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We study the collisions in a gaseous medium of a dilute bidisperse suspension of
non-Brownian spherical particles sedimenting along the flow axis of a simple shear flow.
Continuum lubrication forces prevent particles from coming into contact in a finite time,
thus collisions can occur only due to attractive interactions such as the van der Waals force.
However, in a low-pressure medium, the lubrication forces are weaker than their continuum
counterparts and allow particle pairs to collide, even without any attractive forces. The
Knudsen number, defined as the ratio of the mean free path of the medium to the mean
radius of the interacting spheres, captures the significance of non-continuum interactions.
We use uniformly valid hydrodynamic mobility functions, reflecting non-continuum
lubrication at small separations and full continuum hydrodynamic interactions at moderate
to larger separations. Due to the nature of the pair trajectory topology, the collision
efficiency vanishes at a critical Knudsen number when simple shear flow alone drives
the dynamics. Thus we perform collision calculations where particles experience the
combined effects of van der Waals attraction and non-continuum hydrodynamics; van der
Waals interactions enable collisions below the critical Knudsen number. Next, we calculate
the collision efficiency for coupled differential sedimentation and simple shear driven
motion in the presence of van der Waals interaction and non-continuum hydrodynamics.
Finally, we explore the role of small particle inertia on relative trajectories and collision
efficiencies in a non-continuum gas subject to a simple shear flow, ignoring the van der
Waals force and gravity.
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1. Introduction

Aggregation via collisions of tiny particles sedimenting in a shear flow influences the
dynamics of many scenarios involving gas–solid and gas–liquid suspensions. Sampling
aerosols and conveying them to instruments for analysis or separation, pneumatic
conveyance, and the transport of catalytic particulate matter in riser reactors are a few
examples of flows of suspensions through vertical pipes or channels (Jackson 2000). In
sampling scenarios, a concern could be how much coalescence occurs before the size
distribution analysis. It would be desirable to have a laminar flow with low shear rates to
minimize coalescence. Suppose that the mean shear in turbulent vertical two-phase flows
is large enough. In that case, the mean shear will predominantly drive the collisions, and
one could consider the background flow to be laminar while studying coalescence. The
coupled effects of gravity and the imposed shear flow would dictate the collision dynamics
in all these situations.

Collision rates between pairs of particles depend on the detailed interparticle
interactions, especially hydrodynamic interactions. Unlike the collision of the dispersed
particles in a liquid medium, the near-field hydrodynamic interaction between a pair of
particles is severely influenced by non-continuum physics when the surrounding fluid
medium is gaseous. Continuum hydrodynamic interactions would not allow collisions
between rigid surfaces in finite time unless attractive interparticle forces (such as the van
der Waals force) act between the particles. The attractive van der Waals force overcomes
the continuum lubrication forces at close separations and enables particles to make contact
in finite time (see Russel, Saville & Schowalter 1991). One needs to consider the combined
effects of shear, gravity and the van der Waals force in systems designed to remove
particles, such as porous aerosol filters (see Jaworek et al. 2019) and impactors (see
Malá et al. 2013). In media with a large mean free path (λ0), such as air, the continuum
approximation of hydrodynamic interactions is no longer valid near contact. Therefore,
one must consider non-continuum lubrication interactions (see Sundararajakumar & Koch
1996; Chun & Koch 2005). Previous studies have obtained particle collisions due to the
inclusion of interparticle forces (see Zeichner & Schowalter 1977), interfacial mobility
(see Wang, Zinchenko & Davis 1994), deformation (see Rother & Davis 2001) and
compressibility (see Gopinath, Chen & Koch 1997).

Recently, Dhanasekaran, Roy & Koch (2021a,b) have studied collisions in a dilute
polydisperse suspension of sedimenting spheres interacting through non-continuum
hydrodynamics in a background deterministic compressional flow and a turbulent flow.
When the non-dimensional separation ξ between two particles becomes asymptotically
small (i.e. ξ � 1), lubrication effects become important. Here, ξ = r − 2, where r is the
dimensionless (non-dimensionalized by the average radius of the two spherical particles)
centre-to-centre distance between the spheres. Continuum lubrication asymptotics predicts
that the resistive force due to the normal motion of two surfaces is O(ξ−1), indicating
that ξ → 0 only when t → ∞, meaning that particles will not come into contact in finite
time (see Wang et al. 1994; Dhanasekaran et al. 2021a). When ξ ∼ λ0, the continuum
approximation breaks down. The Knudsen number Kn = λ0/a∗, where a∗ = (a1 + a2)/2
is the mean of the sphere radii a1 and a2, quantifies how dominant the non-continuum
effects are. Sundararajakumar & Koch (1996) derived the lubrication force when the gap
width is smaller than λ0 from the Poiseuille flow solution of the linearized Boltzmann
equation (see Cercignani & Daneri 1963). They found that the lubrication resistivity is
O(Kn−1 ln(ln(Kn ξ−1))), a weaker divergence compared to O(ξ−1), thus allowing for the
possibility of a finite time contact under the action of a constant force (see figure 1 for the
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Figure 1. Near-field variation of the resistance function Λ = 1/(1 − A) for two equal-sized particles when
Kn = 10−1. Here, A is the axisymmetric mobility for a pair of spheres in a linear flow. The weaker divergence
of the non-continuum lubrication resistance leads to collisions in finite time.

variation of Λ, a quantity proportional to the lubrication force). For collisions in gas, it is
possible to show that the non-continuum effect is comparable to the van der Waals force
and dominates other factors such as deformability, interfacial mobility and compressibility
in facilitating particle collision (see the detailed discussion in § 2 of Dhanasekaran et al.
2021a).

We analyse the collision rate of non-Brownian spheres settling in a simple shear flow
while interacting through non-continuum hydrodynamics and van der Waals forces. We
assume that fluid inertia is negligible and thus use the Stokes equations to describe the
flow fields. Particle inertia for spheres with larger radii may significantly influence the
collision dynamics, but we can safely neglect it for relatively small particles. This study
will focus primarily on pair trajectories and collision rate calculations without particle
inertia. However, we will explore the perturbative effects of small particle inertia on pair
trajectories and collision rates towards the end of the paper. To justify the assumptions
of negligible fluid and particle inertia, and negligible Brownian diffusion, let us calculate
the relevant parameters for a water droplet of radius a1 = 10 μm in air (dynamic viscosity
μf ≈ 10−5 Pa s and density ρf ≈ 1 kg m−3). In this case, droplets will behave like rigid
spheres because of their small sizes and the high drop-to-medium viscosity ratio (μ̂ ≈
102). The density ratio ρp/ρf ≈ 103, where ρp is the density of water droplets. Small
drops may often have surfactants on their surfaces. Since the mobility of the interface is
small due to the high viscosity ratio, the motion of the drops would not drive a significant
change in surfactant concentration, eliminating the Marangoni effects. We assume that
drop surfaces remain spherical because of high interfacial tension. For a typical shear rate
γ̇ = 10 s−1, the Reynolds number based on particle radius is Rep = ρf γ̇ a2

1/μf = 10−5,
and the Stokes number (based on the shearing time scale) is St = 2a2

1ρpγ̇ /9μf ≈ 2 ×
10−2. The Péclet number Pe measures the relative importance of flow-induced motion
and Brownian diffusion. At room temperature (T = 300 K), Pe = 3πμf γ̇ a3

1/kBT ≈ 227
(large enough for neglecting Brownian diffusion in the system under consideration), where
kB is the Boltzmann constant. Therefore, the above representative numbers justify our
assumptions. The particle velocity due to imposed shear scales as γ̇ a1, which is equal to
10−4 m s−1 and 10−2 m s−1 for γ̇ = 10 s−1 and γ̇ = 103 s−1, respectively. On the other
hand, the gravitational settling speed scales as 2ρpa2

1g/9μf ≈ 2 × 10−2 m s−1, where g is
the acceleration due to gravity. So the effects due to sedimentation and shear can compete
with each other for larger shear rates.
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Figure 2. Schematic of the coordinate system used in the analysis. The sphere of radius a1 will be referred to as
sphere 1, and that of radius a2 as sphere 2. Sphere 3 is the collision sphere of radius a1 + a2. Here, x1, x2 and x3
are flow, gradient and vorticity directions, respectively. The simple shear field is given by U∞(x) = (γ̇ x2, 0, 0),
where γ̇ is the rate of shear. In § 2, we will use êr, êθ and êφ as the unit vectors in the r, θ and φ directions,
respectively.

Particle volume fractions in many natural systems, such as clouds (see Grabowski &
Wang 2013), aerosol reactors (see Balthasar et al. 2002) and separators, are very low
(typically O(10−6–10−4)), which allows us to analyse the problem in the dilute limit.
Therefore, we assume only pairwise interactions between particles of radii a1 and a2 (see
figure 2). For a non-interacting inertialess system, the particle paths coincide with the fluid
streamlines; hence the relative velocity of a particle pair is divergence-free. Therefore, the
ideal collision rate calculation with no interactions is a trivial one. Explicit analytical
expressions for ideal collision rates for uncoupled systems (i.e. simple shear flow alone or
pure differential sedimentation) are available in the literature (see Smoluchowski 1917). To
the best of our knowledge, no result exists in the literature for the ideal collision rate for a
pair of droplets settling in a simple shear flow. In § 3, we provide an analytical expression
for the ideal collision rate for a pair of droplets settling along the flow axis of a simple
shear flow.

