CENTRALISERS IN THE INFINITE SYMMETRIC INVERSE SEMIGROUP

JANUSZ KONIECZNY

(Received 12 May 2012; accepted 6 August 2012; first published online 28 September 2012)

Abstract

For an arbitrary set X (finite or infinite), denote by $I(X)$ the symmetric inverse semigroup of partial injective transformations on X. For $\alpha \in \mathcal{I}(X)$, let $C(\alpha)=\{\beta \in \mathcal{I}(X): \alpha \beta=\beta \alpha\}$ be the centraliser of α in $\mathcal{I}(X)$. For an arbitrary $\alpha \in \mathcal{I}(X)$, we characterise the transformations $\beta \in \mathcal{I}(X)$ that belong to $C(\alpha)$, describe the regular elements of $C(\alpha)$, and establish when $C(\alpha)$ is an inverse semigroup and when it is a completely regular semigroup. In the case where $\operatorname{dom}(\alpha)=X$, we determine the structure of $C(\alpha)$ in terms of Green's relations.

2010 Mathematics subject classification: primary 20M20, secondary 20M18.
Keywords and phrases: symmetric inverse semigroup, centralisers, regular elements, Green's relations.

1. Introduction

For an element a of a semigroup S, the centraliser $C(a)$ of a in S is defined by $C(a)=\{x \in S: a x=x a\}$. It is clear that $C(a)$ is a subsemigroup of S. For a set X, we denote by $P(X)$ the semigroup of partial transformations on X (functions whose domain and image are included in X), where the multiplication is the composition of functions. The transformation on X with the empty set as its domain is the zero in $P(X)$, which we will denote by \emptyset. By a transformation semigroup, we will mean any subsemigroup S of $P(X)$. Among transformation semigroups, we have the semigroup $T(X)$ of full transformations on X (elements of $P(X)$ whose domain is X).

Numerous papers have been published on centralisers in finite transformation semigroups, for example $[6,8,15-17,20,23-25,31]$. For an infinite X, the centralisers of idempotent transformations in $T(X)$ have been studied in [2, 3, 30]. The cardinalities of $C(\alpha)$, for certain types of $\alpha \in T(X)$, have been established for a countable X in [12-14]. The author has investigated the centralisers of transformations in $T(X)$ with a coauthor in [5] and in the semigroup $\Gamma(X)$ of injective elements of $T(X)$ [18, 19].

This research has been motivated by the fact that if a transformation semigroup S contains an identity 1 or a zero 0 , then for any $\alpha \in S$, the centraliser $C(\alpha)$ is a generalisation of S in the sense that $S=C(1)$ and $S=C(0)$. It is therefore of interest

[^0]to find out which ideas, approaches, and techniques used to study S can be extended to the centralisers of its elements, and how these centralisers differ as semigroups from S. Centralisers of transformations are also important since they appear in various areas of mathematical research, for example, in the study of automorphism groups of semigroups [4]; in the theory of unary algebras [11, 29]; and in the study of commuting graphs [1, 7, 10].

Denote by $\mathcal{I}(X)$ the symmetric inverse semigroup on a set X, which is the subsemigroup of $P(X)$ that consists of all partial injective transformations on X. The semigroup $I(X)$ is universal for the important class of inverse semigroups (see [9, Ch. 5] and [26]) since every inverse semigroup can be embedded in some $\mathcal{I}(X)$ [9, Theorem 5.1.7]. This is analogous to the fact that every group can be embedded in some symmetric group $\operatorname{Sym}(X)$ of permutations on X. We note that $\operatorname{Sym}(X)$ is the group of units of $I(X)$.

The purpose of this paper is to study centralisers in the infinite symmetric inverse semigroup $\mathcal{I}(X)$. (Centralisers in the finite $\mathcal{I}(X)$ have been studied in [22].) In Section 2 we show that any $\alpha \in \mathcal{I}(X)$ can be uniquely expressed as a join of disjoint cycles, rays and chains. This is analogous to expressing any permutation $\sigma \in \operatorname{Sym}(X)$ as a product of disjoint (finite or infinite) cycles [28, Theorem 1.3.4]. Let $\alpha \in I(X)$. In Section 3 we use the decomposition theorem to characterise the transformations $\beta \in I(X)$ that are members of $C(\alpha)$. In Section 4 we describe the regular elements of $C(\alpha)$ and establish when $C(\alpha)$ is an inverse semigroup and when it is a completely regular semigroup. In Section 5 we determine Green's relations in $C(\alpha)$ (including the partial orders of \mathcal{L}-, \mathcal{R}-, and \mathcal{J}-classes) for $\alpha \in \mathcal{I}(X)$ such that $\operatorname{dom}(\alpha)=X$.

2. Decomposition of $\alpha \in I(X)$

In this section, we show that every $\alpha \in \mathcal{I}(X)$ can be uniquely decomposed into basic transformations called cycles, rays and chains.

Let $\gamma \in P(X)$. We denote the domain of γ by $\operatorname{dom}(\gamma)$ and the image of γ by $\operatorname{im}(\gamma)$. The union $\operatorname{dom}(\gamma) \cup \operatorname{im}(\gamma)$ will be called the span of γ and denoted $\operatorname{span}(\gamma)$. As in [5], we will call γ connected if $\gamma \neq \emptyset$ and, for all $x, y \in \operatorname{span}(\gamma)$, there are integers $k, m \geq 0$ such that $x \in \operatorname{dom}\left(\gamma^{k}\right), y \in \operatorname{dom}\left(\gamma^{m}\right)$, and $x \gamma^{k}=y \gamma^{m}$, where $\gamma^{0}=\mathrm{id}_{X}$. (We will write mappings on the right and compose from left to right; that is, for $f: A \rightarrow B$ and $g: B \rightarrow C$, we will write $x f$, rather than $f(x)$, and $x(f g)$, rather than $g(f(x))$.)

Let $\gamma, \delta \in P(X)$. We say that δ is contained in γ (or γ contains δ), if $\operatorname{dom}(\delta) \subseteq$ $\operatorname{dom}(\gamma)$ and $x \delta=x \gamma$ for every $x \in \operatorname{dom}(\delta)$. We say that γ and δ are completely disjoint if $\operatorname{span}(\gamma) \cap \operatorname{span}(\delta)=\emptyset$.

Definition 2.1. Let M be a set of pairwise completely disjoint elements of $P(X)$. The join of the elements of M, denoted $\bigsqcup_{\gamma \in M} \gamma$, is the element of $P(X)$ whose domain is $\bigcup_{\gamma \in M} \operatorname{dom}(\gamma)$ and whose values are defined by

$$
x\left(\bigsqcup_{\gamma \in M} \gamma\right)=x \gamma_{0}
$$

where γ_{0} is the (unique) element of M such that $x \in \operatorname{dom}\left(\gamma_{0}\right)$. If $M=\emptyset$, we define $\bigsqcup_{\gamma \in M} \gamma$ to be \emptyset. If $M=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right\}$ is finite, we may write the join as $\gamma_{1} \sqcup$ $\gamma_{2} \sqcup \cdots \sqcup \gamma_{k}$.

The following result has been proved in [5].
Proposition 2.2. Let $\alpha \in P(X)$ with $\alpha \neq \emptyset$. Then there exists a unique set M of pairwise completely disjoint, connected elements of $P(X)$ such that $\alpha=\bigsqcup_{\gamma \in M} \gamma$.

The elements of the set M from Proposition 2.2 are called the connected components of α.

Defintion 2.3. Let $\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ be pairwise distinct elements of X. The following elements of $\mathcal{I}(X)$ will be called basic partial transformations on X.

- A cycle of length $k(k \geq 1)$, written $\left(x_{0} x_{1} \ldots x_{k-1}\right)$, is an element $\sigma \in \mathcal{I}(X)$ with $\operatorname{dom}(\sigma)=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}, x_{i} \sigma=x_{i+1}$ for all $0 \leq i<k-1$, and $x_{k-1} \sigma=x_{0}$.
- A right ray, written $\left[x_{0} x_{1} x_{2} \ldots\right\rangle$, is an element $\eta \in \mathcal{I}(X)$ with $\operatorname{dom}(\eta)=$ $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ and $x_{i} \eta=x_{i+1}$ for all $i \geq 0$.
- A double ray, written $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$, is an element $\omega \in \mathcal{I}(X)$ such that $\operatorname{dom}(\omega)=\left\{\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right\}$ and $x_{i} \omega=x_{i+1}$ for all i.
- A left ray, written $\left\langle\ldots x_{2} x_{1} x_{0}\right]$, is an element $\lambda \in \mathcal{I}(X)$ with $\operatorname{dom}(\lambda)=$ $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ and $x_{i} \lambda=x_{i-1}$ for all $i>0$.
- A chain of length $k(k \geq 1)$, written $\left[x_{0} x_{1} \ldots x_{k}\right]$, is an element $\tau \in \mathcal{I}(X)$ with $\operatorname{dom}(\tau)=\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$ and $x_{i} \tau=x_{i+1}$ for all $0 \leq i \leq k-1$.
By a ray we will mean a double, right, or left ray.
We note the following:
- The span of a basic partial transformation is exhibited by the notation. For example, the span of the right ray $[123 \ldots\rangle$ is $\{1,2,3, \ldots\}$.
- The left bracket in ' $\varepsilon=[x \ldots$. indicates that $x \notin \operatorname{im}(\varepsilon)$; while the right bracket in ' $\varepsilon=\ldots x]$ ' indicates that $x \notin \operatorname{dom}(\varepsilon)$. For example, for the chain $\tau=\left[\begin{array}{lll}1 & 2 & 3\end{array} 4\right]$, $\operatorname{dom}(\tau)=\{1,2,3\}$ and $\operatorname{im}(\tau)=\{2,3,4\}$.
- A cycle $\left(x_{0} x_{1} \ldots x_{k-1}\right)$ differs from the corresponding cycle in the symmetric group of permutations on X in that the former is undefined for every $x \in$ $X \backslash\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\}$, while the latter fixes every such x.
It is clear that the connected components of $\alpha \in \mathcal{I}(X)$ are precisely the basic partial transformations contained in α. Thus, the following decomposition result follows immediately from Proposition 2.2.

Proposition 2.4. Let $\alpha \in \mathcal{I}(X)$ with $\alpha \neq \emptyset$. Then there exist unique sets A of right rays, B of double rays, C of cycles, P of left rays, and Q of chains such that the transformations in $A \cup B \cup C \cup P \cup Q$ are pairwise disjoint and

$$
\begin{equation*}
\alpha=\bigsqcup_{\eta \in A} \eta \sqcup \bigsqcup_{\omega \in B} \omega \sqcup \bigsqcup_{\sigma \in C} \sigma \sqcup \bigsqcup_{\lambda \in P} \lambda \sqcup \bigsqcup_{\tau \in Q} \tau . \tag{2.1}
\end{equation*}
$$

We will call the join (2.1) the ray-cycle-chain decomposition of α. We note the following:

- if $\alpha \in \operatorname{Sym}(X)$, then $\alpha=\bigsqcup_{\omega \in B} \omega \sqcup \bigsqcup_{\sigma \in C} \sigma$ (since $A=P=Q=\emptyset$), which corresponds to the decomposition given in [28, 1.3.4];
- \quad if $\operatorname{dom}(\alpha)=X$, then $\alpha=\bigsqcup_{\eta \in A} \eta \sqcup \bigsqcup_{\omega \in B} \omega \sqcup \bigsqcup_{\sigma \in C} \sigma$ (since $P=Q=\emptyset$), which corresponds to the decomposition given in [21];
- if X is finite, then $\alpha=\bigsqcup_{\sigma \in C} \sigma \sqcup \bigsqcup_{\tau \in Q} \tau$ (since $A=B=P=\emptyset$), which is the decomposition given in [22, Theorem 3.2].

Remark 2.5. Let $\alpha \in \mathcal{I}(X)$ with the ray-cycle-chain decomposition as in (2.1). Then, for every $x \in X$:
(1) if $\sigma \in A$ and $x \in \operatorname{span}(\sigma)$, then $x \alpha^{p}=x$ for some $p \geq 1$;
(2) if $\lambda \in P, \tau \in Q$, and $x \in \operatorname{span}(\lambda) \cup \operatorname{span}(\tau)$, then $x \alpha^{p} \notin \operatorname{dom}(\alpha)$ for some $p \geq 0$.

