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These proceedings contain the 30 papers of the fifth biennial conference on functional
programming and computer architecture (FPCA), which was held at Harvard
University, Cambridge, Massachusetts, from 28 to 30 August 1991. The papers
represent the hottest and best in functional programming. Some topics were
particularly prominent: types, partial evaluation, compiling techniques for sequential
and parallel architectures, and manipulating and updating states and arrays in
functional languages. Below follows a brief description of the general themes and the
individual papers of the conference. Numbers refer to the table of contents at the end.

Types continue to be a hot topic in functional programming research, and there are
several papers on both theoretical and practical aspects of types. There is also a
growing interest in type systems with overloading, such as that in the functional
language Haskell; the first two papers are on this topic.

Nipkow and Snelting (1) present a type inference algorithm for a language with
type classes and overloading, where the ordinary unification algorithm in the
Hindley-Milner system is replaced by order-sorted unification from the world of
many-sorted algebras.

Volpano and Smith (2) explore the computational consequences of the increased
expressiveness of Haskell-like type systems with overloading; some variants are
undecidable.

Thatte (3) describes an extension of the Hingley-Milner type inference system to
allow isomorphism declarations, for example between rectangular and polar
representations of complex numbers. The user provides conversion functions, which
the compiler applies where needed. His type inference algorithm is based on
equational unification.

On the practical side of typing, Aditya and Nikhil (19) attempt to reconcile
polymorphic type checking with an incremental programming environment. On the
one hand one wants to develop (and edit) the program incrementally, on the other
hand the standard polymorphic type-inference algorithm examines the whole
program at once. They present a type-inference algorithm which produces the same

https://doi.org/10.1017/S0956796800000344 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000344


228 Thomas Johnsson

typings as obtained via the standard 'batch' algorithm, but produces them
incrementally.

Leroy and Mauny (20) explore the combination of dynamic typing, i.e. type
checking at run time, with the static polymorphic type discipline. They present two
different extensions to ML with dynamic objects.

Aiken and Murphy (21) have developed efficient algorithms for operations on
regular tree expressions. The authors use regular tree expressions for representing
types in a type-inference system for FL.

On the theory of types, Lillie and Harrison (13) present a model of recursive types
and subtypes based on a metric space of projections.

Types and ripn-standard type inference also play a key role in papers on abstract
interpretation and strictness analysis (16,18), binding time analysis (22), dealing
safely and efficiently with states in a functional language (10,11), and low-level
implementation details (30); more on these below.

Frandsen and Sturtivant (14) provide a complexity theoretic framework for
studying the efficiency of functional language implementations. They study the pure
lambda calculus, arguing that any feature in a functional language can be encoded
into it. Surprisingly, combinator- and supercombinator-based implementations are
exponentially inefficient!

The purpose of Mairson's paper (15) is to clarify some aspects of Wadler's
' Theorems for Free', and to provide a complementary view of them. He develops a
constructive framework for proving equalities about programs, and shows how to
derive the free theorems in a purely syntactic way. As a result of the clarification he
uncovers a hidden cost of the free theorems: there is a genuine need for structural
induction.

The functional programming process is represented by the paper by Meijer et al.
(7). Using a categorical framework, they develop a Squiggol-style calculus for lazy
functional programming based on recursion operators associated with data-type
definitions.

There are now two radically different approaches to strictness analysis: the
conventional approach based on abstract interpretation, and the novel approach
based on non-standard type inference.

Leung and Mishra (16) present a strictness analyser for a higher-order lazy
language which discovers both simple strictness and hyper-strictness. It is based on
non-standard subtype inference and does not require any fixpoint iteration; hence,
their analyser should be more amenable to practical use.

Jensen (17) presents a formal framework for comparing the two approaches. He
shows that strictness analysis by abstract interpretation and by type inference are
equally powerful techniques.

On the subject of abstract interpretation in general, Baraki (18) develops a method
for computing safe approximations to abstract functions of polymorphic higher-
order functions; he makes extensive use of category theory.

Partial evaluation has clearly become a part of the main stream of functional
programming research (as is also evident by the Partial Evaluation and Program
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Manipulation (PEPM) conference earlier this year). There are five papers on or
relating to this topic in these proceedings.

Launchbury (8) describes partial evaluation and self-application in a strongly typed
context. He reports on the first successful attempt to write such a partial evaluator,
and describes some of the problems encountered, notably a double encoding problem
which, if not solved, threatens to make the partial evaluator grossly inefficient.

