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Abstract

In this paper two theorems are proved that give a partial answer to a question posed by G. Behrendt
and P. Neumann. Firstly, the existence of a group of cardinality Nj with exactly Nj normal
subgroups, yet having a subgroup of index 2 with 2Kl normal subgroups, is consistent with ZFC (the
Zermelo-Fraenkel axioms for set theory together with the Axiom of Choice). Secondly, the statement
"Every metabelian-by-finite group of cardinality N, has 2*1 normal subgroups" is consistent with
ZFC.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 A 15; secondary 16 A 27.

1. Introduction

We are interested here in the following question.

QUESTION 1. Given any uncountable cardinal m, does there exist a group of
cardinality m with at most m normal subgroups, having a finite-index subgroup
with 2m normal subgroups?

The analogous question for the countable case was answered affirmatively by
G. Behrendt and P. M. Neumann in their paper [1], which concludes with the
remark that they were unable to generalize their method to the situation of
uncountable cardinals. Here we prove two, somewhat complementary, consistency
results, which at least eliminate some of the directions in which one might be
tempted to proceed in trying to settle Question 1. Partly for ease of presentation
we shall throughout take m = X1; the first uncountable cardinal, although our
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results hold for certain other uncountable cardinals as well. Our first main result
shows that Question 1 cannot have a negative answer within the system ZFC.

THEOREM 1. The existence of a group of cardinality X1 with exactly S x normal
subgroups, yet having a subgroup of index 1 with 2K> normal subgroups, is
consistent with ZFC (the Zermelo-Fraenkel axioms for set theory together with the
Axiom of Choice).

(In fact, our construction yields the consistency with ZFC of the existence of
such a group having only Ho normal subgroups.)

The countable example of Behrendt and Neumann in [1] is, at least in its
simplest form, abelian-by-finite. Our second main result shows that an uncounta-
ble example with the property given in Question 1, if there is one, will certainly
have a more complex structure.

THEOREM 2. The statement "Every metabelian-by-finite group of cardinality S j
has 2 8 ' normal subgroups" is consistent with ZFC.

The key to both theorems is the known consistency with ZFC of the statement
that 2N° = 2*1 (which holds for certain uncountable cardinals other than S j also;
see [6, Section 19]). In fact in proving Theorem 1 we exploit the same properties
of the quasi-cyclic group Zp* as do Neumann and Behrendt [1], namely that
while it has only S o subgroups, it has 2K° endomorphisms, so that its direct
square Zp<* ffi Z ^ has 2K° subgroups (one for each ij e E n d Z ^ , namely Sv =
{(x, XT]) | x e Z^oo}). Thus in seeking an answer to Question 1, it is natural to ask
for a module of uncountable cardinality with the analogous property.

QUESTION 2. Does there exist a module of cardinality Sj with only Nx

submodules but with 2Nl endomorphisms? (Note that by [3, Theorem 1] the
underlying ring of such a module cannot be (right) Noetherian of cardinality less
than «!.)

In the course of proving Theorem 1 it emerges that Question 2 cannot have a
negative answer. (However this consistency result of course gets us no further
with Question 1.)

PROPOSITION 1. An affirmative answer to Question 2 is consistent with ZFC. (In
fact it is consistent with ZFC that there exist such a module with only No

submodules.)
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In connexion with Question 2 the following simple result may also be of
interest.

PROPOSITION 2. A module of cardinality Sx with fewer than S j submodules has
at most 2N° endomorphisms (in fact at most Sx endomorphisms if it has only finitely
many submodules).

If Question 2 should have an affirmative answer (i.e. within the system ZFC)
then with an eye to the original Question 1, we might ask more specifically

QUESTION 3. Is there a module of cardinality Xj over a countable group ring
Z[G], with only Sj submodules but with 2**1 endomorphisms?

(Note that in view of [3, Theorem 3] one cannot hope for an abelian group G in
an affirmative answer to this question.)

We thank Juris Steprans for some helpful remarks.

2. Proofs of Theorem 1 and the propositions

PROOF OF THEOREM 1. Denote by D the direct sum

where each Aa s Zp*. for some (single) fixed odd prime p, and where Nx is to be
thought of as the least ordinal of cardinality Kx (and an ordinal as the set of its
predecessors). For each a e S , present Aa additively as follows:

Aa = (<la,l,aa,2>---\Paa,l = 0 > Paa,,+ 1 = Oa,n ' = 1 , 2 , . . . > .