To determine the collision rate for the interacting case, we need to calculate the flux per
unit volume of two spheres coming into contact with each other. This flux depends on the
pair distribution function (P), the relative velocity between the pair, and their respective
number densities. In the inertialess limit, the pair distribution function is the probability
density of two particle centres being separated by r. We scale the probability density by
n1n2 so that P ∈ [0, 1], where n1 and n2 are the number densities of spheres with size
categories characterized by radii a1 and a2, respectively. Two-body interactions dominate
the dynamics of dilute dispersions of micron-size particles. For pairwise interactions of
non-Brownian particles, the pair probability thus evolves purely due to the relative velocity
between the particles (see Batchelor & Green 1972a). The pair trajectories in uniaxial
extensional/compressional flow and differential sedimentation are open, thus one obtains
an analytical expression for P in terms of the scalar mobility functions. Both open and
closed trajectories exist for a simple shear flow, and the pair probability is indeterminate
for the closed trajectories (see Batchelor & Green 1972b).

One of the earliest studies on particles colliding in a viscous fluid was carried out
by Smoluchowski (1917) who found the collision rate of non-interacting spheres in
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a simple shear flow to be (4/3)n1n2γ̇ (a1 + a2)
3. He found the collision rate for two

non-interacting spheres settling in quiescent fluid with a relative velocity Vrel to be
n1n2π(a1 + a2)

2Vrel. Here, the relative velocity due to differential sedimentation is given
by Vrel = 2ρpg(a2

1 − a2
2)/(9μf ). Arp & Mason (1976) were among the first to calculate

the modification to Smoluchowski’s result for the collision rate due to hydrodynamic
interactions. Since continuum theory for rigid spheres does not allow for colliding
trajectories, they calculated the collision efficiency assuming different sizes of collision
spheres with radii larger than a1 + a2. As expected, they found that the collision efficiency
for continuum interactions vanishes in the limit of the radius approaching a1 + a2. Davis
(1984) calculated the collision efficiency of a dilute polydisperse system of sedimenting
spheres with hydrodynamic and interparticle interactions (attractive van der Waals forces)
using trajectory analysis. Zinchenko & Davis (1995) predicted the collision rate for two
interacting spherical drops in a simple shear flow at arbitrary Pe by solving the quasi-steady
Fokker–Planck equation for the pair probability conservation. Most previous studies
restrict their analysis to continuum hydrodynamic interactions with van der Waals forces
(see Davis 1984; Zhang & Davis 1991; Wang et al. 1994), suitable for colloidal particles
in aqueous suspensions where van der Waals force acts as the predominant mechanism
to overcome the continuum lubrication forces and bring particles into surface-to-surface
contact. On the other hand, for gas–particle suspensions, the non-continuum lubrication
force at close separations results in a finite collision rate (see Dhanasekaran et al. 2021a,b;
Patra & Roy 2022). Here, we study the collision rate of bidisperse spheres settling in
simple shear flows with non-continuum hydrodynamic interactions. Our study reveals
several interesting collision dynamics for particles colliding in a simple shear flow due
to non-continuum hydrodynamics. We report the collision rate results for the coupled
problem as a function of the strength of gravity relative to the simple shear flow when
the angle between the flow axis and gravity is zero (see figure 2).

When the motion of the particles needs to be determined in response to prescribed forces
and torques acting on the particles in a known background flow, that is called a mobility
problem in microhydrodynamics. For negligible fluid and particle inertia, the mobility
formulation is applicable to our problem because we consider torque-free particles
with specified gravitational and van der Waals forces. We express the relative velocity
between the pairs in terms of hydrodynamic mobility functions. These mobility functions
depend on size ratio and radial separation between the particle pairs. There are different
methods for calculating these mobility functions, such as the twin-multipole expansions
(see Jeffrey & Onishi 1984; Jeffrey 1992; Townsend 2018), the boundary-multipole
collocation method (see Kim & Karrila 2013), and solution of the Stokes equations
in bispherical coordinates (see Lin, Lee & Sather 1970; Wang et al. 1994). In this
paper, for continuum hydrodynamic interactions, axisymmetric mobility functions are
obtained using bispherical coordinates, and asymmetric mobility functions are obtained
using twin-multipole expansions. We will use uniformly valid solutions for axisymmetric
mobilities, where the continuum lubrication resistance matches asymptotically with the
non-continuum result of Sundararajakumar & Koch (1996) (see figure 1). We expect that
continuum breakdown will not strongly influence asymmetric mobilities because these
mobilities remain finite at contact. Thus we will consider continuum hydrodynamics for
asymmetric motion at all separations. Far-field and near-field analytical forms of these
mobility functions for continuum hydrodynamic interactions are available in the previous
literature (see Batchelor & Green 1972a; Batchelor 1976; Kim & Karrila 2013).

In the current study, we will calculate collision efficiencies with non-continuum
lubrication interactions under the action of various driving forces – a background simple
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shear flow, van der Waals forces, gravity and particle inertia. In § 2, we will formulate the
problem for a zero inertia system when gravity, background shear and van der Waals forces
are present. The collision rate without interparticle interactions will be presented in § 3.
In § 4.1, we will calculate the collision efficiency due to non-continuum hydrodynamic
interactions between a pair of spheres subject to a simple shear flow. Then in § 4.2, we will
quantify the effects of attractive van der Waals force on the collision efficiency between the
particles while background shear and non-continuum lubrication interactions are present.
We will calculate the collision rate and efficiency due to the combined effects of simple
shearing flow, gravity, non-continuum hydrodynamics and van der Waals forces in § 4.3.
Ignoring the effects of van der Waals forces and gravitational sedimentation, in § 5, we
will study the effect of small particle inertia (St � 1) on the collision dynamics of two
equal-sized spheres interacting through non-continuum hydrodynamics in a simple flow.
Finally, in § 6, we will summarize our results and discuss their implications.

2. Formulation

2.1. Trajectory equations for zero particle inertia (St = 0)
We consider a dilute suspension of non-Brownian spherical particles in a non-continuum
gas subject to a simple shear flow, sedimenting along the flow axis. For dilute suspensions,
the probability of a third particle influencing the relative motion of two interacting
particles is negligible, so we restrict our analysis to binary interactions of particles with
radii a1 and a2, as shown in figure 2. The particles are sufficiently small to neglect the
role of fluid inertia; thus we assume that the Stokes equations govern this creeping flow.
Though we focus on a simple shear flow in the present study, the following formulation
will apply to any arbitrary linear flow. A linear flow field U∞(x) can be characterized by
a spatially constant strain rate tensor

E∞ = 1
2

[
(∇U∞) + (∇U∞)T]

, (2.1)

and a rigid body rotation with angular velocity,

Ω∞ = 1
2∇ × U∞. (2.2)

The linearity of the Stokes equations enables us to write the resultant relative velocity
between two particles by vector summing the relative velocities caused by the motion of
force-free and torque-free particles in the background flow, attractive van der Waals force,
and gravity. Moreover, because of the axisymmetric geometry of the problem, we can
resolve the relative velocity along and normal to the line joining the centres of the two
spheres (see Batchelor & Green 1972a; Batchelor 1976, 1982; Wang et al. 1994; Batchelor
& Wen 1982):

v̂12(r̂) = Ω∞ × r̂ + E∞ · r̂ −
[

A
r̂r̂
r̂2 + B

(
I − r̂r̂

r̂2

)]
· (

E∞ · r̂
)

− 1
6πμf

(
1
a1

+ 1
a2

) [
G

r̂r̂
r̂2 + H

(
I − r̂r̂

r̂2

)]
· ∇(Φ̂12)

− 2ρp
(
a2

1 − a2
2
)

g
9μf

·
[

L
r̂r̂
r̂2 + M

(
I − r̂r̂

r̂2

)]
, (2.3)

where r̂ is the vector from the centre of particle 2 to the centre of particle 1, and
I is the unit second-order tensor. Here, A and B are the mobility functions for two
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hydrodynamically interacting spherical particles in a linear flow field, L and M are
the mobility functions for two unequal-sized spherical particles settling under gravity
through a quiescent fluid, and G and H are the mobility functions for two spherical
particles interacting hydrodynamically and moving because of a central potential. Also,
A, L, G are axisymmetric mobilities (i.e. mobility functions responsible for the relative
motion along the line-of-centres), and B, M, H are asymmetric mobilities (i.e. mobility
functions responsible for the relative motion normal to the line-of-centres). These
mobility functions depend on the size ratio κ = a2/a1 and dimensionless centre-to-centre
distance r = 2|r̂|/(a1 + a2). Dhanasekaran et al. (2021a) calculated the modifications of
the axisymmetric mobilities due to non-continuum lubrication interactions, where they
considered continuum hydrodynamic interactions when ξ > O(Kn), and non-continuum
lubrication interactions when ξ ≤ O(Kn). In this study, we use the uniformly valid solution
of axisymmetric mobilities developed by them.

We are interested in uncharged drops or particles in a gas, thus the potential Φ̂12 =
Φ̂vdW is due solely to van der Waals attraction. Assuming pairwise additivity of the
intermolecular attractions, Hamaker (1937) calculated the van der Waals force between
two isolated particles. The force potential as a function of dimensionless centre-to-centre
distance for two unequal-sized particles without retardation is then

Φ̂vdW = −AH

6

[
8κ

(r2 − 4)(1 + κ)2 + 8κ

r2(1 + κ)2 − 4(1 − κ)2

+ ln
{

(r2 − 4)(1 + κ)2

r2(1 + κ)2 − 4(1 − κ)2

}]
, (2.4)

where AH is the Hamaker constant for the materials composing the two spheres. Typically,
AH is of order 10−19–10−21J (see Russel et al. 1991).

