
JFP 28, e18, 46 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000138

1

Abstract allocation as a unified approach to
polyvariance in control-flow analyses�

THOMAS GILRAY

University of Maryland, College Park

(e-mail: tgilray@cs.umd.edu)

MICHAEL D. ADAMS

University of Utah

(e-mail: adamsmd@cs.utah.edu)

MATTHEW MIGHT

University of Alabama, Birmingham

(e-mail: might@uab.edu)

Abstract

In higher order settings, control-flow analysis aims to model the propagation of both data

and control by finitely approximating program behaviors across all possible executions. The

polyvariance of an analysis describes the number of distinct abstract representations, or

variants, for each syntactic entity (e.g., functions, variables, or intermediate expressions).

Monovariance, one of the most basic forms of polyvariance, maintains only a single abstract

representation for each variable or expression. Other polyvariant strategies allow a greater

number of distinct abstractions and increase analysis complexity with the aim of increasing

analysis precision. For example, k-call sensitivity distinguishes flows by the most recent k

call sites, k-object sensitivity by a history of allocation points, and argument sensitivity

by a tuple of dynamic argument types. From this perspective, even a concrete operational

semantics may be thought of as an unboundedly polyvariant analysis. In this paper, we

develop a unified methodology that fully captures this design space. It is easily tunable

and guarantees soundness regardless of how tuned. We accomplish this by extending the

method of abstracting abstract machines, a systematic approach to abstract interpretation

of operational abstract-machine semantics. Our approach permits arbitrary instrumentation

of the underlying analysis and arbitrary tuning of an abstract-allocation function. We show

that the design space of abstract allocators both unifies and generalizes existing notions of

polyvariance. Simple changes to the behavior of this function recapitulate classic styles of

analysis and yield novel combinations and variants.

1 Introduction

In the past 40 years, since call-sensitive data-flow analysis was introduced by Sharir

& Pnueli (1981), a wide variety of both subtly and essentially distinct forms of

� This material is partially based on research sponsored by DARPA under agreements number AFRL
FA8750-15-2-0092 and FA8750-12-2-0106, by NSF under CAREER grant 1350344, and by the Victor
Basili fellowship at the University of Maryland, College Park.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

2 T. Gilray et al.

polyvariant static analysis have been explored in the literature. The polyvariance of

a finite flow analysis, broadly construed, is the degree to which program control

flows and data flows are broken into multiple distinct static approximations of

their dynamic behavior. This is consistent with previous uses of the term, although

the exact nature of its diversity of uses has not previously been well explored or

formalized.

For example, consider a function applied to different values across more than one

call site such an identity function applied to both true and false in Racket (Racket

Community 2015):

(let ([id (λ (x) x)])

(id #f)

(id #t))

A monovariant analysis is one that, for each syntactic variable or intermediate

expression, maintains only one approximation, variant, or flow set. For example,

although x is bound to #f when called from the first call site (i.e., (id #f)) and #t

when called from the second call site (i.e., (id #t)), a monovariant analysis merges

these to produce only a single flow set {#t, #f} for x (assuming #t and #f are not

further approximated).

A more polyvariant analysis allows a larger number of distinct flow sets. This

potentially increases analysis complexity, analysis precision, or both, depending on

the analysis target. The seminal and still most widely used form of polyvariance,

k-call sensitivity, maintains one flow set for each call history of length k that precedes

a variable binding. In our example, a 1-call sensitive analysis (e.g., Shivers’ 1-control-

flow analysis (CFA)) keeps #t and #f from merging. It maintains two distinct flow

sets for x. One is for x when id is called from the first call site (id #f). The other

is for x when id is called from the second call site (id #t).

A wide gamut of polyvariant techniques has been discussed in the literature (Sharir

& Pnueli 1981; Jones & Muchnick 1982; Harrison 1989; Shivers 1991; Oxhøj et al.