Let B denote the discrete alternating group of permutations of the index set Nl5

i.e. the group of all even permutations of S t fixing all but finitely many elements;
then an action of B on D is defined in the obvious way by

so that B merely permutes the Aa as wholes. For each / = 1,2,.. . , write L, for
the zth "layer" of D, i.e. for the subgroup of D generated by all aai, a e Nt;
thus L, is a direct sum of Sx /?'-cycles. It is clear that each L, is 5-invariant.
Furthermore any 5-invariant subgroup S of L, not contained in Li_l (where Lo

is defined as the trivial subgroup) will contain all elements of the form a . - avj

H, v G Kx, n # v. To see this observe first that for some a e S ^ S must contain
an element of the form aai + x, where x e L, is a (finite) sum of multiples of
elements ap y with B =£ a, j ^ i. By applying to this element any permutation
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from B fixing all these B and sending a to some y e « , different from a, we see
that also ay,, + x e S, whence aai — ayie S, and then the application of any
permutation in B sending a to ft, y to v, yields finally a^ , - av<i e S.

Write A/, for the subgroup of L, generated by all a^, - av,; it is clear that A/,
has index p' in Lt, and also that A/, > My for / > j . It follows that each
non-trivial fi-invariant subgroup 5 of D is the union of a finite or countably
infinite chain S1 < S2 < • • • of non-trivial subgroups, where each S,( = S n L,)
is either L, or A/, or A/, + Ly for some 0 < j < i; moreover, if 5, = A/, or
M, + Ly, then Sk = Mk or Mk + Ly, respectively, for all subsequent Sk in the
chain (k > /). Hence D contains only No 5-invariant subgroups (whence, iciden-
tally, since B is simple, it follows easily that the semi-direct product DB, a
" permutational wreath product", has only No normal subgroups).

Now each endomorphism 8 of

Zp™ = A =(al>a2T--\Pa\ = 0 ' P°i + 1 = fl<> ' = 1 , 2 , . . . )

determines an endomorphism tfD of D, defined by

0D- « . , ^ f l 1 % « G N 1 , * = 1,2,...,

where <#>„: ̂ 4 -»^4a is the obvious isomorphism; thus 6D maps the summands Aa

of D "uniformly", and is easily seen to commute with the action of B on D.
Hence the Z[5]-module D has at least 2N° endomorphisms, since card(EndZ/,»)
= 2N°. Imitating [1], we now observe that for each 6D e End D the set
{(x, x0D)\x e l ) } forms a submodule of D ffi D, and that distinct elements of
End D give rise in this way to distinct submodules of D ffi D. Hence D ffi D has
at least 2X° 5-invariant subgroups. Continuing as in [1], we let T be a 2-cycle
whose generator t acts on D ffi D according to the rule (JC, y)t = (x, -y). This
action turns D ffi D into a Z[B X r]-module, which since p is odd is easily seen
to have only No submodules. From this and from the simplicity of B it follows
readily that the semi-direct product R = (D ffi D)(B X T) is a group of cardinal-
ity S l with N 0 normal subgroups, but with a subgroup of index 2, namely U =
(D ffi D)B, with 2S° normal subgroups.

Finally, to obtain the full theorem we need (somewhat artificially) to boost the
number of normal subgroups to Sx. To this end let AT be a field of characteristic
2 and cardinality Sx, write P = PSL(2, K), and consider the Z[P]-module
K2 ffi K2, where P acts naturally on each K2 = K ffi K. Then (cf. the conclusion
of [1]) the semi-direct product Q = (K2 ffi K2)P has precisely Kx normal sub-
groups, and by using the simplicity of PSL(2, K) and the fact that p ¥= 2, it
follows (see below) that R X Q, of cardinality Sx, has exactly Nx normal
subgroups, yet has a subgroup of index 2, namely U X Q, with at least 2N°
normal subgroups. The theorem now follows from the aforementioned con-
sistency with ZFC of the statement that 2N° = 2Nl.
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T o see that R X Q has exactly Xx normal subgroups, consider it as the

semi-direct product WG of W = (D © D) © (A"2 © A"2) by G = (B X 7 ) X P,

where the actions of B X T on D ® D and of P on A"2 © AT2 are as defined

above, and where B X T and i» act trivially on A"2 © A"2 and D © D, respec-

tively. For each N<WG, write Nw for its projection on W and TVC for its

projection on G. Then, as noted in the concluding paragraph of [3], Nw is a

normal subgroup of WG (contained in W), Nc is a normal subgroup of G, and

TV is determined by the groups Nw, TVG, and N C\ W, together with the map fN:
NG ~* W/N n w defined by fN: g -» w(TV n W), where g w e i V . It is not

difficult to see that fN is well-defined and in fact a homomorphism, so that

Nc/KerfN is either trivial or a 2-cycle (since P and B are non-abelian simple,

while W is abelian). Hence, for each choice of Nc, there are at most Kj

possibilities for fN. Since there are exactly 8 X choices for Nw and N n W (as

normal subgroups of WG contained in W; here we are using the fact that p is

odd while char AT = 2), and since there are only finitely many choices for NG, it

follows that indeed WG = R X Q has exactly S x normal subgroups TV.