The induced-dipole/induced-dipole interaction between the molecules results in van
der Waals attraction. We can express this induced-dipole/induced-dipole interaction
in the form of a summation of characteristic electromagnetic waves with finite
propagation speed. The finite propagation speed of electromagnetic waves alters the
induced-dipole/induced-dipole interactions when droplet separations are comparable with
or larger than the London wavelength λL (≈ 0.1 μm). The effect of electromagnetic
retardation was not considered in Hamaker’s calculation; hence (2.4) is valid only for
separations less than λL. Schenkel & Kitchener (1960) analysed the retardation effect and
provided the following expressions for Φ̂vdW when ξ = r − 2 � 1:

Φ̂vdW =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(

κ

3(1 + κ)2

)(
AH

ξ + 0.855NLξ2

)
, for ξ < 4/NL,

−
(

κ

(1 + κ)2

) (
AH

ξ

)[
4.9

15NLξ
− 8.68

45N2
Lξ2

+ 4.72
105N3

Lξ3

]
, for ξ > 4/NL,

(2.5)
where NL is the radius of the two particles scaled by the retardation wavelength λL (i.e.
NL = 2π(a1 + a2)/λL = 2πa1(1 + κ)/λL).

We choose a spherical coordinate system (r, θ, φ) with origin at the centre of sphere
2 and θ = 0 being the vorticity axis (x3). To non-dimensionalize the system, we consider
a∗ (= (a1 + a2)/2), γ̇ −1 and γ̇ a∗ as the characteristic length, time and velocity scales of
the problem, respectively. Thus the non-dimensional radial separation between the centres
of the two spheres lies in the range from r = 2 (referred to as the collision sphere, indicated
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as sphere 3 in figure 2) to r = ∞ (where one sphere does not influence the other). The
size ratio κ , which can vary in the range (0, 1], captures the geometry of the two-spheres
system. For U∞(x) = (γ̇ x2, 0, 0), the dimensionless relative velocity v (= v̂12/γ̇ a∗) can
be written as v = vrêr + vθ êθ + vφ êφ , where

vr = −LQ sin θ cos φ + (1 − A)r sin2 θ sin φ cos φ − G
NF

dΦ12

dr
, (2.6)

vθ = −MQ cos θ cos φ + (1 − B)r sin θ cos θ sin φ cos φ, (2.7)

vφ = MQ sin φ − r sin θ

[
sin2 φ + 1

2
B

(
cos2 φ − sin2 φ

)]
. (2.8)

Here, Φ12 = Φ̂12/AH is the dimensionless interparticle potential. The dimensionless
number NF measures the relative importance of viscous forces due to shear and van der
Waals forces:

NF = 3πμf a3
1κ(1 + κ)γ̇

2AH
. (2.9)

The other non-dimensional quantity is Q, which is the terminal velocity due to gravity
scaled with γ̇ a∗:

Q = 4ρpga1(1 − κ)

9μf γ̇
. (2.10)

The quantity QNF, which measures the relative strength of gravitational and van der Waals
forces, is independent of the fluid viscosity μf and the imposed shear rate γ̇ . We denote
QNF as Ng:

Ng = 2πρpga4
1κ(1 − κ2)

3AH
. (2.11)

With the expressions for the relative velocity (2.6)–(2.8) thus obtained, we need to solve
the following relative trajectory equations:

dr
dt

= vr, (2.12)

dθ

dt
= vθ

r
, (2.13)

dφ

dt
= vφ

r sin θ
, (2.14)

where t is the dimensionless time.

2.2. Expressions for the particle collision rate and efficiency
The collision rate is defined as the rate at which particles of radii a1 and a2 with number
densities n1 and n2 collide with each other per unit volume. Mathematically, the collision
rate K12 is equal to the flux of pairs into the collision sphere of radius r = 2, thus we can
express it in terms of the pair distribution function P(r) and the particle relative velocity
v. In this problem, the collision rate over the collision sphere scales as n1n2γ̇ (a1 + a2)

3,
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and therefore we can write

K12

n1n2γ̇ (a1 + a2)3 = −1
8

∫
(r=2)&(v·n<0)

(v · n)P dA, (2.15)

where n is the outward unit normal at the spherical contact surface. For a dilute suspension,
the pair distribution function is governed by the quasi-steady Fokker–Planck equation for
regions of space outside the contact surface,

∇ · (Pv) = 0, (2.16)

with the upstream boundary condition P → 1 as r → ∞. For our numerical calculations
we consider P = 1 at r = r∞, a large but finite radial location.

The deterministic background flow and high particle Péclet number (negligible
Brownian diffusion) make the relative motion deterministic. Therefore, we can find the
collision rate using trajectory analysis. Using (2.16) and the divergence theorem, the
integral in (2.15) can be taken over the surface that encloses the volume occupied by
all trajectories that originate at r = r∞ (far upstream) and terminate at r = 2 (collision
surface). The trajectories far upstream will become parallel to the x1-axis as the
interparticle interactions become insignificant for large separations. Thus the collision rate
is equal to the flux through a cross-section Ac located far upstream and perpendicular to
the flow axis:

K12

n1n2γ̇ (a1 + a2)3 = −1
8

∫
Ac

(v · n′)|r∞ dA, (2.17)

where n′ is the unit outward normal vector at the area element of Ac. From here
onwards, we will label this area Ac as the upstream interception area. Equation (2.17)
bypasses the evaluation of the pair probability P. The interaction between the spheres is
negligible at large separation, thus we can calculate v using the far-field values of the
hydrodynamic mobilities. At large separation, v becomes parallel to the flow axis. We find
that (v · n′)|r∞ = −Q + x̄2, where x̄i = xi/a∗ (i = 1, 2, 3). Therefore, (2.17) reduces to

K12

n1n2γ̇ (a1 + a2)3 = 1
8

∫
Ac

(Q − x̄2) dx̄3 dx̄2. (2.18)

We denote the collision rates with and without interactions as KPI
12 and K0

12, respectively.
The collision efficiency E12 is defined as the ratio of KPI

12 to K0
12:

E12 = KPI
12

K0
12

. (2.19)

Using trajectory analysis, we determine the upstream interception area, within which two
widely separated spheres will eventually collide.

3. Ideal collision rate

In the absence of interparticle interactions, the particle trajectories coincide with the
undisturbed fluid streamlines. Therefore, in the ideal collision rate calculation, P = 1 for
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all radial separation, and we have

K0
12

n1n2γ̇ (a1 + a2)3 = −1
8

∫
(r=2)&(v·n<0)

(v · n)r2 sin θ dθ dφ (3.1)

= 1
2

∫ 2π

0
dφ

∫ π

0
dθ sin θ

(|v · n|H(−v · n)
)|r=2, (3.2)

where H is the Heaviside step function. In the absence of interactions, we can calculate
v using (2.6), (2.7) and (2.8) with A = 0, B = 0, L = 1, M = 1, G = 1 and dΦ12/dr = 0.
On the surface of the collision sphere,

vr|r=2 = v · n|r=2 = − sin θ cos φ (Q − 2 sin θ sin φ). (3.3)

There are two regions on the collision sphere where collisions can occur when simple shear
flow alone (Q → 0 limit) drives the motion of the particles. One region is r = 2, 0 ≤
θ ≤ π, 0.5π ≤ φ ≤ π, and the other region is r = 2, 0 ≤ θ ≤ π, 1.5π ≤ φ ≤ 2π. The
upstream interception area formed by trajectories starting from each region is a semicircle
(of non-dimensional radius 2). Therefore, the total upstream interception area Ac for a
simple shear flow is a circle of non-dimensional radius 2. The collisions due to differential
sedimentation alone (Q → ∞ limit) occur over the hemisphere in the gravity direction.
The upstream interception area, in this case, is also a circle of non-dimensional radius 2.
The collision regions on the collision sphere for intermediate values of Q can be obtained
by finding the θ and φ values where vr|r=2 < 0. The region on the collision sphere that
contributes to the influx of particle trajectories can be calculated analytically, and we have
found the collision rate for the mixed problem to be

K0
12

n1n2γ̇ (a1 + a2)3 =
[

1
12

√
4 − Q2 (8 + Q2) + Q sin−1

(
Q
2

)]
H(2 − Q)

+πQ
2

H(Q − 2). (3.4)

Figure 3 shows the variation of the ideal collision rate as a function of the strength of
gravity relative to the simple shear flow. This ideal collision rate matches asymptotically
Smoluchowski’s results in the Q → 0 and Q → ∞ limits, which correspond to simple
shear flow alone and pure differential sedimentation, respectively. For intermediate values
of Q, the ideal collision rate is not a linear combination of the rates resulting from the
two driving forces acting independently. Interestingly, in this problem for Q > 2, the
ideal collision rate is exactly equal to the collision rate due to differential sedimentation,
although the simple shear flow continues to influence the pair trajectories for any finite
Q. This feature seems to be peculiar to simple shear flow since for uniaxial compressional
flow, the pure differential sedimentation collision rate is achieved asymptotically in the
Q → ∞ limit (see Dhanasekaran et al. 2021a).