1992; Agesen 1995; Banerjee 1997; Jagannathan et al. 1997; Wright & Jagannathan

1998; Amtoft & Turbak 2000; Palsberg & Pavlopoulou 2001; Liang et al. 2005;

Milanova et al. 2005; Naik et al. 2006; Lhoták 2006; Lhoták & Hendren 2006;

2008; Bravenboer & Smaragdakis 2009; Holdermans & Hage 2010; Smaragdakis

et al. 2011; Gilray & Might 2013; 2014; Koot & Hage 2015; Verstoep & Hage

2015; Gilray et al. 2016b). These include both subtle variations and disparate

strategies. They use a variety of techniques and support many different applications.

While many share common elements, there is little work on connecting and unifying

different implementations and strategies (Amtoft & Turbak 2000; Smaragdakis et al.

2011; Gilray & Might 2014).

We present a new methodology that both unifies and generalizes the myriad

strategies for polyvariance. We show that the design space of polyvariance uniquely

and exactly corresponds to the design space of tunings of an abstract allocator and

that no tuning leads to an unsound analysis. Classic flavors of polyvariance are

recapitulated by our methodology, and we can derive novel variations of each.

By proving that no allocation tuning is unsound and by permitting arbitrary

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 3

instrumentation of a core flow analysis, we show that all conceivable sound strategies

for polyvariance can be implemented by a parametric abstract semantics.

1.1 Contributions

We expand and clarify our proceedings paper (Gilray et al. 2016a). In this version,

we make the following new additions:

• We expand the background material, adding examples for several styles of

polyvariance in Section 2 and add clarifying examples throughout.

• We present a self-contained development of abstracting abstract machines

(AAM) in Section 4.

• We expand on our treatment of the a posteriori soundness process and its

proof in Section 5 for clarity and self-containment.

• We switch to a direct-style presentation both to improve clarity, accessibility,

and to connect the allocation approach with our solution to the call-return-

matching problem for higher order CFA (Gilray et al. 2016b). This result is

based entirely on the approach described in the present paper and its result is

discussed in Section 5.

• We detail the traditional Galois connection used in an AAM-style analysis

and the parametric Galois connection used in our approach.

1.2 Outline

Section 2 introduces the design space of existing strategies for polyvariance

and explores the central challenges in designing effective and efficient forms of

polyvariance. This motivates our new approach.

Section 3 informally explains the main idea of our approach and introduces the

central insights that make it possible.

Section 4 reviews the AAM methodology, formalizing both a concrete semantics

and an abstract semantics that approximates it. We discuss crucial concepts such

as store widening and soundness. More experienced readers may want to skim over

this section as it is background for our approach.

Section 5 discusses the role of allocation within AAM. It presents the a posteriori

soundness theorem (liberalizing our previous soundness constraints to cover all

tunings of allocation) and explains why allocation is uniquely suitable for this

process. We generalize the framework of Section 4 to a parametric semantics that

encompasses all possible allocation behaviors and explain the utility of leaving

instrumentation as an open parameter. We present the most liberal constraint

possible for the a posteriori soundness process to be employed. This section provides

a general, tunable framework that instantiates our approach and gives a self-

contained development of the a posteriori soundness process in its full generality.

Section 6 surveys a variety of polyvariance styles. We encode each within our

parametric semantics and show how each can be generalized to new styles of

polyvariance or combined with other strategies. We further show that no degree of

precision lost from either store widening or closure conversion is fundamentally out

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

4 T. Gilray et al.

of reach when using our method as these are also forms of polyvariance within our

framework.

2 Myriad styles of polyvariance

Polyvariance has a long history with many variants proposed. Following Sharir &

Pnueli (1981), call sensitivity was used by Jones & Muchnick (1982) and Harrison

(1989) in the ’80s and then generalized to CFA of higher order languages (k-CFA)

by Shivers (1991). The ’90s saw a broader exploration of different strategies for

polyvariance, including a polynomial-time approximation for call-sensitive higher

order flow analysis by Jagannathan & Weeks (1995) and the Cartesian product

algorithm (CPA) by Agesen (1995), an enhancement for type recovery algorithms.

