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1. Introduction. If X is a Klein surface (KS) with boundary, of algebraic genus p,
and $ is an automorphism of order N, May [8] proved that N < 2p + 2 when X is
orientable and p is even, and N < 2p otherwise.

He proved also that the unique topological type of an orientable KS having an
orientation-preserving automorphism of maximum order is a surface with one boundary
component when p is even, with two boundary components when p is odd.

In [8] May asks for the topological types of an orientable KS with boundary having
an orientation-reversing automorphism of maximum order, and also for the topological
types of non-orientable KS with boundary having an automorphism of maximum order.

In this work we solve this problem. We obtain besides, in all cases, the types of NEC
groups providing the automorphism of maximum order. This result is also obtained for
the case that May solved in [8].

We prove also that the maximum order of an orientation-reversing automorphism of
an orientable KS with boundary, of genus p odd, is 2p - 2. This bound completes the list
given by May [8] of the maximum order of automorphisms. The technique we use is the
theory of NEC groups.

2. NEC groups and Klein surfaces. The first modern study of KS is due to Ailing
and Greenleaf [1]. They are surfaces with or without boundary endowed with a dianalytic
structure; the automorphisms of these surfaces are dianalytic homeomorphisms.

In this work we study Klein surfaces using non-euclidean crystallographic groups
(NEC groups) [6].

An NEC group is a discrete subgroup F of the group of isometries of the
non-euclidean plane U (U = {z eC/Imz >0}) with compact quotient space, including
orientation-reversing elements, reflections and glide-reflections.

NEC groups are classified according to their signatures [6], which are symbols of the
form

( g ; ± ; [ m , , . . . , m , ] \ { ( n n , . . . , n U l ) . . . ( n k l , . . . , n f a j } ) ,

where g is the genus of the surface U/T, the sign ± indicates whether the surface is
orientable or not, the m, ^ 2 (proper periods) represent the branching order of interior
points of the surface by the canonical projection p:U—> U/T, the n,y > 2 (periods of
period-cycles) represent the branching order of boundary points of the surface by the
above mapping, and k is the number of holes of the surface.
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The signature of an NEC group determines a presentation of it given by generators

(i) xu . . . ,x,,

(ii) eu . . . , ek,

(iii) c1 0, . . . , Cij,, . . . , ck0, . . . , c ^ ,

(iv) (if the sign is +) au bx, . . . , ag, dg

(if the sign is - ) dlf.. . , dg

and the relations

(i) xT = 1, i = 1, • • •, t,

(ii) c?_! = cjj = (c^Cij)"* = 1 (i = 1, . . . , k;j = 1, . . . , Si),

(iii) e^CioeiCi,. = 1, i = 1, . . - , k,

(iv) (if the sign is +)

(if the sign is - ) xx. . . xtex. . . ekd\. . .d\ = 1.

From now on the letters x, a, b, c, d, e, will be used for these canonical generators of the
group.

The relation between NEC groups and KS is a consequence of the following results
of Preston [9], Alling-Greenleaf [1] and May [7].

If X is a KS of algebraic genus p s 2 , then X may be represented by U/T, where T is
an NEC group with signature

(g;±; [ - ] ; { ( - ) . . . ( - ) } ) .

k

If T is an NEC group then the quotient space UIT may be endowed with a structure
of KS.

A group H is an automorphism group of the KS U/T if and only if H = T'/F where F'
is an NEC group such that F <F ' (Fa bordered surface group).

An NEC group with orientation-reversing elements will be called a proper NEC
group.

If F is a proper NEC group, then the Fuchsian subgroup of F, formed by its
orientation-preserving elements, has index 2 in F and will be denoted by F+ (canonical
Fuchsian group of F).

We shall indicate now some results obtained in [2,3] that will be used throughout this
paper.

THEOREM 2.1 [2]. Let T be an NEC group with signature

(g; + ; [mlt..., m,\, {(nn,..., nlsi)... (nku . . . . n f a j})
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and Fo a normal subgroup of F such that [F: Fo] = N, N even. We suppose that:
(i) C = {CJ, c-}(j = 1, . . . , p) is the set of pairs of reflections which are generators of F,

not belonging to Fo, and such that Cj. c] is an elliptic element of order ny;
(ii) pi is the exponent of xt modulo Fo (l^i^t);

(Hi) g, is the exponent of Cj. c] modulo Fo (1 ^j ^p).
Then the proper periods of Fo are

j = \,...,p,qt* «,)],

where by (—)r we mean that this proper period is repeated r times.