3. Members of $C(\alpha)$

In this section, for an arbitrary $\alpha \in \mathcal{I}(X)$, we determine which transformations $\beta \in I(X)$ belong to $C(\alpha)$. For $\alpha \in P(X)$ and $x, y \in X$, we write $x \xrightarrow{\alpha} y$ if $x \in \operatorname{dom}(\alpha)$ and $x \alpha=y$. The following proposition applies to any semigroup of partial transformations.
Proposition 3.1. Let S be any subsemigroup of $P(X), \alpha \in S$, and $C(\alpha)=\{\beta \in S: \alpha \beta=$ $\beta \alpha\}$. Then for every $\beta \in S, \beta \in C(\alpha)$ if and only if for all $x, y \in X$, the following conditions are satisfied.
(1) If $x \xrightarrow{\alpha} y$ and $y \in \operatorname{dom}(\beta)$, then $x \in \operatorname{dom}(\beta)$ and $x \beta \xrightarrow{\alpha} y \beta$.
(2) If $x \xrightarrow{\alpha} y, x \in \operatorname{dom}(\beta)$, and $y \notin \operatorname{dom}(\beta)$, then $x \beta \notin \operatorname{dom}(\alpha)$.
(3) If $x \notin \operatorname{dom}(\alpha)$ and $x \in \operatorname{dom}(\beta)$, then $x \beta \notin \operatorname{dom}(\alpha)$.

Proof. Suppose that $\beta \in C(\alpha)$, that is, $\alpha \beta=\beta \alpha$. Let $x \xrightarrow{\alpha} y$ and $y \in \operatorname{dom}(\beta)$. Then $x \in \operatorname{dom}(\alpha \beta)=\operatorname{dom}(\beta \alpha) \subseteq \operatorname{dom}(\beta)$. Further, $y \beta=(x \alpha) \beta=(x \beta) \alpha$, and so $x \beta \xrightarrow{\alpha} y \beta$. Let $x \xrightarrow{\alpha} y, x \in \operatorname{dom}(\beta)$, and $y \notin \operatorname{dom}(\beta)$. Then $x \beta \notin \operatorname{dom}(\alpha)$ since otherwise we would have $x \in \operatorname{dom}(\beta \alpha)=\operatorname{dom}(\alpha \beta)$, which would imply that $y=x \alpha \in \operatorname{dom}(\beta)$. Let $x \notin \operatorname{dom}(\alpha)$ and $x \in \operatorname{dom}(\beta)$. Then $x \beta \notin \operatorname{dom}(\alpha)$ since otherwise we would have $x \in \operatorname{dom}(\beta \alpha)=$ $\operatorname{dom}(\alpha \beta) \subseteq \operatorname{dom}(\alpha)$. Hence (1)-(3) hold.

Conversely, suppose that (1)-(3) are satisfied. Let $x \in \operatorname{dom}(\alpha \beta)$, that is, $x \in \operatorname{dom}(\alpha)$ and $y=x \alpha \in \operatorname{dom}(\beta)$. Then, by (1), $x \in \operatorname{dom}(\beta)$ and $x \beta \in \operatorname{dom}(\alpha)$, that is, $x \in \operatorname{dom}(\beta \alpha)$. Let $x \in \operatorname{dom}(\beta \alpha)$, that is, $x \in \operatorname{dom}(\beta)$ and $x \beta \in \operatorname{dom}(\alpha)$. Then $x \in \operatorname{dom}(\alpha)$ by (3), and so $y=x \alpha \in \operatorname{dom}(\beta)$ by (2). Hence $x \in \operatorname{dom}(\alpha \beta)$. We have proved that $\operatorname{dom}(\alpha \beta)=$ $\operatorname{dom}(\beta \alpha)$. Let $x \in \operatorname{dom}(\alpha \beta)$. Then $x \xrightarrow{\alpha} x \alpha$, which implies that $x \beta \xrightarrow{\alpha}(x \alpha) \beta$ by (1). But the latter means that $(x \beta) \alpha=(x \alpha) \beta$. Thus $x(\alpha \beta)=x(\beta \alpha)$, and so $\alpha \beta=\beta \alpha$. Hence $\beta \in C(\alpha)$.

It will be convenient to extend the concept of the chain (see Definition 2.3) by defining the chain $\left[x_{0}\right]$ of length 0 (where $x_{0} \in X$) to be the set $\left\{x_{0}\right\}$ and agree that $\operatorname{span}\left(\left[x_{0}\right]\right)=\left\{x_{0}\right\}$. We also agree that, for a cycle $\left(y_{0} y_{1} \ldots y_{k-1}\right)$ and an integer i, y_{i} will mean y_{r} where $r \equiv i(\bmod k)$ and $r \in\{0, \ldots, k-1\}$.

Definition 3.2. Let $\beta \in \mathcal{I}(X)$. Let $\sigma=\left(x_{0} \ldots x_{k-1}\right)$ and $\sigma_{1}=\left(y_{0} \ldots y_{k-1}\right)$ be cycles of the same length, $\eta=\left[\begin{array}{lll}x_{0} & \left.x_{1} \ldots\right\rangle \text { and } \eta_{1}=\left[y_{0} y_{1} \ldots\right\rangle \text { be right rays, } \omega=\left\langle\ldots x_{-1} .\right.\end{array}\right.$ $\left.x_{0} x_{1} \ldots\right\rangle$ and $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ be double rays, $\lambda=\left\langle\ldots x_{1} x_{0}\right]$ and $\lambda_{1}=$ $\left\langle\ldots y_{1} y_{0}\right]$ be left rays, and $\tau=\left[x_{0} \ldots x_{k}\right]$ and $\tau_{1}=\left[y_{0} \ldots y_{k}\right]$ be chains of the same length (possibly zero).

We say that β maps σ onto σ_{1} if $\operatorname{span}\left(\sigma_{1}\right) \subseteq \operatorname{dom}(\beta)$ and, for some $j \in\{0, \ldots$, $k-1\}$,

$$
x_{0} \beta=y_{j}, x_{1} \beta=y_{j+1}, \ldots, x_{k-1} \beta=y_{j+k-1}
$$

β maps η onto η_{1} if $\operatorname{span}(\eta) \subseteq \operatorname{dom}(\beta)$ and $x_{i} \beta=y_{i}$ for all $i \geq 0 ; \beta$ maps ω onto ω_{1} if $\operatorname{span}(\omega) \subseteq \operatorname{dom}(\beta)$ and, for some $j, x_{i} \beta=y_{j+i}$ for all i; β maps λ onto λ_{1} if $\operatorname{span}(\lambda) \subseteq \operatorname{dom}(\beta)$ and $x_{i} \beta=y_{i}$ for all $i \geq 0$; and β maps τ onto τ_{1} if $\operatorname{span}(\tau) \subseteq \operatorname{dom}(\beta)$ and $x_{i} \beta=y_{i}$ for all $i \in\{0, \ldots, k\}$.

Definition 3.3. Let $\eta=\left[x_{0} x_{1} \ldots\right\rangle$ be a right ray, $\tau=\left[x_{0} \ldots x_{k}\right]$ be a chain $(k \geq 0)$, $\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$ be a double ray, and $\lambda=\left\langle\ldots x_{1} x_{0}\right]$ be a left ray.

Any chain $\left[x_{0} \ldots x_{i}\right]$, where $i \geq 0$, is an initial segment of η; and any chain [$x_{0} \ldots x_{i}$], where $0 \leq i \leq k$, is an initial segment of τ.

Any left ray $\left\langle\ldots x_{i-1} x_{i}\right]$, where i is any integer, is an initial segment of ω; and any left ray $\left\langle\ldots x_{i+1} x_{i}\right.$], where $i \geq 0$, is an initial segment of λ.

Any chain $\left[x_{i} \ldots x_{k}\right]$, where $0 \leq i \leq k$, is a terminal segment of τ; and any chain [$x_{i} \ldots x_{0}$], where $i \geq 0$, is a terminal segment of λ.

For $\alpha \in I(X)$, let A, B, C, P, and Q be the sets that occur in the ray-cycle-chain decomposition of α (see (2.1)). By $A_{\alpha}, B_{\alpha}, C_{\alpha}, P_{\alpha}$, and Q_{α} we will mean the following sets:

$$
A_{\alpha}=A, \quad B_{\alpha}=B, \quad C_{\alpha}=C, \quad P_{\alpha}=P, \quad Q_{\alpha}=Q \cup\left\{\left[x_{0}\right]: x_{0} \notin \operatorname{span}(\alpha)\right\} .
$$

We now have the tools to characterise the members of the centraliser $C(\alpha)$.
Theorem 3.4. Let $\alpha, \beta \in \mathcal{I}(X)$. Then $\beta \in C(\alpha)$ if and only if for all $\eta \in A_{\alpha}, \omega \in B_{\alpha}$, $\sigma \in C_{\alpha}, \lambda \in P_{\alpha}$, and $\tau \in Q_{\alpha}$, the following conditions are satisfied.
(1) If $\operatorname{span}(\eta) \subseteq \operatorname{dom}(\beta)$, then there is $\eta_{1}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$ or $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1}\right.$ $\ldots\rangle \in B_{\alpha}$ such that β maps η onto $\left[y_{j} y_{j+1} \ldots\right\rangle$ for some j.
(2) If $\operatorname{span}(\eta) \cap \operatorname{dom}(\beta) \neq \emptyset$ but $\operatorname{span}(\eta) \nsubseteq \operatorname{dom}(\beta)$, then there is an initial segment τ^{\prime} of η such that $\operatorname{span}(\eta) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\tau^{\prime}\right)$ and β maps τ^{\prime} onto a terminal segment of some $\lambda_{1} \in P_{\alpha}$ or onto a terminal segment of some $\tau_{1} \in Q_{\alpha}$.
(3) If $\operatorname{span}(\omega) \subseteq \operatorname{dom}(\beta)$, then β maps ω onto some $\omega_{1} \in B_{\alpha}$.
(4) If $\operatorname{span}(\omega) \cap \operatorname{dom}(\beta) \neq \emptyset$ but $\operatorname{span}(\omega) \nsubseteq \operatorname{dom}(\beta)$, then there is an initial segment λ^{\prime} of ω such that $\operatorname{span}(\omega) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\lambda^{\prime}\right)$ and β maps λ^{\prime} onto some $\lambda_{1} \in P_{\alpha}$.
(5) If $\operatorname{span}(\sigma) \cap \operatorname{dom}(\beta) \neq \emptyset$, then β maps σ onto some $\sigma_{1} \in C_{\alpha}$.
(6) If $\operatorname{span}(\lambda) \cap \operatorname{dom}(\beta) \neq \emptyset$, then there is an initial segment λ^{\prime} (possibly λ itself) of λ such that $\operatorname{span}(\lambda) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\lambda^{\prime}\right)$ and β maps λ^{\prime} onto some $\lambda_{1} \in P_{\alpha}$.
(7) If $\operatorname{span}(\tau) \cap \operatorname{dom}(\beta) \neq \emptyset$, then there is an initial segment τ^{\prime} (possibly τ itself) of τ such that $\operatorname{span}(\tau) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\tau^{\prime}\right)$ and β maps τ^{\prime} onto a terminal segment of some $\lambda_{1} \in P_{\alpha}$ or onto a terminal segment of some $\tau_{1} \in Q_{\alpha}$.
Proof. Suppose that $\beta \in C(\alpha)$. Let $\eta=\left[x_{0} x_{1} x_{2} \ldots\right\rangle \in A_{\alpha}$. Then

$$
\begin{equation*}
x_{0} \xrightarrow{\alpha} x_{1} \xrightarrow{\alpha} x_{2} \xrightarrow{\alpha} \cdots . \tag{3.1}
\end{equation*}
$$

Suppose that $\operatorname{span}(\eta) \subseteq \operatorname{dom}(\beta)$. Then, by Proposition 3.1,

$$
\begin{equation*}
x_{0} \beta \xrightarrow{\alpha} x_{1} \beta \xrightarrow{\alpha} x_{2} \beta \xrightarrow{\alpha} \cdots \tag{3.2}
\end{equation*}
$$

By Proposition 2.4, there is $\eta_{1}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$ or $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}$ such that $x_{0} \beta=y_{j}$ for some j. (By Remark 2.5, $x_{0} \beta$ cannot be in the span of $\sigma \in A_{\alpha}, \lambda \in P_{\alpha}$, or $\tau \in Q_{\alpha}$.) Hence β maps η onto $\left[y_{j} y_{j+1} \ldots\right\rangle$ by (3.2).

Suppose that $\operatorname{span}(\eta) \cap \operatorname{dom}(\beta) \neq \emptyset$ but $\operatorname{span}(\eta) \nsubseteq \operatorname{dom}(\beta)$. Then, there is $i \geq 0$ such that $x_{i} \in \operatorname{dom}(\beta)$ but $x_{i+1} \notin \operatorname{dom}(\beta)$. By (3.1) and Proposition 3.1, $\operatorname{span}(\eta) \cap \operatorname{dom}(\beta)=$ $\left\{x_{0}, \ldots, x_{i}\right\}, x_{i} \beta \notin \operatorname{dom}(\alpha)$, and

$$
\begin{equation*}
x_{0} \beta \xrightarrow{\alpha} x_{1} \beta \xrightarrow{\alpha} \cdots \xrightarrow{\alpha} x_{i} \beta \tag{3.3}
\end{equation*}
$$

Since $x_{i} \beta \notin \operatorname{dom}(\alpha)$, it follows by Proposition 2.4 that there is $\lambda_{1}=\left\langle\ldots y_{1} y_{0}\right] \in P_{\alpha}$ such that $x_{i} \beta=y_{0}$, or there is $\tau_{1}=\left[y_{0} \ldots y_{k}\right] \in Q_{\alpha}$ such that $x_{i} \beta=y_{k}$. Hence, by (3.3), for the initial segment $\tau^{\prime}=\left[x_{0} \ldots x_{i}\right]$ of η, β maps τ^{\prime} onto the terminal segment [$y_{i-1} \ldots y_{0}$] of λ_{1} or onto the terminal segment $\left[y_{k-i} \ldots y_{k}\right]$ of τ_{1}. We have proved (1) and (2). The proofs of (3) and (4) are similar.