A variety of polyvariant type systems emerged, the majority of which are call

sensitive (Oxhøj et al. 1992; Banerjee 1997; Amtoft & Turbak 2000; Palsberg &

Pavlopoulou 2001; Holdermans & Hage 2010; Koot & Hage 2015; Verstoep &

Hage 2015). Ideas from type systems found their way into flow analyses (Cousot

1997; Amtoft & Turbak 2000). For example, inspired by let-polymorphism, Wright

& Jagannathan (1998) presents polymorphic splitting, a style of call sensitivity that

varies the degree of sensitivity per-function based on the let-depth. Milanova

et al. (2005) introduces another style of polyvariance, object sensitivity, which uses

a history of the allocation points of objects to differentiate program contexts.

Like call sensitivity, object sensitivity forms a hierarchy of increasingly precise

analyses that reach concrete (precise) evaluation only in the limit. Growing evidence

(particularly for points-to analysis of Java) supports the idea that object-sensitive

analyses tend to be more effective and efficient than call-sensitive ones for object-

oriented targets, as object sensitivity correlates well with dynamic dispatch behavior

(Liang et al. 2005; Naik et al. 2006; Lhoták & Hendren 2006; Lhoták 2006; Lhoták

& Hendren 2008; Bravenboer & Smaragdakis 2009). More recently, Smaragdakis

et al. (2011) generalizes object sensitivity to a range of variations and introduces

a new approximation called type sensitivity that retains only the type information

needed to coalesce similar dynamic dispatches.

These different styles of polyvariance can be viewed as heuristics for managing

the trade-off between complexity and precision in a static analysis. Call sensitivity

supposes that program values correlate with recent call sites (or the surrounding

stack frames). Object sensitivity supposes that values correlate with the allocation

point of a function’s receiving object (and the allocation point of its allocating object

in turn, and so forth). The CPA supposes that program values for one argument to

a function correlate with program values for other arguments to the same function.

Polymorphic splitting supposes that more deeply nested function definitions benefit

from more call history. For programs for which these are good heuristics, more

precise flow sets result. For programs for which they are not, less precise flow sets

result. Each strategy for polyvariance represents a gambit on the part of an analysis

designer that the programs being analyzed behave in certain ways. In the remainder

of this section, we explore a few of these and the trade-offs they make.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 5

2.1 Call sensitivity (k-CFA)

Consider the following uses of an identity function on two different types:

(let ([id (λ (x) x)])

(id 0)

(id "a"))

In a monovariant type recovery with no context sensitivity and only one

abstraction for each piece of syntax in a program, there is only one set in which

to store possible types for the variable x. Thus, because both the int and string

types flow to x, both are conflated as they return from id. This means that string

is incorrectly reported as a possible return type for (id 0), and int is incorrectly

reported as a possible return type for (id "a").

In order to distinguish between these two calls, call-sensitive flow analyses consider

the two invocations of id as different contexts in which to analyze the function

body. For example, a 1-call-sensitive analysis, like 1-CFA, tracks the most-recent call

site and keeps separate approximations for each variable and most-recent call site.

Thus, the set of types reaching x when the most-recent call is (id 0) is separate

from than those reaching x when the most-recent call is (id "a"). The first contains

only the type int and the later only string. Thus, the set of return types reported

for (id 0) contains just int, and the set of return types reported for (id "a")

contains just string.

While differentiating data flows by the most-recent call site eliminates spurious

flows in the preceding example, conflation can still occur if we indirect through

another function call. For example, consider the following code that effectively

η-expands id:

(let* ([id1 (λ (x1) x1)]

[id0 (λ (x0) (id1 x0))])

(id0 1)

(id0 "b"))

A 1-CFA keeps the values of x0 distinct for the two calls to id0 since these are

made from different call sites. However, these result in two intermediate calls to id1

that both have the same latest call site in the body of id0. Thus, there is only one

approximation of x1, and values are still conflated. Once again, the analysis will

spuriously report string as a possible return type of (id0 1) and int as a possible

return type of (id0 "b").

This can be fixed by tracking the last two call sites instead of only the last call

site, which is exactly what a 2-call-sensitive analysis (like 2-CFA) does. However,

this can be defeated by adding yet another level of indirection. In general, any

k-CFA, which tracks the last k call sites, can be defeated by code of the following

form:

(let* ([id k−1 (λ (x k)−1 x k)]

[id k−1 (λ (x k−1) (id k x k−1))]

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

6 T. Gilray et al.

...