THEOREM 2.2 [3]. Let F be an NEC group with signature

a(F) = (g;±; [ - - ] ; { ( - ) . . . ( - ) } ) ,

k

and F' an NEC group such that F < F' and F'/F = ZN, N even. Then F' has signature

a(F') = (g; ±; [N/ku ..., N/k,]; { ( - ) . . . (-)(2, . . . , 2)" . . . (2, . . . , 2)"}),

where the numbers r, are even and

k = s-p-t'+2 tnN\n + 2 rjN/4,

with t' = S tn and tn s: 0, where tn and p are positive integers.
n\N

3. Topological types. If X = U/T is a compact orientable KS of algebraic genus at
least two and <I> is an automorphism of X, it is known that (<I>) =T'/T where F' is an
NEC group and (<J>) denotes the group generated by <I>. Besides if gT is a generator of
F'/F, one may define

3. Topological types. If X = U/T is a compact orientable KS of algebraic genus at
least two and O is an automorphism of X, it is known that (O) =F ' /F where F' is an

THEOREM 3.1. Let X = U/T be an orientable bordered Klein surface and G = F'/F the
automorphism group of X. Then all the elements of G preserve the orientation of X if and
only if all orientation-reversing elements of the canonical generating system ofT' belong to
F.

Proof. Let R' be a fundamental region of F' (see [11]) and N the order of G. Then if

r/r = {yir,y2r,...,yN-1r,r},
we have that

R = R'Uyi(R')\J...UyN.,(R')
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is a fundamental region of F; moreover, applying F to R, we obtain a tessellation of U,
&ndR/T=U/r.

Suppose that not all reflections or glide reflections of the canonical generator system
of F belong to F; then let c be a reflection of F' not belonging to F: we may take yk•. = c; if
we write R' as Ax where r is the side fixed by c and A denotes the other sides of the
polygon, we have in R the connected region /?' U c(R'). Suppose that cF is the element of
F'/F corresponding to an automorphism $ e G ; then 3> reverses the orientation of the
interior of R since the image of R' associated to this automorphism is c(R'). Hence $
reverses the orientation of £//F.

We would act the same way if there were a glide reflection of F not belonging to F.
We now prove the sufficiency. Let all orientation-reversing elements of the canonical

generating system of F' belong to F and suppose that gF e F'/F.
Let g = w-i . . . wk-xwkwk+l... wr be an expression for g in terms of the canonical

generators of F', where wk reverses orientation. Then

. . . wr)T = (w, . . . H ^ O H ^ F H ^ , . . . wr

= wx . . . wk_lwk+l . . . wrr,

as wk e F. Thus we can choose all the coset representatives to be orientation-preserving.
Given $ e G , let _y,F be the element of F'/F associated to 3>. Define now an

orientation in the interior of ysR'; since y, preserves the orientation, ytysR' has the same
orientation. The identification of sides of ysR' and y^R' is made by elements of F'
preserving the orientation (non-orientable generators of F' belong to F), so 4> preserves
the orientation of U/F.

THEOREM 3.2. Let X=U/T be an orientable KS with k boundary components of
algebraic genus p^2.

(a) If p is even and X has an orientation-reversing automorphism of order 2p + 2,
then k =p + 1. Besides, if Q? is an (orientation-reversing) automorphism of X of order
2p + 2, the group generated by it is (O) = F'/F where F' is an NEC group with signature

(b) If p is odd, the maximum order of an orientation-reversing automorphism of X is
2p — 2, and this value is only obtained when k = 2 and 4 \ p — 3 or when k = 4 and
4 | p — 3. Besides if Q> is an orientation-reversing automorphism of X of order 2p — 2, the
group generated by it is ( $ ) = T'/Y, where F' is an NEC group with signature

( 1 ; - ; [2]; {(-)}) .

Proof, (a) If p is even, the maximum order of an orientation-reversing automorph-
ism is 2p + 2. If this value is achieved, there exists an NEC group F' with T'/T = Z2p+2-

From the relation of areas of the fundamental regions (see [11]) of F and F' one has
|F'| = |F|/(2p + 2). Since the area of F (see [10]) (up to a factor In) is p - 1, one has

| F | = 1/2-!/(/> + !). (1)
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Since F has period-cycles, F' also has period-cycles.
If F' has sign + in its signature, by 2.2 the signature of F' has the form

(g' ;+; [(2p + 2)/*lf . . . , (2p + 2)/*J; { ( - ) . . . (-)(2, . . . , 2)'.. . . (2, . . . ,2)"}),

* ri rk-

and so its area is, up to a factor In,

|F'| = k0 + 2g' - 2 + 1/2 £ 2 (1 - 1/2) + t (1 - *,/(2p + 2)), (2)
i=i y=i i=i

where &0 is the number of period-cycles in the signature of I", and so fc0 — 1.
By (1), |F ' | < 1/2 and as A:o > 1 we have g' = 0. We then see that k0 = 1 and now from

(1) and (2)

(i) k' = l,r[ri = 0,t = 2

or

(ii) * ' = l , r ; r , = 2 , f = l .