4. Collisions with interparticle interactions

4.1. Collision efficiency without gravity and van der Waals forces (Q = 0, N−1
F = 0)

In the absence of gravity and van der Waals forces, (2.12)–(2.14) yield the following
integrals for the relative trajectories (see Batchelor & Green 1972a):

x̄3 = ζ3 ϕ(r), (4.1)

x̄2
2 = ϕ2(r) [ζ2 + Ψ (r)], (4.2)
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Figure 3. The variation of ideal collision rate for a pair of spheres settling in a simple shear flow (where the
flow axis is aligned with gravity) with Q. The results for pure simple shear flow (4/3), and pure differential
sedimentation (πQ/2) are included for reference.

where ζ2 and ζ3 are the constants specifying a particular trajectory. The expressions for
ϕ(r) and Ψ (r) are

ϕ(r) = exp
[∫ ∞

r

A(r′) − B(r′)
1 − A(r′)

dr′

r′

]
, (4.3)

Ψ (r) =
∫ ∞

r

B(r′) r′ dr′

[1 − A(r′)] ϕ2(r′)
. (4.4)

We perform integrals in (4.3) and (4.4) using near-field and far-field asymptotic
expressions (for both A(r) and B(r)) along with an exact bispherical coordinate solution
of A(r) and a twin-multipole expansion solution of B(r) for intermediate separations.
Continuum hydrodynamic interactions between a pair of solid spheres result in two types
of relative trajectories – open and closed (see Batchelor & Green 1972a). These trajectories
are fore–aft symmetric. Figure 4(a) shows in-plane (i.e. at x̄3 = 0) relative trajectories for
continuum hydrodynamic interactions. The separatrices (black lines in figure 4a) ζ2 = 0
for continuum hydrodynamic interactions separate the closed and open trajectories (see
Batchelor & Green 1972a). We find that non-continuum lubrication interactions introduce
two new kinds of relative trajectories – collision and semi-closed – but trajectories remain
fore–aft symmetric. Therefore, non-continuum lubrication interactions result in four types
of trajectories: (i) open trajectories that arrive from infinity and depart to infinity without
reaching the collision sphere; (ii) collision trajectories that arrive from infinity and collide
on the surface of the contact sphere r = 2, or depart from the surface of the contact
sphere and go to infinity; (iii) semi-closed trajectories that start from the surface of the
contact sphere and return to it; and (iv) closed trajectories. Figure 4(b) shows the pattern
of pair trajectories at the shearing plane (i.e. at θ = π/2) for non-continuum hydrodynamic
interactions. Interestingly, two distinct types of separatrix exist due to non-continuum
lubrication interactions. The separatrix that separates semi-closed and collision trajectories
touches the x̄1-axis at r = ∞. So for this separatrix, x̄2 = 0 at r = ∞, which yields ζ2 = 0.
The other separatrix, which divides regions of collision and open trajectories, is tangent
to the collision sphere at x̄2 = 2, and maintains a finite gap from the x̄1-axis at r = ∞;
accordingly, from (4.2), we have ζ2 = (4/ϕ2(2)) − Ψ (2). For semi-closed and closed
trajectories ζ2 < 0, and for open trajectories ζ2 > (4/ϕ2(2)) − Ψ (2). The trajectories
confined between these two types of separatrix are collision trajectories. These separatrices
form the boundary of the collision trajectories in three dimensions. The cross-section of
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Figure 4. A comparison is made between (a) continuum (Kn = 0) and (b) non-continuum (Kn = 10−1)
in-plane pair trajectories when κ = 1. The sphere located at the centre is the test sphere, and the black circle is
the collision circle in the shearing plane. Arrows on the trajectories indicate their directions, and black arrows
in each quadrant indicate the flow direction. In (a), blue and green lines are open and closed trajectories, and
continuous black lines are the separatrices between them. In (b), blue, continuous red and dotted green lines
are open, colliding and semi-closed trajectories. Dashed red lines start from the collision sphere and depart to
infinity. Continuous black lines are separatrices between regions of semi-closed and collision trajectories, and
between regions of collision and open trajectories. It is important to note that the trajectories for both cases are
fore–aft symmetric.

0

2

–2

–4

–6
20

10

0

–10
–2 –4

–6
–8

02

x‾1

x‾2

x‾3

Figure 5. The sphere (with non-dimensional radius 2) represents the collision surface. The limiting collision
(continuous red lines) and semi-closed (dotted green lines) trajectories, and the closed (continuous green lines)
trajectories along with their projections in different planes, are plotted for Kn = 10−2 and κ = 0.5. The black
circle represents the upstream interception area whose radius varies depending on the values of Kn and κ .

this boundary becomes a semicircle as r → ∞ (see figure 5). From figure 5, it can be seen
that out-of-plane closed trajectories are present, while no closed trajectories exist in the
shearing plane.

The hydrodynamic mobility functions always asymptote to a specific numerical value
as the separation approaches infinity; in this case, both A and B approach zero as ξ →
∞. The lubrication force becomes dominant for ξ � 1. The radial mobility (1 − A) is
O(ξ) for continuum lubrication interactions and thus precludes finite time contact between
the spheres. As was discussed earlier, the non-continuum lubrication interactions lead to
1 − A = O(1/ln(ln(Kn/ξ))), which vanishes slower than its continuum counterpart. This
weaker non-continuum lubrication force arises at ξ = O(Kn) and is responsible for the
contact between the spheres in finite time. On the shearing plane, the minimum distance
of the separatrix (that separates closed and open trajectories) from the collision sphere,
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Collision efficiency of non-Brownian spheres in a gas

dsep
min = x̄2 − 2 = r − 2 at x̄1 = 0, is finite for continuum hydrodynamic interactions. To

find dsep
min, we put x̄2 = r and ζ2 = 0 in (4.2), then solve for r numerically. For a given size

ratio, dsep
min decreases gradually with increasing Kn, and it becomes zero when Kn is greater

than Knc. We call this Knc the critical Knudsen number for a given κ . The separatrix for
Kn > Knc always maintains a finite distance from the flow axis in the far field. Zinchenko
(1984) and later Wang et al. (1994) analysed a problem that also encounters weakened
lubrication interactions, similar to the current problem. They considered collisions of small
drops in linear flow fields. For drops, the radial mobility is 1 − A = O(

√
ξ) for ξ � 1,

which also vanishes slower than its rigid counterpart and therefore results in collision
trajectories and finite collision rates in the absence of colloidal forces. They found a critical
size ratio for a given viscosity ratio necessary for a collision to occur, thus finding a phase
boundary for the existence of stable emulsions in the absence of colloidal forces.

Following the works of Zinchenko (1984) and Wang et al. (1994), we define two regions
in r-space (r > 2) as given below:

Df : x̄2
2 < ϕ2(r) Ψ (r), (4.5)

Dt : x̄2
2 + x̄2

3 ≤ ϕ2(r)
[

4
ϕ2(2)

− Ψ (2) + Ψ (r)
]

, (4.6)

where the domain Df consists of trajectories with a finite length (i.e. semi-closed and
closed trajectories), while trajectories touching the collision sphere (i.e. semi-closed and
collision trajectories) occupy the region Dt. According to their definitions, these two
regions must have overlap regions because semi-closed trajectories have finite lengths, and
at the same time, they touch the collision sphere. The same is also evident from figure 5,
where projections of the separatrices in different planes overlap. Therefore, semi-closed
trajectories belong to the region Df ∩ Dt. Collision trajectories belong to Dt − (Df ∩ Dt),
closed trajectories belong to Df − (Df ∩ Dt), and open trajectories do not belong to any of
these regions. The boundaries of the regions Df and Dt are formed by rotating the in-plane
separatrices corresponding to ζ2 = 0 about the x̄2-axis, and ζ2 = (4/ϕ2(2)) − Ψ (2) about
the x̄1-axis. The volumes of the regions Df and Dt depend on Kn and κ .

Unlike the scenario with continuum interactions, the collision rate is non-zero for
non-continuum lubrication interactions, even in the absence of the van der Waals force.
The expression for the collision efficiency in this case is

E12 = 1
8

ζ
3/2
2 =

(
1

ϕ2(2)
− Ψ (2)

4

)3/2

. (4.7)

Figure 6(a) shows the variation of the collision efficiencies with Kn for different size
ratios. As expected, for a given κ , the collision efficiency decreases with decreasing Kn.
Most importantly, the collision efficiency is zero when Kn is less than some critical value
Knc. In contrast, our previous study (Dhanasekaran et al. 2021a) observed that collisions
in a uniaxial compressional flow could occur without van der Waals forces for arbitrarily
small Kn. In simple shear flow, the driving force for relative motion is primarily tangential
at the closest approach. Thus the non-continuum modification of the resistivity for normal
motion is less effective in simple shear flow than in uniaxial compressional flow. The
critical Knudsen number Knc is different for different values of κ . In (4.7), the quantity
(4 − ϕ2(2) Ψ (2)) switches sign at Kn = Knc. Figure 6(b) shows that Knc decreases as κ

increases. The Knc–κ plot shows the demarcation between the region of stable dispersion
(no collision possible) and the region of unstable dispersion (collision possible). The same
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Figure 6. (a) The collision efficiency for particles in a simple shear field as a function of Kn for different
κ without van der Waals forces (i.e. NF = ∞). For any value of κ , the collision efficiency decreases with
decreasing Kn. The dotted lines corresponding to each curve indicate the value of the critical Knudsen number
Knc for that value of κ . (b) Plot showing how Knc varies with κ . The solid red circles indicate the minimum
distance of the separatrices from the collision sphere for κ = 0.3, 0.4, . . . , 1.0 when a pair of particles interacts
through continuum hydrodynamics. The lower inset in (b) shows continuum in-plane separatrices for different
values of κ . The black dashed line is a separatrix that separates closed and open streamlines for a single sphere
in a simple shear flow. The upper inset in (b) shows a zoomed-in view of the separatrices near x̄1 = 0 in
increasing order of κ from the top.

figure also shows the variation of dsep
min with κ , and it is evident that the trends of Knc and

dsep
min are quite similar. The region of closed trajectories is larger for particles with a smaller

κ , therefore Knc decreases with increasing κ . For a medium with the mean free path λ0, and
κ = 1, the critical particle size is a1 = λ0/Knc. So, using the value of Knc, we can create
a stable dispersion of equal-sized drops. Another important application of Knc might be
in detecting the mean free path of a gaseous medium. For known values of a1 and κ , the
mean free path of the medium can be found from the expression λ0 = a1(1 + κ) Knc/2.