[id1 (λ (x1)−1 (id2 x1)])

[id0 (λ (x0)−1 (id1 x0))])

(id0 2)

(id0 "c"))

The initial id0 through idk−1 ensure that the last k call sites are the same so there

is only one variant of xk and thus values passed to id0 are conflated.

In addition to its effect on precision, the choice of polyvariance can have

a significant impact on how long an analysis takes. Consider the following

change to our example where two call sites exist at every intermediate

function:

(let* ([id k−1 (lambda (x k)−1 x k))]

[id k−1 (lambda (x k−1) (id k x k−1) (id k x k−1))]

...

[id1 (lambda (x1)−1 (id2 x1)−1 (id2 x1))])

[id0 (lambda (x0)−1 (id1 x0)−1 (id1 x0))])

(id0 1)

(id0 "at"))

Now each invocation of id0 results in a number of call histories that is exponential

in k—that is, all combinations of either the first call site or the second call site for

all of id0 through idk−1 or each of 2k distinct call histories. Because this analysis

is k-call sensitive, it distinguishes (and thus accumulates) all these call histories for

bindings to idk−1. Then, due to the additional function idk, all these values are

conflated and we gain no additional precision. This illustrates how the precision

and complexity of a flow analysis can vary independently across a variety of

targets. A style of analysis may prove to be a good compromise in effectiveness

and efficiency for some programs or idioms, while neither effective nor efficient for

others.

2.2 Argument sensitivity (CPA)

To further illustrate the importance of choosing a polyvariance fitting the task,

consider a max function like the following:

(let ([max (lambda (a b) (if (> a b) a b))])

(max 0 1)

(max "a" "at"))

As before, a 1-call sensitive analysis is precise enough to keep the values 0 and "a"

from merging. However, if max is η-expanded k times, a k-call sensitive analysis

will not be enough to keep the approximation for a’s behavior from becoming

{int, string} (in the case of a type recovery, or {0, "a"} for a constant propagation).

This is not unsound because neither of these are spurious values for a. However,

spurious inter-argument patterns are being implied between the approximations for

a and b. It appears that max could be invoked with an integer in one argument

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 7

and a string in the other. To eliminate this kind of imprecision, we need to chose

a different polyvariance. For example, the CPA builds tuples of arguments for each

function, which preserves inter-argument patterns and thus excludes the possibility

of calls like (max "a" 1). For the function max, CPA has the same complexity as

k-CFA but yields significantly greater precision. For a different function, one where

all such inter-argument combinations are possible, CPA will exhaustively enumerate

all combinations at great expense, while k-CFA handles them at no additional cost.

For different programs or even components in a single program, different styles of

polyvariance can exhibit very different degrees of precision or performance.

2.3 Object sensitivity

Another style of polyvariance, closely related to argument sensitivity, is object

sensitivity. Object sensitivity tracks the syntactic allocation point of each object in

the program and differentiates bindings at function calls by the program point

where the receiving object was instantiated. A k-object sensitive analysis extends this

concept to include the allocation point of the object that allocated an object and

so forth, forming a hierarchy of increasingly precise analyses. It can be considered

a kind of argument sensitivity, but with two differences. First, it considers only the

implicit this argument. Second, it uses allocation-point history instead of dynamic

type. (Though there is a variant of object sensitivity, called type sensitivity, described

by Smaragdakis et al. (2011), that does use dynamic types instead of allocation

histories.)

To illustrate this behavior, consider the chain of identity functions from Section 2.1

translated into the following object-oriented code:

a = new I

b = new I

a.id0(0)

b.id0("a")

class I {
def id0(x0) = this.id1(x0)

def id1(x1) = this.id2(x1)

...

def id k(x k) = x k

}

Object sensitivity differentiates each call to id0 through idk into two allocation

sites for this. One is for the allocation point a = new I and the other for b =

new I. Because the explicit argument (i.e., 0 or "a") to each of the two calls to id0

co-varies with the implicit this argument, no conflation of types occurs, no matter

the size of k. While a k-call-sensitive analysis merges both values in the final call

to idk, a 1-object-sensitive analysis keeps them separate. If each identity function

id0 through idk−1 were to call its successor twice, k-call sensitivity would yield an

exponential-time analysis while 1-object sensitivity or type sensitivity would both

yield a polynomial-time analysis.