P R O O F OF PROPOSITION 1. Consider the Z[B x ,P]-module D © (A:2 © A"2),

where the actions of B on D and of P on A"2 © A"2 are as defined in the

preceding proof, and where B and P act trivially on A"2 © A"2 and D, respec-

tively. It is straightforward to see that since the module D has only S o submod-

ules and at least 2N° endomorphisms, while the module A"2 © A"2 has exactly S x

submodules, and also since p =£ 2, the module Z)ffi(A"2ffiA"2) has exactly S j

submodules and at least 2S° endomorphisms. Proposition 1 now follows by

invoking as before the consistency with Z F C of the statement that 2N° = 2 K l .

P R O O F OF PROPOSITION 2 (cf. the conclusion of [1]). Let M be a module of

cardinality S j with fewer thatn S x submodules. Then, as in the proof of the

theorem, M © M has at least c a r d ( E n d M ) submodules. Consider the automor-

phisms a, b of M © M defined by

(x,y)a=(x+y,-y), (x, y)b = (y, x).

It is a matter of direct calculation to see that the subgroup C of Aut(Af © M)
generated by a and b is finite (since a2 = b2 = 1 and ab has order at most 6). If
TV is any C-invariant submodule of M © M, and if (x, y) e TV, then also

(x,y) +(x,y)a -{x,y)ba = (x,x) e TV,

and then further

(x,x)-(x,y) = (0,x-y)tzN.
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Hence each C-invariant submodule of M © M is determined by its intersection

with the diagonal of M ffi M, together with its intersection with either summand,

so that M © M has fewer than Nj C-invariant submodules (say f), since M has

fewer than S j submodules. (Note that, moreover, if M has only finitely many

submodules, then f will also be finite.) By the Theorem and Corollary 1.4 of [4],

this implies that M © M can have no chain of more than (card C ) X f < 1 2 f (not

necessarily C-invariant) submodules. Hence each submodule of M ffi M is gener-

ated by at most 12 f elements, so that M ffi M can have at most S j 2 f submodules.

Since f < Xx by hypothesis, either f is finite or f = S o ; in the former case

N j 2 t = N l 5 and in the latter 2*°. Since M © M has at least card(EndAf)

submodules, the proposition follows.

3. Proof of Theorem 2

Theorem 2 follows readily (as shown below) from the following lemma (and
from the known consistency with ZFC of the statement 2*° = 2Kl). For the
purpose of this lemma we assume that our rings all have a multiplicative identity,
and that all modules are unital. A ring T is said to be a finite normalizing
extension of a subring R if there exist elements a1,...,ak^T (where we may
suppose that ax = 1) such that T = E*=1ay/?, and such that ajR = Raj for
y = 1,2, . . . ,* .

LEMMA. Let T be a finite normalizing extension of a commutative subring R of
cardinality < S o . Then every uncountable T-module M = MT contains at least 2K°
T-submodules.

(We note that the case k = 1, i.e. T = R, of this lemma is just Theorem 4.2 of
[7], and also that Theorem C of [5] places strong limitations on the possibility of
weakening the hypothesis that T be a finite normalizing extension of R.)

To see how Theorem 2 follows from this lemma, suppose, as in that theorem,
that G is a group of cardinality S t with a metabelian normal subgroup H of
finite index, and let H' denote the commutator subgroup of H. Then the integral
group ring 1\G/H'] is a finite normalizing extension of Z[H/H'], and taking, in
the notation of the lemma, M = H', T= Z[G/H'], R = Z[H/H'\ (with the
appropriate actions on H'), we infer from the lemma that if card(H/H') < No,
then the Z[G///']-module H' has at least 2*° submodules. In the group context
this translates into the existence of at least 2X° normal subgroups of G contained
in H', and then the desired conclusion follows from the consistency of the
statement 2*° = 2*' with ZFC. If, on the other hand, card(#/# ' ) = S1( then by
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[3, Theorem 1 and Note added in proof] G/H' has 2Nl normal subgroups,
whence so does G.

PROOF OF LEMMA. It is easily seen that it suffices to show that the module
M = MT contains a countably infinite "semi-independent" set {j j , s2.---} of
elements, i.e. having the property that, for each i'• = 1,2,. . . , the element si does
not belong to the submodule of MT generated by all Sj ¥= s,-.

This in turn will follow if we can show that MT must contain a " large" proper
submodule, i.e. a module of cardinality ^ Nx. For, assuming this, we can define,
in imitation of the proof of Lemma 4.1 of [7], a descending chain Mx^ M2^>
of T-submodules of M, and a sequence of elements sx, s2,..., such that, for all
n = 1,2,. . . , we have

( 1 ) c a r d M n > « ! , s n + l e M n , s n + 1<£ s , T + ••• + s n T + M n + 1,

and clearly a set {svs2,...} with these properties is semi-independent. To see
how the presence in modules like MT of uncountable proper submodules allows
the construction of such Af,, st, first set Mx = M and choose s1 to be any
non-zero element of Mv Suppose inductively that M1 3 • • • D Mk and s1,...,sk

have been defined (satisfying (1)). Writing L = sxT + • • • +skT, we clearly have
cardL < No, whence

c&Td((Mk + L)/L) = cardA^ ^ Kt.