4.2. Collision efficiency with van der Waals forces but without gravity (Q = 0, N−1
F /= 0)

The van der Waals force acts along the line joining the two spheres’ centres, thus
influencing only the radial component of the relative velocity. The last term on the
right-hand side of (2.6) represents the relative velocity due to van der Waals attractions,
whose potentials are expressed by (2.4) and (2.5). We use a uniformly valid solution of
the mobility function G, which captures non-continuum hydrodynamic interactions for
separations ξ ≤ O(Kn), and continuum hydrodynamic interactions for ξ > O(Kn). In the
presence of van der Waals interactions, the parameter NF becomes greater than zero. The
van der Waals interaction eliminates the fore–aft symmetry of the relative trajectories, thus
the determination of the upstream interception area becomes non-trivial.

The dimensionless trajectory equations (2.12)–(2.14) form an autonomous system, thus
we can reduce the system to two equations:

dr
dφ

= −
r(1 − A) sin2 θ sin φ cos φ − G

NF

dΦ12

dr[
sin2 φ + 1

2 B
(
cos2 φ − sin2 φ

)] , (4.8)
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x̄2

x̄1

Figure 7. A comparison is made between in-plane continuum and non-continuum relative trajectories for NF =
10 and κ = 0.5. In the presence of van der Waals interactions, pair trajectories are not fore–aft symmetric.
Blue lines are open trajectories. Red continuous (Kn = 10−2) and dash-dotted (Kn = 0) lines indicate collision
trajectories starting from different downstream locations but ending at the same point on the collision circle.
Collisions occur on both the front and rear sides of the test sphere; trajectories designated by 1, 1′, 2, 2′ are such
examples. Black continuous and dash-dotted lines are in-plane separatrices for non-continuum and continuum
hydrodynamic interactions.

dθ

dφ
= − (1 − B) sin θ cos θ sin φ cos φ[

sin2 φ + 1
2 B

(
cos2 φ − sin2 φ

)] . (4.9)

Equations (4.8) and (4.9) are solved numerically using a fourth-order Runge–Kutta method
(we use the ‘ode45’ subroutine in MATLAB). The near-field and far-field expressions for
dr/dφ and dθ/dφ can be derived by using respective near-field and far-field asymptotic
forms of A(r), B(r) and G(r). In this subsection, first, we will illustrate typical in-plane
and off-plane trajectories, and a typical upstream interception area in three dimensions,
using only the unretarded form of the van der Waals potential. Then we will show the
upstream interception areas and collision efficiencies as a function of different relevant
parameter values with both unretarded and retarded van der Waals potentials.

Figure 7 shows some typical in-plane trajectories for Kn = 10−2 and NF = 10 when
κ = 0.5. We find two kinds of in-plane trajectories – open and colliding. The van der
Waals force enables satellite spheres to collide on the rear side of the test sphere. This type
of collision trajectory does not exist in the absence of van der Waals interactions. Some
open trajectories convert into collision trajectories because of van der Waals interactions,
and these converted collision trajectories terminate on the rear side of the collision sphere.
Thus the separatrices that separate open and colliding trajectories asymptote with the
x1-axis (flow axis) in the far downstream, and maintain a finite distance from the x1-axis
in the far upstream. This distance is greater for non-continuum hydrodynamic interactions
compared to their continuum counterparts (see figure 7). Figure 8 shows two new kinds
of off-plane collision trajectories. In one case, we find that the satellite sphere undertakes
multiple circulations around the test sphere before collision (see figure 8a), whereas in
the other case, the satellite sphere starts from a point near the vorticity axis and spirals
in towards the test sphere to collide (see figure 8b). Feke & Schowalter (1983) and Wang
et al. (1994) have reported similar collision trajectories for colloidal particles interacting
through continuum hydrodynamics in a simple shear flow.

As discussed below, we employ the backward integration method (first used by Adler
1981) for obtaining the upstream interception area because this method considers collision
trajectories of all types. Here, the separatrices that separate colliding and non-colliding
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Figure 8. Off-plane collision trajectories in the presence of van der Waals forces when Kn = 10−2, NF = 10
and κ = 0.5. In (a), a trajectory coming from upstream makes multiple circulations before hitting the collision
sphere. In (b), a trajectory starts near the vorticity axis and spirals in towards the collision surface. In both plots,
blue and black dots are the start and end locations of the trajectories.

trajectories define the boundary of the upstream interception area. It is well established
that the van der Waals force becomes significant only when particles are in close separation
(see Zhang & Davis 1991; Wang et al. 1994). Therefore, the boundary of Df must merge
with the separatrices in the r → ∞ limit, and the far downstream part of a collision
trajectory must belong to the region Df . The far-field coordinates of the boundary of Df
are obtained after substituting the far-field expressions for A(r) and B(r) into (4.2) and
(4.1):

x̄3 ∼ ζ3

[
1 + 20

3
1 + κ3

(1 + κ)3
1
r3

]
, (4.10)

x̄2
2 ∼

(
x̄3

ζ3

)2 [
ζ2 + 32

2
3(1 + κ5) + 5κ2(1 + κ)

3(1 + κ)5
1
r3

]
. (4.11)

For determining the separatrices, we integrate (4.8) and (4.9) from far downstream to
far upstream (i.e. φ varies from π to 0 for x̄2 > 0, and from π to 2π for x̄2 < 0). We
take r = 10 as a reasonably large separation for far-field expressions to be valid. Thus the
starting positions of these separatrices are obtained by fixing r = 10 and calculating θ and
φ according to (4.10) and (4.11) with ζ2 = 0. Figure 9 shows one-quarter of the upstream
interception area in the (x̄1, x̄2, x̄3) space for Kn = 10−2, NF = 10 and κ = 0.5. This area
and its mirror image about the shearing plane (for the hemisphere on the negative side of
the x3-axis) constitute one-half of the total upstream interception area. The other half of
the upstream area lies far upstream on the positive x1 side, where the flow is in the negative
x1 direction. It is interesting to note that the curve bounding the area approaches infinity
in the vorticity direction (i.e. x̄3 → ∞ as x̄2 → 0) because of the attractive van der Waals
force between the spheres. Quarters of the upstream interception areas for different values
of NF when Kn = 10−2 and κ = 1.0 are plotted in figure 10(a). As expected, the area
decreases with increasing NF, and the area for the unretarded van der Waals interaction
is larger than that for the retarded one at the same value of NF. We obtain qualitatively
similar plots of upstream interception areas for different Kn when NF = 102 and κ = 1.0
(see figure 10b). However, in this case, the area increases as Kn increases.
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Figure 9. Separatrices (that separate colliding and non-colliding trajectories) calculated using the backward
integration method, plotted for Kn = 10−2, NF = 10 and κ = 0.5. The area enclosed by the red lines is
one-quarter of the upstream interception area.
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Figure 10. Quarters of the upstream interception areas in the x̄2–x̄3 plane. (a) Upstream interception areas for
different values of the van der Waals (vdW) force parameter NF (both unretarded and retarded) when Kn =
10−2 and κ = 1.0. (b) Upstream interception areas for various values of Kn when NF = 102 (both unretarded
and retarded) and κ = 1.0. The solid and dashed lines in both the plots are for the retarded (NL = 250) and
unretarded van der Waals interactions, respectively.

Figures 11(a) and 11(b), respectively, show the variation of the collision efficiency
with Kn (keeping NF fixed) and NF (keeping Kn fixed) for two equal-sized spheres
in a simple shear flow with non-continuum lubrication interactions and attractive van
der Waals forces. Here too, the collision efficiency decreases with decreasing Kn, but
unlike the previous case, for Kn < Knc, E12 does not approach zero because van der
Waals interactions between the particles then drive the entire collision dynamics. As
Kn approaches zero, the problem becomes equivalent to particles interacting through
continuum hydrodynamics and van der Waals forces. The collision efficiency decreases
as the strength of van der Waals forces relative to shear-driven viscous forces decreases,
or in other words, NF increases (see figure 11b). The collision efficiency for unretarded
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Figure 11. (a) Collision efficiency as a function of Kn for κ = 1.0 and NF = 102, 104 with NL = 250. Straight
lines indicate the values of the collision efficiency for continuum hydrodynamic interactions in the presence of
van der Waals forces. Each curve approaches the corresponding straight line as Kn tends to zero. (b) Collision
efficiency for two equal-sized spheres as a function of NF for Kn = 10−1, 10−2. The result for Kn = 0 obtained
by Wang et al. (1994) is included to validate our calculations.

van der Waals forces is considerably higher than that of the retarded cases when the
value of NF is not high (approximately less than 104). From an experimental perspective,
figure 11(a) would correspond to a set of experiments holding a1, γ̇ and the sphere
material fixed, and varying the mean free path λ0 by varying gas pressure; and figure 11(b)
would correspond to keeping a1 and λ0 fixed, and varying the shear rate γ̇ . In figure 12,
we plot the collision efficiency of water drops in air with a1 = 10 μm and a1 = 50 μm
as a function of κ at different shear rates γ̇ . Given the numerical values of κ and γ̇ ,
we can calculate easily the relevant dimensionless parameters required to determine the
collision efficiencies. The mean free path of air at standard temperature and pressure
is ≈70 nm. With decreasing pressure, the mean free path increases, a scenario relevant
in the context of droplet coalescence in warm clouds, thus λ0 ≈ 0.1 μm would be an
appropriate choice (see Lamb & Verlinde 2011). The Knudsen numbers as a function of
size ratio are given by Kn = 0.02/(1 + κ) for a1 = 10 μm, and Kn = 0.004/(1 + κ) for
a1 = 50 μm. For water droplets in air, AH ≈ 5 × 10−20 J and μf ≈ 1.8 × 10−5 Pa s. Thus
the dimensionless numbers NL and NF vary according to the relations NL ≈ 628(1 + κ)

and NF ≈ 1.7κ(1 + κ)γ̇ when a1 = 10 μm; and NL ≈ 3141(1 + κ) and NF ≈ 212κ(1 +
κ)γ̇ when a1 = 50 μm. For any fixed value of γ̇ , the collision efficiency increases with
increasing κ . It is important to note that γ̇ = ∞ is equivalent to no van der Waals
interactions. Therefore, the line γ̇ = ∞ must set the minimum value of the collision
efficiencies for a given κ . For a fixed κ , the collision efficiency increases monotonically
with decreasing γ̇ .