A common object-oriented idiom that object sensitivity handles particularly well

is dynamic dispatch. Consider a simple example of dynamic dispatch where two

different Ape subtypes implement different calls.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

8 T. Gilray et al.

class Bonobo {
def talk() = "shriek"

}

class Chimp {
def talk() = "hoot"

}

def main() = {
var b = new Bonobo

var c = new Chimp

b.printTalk()

c.printTalk()

}

class Ape {
def printTalk() = {

var bonmot = this.talk()

print(bonmot)

}

def virtual talk()

}

As in the previous example, because the two distinct calls correlate with their

receiving object, both are kept distinct through the indirection of multiple method

calls. In this case, dynamic dispatch is also done correctly and its control flow kept

separate. The first call to this.talk() reaches only the bonobo’s implementation

and returns only "shriek". The second reaches only the chimp’s implementation

and returns only "hoot".

Generally, objects allocated at the same line of code may have similar behaviors

that are reasonable to conflate and keep together. However, where two objects

allocated at the same point exhibit different behaviors, important distinctions for

an analysis may be lost, and where two objects allocated at different points exhibit

similar behaviors, opportunities to coalesce their abstractions and reduce analysis

complexity may also be missed.

2.4 Toward better trade-offs

Similar trade-offs can be described for other forms of polyvariance and each further

intersects with the well-known paradox of flow analysis that greater precision can,

in practice, lead to smaller model sizes and faster runtimes (Wright & Jagannathan

1998). While establishing better guarantees of analysis efficiency does correlate

inversely with guarantees of analysis precision in terms of the worst case, analyses

with more precision for data flows often have more precision for control flows

and thus explore a smaller overall model. Scaling polyvariant flow analysis to large

programs hinges on making good trade-offs and exploiting this paradox. Otherwise,

for nearly all the varieties mentioned, the use of polyvariance is exponential in

the worst case (Van Horn & Mairson 2008; Might et al. 2010). What seems to be

needed are increasingly nuanced, introspective, and adaptive forms of polyvariance

that better suit their targets and the properties we may wish to prove or discover for

them. The direction of research in this area and the challenges of precisely modeling

dynamic higher order programming languages suggests an important development

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 9

would be an easy way to adjust the polyvariance of a flow analysis (in theory and

in practical implementations) that is both always safe and fully general.

3 The big picture

In this paper, we develop a unified approach to encoding all and only sound

forms of polyvariance as tunings of an allocation function. Thus, the main idea is

that allocation characterizes polyvariance. The design space of allocation strategies

fully covers the design space of polyvariant strategies and leads us to a convenient

implementation approach. Classic flavors of polyvariance can be recapitulated using

our methodology, and we are able to derive novel variations of each. Furthermore,

all possible allocation strategies yield a sound polyvariant analysis.

There are thus two directions to consider: that every allocation strategy gives rise

to a sound polyvariant analysis, and that every sound polyvariant analysis can be

implemented by an allocation strategy. We employ the a posteriori soundness process

of Might & Manolios (2009) to show that every allocator results in a sound analysis.

To guide the allocator, we can arbitrarily instrument the analysis, and so long as

the instrumentation affects only the allocator and the addresses it produces, it never

leads to an unsound analysis. Furthermore, any form of polyvariance is expressible

in terms of an allocator and instrumentation. This is because polyvariance concerns

how flow sets are merged and differentiated. In a store-passing-style interpreter, this

is determined by address allocation.

In Figure 1, we summarize the styles of polyvariance we survey in Section 6.

For each, there is an allocation function and instrumentation that encode it. For

example, the instrumentation for k-call sensitivity tracks k-length call histories, so

the allocator can choose addresses unique to both the variable being allocated for

and the current call history.

4 Abstracting abstract machines

Our approach builds upon the methodology of AAM, which we review in this

section by systematically developing a concrete operational semantics for a simple

functional intermediate representation into an approximating simulation of the same.