Let $\sigma=\left(x_{0} \ldots x_{k-1}\right) \in A_{\alpha}$. Then

$$
x_{0} \xrightarrow{\alpha} x_{1} \xrightarrow{\alpha} \cdots \xrightarrow{\alpha} x_{k-1} \xrightarrow{\alpha} x_{0}
$$

Suppose that $\operatorname{span}(\sigma) \cap \operatorname{dom}(\beta) \neq \emptyset$, that is, $x_{i} \in \operatorname{dom}(\beta)$ for some i. Then, by Proposition 3.1, $\operatorname{span}(\sigma) \subseteq \operatorname{dom}(\beta)$ and

$$
x_{0} \beta \xrightarrow{\alpha} x_{1} \beta \xrightarrow{\alpha} \cdots \xrightarrow{\alpha} x_{k-1} \beta \xrightarrow{\alpha} x_{0} \beta,
$$

and so β maps σ onto $\sigma_{1}=\left(x_{0} \beta \ldots x_{k-1} \beta\right) \in A_{\alpha}$. This proves (5).
Let $\lambda=\left\langle\ldots x_{2} x_{1} x_{0}\right] \in P_{\alpha}$, so

$$
\begin{equation*}
\cdots \xrightarrow{\alpha} x_{2} \xrightarrow{\alpha} x_{1} \xrightarrow{\alpha} x_{0} \tag{3.4}
\end{equation*}
$$

Suppose that $\operatorname{span}(\lambda) \cap \operatorname{dom}(\beta) \neq \emptyset$. Let i be the smallest nonnegative integer such that $x_{i} \in \operatorname{dom}(\beta)$. By (3.4) and Proposition 3.1, $\operatorname{span}(\lambda) \cap \operatorname{dom}(\beta)=\left\{\ldots, x_{i+1}, x_{i}\right\}$, $x_{i} \beta \notin \operatorname{dom}(\alpha)$, and

$$
\begin{equation*}
\cdots \xrightarrow{\alpha} x_{i+2} \beta \xrightarrow{\alpha} x_{i+1} \beta \xrightarrow{\alpha} x_{i} \beta \tag{3.5}
\end{equation*}
$$

Since $x_{i} \beta \notin \operatorname{dom}(\alpha)$, it follows by Proposition 2.4 that there is $\lambda_{1}=\left\langle\ldots y_{1} y_{0}\right] \in P_{\alpha}$ such that $x_{i} \beta=y_{0}$, or there is $\tau_{1}=\left[y_{0} \ldots y_{k}\right] \in Q_{\alpha}$ such that $x_{i} \beta=y_{k}$. But the latter
is impossible since we would have $y_{0} \notin \operatorname{dom}(\alpha)$ and $y_{0}=x_{i+k} \beta \in \operatorname{dom}(\alpha)$. Hence, by (3.5), for the initial segment $\lambda^{\prime}=\left\langle\ldots x_{i+1} x_{i}\right]$ of λ, β maps λ^{\prime} onto λ_{1}. We have proved (6). The proof of (7) is similar.

Conversely, suppose that β satisfies (1)-(7). We will prove that (1)-(3) of Proposition 3.1 hold for β. Let $x, y \in X$. Suppose that $x \xrightarrow{\alpha} y$ and $y \in \operatorname{dom}(\beta)$. If $y \in \operatorname{span}(\eta)$ for some $\eta \in A_{\alpha}$, then $x \in \operatorname{dom}(\beta)$ and $x \beta \xrightarrow{\alpha} y \beta$ by (1) and (2). Similarly, $x \in \operatorname{dom}(\beta)$ and $x \beta \xrightarrow{\alpha} y \beta$ in each of the remaining possibilities: if $y \in \operatorname{span}(\omega)$ for some $\omega \in B_{\alpha}$ by (3) and (4); if $y \in \operatorname{span}(\sigma)$ for some $\sigma \in A_{\alpha}$ by (5); if $y \in \operatorname{span}(\lambda)$ for some $\lambda \in P_{\alpha}$ by (6); and finally, if $y \in \operatorname{span}(\tau)$ for some $\tau \in Q_{\alpha}$ by (7).

Suppose that $x \xrightarrow{\alpha} y, x \in \operatorname{dom}(\beta)$, and $y \notin \operatorname{dom}(\beta)$. This is only possible when β satisfies (2), (4), (6), or (7) with x being the terminal point of the relevant initial segment, and so $x \beta \notin \operatorname{dom}(\alpha)$. Finally, suppose that $x \notin \operatorname{dom}(\alpha)$ and $x \in \operatorname{dom}(\beta)$. This can only happen when x is the terminal point of some $\lambda \in P_{\alpha}$ or some $\tau \in Q_{\alpha}$, and so $x \beta \notin \operatorname{dom}(\alpha)$ by (6) and (7).

Hence β satisfies (1)-(3) of Proposition 3.1, and so $\beta \in C(\alpha)$.

4. Inverse and completely regular centralisers

In this section, for an arbitrary $\alpha \in \mathcal{I}(X)$, we characterise the regular elements of $C(\alpha)$. We also determine for which $\alpha \in I(X)$ the centraliser $C(\alpha)$ is an inverse semigroup, and for which $\alpha \in I(X)$ it is a completely regular semigroup.

An element a of a semigroup S is called regular if $a=a x a$ for some $x \in S$. If all elements of S are regular, we say that S is a regular semigroup. An element $a^{\prime} \in S$ is called an inverse of $a \in S$ if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. Since regular elements are precisely those that have inverses (if $a=a x a$ then $a^{\prime}=x a x$ is an inverse of a), we may define a regular semigroup as a semigroup in which each element has an inverse [9, p. 51].

Two important classes of regular semigroups are inverse semigroups [26] and completely regular semigroups [27]. A semigroup S is called an inverse semigroup if every element of S has exactly one inverse [26, Definition II.1.1]. An alternative definition is that S is an inverse semigroup if it is a regular semigroup and its idempotents (elements $e \in S$ such that $e e=e$) commute [9, Theorem 5.1.1]. A semigroup S is called a completely regular semigroup if every element of S is in some subgroup of S [9, p. 103].

For $\beta \in P(X)$ and $Y \subseteq X$, we denote by $Y \beta$ the image of Y under β, that is, $Y \beta=\{x \beta$: $x \in Y \cap \operatorname{dom}(\beta)\}$.

Definition 4.1. Let $\alpha \in \mathcal{I}(X), M_{\alpha}=A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \cup P_{\alpha} \cup Q_{\alpha}$, and $\beta \in C(\alpha)$. We define a partial transformation Ψ_{β} on M_{α} by

$$
\begin{aligned}
\operatorname{dom}\left(\Psi_{\beta}\right) & =\left\{\varepsilon \in M_{\alpha}: \operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq \emptyset\right\} \\
\varepsilon \Psi_{\beta} & =\text { the unique } \varepsilon_{1} \in M_{\alpha} \text { such that }(\operatorname{span}(\varepsilon)) \beta \subseteq \operatorname{span}\left(\varepsilon_{1}\right)
\end{aligned}
$$

Note that Ψ_{β} is well defined and injective by Theorem 3.4; that is, $\Psi_{\beta} \in \mathcal{I}\left(M_{\alpha}\right)$.

The following lemma follows immediately from Definition 4.1 and Theorem 3.4.
Lemma 4.2. Let $\alpha \in I(X)$. Then for all $\beta, \gamma \in C(\alpha)$:
(1) $\Psi_{\beta \gamma}=\Psi_{\beta} \Psi_{\gamma}$;
(2) $A_{\alpha} \Psi_{\beta} \subseteq A_{\alpha} \cup B_{\alpha} \cup P_{\alpha} \cup Q_{\alpha}$;
(3) $B_{\alpha} \Psi_{\beta} \subseteq B_{\alpha} \cup P_{\alpha}$;
(4) if $\sigma \in C_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$, then $\sigma \Psi_{\beta}$ is a cycle in C_{α} of the same length as σ;
(5) $P_{\alpha} \Psi_{\beta} \subseteq P_{\alpha}$;
(6) $Q_{\alpha} \Psi_{\beta} \subseteq Q_{\alpha} \cup P_{\alpha}$.

Lemma 4.3. Let $\alpha \in \mathcal{I}(X)$ and let $\beta, \gamma \in C(\alpha)$ be such that $\beta=\beta \gamma \beta$. Then $A_{\alpha} \Psi_{\beta} \subseteq A_{\alpha}$, $B_{\alpha} \Psi_{\beta} \subseteq B_{\alpha}$ and $Q_{\alpha} \Psi_{\beta} \subseteq Q_{\alpha}$.
Proof. First, notice that $\Psi_{\beta}=\Psi_{\beta \gamma \beta}$ (since $\beta=\beta \gamma \beta$), and so $\Psi_{\beta}=\Psi_{\beta} \Psi_{\gamma} \Psi_{\beta}$ (by Lemma 4.2). Let $\eta \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. Then, by Lemma 4.2, $\eta \Psi_{\beta} \in A_{\alpha} \cup B_{\alpha} \cup P_{\alpha} \cup Q_{\alpha}$. Suppose that $\eta \Psi_{\beta} \in B_{\alpha}$ and let $\omega=\eta \Psi_{\beta}$. Then

$$
\eta \Psi_{\beta}=\eta\left(\Psi_{\beta} \Psi_{\gamma} \Psi_{\beta}\right)=\left(\left(\eta \Psi_{\beta}\right) \Psi_{\gamma}\right) \Psi_{\beta}=\left(\omega \Psi_{\gamma}\right) \Psi_{\beta}
$$

But then $\omega \Psi_{\gamma}=\eta$ (since Ψ_{β} is injective), which contradicts Lemma 4.2 (since $\omega \in B_{\alpha}$ and $\eta \in A_{\alpha}$). Hence $\eta \Psi_{\beta} \notin B_{\alpha}$. By similar arguments, $\eta \Psi_{\beta}$ cannot belong to P_{α} or Q_{α}, and so $\eta \Psi_{\beta} \in A_{\alpha}$. We have proved that $A_{\alpha} \Psi_{\beta} \subseteq A_{\alpha}$. The proofs that the remaining two inclusions hold are similar.

Lemma 4.4. Let $\alpha \in I(X)$ and let $\beta, \gamma \in C(\alpha)$ be such that $\beta=\beta \gamma \beta$. Then:
(1) if $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\eta \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$, then $x_{0} \beta=y_{0}$;
(2) if $\lambda=\left\langle\ldots x_{1} x_{0}\right] \in P_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\lambda \Psi_{\beta}=\left\langle\ldots y_{1} y_{0}\right] \in P_{\alpha}$, then $x_{0} \in \operatorname{dom}(\beta)$ and $x_{0} \beta=y_{0}$;
(3) if $\tau=\left[x_{0} \ldots x_{k}\right] \in Q_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\tau \Psi_{\beta}=\left[y_{0} \ldots y_{m}\right] \in Q_{\alpha}$, then $k=m, x_{0} \beta=$ $y_{0}, x_{k} \in \operatorname{dom}(\beta)$, and $x_{k} \beta=y_{k}$.

Proof. Suppose that $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\eta \Psi_{\beta}=\eta_{1}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then, by Theorem 3.4, $\operatorname{span}(\eta) \subseteq \operatorname{dom}(\beta)$ and β maps η onto $\left[y_{j} y_{j+1} \ldots\right\rangle$ for some j. Since $\beta=\beta \gamma \beta$, we have $x_{0} \beta=\left(\left(x_{0} \beta\right) \gamma\right) \beta=\left(y_{j} \gamma\right) \beta$ and so $y_{j} \gamma=x_{0}$ (since β is injective). Thus, by Theorem 3.4 again, γ maps η_{1} onto $\left[x_{i} x_{i+1} \ldots\right\rangle$ for some $i \geq 0$. But since $y_{j} \gamma=x_{0}$, this is only possible when $i=j=0$. Hence $x_{0} \beta=y_{j}=y_{0}$. We have proved (1).