4.3. Collision rate and efficiency with gravity and van der Waals forces
There are several scenarios where the background flow and gravity, together, play a
significant role in particle collisions. As stated earlier, we assume that the background
flow is a simple shear flow. Here, we encounter an additional parameter, the inclination
angle between the flow axis and gravity. Dhanasekaran et al. (2021a) have recently studied
collisions due to the combined effect of uniaxial compressional flow and gravity, exploring
a range of inclination angles. To reduce complexity, in the current study, we fix the angle
between the flow axis and gravity to be zero. In this case, the collision rate will depend on
Kn (quantifying the strength of non-continuum hydrodynamic interactions), κ (describing
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Figure 12. Collision efficiency as a function of κ at different shear rates γ̇ for a1 = 10 μm and a1 = 50 μm.
The γ̇ = ∞ line corresponds to collision efficiencies resulting from non-continuum hydrodynamic interactions
alone.

the geometry of two interacting spheres), Q (capturing the relative velocity due to gravity)
and NF (capturing the van der Waals interactions). We will span these parameters to obtain
salient features of the collision dynamics. We consider the Knudsen numbers Kn = 10−2

(less dominant non-continuum lubrication interactions) and Kn = 10−1 (significantly
dominant non-continuum lubrication interactions), and size ratios κ = 0.5 (noticeably
different in size) and κ = 0.9 (nearly equal-sized). For any chosen Kn and κ , we will
span Q from 0 (simple shear flow dominated regime) to 20 (differential sedimentation
dominated regime).

We will now discuss the detailed procedure for determining the upstream interception
area without van der Waals interactions. In the presence of gravity and shear, the
determination of the upstream interception area using trajectory analysis is more
complicated than in the previous cases, where gravity was absent. The path traced by
a satellite sphere that starts far upstream and collides with the test sphere located at
the origin is classified as a collision trajectory. A set of such collision trajectories will
constitute the upstream interception area. The computational cost of trajectory evolution
would be immense if we set the initial conditions on the spherical shell at r∞. Most
trajectories starting from the surface at r∞ would never reach the collision sphere. Instead,
we start the satellite spheres from the collision surface and evolve them according to
their time-reversed motion. This is possible because of the quasi-steady nature of the
relative trajectory equations. The radial relative velocity of a colliding satellite sphere
must be inwards at the collision sphere. Thus we further reduce the computation by
selecting only those points on the collision sphere where the sign of the radial relative
velocity is negative. However, exactly at r = 2, vr = 0 because even in the presence of
non-continuum lubrication interactions, A = 1, L = 0 and G = 0 at r = 2. For this reason,
we consider small separations (ξ � 1) from the collision sphere. We will show converged
results without too much computational load at offset ξ = 10−6. Therefore, we evaluate
relevant hydrodynamic mobilities and radial relative velocity from (2.6) at r = 2 + 10−6.
The regions where vr is negative are called influx regions, and the regions where vr is
positive are called efflux regions. Only influx regions contribute to the collision rate.

Figure 13 shows the influx–efflux regions on the collision sphere for four different values
of Q when Kn = 10−2, κ = 0.5 and NF = ∞. The collision sphere is coloured blue. The
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Figure 13. The influx–efflux regions on the collision sphere for Kn = 10−2, κ = 0.5 and NF = ∞, for various
values of Q. The influx regions satisfy v · n < 0, and the efflux regions satisfy v · n > 0. Influx regions are
bounded either by black lines or by red lines. In (a), with Q = 0 (i.e. pure simple shear flow), two distinct but
identical influx regions exist on the collision sphere. One region lies on the x̄1 < 0 side (opposite to the gravity
direction), and the other region lies on the x̄1 > 0 side (gravity direction). In (b), with Q = 4, there are also
two influx regions but the region on the x̄1 < 0 side decreases, and the region on the x̄1 > 0 side increases. In
(c), with Q = 8, the two influx regions are close to each other. In (d), with Q = 12, only one influx region exist
and it lies in the gravity direction.

regions bounded by the black or red lines are the influx regions, and the remaining regions
are the efflux regions. For Q = 0, two distinct but identical influx regions exist on the
collision sphere, corresponding to the simple shear flow. In both the regions, θ varies from
0 to π, whereas φ ∈ [π/2, π] in one region (bounded by black lines) and φ ∈ [3π/2, 2π]
in the other (bounded by red lines). With increasing Q, the influx region towards the gravity
direction (i.e. x̄1 > 0 side) increases, and the influx region opposite to the gravity direction
(i.e. x̄1 < 0 side) decreases. The influx regions approach each other with increasing Q.
Eventually, at high enough Q, they merge. We found that for the above value of Kn and κ ,
these two regions merge when Q > 10.2, and the entire region lies within the hemisphere
in the gravity direction. The influence of the simple shear flow becomes negligible with a
further increase in Q, and gravity alone governs the collision dynamics. The bifurcation in
the pair trajectory topology with increasing Q has also been observed for particles settling
in a uniaxial compressional flow by Dhanasekaran et al. (2021a) and Dubey et al. (2022).

We integrate (2.12), (2.13) and (2.14) backwards in time to obtain relative trajectories.
Not all the trajectories starting from the influx region will be colliding trajectories. They
may also include semi-closed trajectories that start and end on the collision sphere and do
not contribute to the collision rate. We identify the colliding trajectories by applying the
condition that they depart to infinity. All these collision trajectories that go to infinity
become parallel to the flow axis. Thus we determine the upstream interception area
formed by these collision trajectories. Figure 14 shows the boundaries of the collection of
collision trajectories constituting Ac when κ = 0.5, Kn = 10−2 and NF = ∞. Two distinct
boundaries exist for smaller values of Q. One of them lies in the gravity direction, where
x̄1 > 0 (see figure 14b), and the other lies in the direction opposite to gravity, where
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Figure 14. The upstream interception areas for various values of Q when Kn = 10−2, κ = 0.5 and NF = ∞.
For 0 ≤ Q < 5.3, one area lies in the direction opposite to gravity (a), and the other lies in the gravity
direction (b). For Q = 0, each of them is a semicircle. With increasing Q, the area in the direction opposite
to gravity decreases, and it vanishes for Q > 5.3. On the other side, as Q increases, the area becomes a circle,
corresponding to pure differential sedimentation.

x̄1 < 0 (see figure 14a). For Q = 0, the upstream interception area is a circle (a sum of
two identical semicircles) corresponding to simple shear flow alone. As expected, the
area on the x̄1 < 0 side becomes thinner with increasing Q, and it disappears for Q > 5.3
(see figure 14a); whereas the area on the x̄1 > 0 side becomes circular as Q increases,
corresponding to pure differential sedimentation. It is notable from figure 14(a) that with
increasing Q, the entire area stretches significantly in the vorticity direction, and narrows
in the gradient direction.

The collision rates are shown in figure 15(a) as functions of Q for Kn = 10−2, 10−1

and κ = 0.5, 0.9 when NF = ∞. The qualitative behaviours of collision rates for various
combinations of Kn and κ are similar. The background shear contributes significantly to
the collision rate when Q is quite small, and gravity almost exclusively contributes to the
collision rate when Q is high. It is evident from figure 15(a) that the collision rate due
to the combined effect of gravity and shear is not a linear superposition of the collision
rates resulting from them individually. We find that the collision rate increases with Q for
given Kn and κ . However, we see a slight decrease in the collision rate for 4.7 < Q < 5.3
since the collisional area that lies in the direction opposite to gravity disappears around
these Q values. Therefore, the small bumps that appear around Q = 5.3 in the collision
rate curves are physical. Dhanasekaran et al. (2021a) and Dubey et al. (2022) reported
similar trends for the collision rate of settling spheres in a uniaxial compressional flow
with non-continuum hydrodynamics.

The collision rate with interactions is smaller than the ideal collision rate evaluated in
§ 3. The collision efficiency, which measures the extent of this retardation and manifests
interesting insights into hydrodynamic interactions, is obtained by dividing the rate with
interactions (from figure 15a) by the ideal rate. Figure 15(b) shows the variation of the
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Figure 15. Collision rates and efficiencies as functions of the strength of gravity relative to simple shear flow
for κ = 0.5, 0.9 and Kn = 10−2, 10−1 in the absence of van der Waals interactions (i.e. NF = Ng = ∞). For
all Kn and κ , the collision rate increases, and the collision efficiency monotonically decreases with increasing
Q.

collision efficiency with Q. In the absence of van der Waals forces, the collision efficiency
decreases monotonically with increasing Q. Like the collision rate curves, the collision
efficiency curves exhibit small bumps around Q = 5.3. For Q → 0, the collision efficiency
curve approaches asymptotically the value corresponding to the collision efficiency due to
simple shear flow alone. At large Q, the asymptotic behaviour of the collision efficiency
indicates the sedimentation-dominated regime. The asymptotic value for Q → ∞ is
significantly lower than the Q → 0 result for both κ = 0.5 and κ = 0.9.

