equal to p(r). Then

Up(Ty 0 = XO(T)
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is given by

Xj(r) = jr, 7 = 0 , . . . , / > ( T ) - 1,

XP(T)(T) = 1,

a n d

I W 0 = y£r) <yi(r) <••• < ^ T ) ( T ) = d

is given by
y,(r) - hd, 1 = 0,..., q(r) - 1,

W T ) = d.
(iv) A practically important subfamily of the family given in Remark 5(iii) is

{nM r ) : T = n~\ n = 1, 2, 3, . . . }.
In this case, for each T = n"1, we have P(T) = q(j) = n, and the mesh 1 1 ^ is
just obtained simply by dividing fi into N(r) = n2 subrectangles, each of
dimensions ^ by ^.

From now on we shall let {IIN(T): T G (0, 1]} denote some fixed family of M.S.
meshes on fi. We shall let PN(r^ denote the projection, analogous to (2.1), onto
the space spanned by the set of piecewise constant functions defined on the
mesh HN(ry using the collocation points discussed in Remark 5(i). Then, for any
T e (0, 1], PN^ is a bounded operator from C(Q) to -L^Xfl), with operator norm
satisfying

P V > | | < 1 , T G ( 0 , 1]. (4.1)

We shall define below a space of spline functions on a rectangular mesh over
the two dimensional set £2 = [0, 1] X [0, d]. These will be constructed as point-
wise products of one dimensional splines. Thus, for r £ N , and for any mesh

II: a = x0 < xt < • • • < xn = b

on any interval [a, b], we define the one dimensional spline space Sr(II, [a, b]) to
be the space of all functions in C~2[a, b], which reduce to polynomials of
degree not greater than r — 1 on each (x,_,, *,-], for i = 1, . . . , n. If r = 1 this
space includes functions discontinuous at one or more of the knots {x,:
/ = 0, . . . , « } , and for definiteness, we assume that such functions are left
continuous at each knot, and right continuous at a. We then define, for r £ N,
the two dimensional spline space Sr(n^(T), fi), by

Sr{nNiT), Q) = {£: {(*„ s2) = UstM*?). f o r (*i. si) e Q, where

| , G Sr(Up(T), [0, 1]), and «2 G 5r(n^T), [0, d])}.

We describe some important approximation theoretic properties of this two
dimensional spline space in the next two lemmas.
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LEMMA 6. Let 4>a be defined as in Cl'. Then, for each (GQ, there exists a spline
Ua,t G S\(^N{T)' &)> S U c t l t h a t

~t (\f j i \ y (s)\ ds < C l i n II

with C independent of t and T.

PROOF. The proof foiiows from Munteanu and Schumaker [8, Lemma 5.5J,
where it is shown that there exists ual e 5 , (11^ , fi) such that

tl*.(l ' " *\) ~ »a,M\ <* < C r\\*J\t - s\)\ ds + sup

~S-h\)- +J\t - S\)\ dsl

with C independent of t and T, and where for e e R2,

Now, for t G U, we have, using Cl',

- s\)\ ds<\

(4.3)

(4.4)

a = l ,

with C,, C2 independent of /. Also, by slightly modifying the arguments of
Kantorovich and Akilov [6, Theorem 4, p. 363], it may be shown (for full details
see [5]), that

-s-h\)- +a(\t - s\)\ ds < C\h\, (4.5)

with C independent of / and h.
It follows then, on substitution of (4.4) and (4.5) into (4.2), and noting that

\h\ < V2 \\h\\n, that we have

Cr,

with C independent of / and T, and the required result follows from Remark

REMARK 7. Note that, by the triangle inequality, we have, from Lemma 6,

t - s\)\ ds<c,
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for some C which is independent of / and T, where the final inequality follows

from (4.4), and the observation that

linMT)iL < 0 + d2)i/2, T 6(o, i ] .

LEMMA 8. Let Cl ' , C2 and C3' be satisfied, and let y be the solution of (1.1).
Then there exists a spline £ G S2(IlN(jy fi) such that

\\y - € I L < ciinMT)n2,+1,
with C independent of T.

PROOF. Note that, by Theorem 3, y G C'(fl) and dy/dtv dy/dt2 G Lip^fl),
for any y3 in the range 0 < /? < a. It follows from Munteanu and Schumaker
[8, Lemma 5.5], that there exists | G S2(TlN(T), Q) such that

+ CO 2 (^T)] ) (4.6)

with C independent of T, where w2(.y, T) is the two dimensional modulus of
continuity given by

"i(y> r) = sup sup \y(t + 2h) - 2y(t + h) + y(t)\,
0< 11*11. <

and J22A is defined by (4.3).
Now, it follows easily from the two-dimensional Taylor's theorem, and the

known properties of y, that

« 2 ( > ' ) T ) < C T ^ 1 (4.7)

with C independent of T, and the required result follows on substitution of (4.7)
into (4.6).

The next lemma highlights an important property of the choice of collocation
points given in (2.2) and Remark 5(i).