Hence, by our assumption, the T-module (Mk + L)/L has a proper submodule
of cardinality > Sj. Let H c Mk + L be the complete preimage of that module
under the natural map Mk + L -> (Mk + L)/L. Then H = (Mk n H) + L, so
that Mk n H is a proper submodule of Mk of cardinality > N^ Define Mk + l =
Mk n H and choose 5^+1 e M^ \ / / arbitrarily. It is then easily verified that sk+l

and Mk +1 satisfy (1).
Thus we now have only to show that MT must contain a proper submodule of

cardinality > Hv Assume the contrary. We may suppose without loss of general-
ity that MT is faithful, since the property of being a finite normalizing extension
is preserved under homomorphic images. Let m e M be any non-zero element of
M and let B be a T-submodule which is maximal with respect to the property
that m and B together generate the direct sum mT © B. Then mT ffi B is
"essential" in MT, i.e. intersects non-trivially every non-zero T-submodule of M.
By our assumption, B, and therefore also mT e B, has cardinality < Ko. Now in
a similar manner take C to be an ^-submodule of MR such that [{mT ® B) ® C]R

is essential in MR. We claim that m l ffi 5 © C # M. To see this, suppose the
contrary, and consider the map

B)k, c ~ (ca, I,... ,cak l ) ,
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from C to the Cartesian product of k copies of mT © B, where, as above,
T = L*_!«,-/?, and where cat I denotes the projection of ca,( e M = mT ® B ® C
by assumption) onto mT ® B. Since card(my" © B) s£ No and card M > No, so
that we must have cardC > K 0 f°r M = mT ® B ® C to hold, there must
certainly be two distinct elements cx, c2 of C such that ^(cj) = i//(c2). However,
since ^(Cj — c2) = i K O ~ ^(c2), we then have ii(cx — c2) = 0, whence (cl -
c2)ai e C for i' = 1, . . . , k. It follows from this that the T-submodule (c1 - c2)T
is contained in C, which contradicts the essentiality of the T-submodule mT ® B.
Hence the essential .R-submodule [mT ® B © C]R must be proper in MR, as
claimed.

By [2, Lemma 1.2] the largest T-submodule NT= N contained in mT ® B © C
has the property that A^ is essential in MR. As NT is a proper submodule of MT,
we must have card N < S 0 by assumption. For each a e M, define the ideal
E(a) to be {r e R \ ar e N}, and then, for each a e M, j = 1,. . . , k, define the
ideal E(a, j) by

E(a> j) = {r ^ R\^S e E(a) SUCfl t h a t *Oy = ajr) •

It follows from the essentiality of A^ in MR that each E(a) is an essential ideal
of R (i.e. intersects non-trivially every non-zero i?-ideal), and thence that the
E{a, j), and therefore also the intersections E*{a) = fl*=1 E(a, j), are all essen-
tial /?-ideals. The ideals E*(a) have the further property that, for each r e E*(a),
and for each y = l,...,k, there is an element Sj e E(a) such that SJOJ = a jr. We
now define a map y: M ^> Rk (where Rk denotes the Cartesian product of k
copies of R) as follows: for each a e M choose a nonzero element b e E*(a),
then choose bv b2,---,bke E(a) such that bjOj = aft, and then set y(a) =
(bl,...,bk). (Note that since al = 1, we have bx = b.) Since cardR < So, and
since M is uncountable, there is an uncountable subset So of M such that
y(s\) — y(si) f°r a^ sv S2 G ^o- Define a map 5: 50 -» Â * by

5 -» (^ 1 ( . . . , 5^) , where (61?. ..,bk) = y(s).
Once again, since n is countable while So is not, there must be an uncountable
subset S of So such that S ^ ) = 8(s2) for all i1; J 2 e S. Hence the T-submodule
K of M generated by the set { x - y \ x, y e S } will also be uncountable. We now
complete the proof by showing that K is in fact a proper submodule. This we do
by finding a non-zero element r of R which annihilates it; it will then follow that
K ¥= M, since M is faithful by assumption. For all J G S , y(s) is constant, say
y(s) = {bx,..., bk). Take r = bv Then for any x, y e S, and for any element
T.j=lajrj G T, we have

( k \ k k

E fl/y \b\ = E (* - y)aJb1rJ = £ (x - j )^a / y = 0,
7 - 1 / 7 - 1 7 - 1

where the last equality follows from the fact that 6(x) =
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