The divergent nature of the van der Waals attraction force near contact makes the
radial relative velocity negative over the entire collision surface. Therefore, the entire
collision sphere becomes the influx region in the presence of van der Waals forces. We
determine the upstream interception area using the numerical technique discussed earlier
in this section, with the initial conditions spreading over the entire collision sphere. The
parameter Ng (= QNF), which measures the strength of gravity relative to van der Waals
forces, is finite in this case. Figure 16(a) shows how the collision efficiency varies with
Q−1 for Ng = 1, 10, 102, ∞ when Kn = 10−2, κ = 0.5 and NL = 500. A motivation for
plotting E12 with Q−1 is to allow comparisons with a possible experimental study where
the shear rate varies while the parameters describing the particle and medium properties
are kept fixed. The collision efficiency with van der Waals forces is always higher than that
without, for given values of Kn and κ . The collision efficiency increases monotonically
with Q−1 when only non-continuum hydrodynamics is present in the problem (Ng = ∞
curve in figure 16a). For a fixed Ng (other than ∞), as Q−1 increases, the strength
of van der Waals attractions relative to shear-induced viscous forces decreases since
NF (= Q−1Ng) increases. Therefore, with increasing Q−1 (increasing shearing rate), E12
increases up to a maximum value and then starts decreasing, and finally asymptotes to the
value corresponding to the collision efficiency of particles in a simple shear flow in the
presence of van der Waals forces and non-continuum hydrodynamics. The trend of Q−1

versus E12 curves for different Kn are similar qualitatively (see figure 16b). For a given
Kn, E12 is higher for a smaller Ng, and for a given Ng, E12 is higher for a higher Kn.
The collision efficiencies due to the combined effects of gravity, background shear flow
and van der Waals attractions are shown in figure 17 for various combinations of γ̇ and κ

when a1 = 10 and 20 μm. Like the Q = 0 result given in figure 12, the collision process
becomes more efficient as κ increases. However, contrary to the Q = 0 result, the collision
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Figure 16. (a) Collision efficiencies as functions of Q−1 for κ = 0.5 and Kn = 10−2 when Ng = 1, 10, 102, ∞
and NL = 500. (b) Collision efficiencies for Kn = 10−1, 10−2, 10−3 when Ng = 10. It is important to note that
unlike the Ng = ∞ case, the variation of the collision efficiency with Q−1 is non-monotonic for small and
moderate values of Ng.
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Figure 17. Collision efficiency due to the combined effects of gravity, shear and van der Waals force (retarded)
as functions of size ratio κ and shear rate γ̇ when (a) a1 = 10 μm, and (b) a1 = 20 μm. For a water droplet in
air, AH ≈ 5 × 10−20 J, and the dynamic viscosity of air is μf ≈ 1.8 × 10−5 Pa s. The values of the parameters
Kn, NL, NF , Q and Ng for given values of κ , γ̇ and a1 can be calculated from their expressions stated earlier.

efficiency is larger for a higher shearing rate (or higher Q−1) because the van der Waals
force accelerates the collision dynamics in the parameter space considered here.

5. Effects of weak particle inertia on collisions (St � 1)

The physics of particle inertia can also influence the collisions of particulate matter in
a gaseous medium. When the effect of particle inertia is significantly large, the particle
trajectories are predominantly ballistic. Tsao & Koch (1995) showed that dilute particle
suspensions in a simple shear flow with a Stokes number exceeding a critical value Stc ≈ 5
can exhibit an ignited state with a Maxwellian particle velocity distribution and nearly
ballistic motion when their collisions are elastic. However, at smaller Stokes numbers,
such as those considered here, particle velocities return to following the simple shear field
between subsequent particle–particle encounters.

Particle inertia, non-continuum hydrodynamics, van der Waals force, gravity and size
ratio constitute a formidable five-dimensional parameter space for studying particle
collision dynamics. In the previous sections, we studied the combined effects of van der
Waals force, gravity and size ratio. This section aims to study the first effect of particle
inertia on relative trajectories and collision efficiencies for two equal-sized spheres in a
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simple shear flow while interacting through non-continuum hydrodynamics, neglecting
the effects of the van der Waals force and gravity.

The force-free and torque-free conditions will no longer hold for St /= 0, thus we cannot
formulate the problem solely in terms of hydrodynamic mobilities. Subramanian & Brady
(2006) derived the equations governing the dynamics of a pair of spheres in simple
shear flow in terms of the relevant hydrodynamic resistance functions representing both
relative translation and rotation between the pair. To investigate the effects of weak particle
inertia, they obtained the O(St) correction to the relative velocity via a regular perturbation
expansion. The relative trajectory equations inclusive of O(St) terms are (see Subramanian
& Brady 2006)

dr
dt

= v(0)(r) + St v(1)(r), (5.1)

where

v
(0)
i = Γ ∞

ij rj −
{

A
rirj

r2 + B
(
δij − rirj

r2

)}
E∞

jk rk, (5.2)

v
(1)
i =

(
E∞

jk rjrk

)2
ri

[
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{
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}
E∞

il E∞
jk − 2(A − B)

r2 Γ ∞
il E∞

jk

]
. (5.3)

In the above expressions, A, B, C, E, G and H are hydrodynamic mobilities (functions of r
and κ), and Γ ∞

ij is the velocity gradient tensor. In § 2, we explained the physical meaning
of the mobilities A, B, G and H. The mobility function C characterizes the relative angular
velocity on account of hydrodynamic interactions, and the mobility function E represents
the translation–rotation coupling. Now, C = 2( yh

11 + yh
12) and E = yb

11 − yb
12, where yh

11,
yh

12 describe the stresslets of particle 1 due to the torques on particles 1 and 2, respectively,
and yb

11, yb
12 describe angular velocities of particle 1 due to the torques on particles 1 and

2, respectively (for further details, see Jeffrey & Onishi 1984; Kim & Mifflin 1985). For a
pair of equal-sized spheres (κ = 1) in simple shear flow, the O(St) dimensionless trajectory
equations form the following autonomous system:

dr
dφ

= r(1 − A) sin2 θ sin φ cos φ + St f2(r, θ, φ)

−
[
sin2 φ + 1

2 B
(
cos2 φ − sin2 φ

)] + St f1(r, θ, φ)/sin θ
, (5.4)

dθ

dφ
= (1 − B) sin θ cos θ sin φ cos φ + St f3(r, θ, φ)

−
[
sin2 φ + 1

2 B
(
cos2 φ − sin2 φ

)] + St f1(r, θ, φ)/sin θ
, (5.5)
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where

f1(r, θ, φ) = −H sin2 θ sin φ cos φ

[{
2B(A − B) − r(1 − A)

dB
dr

}
sin θ

cos2 φ − sin2 φ

2

+ 2(A − B) sin θ sin2 φ

]
− 6E

5r
sin θ sin φ cos φ

[
sin2 θ

cos2 φ − sin2 φ

2

×
{

r(1 − A)
dC
dr

+ 2C(B − 1)

}
+ C

2
(1 + sin2 θ)

]
, (5.6)

f2(r, θ, φ) = −rG
[

sin4 θ sin2 φ cos2 φ

{
(A − B)2 − r(1 − A)

dA
dr

}

+ B − 2A
2

sin2 θ sin2 φ − B
2

sin2 θ cos2 φ − B(B − 2A)

4
sin2 θ

]
, (5.7)

f3(r, θ, φ) = −H sin θ cos θ

[
B(B − 2)

4
+ sin2 θ sin2 φ cos2 φ

{
2(B − 1)(A − B)

−r(1 − A)
dB
dr

}]
− 6E

5r
sin θ cos θ

[
sin2 θ sin2 φ cos2 φ

×
{

r(1 − A)
dC
dr

+ 2C(B − 1)

}
+ C

4
(2 sin2 φ − B)

]
. (5.8)

Here, r sin θ f1 and r f3, respectively, represent the O(St) corrections of azimuthal and polar
components of the angular velocity, while f2 is the O(St) correction to the radial velocity.
Like the previous case, we calculate relative trajectories by integrating numerically the
system (5.4)–(5.5).

The inertial modifications of St = 0 relative trajectories are discussed in detail by
Subramanian & Brady (2006), who assumed continuum hydrodynamic interactions
between the particles for all separations. They found that in-plane open trajectories with
St /= 0 suffer a net negative displacement in the gradient direction far downstream, leading
to shear-induced diffusion. They also reported that St = 0 closed trajectories give way
to St /= 0 spiralling trajectories, and there exists a stable limit cycle very close to the
contact surface. The finite inertia pair trajectory topology is visible in figure 18(a),
highlighting the presence of trajectories spiralling both outwards and inwards to the
limit cycle. Figures 18(b,c) show the in-plane pair trajectories when both non-continuum
hydrodynamic interactions and particle inertia act together. We have seen that there
would exist no colliding trajectories for St = 0 when Kn < Knc. We have also noted
the presence of spiralling trajectories when we include the effects of particle inertia in
continuum hydrodynamics, St /= 0 and Kn = 0. Though no collision trajectories exist in
the above two situations treated individually, the combined scenario of non-continuum
physics and particle inertia introduces spiralling colliding trajectories, as can be seen in
figure 18(b). For Kn > Knc, the in-plane trajectories appear qualitatively similar to their
St = 0 counterpart – families of open, colliding and semi-closed trajectories as shown in
figure 4(b).

The inertial off-plane continuum trajectories are fore–aft asymmetric, like their in-plane
counterparts, and suffer net transverse displacements in the gradient (x̄2) and vorticity (x̄3)
directions. The off-plane closed trajectories can undergo two finite inertia modifications,
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Figure 18. In-plane relative trajectories for St = 0.1 and (a) Kn = 0, (b) Kn = 10−5, and (c) Kn = 10−1.
Colour schemes for the open, colliding and semi-closed trajectories are the same as earlier. In (a), green and
grey lines are inward and outward spiraling trajectories, and the yellow line is the limit cycle.

either spiralling outwards to infinity (x̄1 → ∞) in a plane parallel to the shearing plane,
or spiralling inwards and approaching the in-plane limit cycle. In figure 19, we show
the fate of an off-plane inward spiralling trajectory with the inclusion of non-continuum
lubrication effects. For Kn < Knc, the first few circuits around the collision sphere are
identical to the continuum trajectory. Once the spiral approaches the lubrication region,
non-continuum effects induce a collision (see figure 19b). For larger values of Kn, the
off-plane trajectory collides before spiralling can occur (see figure 19c).