In case (i) we have from (1) and (2)

1/2 - l / (p + 1) = - 1 + 2 (1 - *</2(p + 1))
i=i

and hence kx + k2 — 3 = p. As fcx and &2 both divide 2(p +1 ) the only solution is
kx=p + l, k2 = 2.

Analogously in case (ii) one obtains k1 = 2.
Hence the signatures of F' are

(a) (0; +; [2, p + l]; {(-)})

or

(0) (0;+; [p + l]; {(2, 2)}).

If the signature of F' is (a-) then there is just one conjugacy class of reflections in F'.
As U/r has a boundary, F also has reflections. Thus if ceF ' /F is a reflection and
0:F'->Z2p+2 is the homomorphism then 0(c) = O so by Theorem 3.1 the automorphism
associated to 6 is orientable. In case (/?) there exists an epimorphism

with ker 6 = F, such that

By 2.1 6(xl) = a has order p + l, and so 6{ex) =2p + 2 - a, since d(xxe]) is 0; hence by
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Theorem 3.1 the automorphism associated to 6 reverses the orientation. As ctc3e ker 6,
by [4, 3.1] k = (2p + 2)12= p + 1.

If T' has sign - in its signature, then by 2.2 it has the form

(g1; - ; [(2p + 2)/ku . . . , (2p + 2)/k,]; {(-) . . . (-)(2, . . . , 2)" . . . (2, . . . , 2)"}),

and so the area of the associated fundamental region (up to factor 2n) is

ir'l = Ar0 + g' - 2 + 1/2 £ 2 ( 1 - 1/2) + t (1 - ki/(2p + 2)), (3)
i = l ; = 1 i = l

where k0 is the number of period-cycles of the signature of F' and so k0 > 1. As g' > 1,
then |T'| s: 1/2 (since r' is even), and so (3) is never equal to (1).

(b) If p is odd, then by [8] the maximum possible order of an orientation-reversing
automorphism of X is 2p. If this bound is attained, there exists an NEC group T' with

ryr=z2p.
From the relation of the areas of fundamental regions of F and V one has that

\T'\ = \T\/(2p).
Since the area of T (up to a factor 2K) is p - 1, we have

(4)

If the signature of T' has sign +, then by 2.2 it has the form

(g'; + ; [2p/ku ..., 2p/k,]; { ( - ) . . . ( - ) ( 2 , . . . . 2 ) " . . . (2, . . . , 2 ) * ) ) ,

and so its area is

i n = k0 + 2g' - 2 + 1/2 £ £ (1 - 1/2) + i (1 - ktl2p), (5)
i = l y = l < = 1

where ko^\.
From (4) and (5) we have g' = 0; besides, k0 cannot be 2 since then the remaining

quantities of (5) would have a value bigger than 1/2; if k0 = 1 the only solutions for
coincidence of values of (5) and (4) are:

(0;+; [2, 2p); {(-)}),

(0;+; [3, 3]; {(-)}),/> = 3,

for which there does not exist the epimorphism we are looking for.
Since there are not automorphisms with maximum order 2p, we look for automorph-

isms of order 2p — 2.
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The relation of areas is now

|r ' | = |r|/(2p + 2) = (p - l)/(2p - 2) = 1/2. (6)

If I" has sign + in its signature, then by 2.2 that signature has the form

(g'; +; [(2p - 2)/*,, . . . , (2p - 2)/*,]; { ( - ) . . . (-)(2, . . . , 2)r>. . . (2, . . . , 2)*'})

and so the area is (up to a factor In)

|r| = A:o + 2g' - 2 + 1/2 2 S (1" 1/2) + 2 (1 - W p - 2)), (7)

where fco>l. Then the only solutions equating (6) and (7) are

(0 (0; + ; H ; {(2,2,2,2,2,2)}),

(ii) (0;+; [2]; {(2, 2, 2, 2)}),

(hi) (0;+;[2,2];{(2,2)}),

(iv) (0;+; [2, 2,2]; {(-)}),

(v) (0;+; [4,4]; {(-)}),

(vi) (0;+; [3,6]; {(-)}),

(vii) (0;+; [2]; {(-)(-)}),

(viii) (0; + ; [ - ] ; {(2,2)(-)}).

In cases (i), (ii), (Hi), (iv), if there exists an epimorphism 0:F'—»Z2p-2 with any of these
signatures, then by [4,3.1] and 2.1 the group Z2p_2 would have only generators of order
2, whence p = 2, which is impossible.

In case (v) there exists no epimorphism whose associated automorphism is
non-orientable.

In case (vii) if there exists 8: F' -» Z2p_2 with ker 6 = F, then by [3,3.1] and 2.1 one
has

d(Xl) =p - 1 of order 2,

0(c1) = O o r p - l ,

0(c2) = 0 or p - 1,

6(e2) = OieVxT1).