Suppose that $\lambda=\left\langle\ldots x_{1} x_{0}\right] \in P_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\lambda \Psi_{\beta}=\lambda_{1}=\left\langle\ldots y_{1} y_{0}\right] \in P_{\alpha}$. Then, by Theorem 3.4, β maps some initial segment of λ, say $\left\langle\ldots x_{i+1} x_{i}\right.$, onto λ_{1}. Since $\beta=\beta \gamma \beta$, we have $x_{i} \beta=\left(\left(x_{i} \beta\right) \gamma\right) \beta=\left(y_{0} \gamma\right) \beta$ and so $y_{0} \gamma=x_{i}$. Thus, by Theorem 3.4 again, γ maps η_{1} onto η. Thus $x_{i}=y_{0} \gamma=x_{0}$, so $x_{0}=x_{i} \in \operatorname{dom}(\beta)$ and $x_{0} \beta=x_{i} \beta=y_{0}$. We have proved (2).

Suppose that $\tau=\left[x_{0} \ldots x_{k}\right] \in Q_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $\tau \Psi_{\beta}=\tau_{1}=\left[y_{0} \ldots y_{m}\right] \in Q_{\alpha}$. Then, by Theorem 3.4, β maps some initial segment of τ, say $\left[x_{0} \ldots x_{i}\right]$, onto some terminal segment of τ_{1}, say $\left[y_{j} \ldots y_{m}\right]$. Then $x_{0} \beta=\left(\left(x_{0} \beta\right) \gamma\right) \beta=\left(y_{j} \gamma\right) \beta$, and so $y_{j} \gamma=x_{0}$. But then, by Theorem 3.4, γ maps some initial segment on τ_{1}, say $\left[y_{0} \ldots y_{p}\right]$,
onto some terminal segment of τ, say $\left[x_{t} \ldots x_{k}\right]$. Thus $x_{0}=y_{j} \gamma=x_{t+j}$, which implies that $j=t=0$. Hence β maps $\left[x_{0} \ldots x_{i}\right]$ onto $\left[y_{0} \ldots y_{m}\right]$, and γ maps $\left[y_{0} \ldots y_{p}\right.$] onto [$x_{0} \ldots x_{k}$]. It follows that $i=m$ and $p=k$, so $m=i \leq k=p \leq m$. Hence $k=m$ and β maps τ onto τ_{1}, so $x_{0} \beta=y_{0}, x_{k} \in \operatorname{dom}(\beta)$, and $x_{k} \beta=y_{k}$. We have proved (3).

We can now characterise the regular elements of $C(\alpha)$.
Theorem 4.5. Let $\alpha \in \mathcal{I}(X)$ and $\beta \in C(\alpha)$. Then β is a regular element of $C(\alpha)$ if and only if, for every $\varepsilon \in M_{\alpha}$:
(1) if $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq \emptyset$ then $\operatorname{span}(\varepsilon) \subseteq \operatorname{dom}(\beta)$; and
(2) if $\operatorname{span}(\varepsilon) \cap \operatorname{im}(\beta) \neq \emptyset$ then $\operatorname{span}(\varepsilon) \subseteq \operatorname{im}(\beta)$.

Proof. Suppose that β is a regular element of $C(\alpha)$, that is, $\beta=\beta \gamma \beta$ for some $\gamma \in C(\alpha)$. Let $\varepsilon \in M_{\alpha}=A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \cup P_{\alpha} \cup Q_{\alpha}$.

Suppose that $\varepsilon=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha}$ and $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq \emptyset$. Then $\varepsilon \Psi_{\beta} \in A_{\alpha}$ by Lemma 4.3, and so $\operatorname{span}(\varepsilon) \subseteq \operatorname{dom}(\beta)$ by Theorem 3.4. Suppose that $\varepsilon=\left\langle\ldots x_{1} x_{0}\right] \in$ P_{α} and $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq \emptyset$. Then $\varepsilon \Psi_{\beta} \in P_{\alpha}$ by Lemma 4.3. Let $\varepsilon_{1}=\varepsilon \Psi_{\beta}=$ $\left\langle\ldots y_{1} y_{0}\right.$]. By Lemma 4.4, $x_{0} \in \operatorname{dom}(\beta)$ and $x_{0} \beta=y_{0}$. Thus β maps ε onto ε_{1}, and so $\operatorname{span}(\varepsilon) \subseteq \operatorname{dom}(\beta)$. If $\varepsilon \in B_{\alpha} \cup C_{\alpha} \cup Q_{\alpha}$, then (1) follows by similar arguments.

Suppose that $\varepsilon=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$ and $\operatorname{span}(\varepsilon) \cap \operatorname{im}(\beta) \neq \emptyset$. Then $\varepsilon \in \operatorname{im}\left(\Psi_{\beta}\right)$, that is, $\varepsilon=\varepsilon_{1} \Psi_{\beta}$ for some $\varepsilon_{1} \in M_{\alpha}$. By Lemmas 4.2 and 4.3, $\varepsilon_{1} \in A_{\alpha}$. Let $\varepsilon_{1}=\left[x_{0} x_{1} \ldots\right\rangle$. By Lemma 4.4, $x_{0} \beta=y_{0}$. Hence β maps ε_{1} onto ε, and so $\operatorname{span}(\varepsilon) \subseteq \operatorname{im}(\beta)$. Suppose that $\varepsilon=\left[y_{0} \ldots y_{m}\right] \in Q_{\alpha}$ and $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq \emptyset$. Then $\varepsilon \in \operatorname{im}\left(\Psi_{\beta}\right)$, that is, $\varepsilon=\varepsilon_{1} \Psi_{\beta}$ for some $\varepsilon_{1} \in M_{\alpha}$. By Lemmas 4.2 and 4.3, $\varepsilon_{1} \in Q_{\alpha}$. Let $\varepsilon_{1}=\left[x_{0} \ldots x_{k}\right]$. By Lemma 4.4, $k=m, x_{0} \beta=y_{0}, x_{k} \in \operatorname{dom}(\beta)$, and $x_{k} \beta=y_{k}$. Hence β maps ε_{1} onto ε, and so span $(\varepsilon) \subseteq \operatorname{im}(\beta)$. If $\varepsilon \in B_{\alpha} \cup C_{\alpha} \cup P_{\alpha}$, then (2) follows by similar arguments.

Conversely, suppose that (1) and (2) hold for every $\varepsilon \in M_{\alpha}$. We will define $\gamma \in C(\alpha)$ such that $\beta=\beta \gamma \beta$. Set $\operatorname{dom}(\gamma)=\bigcup\left\{\operatorname{span}\left(\varepsilon_{1}\right): \varepsilon_{1} \in \operatorname{im}\left(\Psi_{\beta}\right)\right\}$ and note that $\operatorname{dom}(\gamma)=\operatorname{im}(\beta)$. Let $\varepsilon_{1}=\lambda_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap P_{\alpha}$. Then $\lambda_{1}=\varepsilon \Psi_{\beta}$ for some $\varepsilon \in M_{\alpha}$.

Suppose that $\varepsilon \in A_{\alpha}$. Then, by Theorem 3.4, β maps some initial segment τ^{\prime} of ε onto a terminal segment of λ_{1}, and $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\tau^{\prime}\right)$. But this is impossible since $\operatorname{span}(\varepsilon) \subseteq \operatorname{dom}(\beta)$ by (1). Suppose that $\varepsilon \in B_{\alpha}$. Then, by Theorem 3.4, β maps some initial segment λ^{\prime} of ε onto λ, and $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta)=\operatorname{span}\left(\lambda^{\prime}\right)$. Again, this contradicts (1). Suppose that $\varepsilon \in Q_{\alpha}$. Then, by Theorem 3.4, β maps some initial segment τ^{\prime} of ε onto some terminal segment τ_{1} of λ_{1}. But then $\operatorname{span}\left(\lambda_{1}\right) \cap \operatorname{im}(\beta)=$ $\operatorname{span}\left(\tau_{1}\right)$, which contradicts (2).

Thus $\varepsilon=\lambda \in P_{\alpha}$ and β maps an initial segment of λ onto λ_{1}. By (1), that initial segment must be λ. We have proved that for every $\lambda_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap P_{\alpha}$, there is a (necessarily unique) $\lambda \in P_{\alpha}$ such that β maps λ onto λ_{1}. By similar arguments, for every $\eta_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap A_{\alpha}\left(\omega_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap B_{\alpha}, \tau_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap Q_{\alpha}\right)$ there is a unique $\eta \in A_{\alpha}$ $\left(\omega \in B_{\alpha}, \tau \in Q_{\alpha}\right)$ such that β maps η onto η_{1} (ω onto ω_{1}, τ onto τ_{1}).

Let $\eta_{1} \in \operatorname{im}\left(\Psi_{\beta}\right) \cap A_{\alpha}$. Define γ on span $\left(\eta_{1}\right)$ in such a way that γ maps η_{1} onto η (where η is as in the preceding paragraph). Let $\omega_{1}, \lambda_{1}, \tau_{1} \in \operatorname{im}\left(\Psi_{\beta}\right)$ with $\omega_{1} \in B_{\alpha}$, $\lambda_{1} \in P_{\alpha}$, and $\tau_{1} \in Q_{\alpha}$. We define γ on $\operatorname{span}\left(\omega_{1}\right)$, on $\operatorname{span}\left(\lambda_{1}\right)$, and on $\operatorname{span}\left(\tau_{1}\right)$
in a similar way with the following restriction: if $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ and $\omega=$ $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$ with $x_{0} \beta=y_{p}$, then $y_{i} \gamma=x_{i-p}$ for every i.

By the definition of γ and Theorem 3.4, $\gamma \in \mathcal{I}(X), \gamma \in C(\alpha)$, and $\beta=\beta \gamma \beta$. Hence β is a regular element of $C(\alpha)$.

The class of regular semigroups is larger than the class of inverse semigroups. For example, the semigroups $P(X)$ and $T(X)$ of partial and full transformations on a set X are regular semigroups but not inverse semigroups (unless $|X|=1$). However, for every subsemigroup S of $\mathcal{I}(X), S$ is a regular semigroup if and only if S is an inverse semigroup. This is because $I(X)$ is an inverse semigroup, and so its idempotents commute (see the beginning of this section).

Theorem 4.6. Let $\alpha \in \mathcal{I}(X)$. Then $C(\alpha)$ is an inverse semigroup if and only if $\alpha=\emptyset$ or α is a permutation on its domain.

Proof. First note that a nonzero $\alpha \in \mathcal{I}(X)$ is a permutation on its domain if and only if it is a join of double rays and cycles; that is, if and only if $A_{\alpha}=P_{\alpha}=\emptyset$ and $Q_{\alpha}=\left\{\left[x_{0}\right]: x_{0} \notin \operatorname{span}(\alpha)\right\}$.

Suppose that $C(\alpha)$ is inverse and $\alpha \neq \emptyset$. Then, since $\alpha \in C(\alpha)$, there exists $\beta \in C(\alpha)$ with $\alpha=\alpha \beta \alpha=\alpha(\alpha \beta)$ (since $\beta \alpha=\alpha \beta$) and it follows that $\operatorname{im}(\alpha) \subseteq \operatorname{dom}(\alpha \beta) \subseteq \operatorname{dom}(\alpha)$. Also, $\alpha \beta$ is idempotent, so $\alpha \beta=\beta \alpha=\mathrm{id}_{Y}$ for some Y containing $\operatorname{dom}(\alpha)$ (since $\alpha=\alpha \beta \alpha=\mathrm{id}_{Y} \alpha$). It follows that $\operatorname{dom}(\alpha) \subseteq \operatorname{im}(\alpha)$ (since if $x \in \operatorname{dom}(\alpha)$, then $x \in Y$, and so $\left.x=x \operatorname{id}_{Y}=x(\beta \alpha) \in \operatorname{im}(\alpha)\right)$. Therefore, $\operatorname{dom}(\alpha)=\operatorname{im}(\alpha)$, and so, since α is injective, it is a permutation on its domain.

Conversely, if $\alpha=\emptyset$ then $C(\alpha)=\mathcal{I}(X)$ is an inverse semigroup. Suppose that $\alpha \neq \emptyset$ and α is a permutation on its domain. Let $\beta \in C(\alpha)$. We will prove that β is regular. Let $\varepsilon \in B_{\alpha} \cup C_{\alpha} \cup Q_{\alpha}$ (recall that $A_{\alpha}=P_{\alpha}=\emptyset$). We claim that if $\operatorname{span}(\varepsilon) \cap \operatorname{dom}(\beta) \neq$ $\emptyset(\operatorname{span}(\varepsilon) \cap \operatorname{im}(\beta) \neq \emptyset)$, then $\operatorname{span}(\varepsilon) \subseteq \operatorname{dom}(\beta)(\operatorname{span}(\varepsilon) \subseteq \operatorname{im}(\beta))$. Let $\varepsilon=\omega \in B_{\alpha}$. Suppose that $\operatorname{span}(\omega) \cap \operatorname{dom}(\beta) \neq \emptyset$. Then $\operatorname{span}(\omega) \subseteq \operatorname{dom}(\beta)$ by Theorem 3.4 (since $P_{\alpha}=\emptyset$). Suppose that $\operatorname{span}(\omega) \cap \operatorname{im}(\beta) \neq \emptyset$. Then, by Theorem 3.4 again, β maps some $\omega_{1} \in B_{\alpha}$ onto ω (since $A_{\alpha}=\emptyset$), and so $\operatorname{span}(\omega) \subseteq \operatorname{im}(\beta)$. The claim is true for $\varepsilon \in C_{\alpha}$ by a similar argument, and it is certainly true for $\varepsilon=\left[x_{0}\right] \in Q_{\alpha}$. (Recall that α does not have any chain of length greater than 0 .) Thus β is regular by Theorem 4.5. Hence $C(\alpha)$ is a regular semigroup, and so an inverse semigroup (since the idempotents in $C(\alpha)$ commute).