Our objective is to calculate the collision efficiency, thus we determine the upstream
interception area using a methodology identical to that described in earlier sections.
In the absence of interparticle forces, collisions can occur only on the front side of
the hemisphere. We calculate the limiting trajectories by backward integration starting
from an initial condition very close to r = 2 and φ = π/2, and by varying the initial
condition of θ from 0 to π/2. As in the inertialess non-continuum case, the upstream
interception area for St /= 0 is also a circle. For Kn = 0, Subramanian & Brady (2006)
found that the zero Stokes in-plane separatrix suffers negative displacement in the gradient
direction – it has zero offset as x̄1 → ∞, and has an O(St1/2) offset as x̄1 → −∞.
Our numerical calculations with non-continuum hydrodynamics show that the limiting
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Figure 19. An off-plane spiralling trajectory for St = 0.1 and (a) Kn = 0, (b) Kn = 10−5, and (c) Kn = 10−1.
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Figure 20. Variation of collision efficiency with (a) St and (b) Kn.

colliding trajectory gets displaced by O(St1/2). Thus the enhancement due to particle
inertia should be O(St), which is visible in figure 20(a). Figure 20(b) confirms our earlier
observations from trajectory analysis that collisions can occur for Kn < Knc for St /= 0.

The above analysis revealed that the first effect of particle inertia is to enhance the
collision efficiency of a pair of spheres in simple shear flow, interacting via non-continuum
hydrodynamics. Similar enhancement of collisions due to particle inertia has also been
seen in differentially sedimenting spheres in a quiescent fluid with van der Waals
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interactions (see Davis 1984). The current analysis is valid in the St � 1 regime, and a
detailed collision study with the arbitrary St equations will be conducted in a future study
where we will need to include the non-continuum tangential lubrication forces derived
recently by Li Sing How, Koch & Collins (2021).

6. Summary and conclusions

In their pioneering study, Batchelor & Green (1972a) provided a comprehensive picture
of pair trajectories for inertialess spheres in the continuum limit. Our study revisited
this classical study and explained the collision dynamics of small solid/liquid spherical
particles in gaseous media subjected to a simple shear flow, incorporating various
physics that enable collision. We confined our attention to dilute suspensions, thus
pairwise interactions between the particles served the purpose. The continuum assumption
of hydrodynamic interactions fails at close separations. The near-field non-continuum
interactions become the dominant mechanism for particle collisions in media with long
mean free paths, like low-pressure gases. The importance of non-continuum lubrication
interactions on collisions in gaseous media has limited treatment in the existing literature.
This study has considered the appropriate expressions for non-continuum lubrication
forces between two spheres derived by Sundararajakumar & Koch (1996). We have
used the uniformly valid axisymmetric mobility functions that capture non-continuum
lubrication at close separations, and full continuum hydrodynamic interactions at moderate
to large separations. We have determined collision efficiencies in a simple shear field using
trajectory analysis, both with and without van der Waals force. The present study is also the
first to predict the collision efficiency for the coupled system, where gravity acts along the
simple shear flow axis. We have also reported the role of small but finite particle inertia on
collision efficiency for a particle pair interacting through non-continuum hydrodynamics
in a simple shear flow.

In § 2, we have formulated the basic problem for systems with zero inertia (i.e. Rep = 0
and St = 0). The relative velocity between a pair of inertialess spheres due to the combined
effects of background shear, van der Waals attractions, and differential sedimentation has
been expressed through relevant mobility functions that capture the hydrodynamic and
interparticle interactions. We have used the mean radius of the two spheres, the inverse
of the shearing rate, and the mean radius times the shearing rate as the characteristic
length, time and velocity scales to obtain the non-dimensional relative velocity and
trajectory equations in spherical coordinates. These non-dimensional equations contain
two dimensionless quantities called Q and NF. The parameter Q represents the relative
strength of gravity to the simple shear flow, and NF measures the relative importance
of imposed shear to the van der Waals interactions. The non-dimensional collision rate
equation is expressed as a surface integral over the collision sphere with the integrand
involving relative velocity and the pair probability at contact. We have determined the
collision rate by calculating the upstream interception area using trajectory analysis.

We have presented the variation of the ideal collision rates as a function of Q in figure 3.
The collision rate asymptotes to the ideal collision rate due to simple shear flow alone and
pure differential sedimentation in the Q � 1 and  1 limits, respectively. For intermediate
values of Q, the collision rate deviates from a linear combination of the collision rates
resulting from these two driving forces. The ideal collision rate calculation for a non-zero
angle between the flow axis and gravity might be a potential future work, and it will
certainly reveal many interesting collision dynamics.

Sections 4.1 and 4.2 provide a map of pair trajectories and collision efficiencies for
non-continuum lubrication interactions in a simple shear flow with and without van der
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Waals forces. We have seen that the collision efficiency between two spheres interacting
through non-continuum hydrodynamics in a simple shear flow is non-zero, even without
attractive forces. In the absence of van der Waals interactions, the collision efficiency
decreases as Kn decreases, and it becomes zero when Kn is less than a critical value Knc.
This behaviour is in contrast to an earlier study (Dhanasekaran et al. 2021a) of particle
pair interactions in a uniaxial compressional flow where the collision rate vanishes only
in the Kn → 0 limit. The absence of Knc is due to the different pair trajectory topology in
the continuum limit. Uniaxial compressional flow has open pair trajectories, while simple
shear flow has open and closed pair trajectories. However, the collision efficiencies for
either linear flow are non-zero for any Kn in the presence of van der Waals forces. In
fact, for a simple shear flow with Kn < Knc, van der Waals interactions predominantly
drive the collision dynamics. As Kn → 0, collision efficiency asymptotes to the value
corresponding to the collision efficiency with van der Waals force while particles interact
through continuum hydrodynamics. Figure 12 gives results in dimensional form for a case
that one might consider experimentally.

Collision rates and collision efficiencies for gravity coupled with the simple shear flow
are presented in § 4.3. We have seen in figure 15(a) that the normalized collision rate
increases with Q. At small values of Q, simple shear flow contributes almost singly to the
collision rate, and gravity drives the collision dynamics at large values of Q. The transition
from the simple shear flow dominated regime to the gravity dominated regime occurs at
Q ≈ 6, while the same for the ideal collision rate occurs at Q ≈ 2. Collision efficiencies
for the same sets of values of Kn and κ are shown in figure 15(b). For a given Kn and
κ , the collision efficiency approaches the highest value when Q → 0, and then decreases
monotonically with increasing Q. It is evident from figure 15(b) that the relative thickness
of the non-continuum layer decreases as Kn decreases, which leads to retardation in the
collision process. We have also reported a few results for collision efficiencies when all
four factors (background shear flow, gravity, non-continuum lubrication interactions and
van der Waals force) are in play (see figures 16 and 17). The present study corresponds to
vertical pipe flows of suspensions (such as in risers), where the angle between the simple
shear flow axis and the gravity direction is zero. One can extend this study to inclined pipe
flows to explore interesting collision dynamics for non-zero angles between the flow axis
and gravity.

In § 5, we investigated the effects of small but finite particle inertia on collision
efficiencies for particles interacting through non-continuum hydrodynamics in a simple
shear flow. The O(St) modifications of the relative trajectories are presented in figures 18
and 19. Particle inertia breaks the fore–aft symmetry of relative trajectories, and open
trajectories suffer a net displacement in the gradient direction. We determined the collision
efficiency as a function of St and Kn. We have seen that the efficiency increases linearly
with Stokes number following the O(St−1/2) displacement of the limiting colliding
trajectory (see figure 20). The Stokes number St based on sedimentation velocity is
not small for a1 > 10 μm. Thus particle inertia will play an important role in particle
collisions. To date, there are no theoretical predictions of collision efficiencies for
inertial particles due to the coupled effect of background shear, gravity and interparticle
interactions. Therefore, the current study will serve as an initial calculation against which
to compare future analyses with inertial effects.

The outcomes of the present study will be helpful to the successful design of
equipment where a simple shear flow drives collisions between particles interacting
through non-continuum hydrodynamics. A better knowledge of the collision process might
improve the prediction of the particle size distribution at the outlet of various pneumatic
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conveying devices operating at low pressure. The mean free paths for low-pressure gases
are long; thus non-continuum lubrication forces will play a dominant role in collisions.
An improved understanding of the collision dynamics in porous aerosol filters will aid
in promoting the aggregation of pollutants to form larger aggregates that can be filtered
easily. A better understanding of the collision process can reduce errors in measuring
aerosol size distribution in aerosol impactors. Our study is also applicable where collisions
are driven by the combined effects of gravity and a simple shearing flow, for example,
in laminar flows of suspensions through vertical pipes or channels. Another application
of the simple shear calculation might be coalescence or coagulation in turbulent pipe or
channel flows at a moderate Reynolds number where the mean shear rate is higher than
the Kolmogorov shear rate. Some of the subtle features of the simple shear flow, like the
perfectly closed trajectories, would be lost in the turbulent flow. Still, some general trends
and rough estimates are probably applicable. To compare our results, one could estimate
the coalescence rate in a turbulent pipe or channel flow from experimental measurements
or direct numerical simulations.
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