Since the automorphism associated to 6 is non-orientable, then by Theorem 3.1
0 ( C O = P ~ 1 o r Hc2)=p-1, whence 6(x1c1) = 0 or 6(xlc2) = 0, and hence (see [5,
Theorem 2]) F would have sign - in its signature, which is impossible.
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In case (viii), by [3,3.1] one has

f0(clo) = ^ T , 1 (

[d(c12)=p-l
or <8(cn)=p-l,

U ( ) 0
0(c2O) = O or p-l.

Since 6(e2) = fl^i"1)* o n e n a s #(ei) andp - 1 generate Z2p_2; as 2(/? - 1) is a multiple of
4, 0(ei) must have order 2(p — 1), since otherwise the two elements would not generate
the group. Supposing 6{el) = 1 (in other cases we act analogously) one obtains
8(e^~1cw) = 0, and so ker 8 has sign - in its signature (which is not possible).

If I" has sign — in its signature, then by 2.2 the signature of F" has the form

(g; - ; [(2p - 2)/ku . . ., (2p - 2)/*,]; {(-) . . . ( -)(2, . . . , 2)" . . . (2, . . . , 2)*}),

and so the area is (up to a factor

iri = k0 + g' - 2 + 1/2 2 2 (1 - 1/2) + £ (1 - k,/(2p - 2)), (8)

where ko> 1 and g'^1. The only solutions for (6) equating with (8) are:

(0 ( i ; - ; H ; {(2,2)}),
(ii) ( 1 ; - ; [2]; {(-)}).

If T' has signature (i) and there exists an epimorphism 6:T' —*• Z2p-2 with ker 6 = T,
we have, by [3,3.1]

or < 6(cu)=p-l,
I9(cl2)=p-1

with 8{el) = 8(di2); sop - 1 and 8(d1) generate Z2p_2. An argument similar to the case
(viii) above allows us, without loss of generality, to suppose that 8{dx) = 1; from which
one deduces 8(d^~1c10) = 0 and d1~1cw is a non-orientable element since p - 1 is even;
hence ker 8 would have sign - in its signature and it would not be isomorphis to T.

If F' has signature (ii), any epimorphism 8: F —»Z2p_2 with ker 8 = T should satisfy

Asp - 1 and 8{dx) generate Z2p_2 we may suppose 8(d1) = 1, and so 8{ex) =p - 3.
By [5, Theorem 2] f//ker 8 is an orientable KS, and the automorphism associated to 8 is
non-orientable.
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Now we look for the number of boundary components of U/ker 6; by [4, Lemma 1]
it is enough to know the minimum power of ex belonging to ker 6. If it is a, then
a(p — 3) = n(2p — 2), n being an integer number, and a divides p — 1, since p — 3 is even.
Hence a = 2n(p- l ) /(p - 3) = 2n + 2(2n/(p - 3)). As a < p - 1, we have

and so 2n/(p — 3) ^ 1. As a is an integer, we have

2 n / ( p - 3 ) = l or 2n/(p - 3) = 1/2,

and so p = 3 + 2n or p = 3 + An.
If p = 3 + 2n, we have ar = p —1. If p = 3 + An we have a = (p — l)/2. So, if

p - 3 = 4, the minimum power a of ej such that 6{e") = 0 is (p - l)/2. Hence by
[4, Lemma 1], k = 2(p - l)/(p - 1) = 2.

If p — 3 =£ 4, the minimum power a- of ex with (ef) = 0 is p — 1, and by [4, Lemma 1]
we have k = 2(p- l ) / (p - 1) = 2.

In a similar way we have the following theorems; part of the next theorem appears in
May [8].

THEOREM 3.3. Let X = U/T be an orientable KS with k boundary components of
algebraic genus p & 2.

(a) If p is even and X has an orientation-preserving automorphism of order 2p +2,
then k = \. Besides, if <& is an automorphism of X of order 2p + 2, the group generated by
it is (3>) = T'/r, where T' is an NEC group with signature

(b) If p is odd and X has an orientation-preserving automorphism of order 2p, then
k = 2. Besides, if <5 is an automorphism of X of order 2p, the group generated by it is

r 7 F , and I" is an NEC group with signature

(0;+; [2, 2p\; {(-)}).
THEOREM 3.4. Let X = U/T be a non-orientable KS with k boundary components, of

algebraic genus p>2.
If X has an automorphism of order 2p, then k = p. Besides, if ® is an automorphism

of X of order 2p, the group generated by it is (3>) = F'/F, and F" is an NEC group with
signature

This paper forms part of the doctoral thesis of the author, written under the direction
of Prof. E. Bujalance. I express to him my acknowledgement.
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