Let $\alpha \in I(X)$. If $C(\alpha)$ is a completely regular semigroup, then it is an inverse semigroup. As the next result shows, the class of completely regular centralisers in $\mathcal{I}(X)$ is much smaller than the class of inverse centralisers. For $n \geq 1$, we denote by C_{α}^{n} the subset of C_{α} consisting of all cycles in C_{α} of length n.

Theorem 4.7. Let $\alpha \in I(X)$. Then $C(\alpha)$ is a completely regular semigroup if and only if:
(1) $\alpha=\emptyset$ or α is a permutation on its domain; and
(2) $\left|B_{\alpha}\right| \leq 1,\left|Q_{\alpha}\right| \leq 1$, and $\left|C_{\alpha}^{n}\right| \leq 1$ for every $n \geq 1$.

Proof. Suppose that $C(\alpha)$ is a completely regular semigroup. Then (1) holds by Theorem 4.6. Suppose that $\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$ and $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ are two distinct double rays in B_{α}. Define $\beta \in \mathcal{I}(X)$ by $\operatorname{dom}(\beta)=\operatorname{span}(\omega)$ and $x_{i} \beta=y_{i}$ for every i. Then $\beta \in C(\alpha)$ by Theorem 3.4, and $\beta^{2}=\emptyset$. Thus β is not in a subgroup of $C(\alpha)$ since there is no group with at least two elements and a zero. Hence $\left|B_{\alpha}\right| \leq 1$. By similar arguments, $\left|Q_{\alpha}\right| \leq 1$ and $\left|C_{\alpha}^{n}\right| \leq 1$ for every $n \geq 1$. Thus (2) holds.

Conversely, suppose that (1) and (2) are satisfied. If $\alpha=\emptyset$, then $X=\left\{x_{0}\right\}$ by (2), and so $C(\alpha)=\mathcal{I}(X)=\left\{0, \mathrm{id}_{X}\right\}$ is a completely regular semigroup. Suppose that $\alpha \neq \emptyset$ and let $\beta \in C(\alpha)$. If $\beta=\emptyset$, then β is an element of a subgroup of $C(\alpha)$, namely $\{0\}$. Suppose that $\beta \neq \emptyset$ and let $Z=\operatorname{dom}(\beta)$. By (1) and Theorem 4.6, β is regular. Hence, by (2) and Theorem 4.5,

$$
\begin{equation*}
Z=\operatorname{dom}(\beta)=\operatorname{im}(\beta)=\bigcup\left\{\operatorname{span}(\varepsilon): \varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)\right\} \tag{4.1}
\end{equation*}
$$

Hence, the idempotent $\varepsilon_{z} \in \mathcal{I}(X)$ with $\operatorname{dom}\left(\varepsilon_{z}\right)=Z$ is an element of $C(\alpha)$. We will define $\gamma \in C(\alpha)$ with $\operatorname{dom}(\gamma)=Z$ such that $\beta \gamma=\gamma \beta=\varepsilon_{z}$. Let $\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle \in$ $B_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. Since $\left|B_{\alpha}\right| \leq 1, \beta$ must map ω onto itself, that is, there is p such that $x_{i} \beta=x_{i+p}$ for every i. We define γ on $\operatorname{span}(\omega)$ by $x_{i} \gamma=x_{i-p}$ for every i. Let $\sigma=\left(x_{0} \ldots x_{n-1}\right) \in C_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. Since $\left|C_{\alpha}^{n}\right| \leq 1, \beta$ must map σ onto itself, that is, there is $p \in\{0, \ldots, n-1\}$ such that $x_{i} \beta=x_{i+p}$ for every $i \in\{0, \ldots, n-1\}$. We define γ on $\operatorname{span}(\sigma)$ by $x_{i} \gamma=x_{i-p}$ for every $i \in\{0, \ldots, n-1\}$. Let $\left[x_{0}\right] \in Q_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. Since $\left|Q_{\alpha}\right| \leq 1, \beta$ must map $\left[x_{0}\right]$ onto itself, that is, $x_{0} \beta=x_{0}$. We define $x_{0} \gamma=x_{0}$.

By the definition of γ, Theorem 3.4, and (4.1), we have $\gamma \in C(\alpha), \operatorname{dom}(\gamma)=\operatorname{im}(\gamma)=$ Z, and $\beta \gamma=\gamma \beta=\varepsilon_{z}$. Hence the subsemigroup $\langle\beta, \gamma\rangle$ of $C(\alpha)$ generated by β and γ is a group. It follows that $C(\alpha)$ is a completely regular semigroup.

5. Green's relations

In this section we determine Green's relations in $C(\alpha)$, including the partial orders of \mathcal{L}-, \mathcal{R}-, and \mathcal{J}-classes, for an arbitrary $\alpha \in I(X)$ such that $\operatorname{dom}(\alpha)=X$.

Denote by $\Gamma(X)$ the subsemigroup of $\mathcal{I}(X)$ consisting of all $\alpha \in \mathcal{I}(X)$ such that $\operatorname{dom}(\alpha)=X$. Green's relations of the centraliser of $\alpha \in \Gamma(X)$ relative to $\Gamma(X)$ have been determined in [18]. However, except for the relation \mathcal{L}, the results for the centraliser of $\alpha \in \Gamma(X)$ relative to $I(X)$ are quite different.

If S is a semigroup and $a, b \in S$, we say that $a \mathcal{L} b$ if $S^{1} a=S^{1} b, a \mathcal{R} b$ if $a S^{1}=b S^{1}$, and $a \mathcal{J} b$ if $S^{1} a S^{1}=S^{1} b S^{1}$, where S^{1} is the semigroup S with an identity adjoined. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R}, and \mathcal{D} as the join of \mathcal{L} and \mathcal{R}, that is, the smallest equivalence relation on S containing both \mathcal{L} and \mathcal{R}. These five equivalence relations are known as Green's relations [9, p. 45]. The relations \mathcal{L} and \mathcal{R} commute [9, Proposition 2.1.3], and consequently $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$. Green's relations are one of the most important tools in studying semigroups.

If \mathcal{G} is one of Green's relations and $a \in S$, we denote the equivalence class of a with respect to \mathcal{G} by G_{a}. Since \mathcal{L}, \mathcal{R} and \mathcal{J} are defined in terms of principal ideals in S, which are partially ordered by inclusion, we have the induced partial orders in the sets
of the equivalence classes of \mathcal{L}, \mathcal{R} and $\mathcal{J}: L_{a} \leq L_{b}$ if $S^{1} a \subseteq S^{1} b, R_{a} \leq R_{b}$ if $a S^{1} \subseteq b S^{1}$, and $J_{a} \leq J_{b}$ if $S^{1} a S^{1} \subseteq S^{1} b S^{1}$.

Green's relations in the symmetric inverse semigroup are well known [9, Exercise 5.11.2]. For all $\alpha, \beta \in \mathcal{I}(X)$:
(a) $\alpha \mathcal{L} \beta$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$;
(b) $\alpha \mathcal{R} \beta$ if and only if $\operatorname{dom}(\alpha)=\operatorname{dom}(\beta)$;
(c) $\alpha \mathcal{J} \beta$ if and only if $|\operatorname{dom}(\alpha)|=|\operatorname{dom}(\beta)|$;
(d) $\mathcal{D}=\mathcal{J}$.

Let S be a semigroup and let \mathcal{G} be one of Green's relation in S. For a subsemigroup U of S, denote by \mathcal{G}^{u} the corresponding Green's relation in U. We always have

$$
\mathcal{G}^{U} \subseteq \mathcal{G} \cap(U \times U)
$$

[9, p. 56]. We will say that \mathcal{G}^{u} is S-inheritable if

$$
\mathcal{G}^{U}=\mathcal{G} \cap(U \times U) .
$$

For example, if U is a regular subsemigroup of S, then $\mathcal{L}^{u}, \mathcal{R}^{u}$, and \mathcal{H}^{U} are S-inheritable [9, Proposition 2.4.2]. If \mathcal{G}^{v} is S-inheritable, then a description of \mathcal{G} carries over to \mathcal{G}^{v}. We will see that \mathcal{L} is the only $\mathcal{I}(X)$-inheritable Green's relation in $C(\alpha)$, where $\operatorname{dom}(\alpha)=X$.

Let $\alpha \in \mathcal{I}(X)$. Then $\operatorname{dom}(\alpha)=X$ if and only if $P_{\alpha}=Q_{\alpha}=\emptyset$. Therefore, the following corollary follows immediately from Theorem 3.4 and Definition 4.1.

Corollary 5.1. Let $\alpha, \beta \in \mathcal{I}(X)$ with $\operatorname{dom}(\alpha)=X$. Then $\beta \in C(\alpha)$ if and only if for all $\eta \in A_{\alpha}, \omega \in B_{\alpha}$, and $\sigma \in C_{\alpha}$ such that $\eta, \omega, \sigma \in \operatorname{dom}\left(\Psi_{\beta}\right)$, the following conditions are satisfied.
(1) There is $\eta_{1}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$ or $\omega_{1}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}$ such that β maps η onto $\left[y_{j} y_{j+1} \ldots\right\rangle$ for some j.
(2) β maps ω onto some $\omega_{1} \in B_{\alpha}$.
(3) β maps σ onto some $\sigma_{1} \in C_{\alpha}$.

We will use Corollary 5.1 frequently, not always referring to it explicitly.
Theorem 5.2. Let $\alpha \in \mathcal{I}(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $L_{\beta} \leq L_{\gamma}$ if and only if $\operatorname{im}(\beta) \subseteq \operatorname{im}(\gamma)$. Consequently, $\beta \mathcal{L} \gamma$ if and only if $\operatorname{im}(\beta)=\operatorname{im}(\gamma)$.
Proof. Suppose that $L_{\beta} \leq L_{\gamma}$. Then $\beta=\delta \gamma$ for some $\delta \in C(\alpha)$, and so $\operatorname{im}(\beta)=\operatorname{im}(\delta \gamma) \subseteq$ $\operatorname{im}(\gamma)$. Conversely, suppose that $\operatorname{im}(\beta) \subseteq \operatorname{im}(\gamma)$. Then $\beta=\delta \gamma$ for some $\gamma \in \mathcal{I}(X)$. We may assume that $\operatorname{dom}(\delta)=\operatorname{dom}(\beta)$. It now suffices to show that $\delta \in C(\alpha)$. Since $\operatorname{dom}(\alpha)=X, \beta \in C(\alpha)$, and $\operatorname{dom}(\beta)=\operatorname{dom}(\delta)$, it follows by Proposition 3.1 that for every $x \in X$,

$$
\begin{equation*}
x \in \operatorname{dom}(\delta) \Leftrightarrow x \alpha \in \operatorname{dom}(\delta) \tag{5.1}
\end{equation*}
$$

We claim that $\operatorname{dom}(\alpha \delta)=\operatorname{dom}(\delta \alpha)$. Indeed, it follows from (5.1) and $\operatorname{dom}(\alpha)=X$ that for every $x \in X$,

$$
x \in \operatorname{dom}(\alpha \delta) \Leftrightarrow x \alpha \in \operatorname{dom}(\delta) \Leftrightarrow x \in \operatorname{dom}(\delta) \Leftrightarrow x \in \operatorname{dom}(\delta \alpha)
$$

We have $(\alpha \delta) \gamma=\alpha \beta=\beta \alpha=(\delta \gamma) \alpha=(\delta \alpha) \gamma$ and $\operatorname{im}(\delta) \subseteq \operatorname{dom}(\gamma)$ (since $\beta=\delta \gamma$ and $\operatorname{dom}(\beta)=\operatorname{dom}(\gamma))$. Let x be an element of the common domain of $\alpha \delta$ and $\delta \alpha$. Then $x(\alpha \delta) \in \operatorname{im}(\delta)$, and so $x(\alpha \delta) \in \operatorname{dom}(\gamma)$. Thus $(x(\alpha \delta)) \gamma=(x(\delta \alpha)) \gamma$ (since $(\alpha \delta) \gamma=$ $(\delta \alpha) \gamma$), and so $x(\alpha \delta)=x(\delta \alpha)$ (since γ is injective). Hence $\alpha \delta=\delta \alpha$, which concludes the proof.