LEMMA 9. Let £ G S2(II^(T), fi). Then

(*(*) - | (O) ds = 0, i = 1, . . • , N(T).

REMARK. This result demonstrates the special role played by the points (2.2),
and one consequence of it is the fact that the two dimensional approximate
integration rule
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turns out to be exact for functions in 52(n^(T), fl), i.e. for functions which reduce
to bilinear functions almost everywhere on each of the subsets fl(. In other
words, this approximate integration rule is the two dimensional analogue of the
product mid-point rule.

PROOF OF LEMMA 9. Note that, for all s e J2(, and thus, for almost all s G fl,,
we have £(s) = £,($ i)£2(

J2)> where £, and | 2 are linear. Note also that, by Remark
5(i), /, is the mid point of fi,. Thus, to prove this lemma, it would be sufficient to
show that

f f (( b)( b2) - (alt1 + bx)(a2t2 + b2)) dstds2 = 0,
•'o Jo

where av bx, a2, b2 are constants, and tx =\,t2= | .

Now,

\ b2) - (a,f, + Z>,)(a2/2 + b2)) dsxds2

[ I (5,52 - ttt2) dsxds2 +atb2 f f (st — /,) ds,ds2
o Jo Jo Jo

+ aib\ f f (S2 ~ h) * i * 2 . (4.8)
•'0 •'0

and

I" [\ (\sx-tx)dsx = Q, (4.9)I [ i l l 2

since /, = \, and, similarly,

f f\s2-h)dsxds2 = 0. (4.10)
J0 JQ

Also,

fd[\slS2 - t{t2) dstds2 = f(^s2 - /,f2) ds2

= ±d2-dtlt2 = 0, (4.11)

and the required result follows on combination of (4.9), (4.10) and (4.11) with
(4.8).

Let yl
N(T), y^r) denote the approximations to y defined by the collocation and

iterated collocation methods respectively, using the M.S. family of meshes
{^N(ry T S (0, 1]}. Note that, in view of Remark 5(ii), Theorem 1 holds with W
replaced by N(T), provided that the phrase "N sufficiently large" is replaced by
the phrase "T sufficiently small". This fact will be used in the proof of the
following theorem, which is the main result of the paper.
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THEOREM 10. Let Cl ' , C2 and C3' be satisfied. Then

(0 \\y - yMr>IL

and

for any ft in the range 0 < /? < a.

PROOF. By definition of the projection PN^, it follows that

and since it was proved in Theorem 3 that y G C '(fl), an easy application of
Taylor's theorem yields

\\y - J V ^ I L < cnnMT)iL, (4.12)

with C independent of T, and the result (i) follows from Theorem 1.
To obtain (ii), recall Lemma 6, and write, for t e $2,

Ky(t) - * P M T ) K 0 = h*(\t ~ s\)(y(s) - PMT>y(*)) ds

+ f_(uaJ(s)){y(s) - PN,T)y(s)) ds

= / , ( 0 + / 2 ( 0 . say. (4.13)

Now, using Holder's inequality, we have, for t E. fl,

and it follows from Lemma 6, and (4.12), that

|/,(/)| < CIIII^II^, (4.14)

with C independent of / and T.
Also, since ual G 51(IIAr(T), fi), we have, for some c,, . . . , cn which are con-

stant with respect to s,

hit) = 2 cj (y(s) - PN(T)y(s)) ds

, = i •'a,
, / (/ - P«T))(y - t)(s) ds,
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where £ is any function in S^II^), S2), using Lemma 9. Thus, making use again
of Holder's inequality, we have, for ( 6 8,

a/s)(I - PNiT))(y - 0(s) ds

[k,,(*)l ds\\(I - PNiT))(y - OIL

<C\\y-t\\ea,

with C independent of t and T, where we have used (4.1) and Remark 7. Thus,
by Lemma 8,

|/2(0l < ciinMT)n£+I, (4.15)
with C independent of / and T, and ft any number such that 0 < /? < a.

Combining (4.14) and (4.15) with (4.13) we obtain

\\Ky - KPN(r)y\\x < C | | I I M T ) | | £
+ 1 ,

with C independent of T, and (ii) then follows from Theorem 1.

5. A numerical example

In this section we solve numerically the integral equation,

y(tu t2) = Co + Xf f lnv/(/, - stf + (t2 - s2)
2 y(sv s2) dslds2,

for(?,, t2) e[0, 1] x[0 , d], (5.1)

where Co and X are scalars and d > 0. This equation arises in the problem of
determining the cross-sectional distribution of current in an infinitely long
rectangular conducting bar which carries an alternating current [4]. Let the cross
section of the conductor have length a, and breadth b. Let g denote the
conductivity of the material of the bar, let ju denote the permeability of free
space, and let u denote the angular frequency of the alternating current. Then it
is shown in [4] that the parameters X and d depend on these quantities, and are
given by

X = (a2figu/2w)i,

d = b/a.