Weise et al. (9) have constructed the first fully automatic online partial evaluator
(i.e. using both the input program and the actual static data values) for an untyped
functional language. Their work emphasizes program optimization (while essentially
ignoring self application), and their specializer produces highly specialized programs.

Three papers deal with program analysis techniques aiding partial evaluation.
Binding time analysis determines which values are static, i.e. known at partial
evaluation time, and which ones are dynamic. Henglein (22) describes an almost
linear higher-order binding time analysis based on type inference. Hoist's finiteness
analysis (23) answers the question of whether a program will go through only a finite
number of program states, a necessary and sufficient condition for partial evaluation
to terminate. The analysis designed by Consel and Danvy (24) aims at discovering
how to change the control flow of a program to make the binding time analysis yield
better results, i.e. to get bigger static expressions.

A decade or so ago it was thought that to get competitive performance out of
functional languages, special architectures had to be designed. Over the years,
however, the von Neumann architecture has proved itself surprisingly competitive
also for these languages - performance can be gained by clever compilation rather
than requiring radically different architectures. Pure dataflow architectures have
evolved into general von Neumann-like multithreaded architectures which separate
control flow and dataflow. Two papers, Schauser et al. (4) and Traub (5), describe
different aspects of compiling the lenient language Id for such multithreaded
architectures. Both treat multithreaded execution as a compilation problem, thereby
getting performance gains that hardware mechanisms alone cannot provide.

Maranget (6) compiles a parallel version of the 'standard' G-machine for a
conventional shared-memory multiprocessor, the Sequent Balance. He obtains a
performance competitive with previously compiled graph reducers, which are based
on refined versions of the standard G-machine: the <v, G>-machine and the Spineless
Tagless G-machine on the GRIP multiprocessor.

The paper by Smetsers et al. (28) describes compilation of the lazy language
Concurrent Clean into very efficient code for a conventional uniprocessor (the
MC 68020), via an abstract machine called the ABC machine. Strictness analysis,
and/or programmer-supplied strictness annotations, play an essential role in
obtaining the high speed (even faster than C for some of the benchmarks).

The paper by Peyton Jones and Launchbury (30) can also be said to be about
compilation. They describe a systematic way to deal with the boxing and unboxing
that an implementation of a lazy language must do to treat numbers (and similar
types) properly, using a sequence of program transformations in the compiler.

Despite the title of this conference, there is only one paper on computer
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architecture proper. Chiueh (25) observes that heap-intensive programs have a higher
than usual cache-miss ratio. His paper describes an elegant architectural technique to
do some garbage collection work on the cells in the cache. On a cache miss, the
processor switches to a GC thread which performs a (partial) reference-count garbage
collection (cells have reference counts only in the cache), while waiting for the data
to arrive in the cache. These cycles would otherwise have been wasted just waiting.
New cells can often be allocated from those in the cache just released by the GC
without going to the main memory, thereby reducing the cache-miss ratio.

Despite all their qualities, there are things that pure functional languages are not
good at; dealing with states and updating is one of them. Four papers describe
approaches to remedying this deficiency.

Swarup et al. (10) add imperative features to a functional language while still
retaining referential transparency; expressions are still side-effect-free.

Wakeling and Runciman (11) have added linear (i.e. single-threaded) types to an
implementation of Lazy ML. They report that linear types can be a mixed blessing:
programming can become more difficult because of the linearity constraint, and the
performance can also be disappointing.

Fradet (12) describes an analysis which detects single-threading syntactically, using
continuations as a way of formalizing the evaluation strategy.

Barth et al. (26) take a more blunt approach: they extend the non-strict parallel
functional language Id with M-structures, which are mutable data structures with
built-in synchronization. The language then loses referential transparency, and it is
the programmer's responsibility to get it right. Yet surprisingly they argue that such
programs can be more declarative and parallel than their purely functional
counterpart!

Efficient compilation of list comprehensions and optimization of database queries
have a lot in common. Heytens and Nikhil (27) explore the use of list comprehensions
as a database query language, and describe the optimization and translation of list
comprehensions in AGNA, a parallel persistent object system.

The overall goal of Hannan's work (29) is to develop techniques for mechanically
constructing provably correct and efficient implementations of programming
languages based on operational semantics for languages. This paper addresses the
problem of transforming abstract machines (obtained from operational semantics)
into more concrete ones, that are more amenable to efficient implementation.
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