As we have already mentioned, other Green's relations in $C(\alpha)$ are not $\mathcal{I}(X)$ inheritable. For their characterisation, we will need the following notation.

Notation 5.3. Let $\alpha, \beta \in \mathcal{I}(X)$ with $\beta \in C(\alpha)$. Suppose that $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap$ $\operatorname{dom}\left(\Psi_{\beta}\right)$ and $\eta \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then β maps η onto $\left[y_{i} y_{i+1} \ldots\right\rangle$ for some $i \geq 0$. We denote the integer i by $\left(\eta \Psi_{\beta}\right)_{0}$. In other words, $i=\left(\eta \Psi_{\beta}\right)_{0}$ if and only if $y_{i}=x_{0} \beta$.

It may happen that $\eta_{1}=\eta \Psi_{\beta}=\eta \Psi_{\gamma}$ for some $\gamma \in C(\alpha)$ with $\gamma \neq \beta$. Then the notation $\left(\eta_{1}\right)_{0}$ would be ambiguous. However, we will always write such an η_{1} in the form $\eta \Psi_{\beta}$ (or $\eta \Psi_{\gamma}$) so that the ambiguity will never arise.

Proposition 5.4. Let $\alpha \in I(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $R_{\beta} \leq R_{\gamma}$ if and only if:
(1) $\operatorname{dom}\left(\Psi_{\beta}\right) \subseteq \operatorname{dom}\left(\Psi_{\gamma}\right)$; and
(2) for every $\eta \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$, if $\eta \Psi_{\beta} \in A_{\alpha}$, then $\eta \Psi_{\gamma} \in A_{\alpha}$ and $\left(\eta \Psi_{\gamma}\right)_{0} \leq\left(\eta \Psi_{\beta}\right)_{0}$.

Proof. Suppose that $R_{\beta} \leq R_{\gamma}$, that is, $\beta=\gamma \delta$ for some $\delta \in C(\alpha)$. Then, by Lemma 4.2, $\Psi_{\beta}=\Psi_{\gamma \delta}=\Psi_{\gamma} \Psi_{\delta}$, and so $\operatorname{dom}\left(\Psi_{\beta}\right) \subseteq \operatorname{dom}\left(\Psi_{\gamma}\right)$. Let $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and suppose that $\eta \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then $\left(\eta \Psi_{\gamma}\right) \Psi_{\delta}=\eta\left(\Psi_{\gamma} \Psi_{\delta}\right)=\eta \Psi_{\beta} \in A_{\alpha}$, and so $\eta \Psi_{\gamma}=$ $\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$ (since $\omega \Psi_{\delta} \in B_{\alpha}$ for every $\omega \in B_{\alpha}$). Let $i=\left(\eta \Psi_{\beta}\right)_{0}$ and $j=\left(\eta \Psi_{\gamma}\right)_{0}$, that is, $x_{0} \beta=y_{i}$ and $x_{0} \gamma=z_{j}$. We have $\left[z_{0} z_{1} \ldots\right\rangle \Psi_{\delta}=\left[y_{0} y_{1} \ldots\right\rangle$, so δ maps $\left[z_{0} z_{1} \ldots\right\rangle$ onto $\left[y_{p} y_{p+1} \ldots\right\rangle$ for some $p \geq 0$. Then $y_{i}=x_{0} \beta=\left(x_{0} \gamma\right) \delta=z_{j} \delta=y_{p+j}$. Thus $i=p+j$, and so $\left(\eta \Psi_{\gamma}\right)_{0}=j \leq i=\left(\eta \Psi_{\beta}\right)_{0}$.

Conversely, suppose that (1) and (2) are satisfied. We will define $\delta \in C(\alpha)$ such that $\beta=\gamma \delta$. Set $\operatorname{dom}(\delta)=\bigcup\left\{\operatorname{span}\left(\varepsilon \Psi_{\gamma}\right): \varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)\right\}$. Note that this definition makes sense since $\operatorname{dom}\left(\Psi_{\beta}\right) \subseteq \operatorname{dom}\left(\Psi_{\gamma}\right)$. Let $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and suppose that $\eta \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then $\eta \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$ by (2). Let $y_{i}=x_{0} \beta$ and $z_{j}=x_{0} \gamma$, and note that $j \leq i$ by (2). We define δ on $\operatorname{span}\left(\eta \Psi_{\gamma}\right)$ in such a way that δ maps $\left[z_{0} z_{1} \ldots\right\rangle$ onto $\left[y_{i-j} y_{i-j+1} \ldots\right\rangle$. Note that $x_{0}(\gamma \delta)=z_{j} \delta=y_{i-j+j}=y_{i}=x_{0} \beta$.

Let $\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and suppose that $\eta \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}$. By Lemma 4.2, $\eta \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$ or $\eta \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$. In either case, let $y_{i}=x_{0} \beta$ and $z_{j}=x_{0} \gamma$. If $\eta \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle$, we define δ on $\operatorname{span}\left(\eta \Psi_{\gamma}\right)$ in such a way that δ maps $\left[z_{0} z_{1} \ldots\right\rangle$ onto $\left[y_{i-j} y_{i-j+1} \ldots\right\rangle$. If $\eta \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$, we define δ on $\operatorname{span}\left(\eta \Psi_{\gamma}\right)$ in such a way that δ maps $\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle$ onto $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ and $z_{j} \delta=y_{i}$. Note that in both cases $x_{0}(\gamma \delta)=y_{i}=x_{0} \beta$.

Let $\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle \in B_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. By Lemma 4.2, $\omega \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0} y_{1}\right.$ $\ldots\rangle \in B_{\alpha}$ and $\omega \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$. Let $y_{i}=x_{0} \beta$ and $z_{j}=x_{0} \gamma$. We define δ on span $\left(\omega \Psi_{\gamma}\right)$ in such a way that δ maps $\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle$ onto $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ and $z_{j} \delta=y_{i}$.

Finally, let $\sigma=\left(x_{0} \ldots x_{n-1}\right) \in C_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$. By Lemma 4.2, $\sigma \Psi_{\beta}=\left(y_{0} \ldots y_{n-1}\right) \in$ C_{α} and $\sigma \Psi_{\gamma}=\left(z_{0} \ldots z_{n-1}\right) \in C_{\alpha}$. Let $y_{i}=x_{0} \beta$ and $z_{j}=x_{0} \gamma$. We define δ on $\operatorname{span}\left(\sigma \Psi_{\gamma}\right)$ in such a way that δ maps $\left(z_{0} \ldots z_{n-1}\right)$ onto $\left(y_{0} \ldots y_{n-1}\right)$ and $z_{j} \delta=y_{i}$.

By the definition of δ and Corollary 5.1, we have $\delta \in \mathcal{I}(X), \delta \in C(\alpha)$, and $\beta=\gamma \delta$. Hence $R_{\beta} \leq R_{\gamma}$, which concludes the proof.

Proposition 5.4 immediately gives us a characterisation of the relation \mathcal{R} in $C(\alpha)$.
Theorem 5.5. Let $\alpha \in \mathcal{I}(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $\beta \mathcal{R} \gamma$ if and only if $\operatorname{dom}\left(\Psi_{\beta}\right)=\operatorname{dom}\left(\Psi_{\gamma}\right)$ and for all $\eta \in A_{\alpha} \cap \operatorname{dom}\left(\Psi_{\beta}\right)$ and $k \geq 0$,

$$
\eta \Psi_{\beta} \in A_{\alpha} \quad \text { and } \quad\left(\eta \Psi_{\beta}\right)_{0}=k \Leftrightarrow \eta \Psi_{\gamma} \in A_{\alpha} \quad \text { and } \quad\left(\eta \Psi_{\gamma}\right)_{0}=k .
$$

For semigroups S and T, we write $S \leq T$ to mean that S is a subsemigroup of T. Recall that $\Gamma(X)=\{\alpha \in \mathcal{I}(X): \operatorname{dom}(\alpha)=X\}$. For $\alpha \in \Gamma(X)$, denote by $C^{\prime}(\alpha)$ the centraliser of α in $\Gamma(X)$, and by $C(\alpha)$ the centraliser of α in $I(X)$. Then clearly $C^{\prime}(\alpha) \leq C(\alpha)$.

We note that the relation \mathcal{R} in $C^{\prime}(\alpha)$ is not $C(\alpha)$-inheritable. Indeed, let $X=$ $\left\{x_{0}^{1}, x_{1}^{1}, x_{2}^{1}, \ldots\right\} \cup\left\{x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, \ldots\right\} \cup \ldots$, and consider

$$
\alpha=\left[x_{0}^{1} x_{1}^{1} x_{2}^{1} \ldots\right\rangle \sqcup\left[x_{0}^{2} x_{1}^{2} x_{2}^{2} \ldots\right\rangle \sqcup \cdots \in \Gamma(X) .
$$

Define $\beta, \gamma \in \Gamma(X)$ by $x_{i}^{n} \beta=x_{i}^{n+1}$ and $x_{i}^{n} \gamma=x_{i}^{2 n}$. Then $(\beta, \gamma) \in \mathcal{R}$ in $C(\alpha)$ by Theorem 5.5. However, $\left|A_{\alpha} \backslash A_{\alpha} \Psi_{\beta}\right|=1$ and $\left|A_{\alpha} \backslash A_{\alpha} \Psi_{\gamma}\right|=\aleph_{0}$, and so $(\beta, \gamma) \notin \mathcal{R}$ in $C^{\prime}(\alpha)$ by [18, Theorem 4.7].

Recall that for $\alpha \in \mathcal{I}(X)$ and $n \geq 1, C_{\alpha}^{n}=\left\{\sigma \in C_{\alpha}: \sigma\right.$ has length $\left.n\right\}$.
Theorem 5.6. Let $\alpha \in \mathcal{I}(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $\beta \mathcal{D} \gamma$ if and only if there is a bijection $f: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ such that for all $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right), n \geq 1$, and $k \geq 0$:
(1) if $\varepsilon \in A_{\alpha}\left(\varepsilon \in B_{\alpha}, \varepsilon \in C_{\alpha}^{n}\right)$, then $\varepsilon f \in A_{\alpha}\left(\varepsilon f \in B_{\alpha}, \varepsilon f \in C_{\alpha}^{n}\right)$;
(2) $\varepsilon \Psi_{\beta} \in A_{\alpha}$ and $\left(\varepsilon \Psi_{\beta}\right)_{0}=k \Leftrightarrow(\varepsilon f) \Psi_{\gamma} \in A_{\alpha}$ and $\left((\varepsilon f) \Psi_{\gamma}\right)_{0}=k$.

Proof. Suppose that $\beta \mathcal{D} \gamma$. Then, since $\mathcal{D}=\mathcal{L} \circ \mathcal{R}$, there is $\delta \in C(\alpha)$ such that $\beta \mathcal{L} \delta$ and $\delta \mathcal{R} \gamma$. Let $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$. Then, by Theorem 5.2 and Definition 4.1, there is a unique $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\delta}\right)$ such that $\varepsilon \Psi_{\beta}=\varepsilon_{1} \Psi_{\delta}$. Define $f: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ by $\varepsilon f=\varepsilon_{1}$. Note that f indeed maps $\operatorname{dom}\left(\Psi_{\beta}\right)$ to $\operatorname{dom}\left(\Psi_{\gamma}\right)$ since $\operatorname{dom}\left(\Psi_{\gamma}\right)=\operatorname{dom}\left(\Psi_{\delta}\right)$ by Theorem 5.5.

Suppose that $\varepsilon_{1}=\varepsilon f=\varepsilon^{\prime} f=\varepsilon_{1}^{\prime}$, where $\varepsilon, \varepsilon^{\prime} \in \operatorname{dom}\left(\Psi_{\beta}\right)$. Then $\varepsilon \Psi_{\beta}=\varepsilon_{1} \Psi_{\delta}=\varepsilon_{1}^{\prime} \Psi_{\delta}=$ $\varepsilon^{\prime} \Psi_{\beta}$, and so $\varepsilon=\varepsilon^{\prime}$ since Ψ_{β} is injective. Let $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\gamma}\right)$. Then $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\delta}\right)$, and so $\varepsilon_{1} \Psi_{\delta} \in \operatorname{im}\left(\Psi_{\delta}\right)$. Since $\operatorname{im}\left(\Psi_{\delta}\right)=\operatorname{im}\left(\Psi_{\beta}\right)$, there is $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$ such that $\varepsilon \Psi_{\beta}=\varepsilon_{1} \Psi_{\delta}$, so $\varepsilon f=\varepsilon_{1}$. We have proved that f is a bijection.