It is also shown in [4] that Co has no physical significance, and may be
considered to be a scaling factor in the problem. To understand this point more
clearly, note that if we modify (5.1) by replacing Co by 2C0, then the solution to
the equation thus obtained is merely twice the solution of (5.1).
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We have solved equation (5.1) by the collocation and iterated collocation
methods, using the family of meshes {nN(T): r = n~\ n = 2, 3, 4, 5, 6, 7, 8} over
[0, 1] X [0, d], which were described in Remark 5(iv). That is, for each T = 2"',
3~\ . . . , 8"', yl

N(T) and .y"(T) where defined by (1.3) and (1.4) using the mesh
obtained by dividing [0, 1] X [0, d] into n2 subrectangles, each of dimension £
by | . The collocation points {/,: i = 1, . . . , N(T)} were chosen to be the
mid-points of each subrectangle as described in Remark 5(i). For this problem,
the numerical calculation of yl/^ and .y "(T) was facilitated by the fact that, due to
the relative simplicity of the logarithmic kernel, the necessary two dimensional
integrals {Ku^t): / = 1, . . . , N(r)}, for t E [0, 1] X [0, d] can be given analyti-
cally.

We shall set d = 0.5, and A = 0.266425 X 102. These values correspond to the
particular physical situation of a copper bar, of cross-section 0.1 by 0.05,
carrying an alternating current of frequency 60 (all units being in the RMKS
system). We fix the scaling factor Co so that the average of the values of the
piecewise constant approximation,yx

N(i-\) over the domain [0, 1] X [0, d] is unity.
We shall display here only our results for .y"(T), T = 2"1, 4"1, 6"1 and 8~', and

we shall use them to obtain experimental rates of convergence, for comparison
with the theoretical estimates of Theorem 10(ii). We do not display results for
^( T ) , but note that yl

N(T) coincides with J>"(T) at the collocation points, and hence
converges at the same rate as >""(,.) at those points. Further numerical results are
given in [5]. The same problem has been solved by a different method in [2]. In
Table 1 we give the values of y%(r) at the four points (0, 0), ({, 0), (0, f), (\, f) of
the domain [0, 1] X [0, d\.

TABLE 1

Values of >>JJ(T)

T

2-'

4-1

6"1

8-'

yn

1.270

1.900

2.188

2.327

, at (0,0)

+ 5.857/

+ 4.421/

+ 4.055/

+ 3.929/

y"

0.9466

1.026

1.166

1.211

a(

+

+

+

+

G>o)

1.062/

1.244/

1.171/

1.134/

1.140

1.399

1.680

1.841

at (0,f)

+ 3.931/

+ 2.347/

+ 1.840/

+ 1.647/

>"W at (

0.7277 -

-0.2349 -

-0.1187 -

-0.09286 -

hi)

2.186/

0.4783/

0.3580/

0.3467/

According to Theorem 10, if T = n~\ we have the theoretical predict ion

1
= c- ft+1'

(5.2)
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for any fi in the range 0 < / 3 < 1. To estimate the experimental rate of
convergence, we conjecture that

1
(5.3)

where the c(t) are complex constants which depend on t e [0, 1] X [0, d], and
A > 0 is to be determined. Using the computed values of >$(T) for T = 2"', 4~\
6"1 and (5.3), we obtain three equations in the unknowns y(t), c(t) and X.
Eliminating y(t) and c(t), we obtain a non-linear equation in X, which we solve
using the secant method. A second approximation to X is obtained in the same
way using the numerical values of y"M, for T = 4"1, 6~\ 8"1. The approximate
values of X thus obtained are given in Table 2. The values of X obtained by the
first approximation are rather erratic in comparison to the prediction (5.2). This
is possibly because the asymptotic convergence rate proposed in (5.3) will only
hold for sufficiently large values of n. The values of X obtained by the second
approximation conform more satisfactorily to the prediction (5.2), at least in the
cases of points (0, 0), ( | , 0) and (0, | ) . The exceptionally high value of X at
( j , f) may be seen as evidence that the global prediction, (5.2), although
probably sharp on the edges of the domain (where the solution is singular), is
likely to be pessimistic at points in the interior of the domain (where the solution
is smooth).

TABLE 2

Approximations to X

1st approx. to X
using

ii ii II

2nd approx. to X

using

At point

(0,0)

1.3

1.6

At point

(i.0)

(==0.0)

1.9

At point

(0,?)

0.9

1.4

At point

(M)

3.3

4.0

For each of the four points t, the second approximation to X (given in Table 2)
was used along with the values of ^"(6-')(0 anc* -VJvV̂ C') t o calculate the
constants c(t) in (5.3). The value of c(t) was then used to estimate the maximum
absolute error my^s-iy The results are given in Table 3.
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TABLE 3

Estimated errors inyJJ^-i)

473

Estimated error in

ii

At point

(0,0)

0.32

At point

(l> 0)

0.080

At point

(0, | )

0.12

At point

(i.f)

0.013
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