Let $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$. To prove (1), suppose that $\varepsilon \in A_{\alpha}$ and $\varepsilon_{1}=\varepsilon f$. If $\varepsilon \Psi_{\beta} \in A_{\alpha}$ then $\varepsilon_{1} \Psi_{\delta}=\varepsilon \Psi_{\beta} \in A_{\alpha}$, and so $\varepsilon_{1} \in A_{\alpha}$ by Lemma 4.2. Suppose that $\varepsilon \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0}\right.$ $\left.y_{1} \ldots\right\rangle \in B_{\alpha}$. Then, since $\varepsilon \in A_{\alpha}, \beta$ maps ε onto $\left[y_{i} y_{i+1} \ldots\right\rangle$ for some i. We have $\varepsilon_{1} \Psi_{\delta}=\varepsilon \Psi_{\beta}$, so $\varepsilon_{1} \in A_{\alpha}$ or $\varepsilon_{1} \in B_{\alpha}$. The latter is impossible, however, since δ would map ε_{1} onto $\varepsilon \Psi_{\beta}$, which would imply that $\operatorname{span}\left(\varepsilon \Psi_{\beta}\right) \subseteq \operatorname{im}(\delta)$ and contradict the fact
that $\operatorname{im}(\beta)=\operatorname{im}(\delta)$. We have proved that if $\varepsilon \in A_{\alpha}$ then $\varepsilon f \in A_{\alpha}$. The proofs of (1) in the two remaining cases, when $\varepsilon \in B_{\alpha}$ and when $\varepsilon \in C_{\alpha}^{n}$, are similar.

To prove (2), suppose that $\varepsilon \Psi_{\beta} \in A_{\alpha}$ and $\varepsilon_{1}=\varepsilon f$. Then $\varepsilon_{1} \Psi_{\delta}=\varepsilon \Psi_{\beta} \in A_{\alpha}$, and so $\varepsilon_{1} \in$ A_{α} by Lemma 4.2. By Theorem 5.5, $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\gamma}\right), \varepsilon_{1} \Psi_{\gamma} \in A_{\alpha}$, and $\left(\varepsilon_{1} \Psi_{\delta}\right)_{0}=\left(\varepsilon_{1} \Psi_{\gamma}\right)_{0}$. But $\operatorname{im}(\beta)=\operatorname{im}(\delta)$ implies that $\left(\varepsilon_{1} \Psi_{\beta}\right)_{0}=\left(\varepsilon_{1} \Psi_{\delta}\right)_{0}$, so $\left(\varepsilon_{1} \Psi_{\beta}\right)_{0}=\left(\varepsilon_{1} \Psi_{\gamma}\right)_{0}$. The proof of the converse of (2) is similar.

Conversely, suppose that there exists a bijection $f: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ such that (1) and (2) are satisfied for all $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right), n \geq 1$, and $k \geq 0$. We will construct $\delta \in$ $C(\alpha)$ such that $\beta \mathcal{L} \delta$ and $\delta \mathcal{R} \gamma$. We set $\operatorname{dom}(\delta)=\bigcup\left\{\operatorname{span}\left(\varepsilon_{1}\right): \varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\gamma}\right\}\right.$ (which is equal to $\operatorname{dom}(\gamma))$. Let $\varepsilon_{1}=\varepsilon f \in \operatorname{dom}\left(\Psi_{\gamma}\right)$.

Let $\varepsilon_{1} \in A_{\alpha}$. Then $\varepsilon \in A_{\alpha}$ by (1). Suppose that $\varepsilon \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$ with $i=\left(\varepsilon \Psi_{\beta}\right)_{0}$. By (2), $\varepsilon_{1} \Psi_{\gamma} \in A_{\alpha}$ and $\left(\varepsilon_{1} \Psi_{\gamma}\right)_{0}=i$. We define δ on $\operatorname{span}\left(\varepsilon_{1}\right)$ in such a way that δ maps ε_{1} onto $\left[y_{i} y_{i+1} \ldots\right\rangle$. Suppose that $\varepsilon \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}$. Then β maps ε onto $\left[y_{i} y_{i+1} \ldots\right.$) for some i. By (2), $\varepsilon_{1} \Psi_{\gamma} \notin A_{\alpha}$, so $\varepsilon_{1} \Psi_{\gamma} \in B_{\alpha}$. We define δ on $\operatorname{span}\left(\varepsilon_{1}\right)$ in such a way that δ maps ε_{1} onto $\left[y_{i} y_{i+1} \ldots\right\rangle$.

Let $\varepsilon_{1} \in B_{\alpha}$. Then $\varepsilon \in B_{\alpha}$ by (1), and $\varepsilon \Psi_{\beta}, \varepsilon_{1} \Psi_{\gamma} \in B_{\alpha}$ by Lemma 4.2. We define δ on span $\left(\varepsilon_{1}\right)$ in such a way that δ maps ε_{1} onto $\varepsilon \Psi_{\beta}$. Finally, let $\varepsilon_{1} \in C_{\alpha}^{n}$, where $n \geq 1$. Then $\varepsilon \in C_{\alpha}^{n}$ by (1), and $\varepsilon_{1} \Psi_{\gamma} \in C_{\alpha}^{n}$ by Lemma 4.2. We define δ on $\operatorname{span}\left(\varepsilon_{1}\right)$ in such a way that δ maps ε_{1} onto $\varepsilon \Psi_{\beta}$.

By the definition of δ, Corollary 5.1, Theorems 5.2 and 5.5, we have $\delta \in \mathcal{I}(X)$, $\delta \in C(\alpha), \beta \mathcal{L} \delta$, and $\delta \mathcal{R} \gamma$. Hence $\beta \mathcal{D} \gamma$, which concludes the proof.

In the semigroup $\mathcal{I}(X)$, we have $\mathcal{J}=\mathcal{D}$. We will see that, in general, this is not true in $C(\alpha)$. The following theorem describes the partial order of the \mathcal{J}-classes in $C(\alpha)$.

Theorem 5.7. Let $\alpha \in I(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $J_{\beta} \leq J_{\gamma}$ if and only if there is an injection $g: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ such that, for all $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$ and $n \geq 1$, the following conditions are satisfied.
(1) If $\varepsilon \in A_{\alpha}$, then $\varepsilon g \in A_{\alpha} \cup B_{\alpha}$.
(2) If $\varepsilon \in B_{\alpha}\left(\varepsilon \in C_{\alpha}^{n}\right)$, then $\varepsilon g \in B_{\alpha}\left(\varepsilon g \in C_{\alpha}^{n}\right)$.
(3) If $\varepsilon \Psi_{\beta} \in A_{\alpha}$, then $(\varepsilon g) \Psi_{\gamma} \in A_{\alpha}$ and $\left((\varepsilon g) \Psi_{\gamma}\right)_{0} \leq\left(\varepsilon \Psi_{\beta}\right)_{0}$.

Proof. Suppose that $J_{\beta} \leq J_{\gamma}$, that is, $\beta=\delta \gamma \kappa$ for some $\delta, \kappa \in C(\alpha)$. Then, by Lemma 4.2, $\Psi_{\beta}=\Psi_{\delta \gamma \kappa}=\Psi_{\delta} \Psi_{\gamma} \Psi_{\kappa}$, and so if $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$, then $\varepsilon \in \operatorname{dom}\left(\Psi_{\delta}\right)$ and $\varepsilon \Psi_{\delta} \in$ $\operatorname{dom}\left(\Psi_{\gamma}\right)$. Define $g: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ by $\varepsilon g=\varepsilon \Psi_{\delta}$. Then g is injective since Ψ_{δ} is injective.

Let $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$ and $n \geq 1$. Then g satisfies (1) and (2) by Lemma 4.2. Suppose that $\varepsilon \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then $\varepsilon=\left[\begin{array}{lll}x_{0} & x_{1} & \ldots\rangle \in A_{\alpha} \text { by Lemma 4.2, and }\left((\varepsilon g) \Psi_{\gamma}\right) \Psi_{\kappa}= \\ \hline\end{array}\right.$ $\varepsilon\left(\Psi_{\delta} \Psi_{\gamma} \Psi_{k}\right)=\varepsilon \Psi_{\beta} \in A_{\alpha}$. Thus $(\varepsilon g) \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$ (since $\omega \Psi_{\kappa} \in B_{\alpha}$ for every $\left.\omega \in B_{\alpha}\right)$ and $\left[z_{0} z_{1} \ldots\right\rangle \Psi_{\kappa}=\left[y_{0} y_{1} \ldots\right\rangle$. Let $\varepsilon g=\varepsilon \Psi_{\delta}=\left[v_{0} v_{1} \ldots\right\rangle$ and note that $\left[v_{0} v_{1} \ldots\right) \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle$. Let $x_{0} \beta=y_{i}, x_{0} \delta=v_{p}, v_{0} \gamma=z_{j}$, and $z_{0} \kappa=y_{q}$ (so $i=\left(\varepsilon \Psi_{\beta}\right)_{0}$ and $\left.j=\left((\varepsilon g) \Psi_{\gamma}\right)_{0}\right)$. Then $y_{i}=x_{0} \beta=\left(x_{0} \delta\right)(\gamma \kappa)=\left(v_{p} \gamma\right) \kappa=z_{p+j} \kappa=y_{p+j+q}$. Thus $i=$ $p+j+q$, and so $\left((\varepsilon g) \Psi_{\gamma}\right)_{0}=j=i-p-q \leq i=\left(\varepsilon \Psi_{\beta}\right)_{0}$. This proves (3).

Conversely, suppose that there exists an injection $g: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ such that (1)-(3) are satisfied for all $\varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$ and $n \geq 1$. We will construct $\delta, \kappa \in C(\alpha)$ such that $\beta=\delta \gamma \kappa$. Set

$$
\begin{aligned}
& \operatorname{dom}(\delta)=\bigcup\left\{\operatorname{span}(\varepsilon): \varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)\right\} \\
& \operatorname{dom}(\kappa)=\bigcup\left\{\operatorname{span}\left(\varepsilon_{1}\right): \varepsilon_{1}=(\varepsilon g) \Psi_{\gamma} \text { for some } \varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)\right\}
\end{aligned}
$$

$($ Note that $\operatorname{dom}(\delta)=\operatorname{dom}(\beta)$.$) Suppose that \varepsilon \in \operatorname{dom}\left(\Psi_{\beta}\right)$.
Let $\varepsilon=\eta=\left[x_{0} x_{1} \ldots\right\rangle \in A_{\alpha}$.
Suppose that $\eta \Psi_{\beta}=\left[y_{0} y_{1} \ldots\right\rangle \in A_{\alpha}$. Then $(\eta g) \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$ by (3), and so $\eta g=\left[v_{0} v_{1} \ldots.\right\rangle \in A_{\alpha}$ by Lemma 4.2. Let $x_{0} \beta=y_{i}$ and $v_{0} \gamma=z_{j}$. Then $j \leq i$ by (3). We define δ on span (η) in such a way that δ maps $\left[x_{0} x_{1} \ldots\right\rangle$ onto $\left[v_{0} v_{1} \ldots\right\rangle$; and κ on span $\left((\eta g) \Psi_{\gamma}\right)$ in such a way that κ maps $\left[z_{0} z_{1} \ldots\right\rangle$ onto $\left[y_{i-j} y_{i-j+1} \ldots\right\rangle$. Note that $x_{0}(\delta \gamma \kappa)=v_{0}(\gamma \kappa)=z_{j} \kappa=y_{i-j+j}=y_{i}=x_{0} \beta$.

Suppose that $\eta \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}$. By (1) and Lemma 4.2, there are three possible cases to consider.

Case 1. $\eta g=\left[v_{0} v_{1} \ldots\right\rangle \in A_{\alpha}$ and $(\eta g) \Psi_{\gamma}=\left[z_{0} z_{1} \ldots\right\rangle \in A_{\alpha}$.
Let $x_{0} \beta=y_{i}$ and $v_{0} \gamma=z_{j}$. We define δ on $\operatorname{span}(\eta)$ in such a way that δ maps $\left[x_{0} \quad x_{1} \ldots\right\rangle$ onto $\left[v_{0} \quad v_{1} \ldots\right\rangle$; and κ on $\operatorname{span}\left((\eta g) \Psi_{\gamma}\right)$ in such a way that κ maps $\left[z_{0} z_{1} \ldots\right\rangle$ onto $\left[y_{i-j} y_{i-j+1} \ldots\right\rangle$.

Case 2. $\eta g=\left[v_{0} v_{1} \ldots\right\rangle \in A_{\alpha}$ and $(\eta g) \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$.
Let $x_{0} \beta=y_{i}$ and $v_{0} \gamma=z_{j}$. We define δ on $\operatorname{span}(\eta)$ in such a way that δ maps [$\left.x_{0} x_{1} \ldots\right\rangle$ onto $\left[v_{0} v_{1} \ldots\right\rangle$; and κ on $\operatorname{span}\left((\eta g) \Psi_{\gamma}\right)$ in such a way that κ maps $\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle$ onto $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ and $z_{j} \kappa=y_{i}$.

Case 3. $\eta g=\left\langle\ldots v_{-1} v_{0} v_{1} \ldots\right\rangle \in B_{\alpha}$ and $(\eta g) \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$.
In this case, we define δ and κ exactly as in Case 2.
Let $\varepsilon=\omega=\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle \in B_{\alpha}$. Then $\omega \Psi_{\beta}=\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle \in B_{\alpha}, \omega g=$ $\left\langle\ldots v_{-1} v_{0} v_{1} \ldots\right\rangle \in B_{\alpha}\left(\right.$ by (2)), and $(\eta g) \Psi_{\gamma}=\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle \in B_{\alpha}$. Let $x_{0} \beta=y_{i}$ and $v_{0} \gamma=z_{j}$. We define δ on $\operatorname{span}(\omega)$ in such a way that δ maps $\left\langle\ldots x_{-1} x_{0} x_{1} \ldots\right\rangle$ onto $\left\langle\ldots v_{-1} v_{0} v_{1} \ldots\right\rangle$ and $x_{0} \delta=v_{0}$; and κ on $\operatorname{span}\left((\eta g) \Psi_{\gamma}\right)$ in such a way that κ maps the double chain $\left\langle\ldots z_{-1} z_{0} z_{1} \ldots\right\rangle$ onto $\left\langle\ldots y_{-1} y_{0} y_{1} \ldots\right\rangle$ and $z_{j} \kappa=y_{i}$.

Finally, let $\varepsilon=\sigma=\left(x_{0} \ldots x_{n-1}\right) \in C_{\alpha}^{n}$, where $n \geq 1$. Then $\sigma \Psi_{\beta}=\left(y_{0} \ldots y_{n-1}\right) \in$ $C_{\alpha}^{n}, \sigma g=\left(v_{0} \ldots v_{n-1}\right) \in C_{\alpha}^{n}\left(\right.$ by (2)) , and $(\sigma g) \Psi_{\gamma}=\left(z_{0} \ldots z_{n-1}\right) \in C_{\alpha}^{n}$. Let $x_{0} \beta=y_{i}$ and $v_{0} \gamma=z_{j}$. We define δ on $\operatorname{span}(\omega)$ in such a way that δ maps $\left(x_{0} \ldots x_{n-1}\right)$ onto $\left(v_{0} \ldots v_{n-1}\right)$ and $x_{0} \delta=v_{0}$; and κ on $\operatorname{span}\left((\eta g) \Psi_{\gamma}\right)$ in such a way that κ maps $\left(z_{0} \ldots z_{n-1}\right)$ onto $\left(y_{0} \ldots y_{n-1}\right)$ and $z_{j} \kappa=y_{i}$.

By the definitions of δ and κ and Corollary 5.1, we have $\delta, \kappa \in I(X), \delta, \kappa \in C(\alpha)$, and $\beta=\delta \gamma \kappa$. Hence $J_{\beta} \leq J_{\gamma}$.

Theorem 5.7 gives us a characterisation of the relation \mathcal{J} in $C(\alpha)$.

Theorem 5.8. Let $\alpha \in \mathcal{I}(X)$ with $\operatorname{dom}(\alpha)=X$, and let $\beta, \gamma \in C(\alpha)$. Then $\beta \mathcal{J} \gamma$ if and only if there are injections $g_{1}: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ and $g_{2}: \operatorname{dom}\left(\Psi_{\gamma}\right) \rightarrow \operatorname{dom}\left(\Psi_{\beta}\right)$ such that for all $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\beta}\right), \varepsilon_{2} \in \operatorname{dom}\left(\Psi_{\gamma}\right), n \geq 1$, and $i \in\{1,2\}$, the following conditions are satisfied.
(1) If $\varepsilon_{i} \in A_{\alpha}$, then $\varepsilon_{i} g_{i} \in A_{\alpha} \cup B_{\alpha}$.
(2) If $\varepsilon_{i} \in B_{\alpha}\left(\varepsilon_{i} \in C_{\alpha}^{n}\right)$, then $\varepsilon_{i} g_{i} \in B_{\alpha}\left(\varepsilon_{i} g_{i} \in C_{\alpha}^{n}\right)$.
(3) If $\varepsilon_{1} \Psi_{\beta} \in A_{\alpha}$, then $\left(\varepsilon_{1} g_{1}\right) \Psi_{\gamma} \in A_{\alpha}$ and $\left(\left(\varepsilon_{1} g_{1}\right) \Psi_{\gamma}\right)_{0} \leq\left(\varepsilon_{1} \Psi_{\beta}\right)_{0}$.
(4) If $\varepsilon_{2} \Psi_{\gamma} \in A_{\alpha}$, then $\left(\varepsilon_{2} g_{2}\right) \Psi_{\beta} \in A_{\alpha}$ and $\left(\left(\varepsilon_{2} g_{2}\right) \Psi_{\beta}\right)_{0} \leq\left(\varepsilon_{2} \Psi_{\gamma}\right)_{0}$.

The injections g_{1} and g_{2} from Theorem 5.8 cannot be replaced by a bijection $g: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$. Indeed, let

$$
X=\left\{x_{0}^{1}, x_{1}^{1}, x_{2}^{1}, \ldots\right\} \cup\left\{x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, \ldots\right\} \cup \cdots \cup\left\{y_{0}^{1}, y_{1}^{1}, y_{2}^{1}, \ldots\right\} \cup\left\{y_{0}^{2}, y_{1}^{2}, y_{2}^{2}, \ldots\right\} \cup \ldots,
$$

and consider

$$
\alpha=\left[x_{0}^{1} x_{1}^{1} x_{2}^{1} \ldots\right\rangle \sqcup\left[x_{0}^{2} x_{1}^{2} x_{2}^{2} \ldots\right\rangle \sqcup \cdots \sqcup\left[y_{0}^{1} y_{1}^{1} y_{2}^{1} \ldots\right\rangle \sqcup\left[y_{0}^{2} y_{1}^{2} y_{2}^{2} \ldots\right\rangle \sqcup \cdots \in \Gamma(X)
$$

Define $\beta, \gamma \in I(X)$ by $\operatorname{dom}(\beta)=\left\{x_{i}^{2 n}: n \geq 1, i \geq 0\right\}, x_{i}^{2 n} \beta=y_{i}^{2 n}, \quad \operatorname{dom}(\gamma)=\left\{x_{i}^{2 n-1}\right.$: $n \geq 1, i \geq 0\}, x_{i}^{1} \gamma=y_{i+1}^{1}$ and $x_{i}^{2 n-1} \gamma=y_{i}^{2 n-1}$ for $n \geq 2$. Then (1)-(4) of Theorem 5.8 are satisfied with $\left[x_{0}^{2 n} x_{1}^{2 n} x_{2}^{2 n} \ldots\right\rangle g_{1}=\left[x_{0}^{2 n+1} x_{1}^{2 n+1} x_{2}^{2 n+1} \ldots\right\rangle$ and $\left[x_{0}^{2 n-1} x_{1}^{2 n-1} x_{2}^{2 n-1}\right.$ $\ldots\rangle g_{2}=\left[x_{0}^{2 n} x_{1}^{2 n} x_{2}^{2 n} \ldots\right\rangle(n \geq 1)$, so $\beta \mathcal{J} \gamma$.

However, no bijection $g: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ can satisfy (3) of Theorem 5.8. Suppose that such a bijection exists. Then $\varepsilon_{1} g=\left[x_{0}^{1} x_{1}^{1} x_{2}^{1} \ldots\right\rangle$ for some $\varepsilon_{1} \in \operatorname{dom}\left(\Psi_{\beta}\right)$ (since g is onto). But then $\left(\left(\varepsilon_{1} g\right) \Psi_{\gamma}\right)_{0}=1$ (since $\left.x_{0}^{1} \gamma=y_{1}^{1}\right)$ and $\left(\varepsilon_{1} \Psi_{\beta}\right)_{0}=0$ (since $x_{0}^{2 n} \beta=y_{0}^{2 n}$ for every $n \geq 1$), and so (3) is violated.

By the foregoing argument, there is no bijection $f: \operatorname{dom}\left(\Psi_{\beta}\right) \rightarrow \operatorname{dom}\left(\Psi_{\gamma}\right)$ such that (2) of Theorem 5.6 is satisfied. Hence $(\beta, \gamma) \notin \mathcal{D}$ in $C(\alpha)$.

Acknowledgement

The author would like to thank the referee for simplifying the proofs of Theorems 4.6 and 5.2.

References

[1] J. Araújo, M. Kinyon and J. Konieczny, 'Minimal paths in the commuting graphs of semigroups', European J. Combin. 32 (2011), 178-197.
[2] J. Araújo and J. Konieczny, 'Automorphism groups of centralizers of idempotents', J. Algebra 269 (2003), 227-239.
[3] J. Araújo and J. Konieczny, 'Semigroups of transformations preserving an equivalence relation and a cross-section', Comm. Algebra 32 (2004), 1917-1935.
[4] J. Araújo and J. Konieczny, 'General theorems on automorphisms of semigroups and their applications', J. Aust. Math. Soc. 87 (2009), 1-17.
[5] J. Araújo and J. Konieczny, ‘Centralizers in the full transformation semigroup’, Semigroup Forum, to appear.
[6] G. Ayik, H. Ayik and J. M. Howie, 'On factorisations and generators in transformation semigroups', Semigroup Forum 70 (2005), 225-237.
[7] C. Bates, D. Bundy, S. Perkins and P. Rowley, 'Commuting involution graphs for symmetric groups', J. Algebra 266 (2003), 133-153.
[8] P. M. Higgins, 'Digraphs and the semigroup of all functions on a finite set', Glasgow Math. J. 30 (1988), 41-57.
[9] J. M. Howie, Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).
[10] A. Iranmanesh and A. Jafarzadeh, 'On the commuting graph associated with the symmetric and alternating groups', J. Algebra Appl. 7 (2008), 129-146.
[11] D. Jakubíková, 'Systems of unary algebras with common endomorphisms. I, II', Czechoslovak Math. J. 29(104) (1979), 406-420, 421-429.
[12] V. A. Kolmykov, 'On the commutativity relation in a symmetric semigroup', Siberian Math. J. 45 (2004), 931-934.
[13] V. A. Kolmykov, 'Endomorphisms of functional graphs', Discrete Math. Appl. 16 (2006), 423-427.
[14] V. A. Kolmykov, 'On commuting mappings', Mat. Zametki 86 (2009), 389-393 (in Russian).
[15] J. Konieczny, 'Green's relations and regularity in centralizers of permutations', Glasgow Math. J. 41 (1999), 45-57.
[16] J. Konieczny, 'Semigroups of transformations commuting with idempotents', Algebra Colloq. 9 (2002), 121-134.
[17] J. Konieczny, 'Semigroups of transformations commuting with injective nilpotents', Comm. Algebra 32 (2004), 1951-1969.
[18] J. Konieczny, 'Centralizers in the semigroup of injective transformations on an infinite set', Bull. Austral. Math. Soc. 82 (2010), 305-321.
[19] J. Konieczny, 'Infinite injective transformations whose centralizers have simple structure', Cent. Eur. J. Math. 9 (2011), 23-35.
[20] J. Konieczny and S. Lipscomb, 'Centralizers in the semigroup of partial transformations', Math. Japon. 48 (1998), 367-376.
[21] I. Levi, 'Normal semigroups of one-to-one transformations', Proc. Edinburgh Math. Soc. 34 (1991), 65-76.
[22] S. Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, 46 (American Mathematical Society, Providence, RI, 1996).
[23] V. A. Liskovec and V. Z. Feĭnberg, 'On the permutability of mappings', Dokl. Akad. Nauk BSSR 7 (1963), 366-369 (in Russian).
[24] M. Novotný, 'Sur un problème de la théorie des applications', Publ. Fac. Sci. Univ. Massaryk 1953 (1953), 53-64 (Czech).
[25] M. Novotný, 'Über Abbildungen von Mengen', Pacific J. Math. 13 (1963), 1359-1369 (in German).
[26] M. Petrich, Inverse Semigroups (John Wiley \& Sons, New York, 1984).
[27] M. Petrich and N. R. Reilly, Completely Regular Semigroups (John Wiley \& Sons, New York, 1999).
[28] W. R. Scott, Group Theory (Prentice Hall, Englewood Cliffs, NJ, 1964).
[29] L. A. Skornjakov, 'Unary algebras with regular endomorphism monoids', Acta Sci. Math. (Szeged) 40 (1978), 375-381.
[30] F. Szechtman, 'On the automorphism group of the centralizer of an idempotent in the full transformation monoid', Semigroup Forum 70 (2005), 238-242.
[31] M. W. Weaver, 'On the commutativity of a correspondence and a permutation', Pacific J. Math. 10 (1960), 705-711.

JANUSZ KONIECZNY, Department of Mathematics, University of Mary Washington, Fredericksburg, VA 22401, USA e-mail: jkoniecz@umw.edu

[^0]: (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