Additionally, we discuss the traditional strategies for proving soundness (correctness),

extensions for richer languages, and a store-widening transformation (an essential

approximation for obtaining a polynomial-time analysis).

Static analysis by abstract interpretation proves properties of programs by

running code through an interpreter powered by an abstract semantics that

approximates the behavior of a concrete semantics. This process is a general

method for analyzing programs and serves applications such as program verification,

malware/vulnerability detection, and compiler optimization, among others (Cousot

& Cousot 1976; 1977; 1979; Midtgaard 2012). Van Horn and Might’s approach

of AAM uses abstract interpretation of abstract machines for CFA of functional

(higher order) programming languages (Might 2010; Van Horn & Might 2010;

Johnson et al. 2013). CFA is generally straightforward in first-order languages,

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

10 T. Gilray et al.

Fig. 1. A selection of allocators. (The notation used for allocation functions is explained in

the course of later sections.)

but in the presence of first-class functions, it requires a simultaneous modeling of

how both data and control propagate; without knowing which functions reach an

application, we cannot know where control jumps to or which behavioral arguments

(lambdas) may flow to its parameters.

The AAM methodology is flexible in allowing a high degree of control over

how program states are represented. AAM provides us with a general method

for automatically abstracting an arbitrary small-step abstract-machine semantics to

obtain approximations in a variety of styles. Importantly, one such style aims to

focus all unboundedness in a semantics on the machine’s address space. This makes

the strategy used for allocating addresses crucial to the precision and complexity of

the analysis and (as we will see in Section 6) its polyvariance.

4.1 A concrete operational semantics

This section reviews the process of producing a formal operational semantics (Plotkin

1981) for a simple direct-style language, specifically, the untyped, call-by-value

λ-calculus in administrative normal form (ANF) (Flanagan et al. 1993). ANF requires

an administrative binding for all intermediate values so that applications (and other

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 11

operations, conditionals, primitive operations, etc.) can in an atomic step lookup the

value of the function to be applied and its arguments. This also reifies a particular

order of operations as a stack of let bindings for administrative variables. For

example, if we transform the code in the left column of the following into ANF, we

get the code in the right column:

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

(define (fact n)

(let ([i0 (= n 0)])

(if i0
1

(let ([i1 (- n 1)])

(let ([i2 (fact i0)])

(let ([i3 (* n i2)])

i3))))))

ANF is a widely used intermediate representation, for example, in the Glasgow

Haskell Compiler (Maurer et al. 2017). Contrasted with continuation-passing style

(Appel 2007; Kennedy 2007), ANF has implicit continuations, extended at let forms

by the language’s interpretation. Having all intermediate values bound to variables,

such as i0 through i3 in the factorial example, is convenient for analysis, and

having continuations created by the abstract machine (as opposed to being reified

as syntax) is convenient for discussing our approach to continuation polyvariance.

The grammar structurally distinguishes between call sites e and atomic expressions

ae:

e ∈ Exp ::= (let ([x (f ae)]) e) [call]

| ae [return]

f, ae ∈ AExp ::= x | lam [atomic expressions]

lam ∈ Lam ::= (λ (x) e) [lambda abstractions]

x, y ∈ Var is a set of identifiers [variables]

Instead of specifically affixing each expression with a unique label, we assume two

identical expressions occurring separately in a program are not syntactically equal.

This language only permits unary lambdas, but extrapolating our discussion to n-ary

lambdas is straightforward.

We define the evaluation of programs in this language using a relation (→Σ), over

states of an abstract machine for a concrete semantics, which determines how the

machine transitions from one state to another. (Sigma here is just a tag, part of the

relation’s name, to indicate the kind of transition, and is not a parameter; this is

the case for such subscripts throughout this paper.) As opposed to using big-step (i.e.,

natural) operational semantics (Kahn 1987), we simplify our forthcoming finitization

of this machine by using a small-step semantics—one where every individual step

must terminate. This is accomplished by explicitly managing a stack or continuation

and moves all non-termination behavior into the collecting semantics, which is

the overall evaluation of a program across a series of individual steps. States (ς)

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

12 T. Gilray et al.

range over control expression (a call site), binding environment, and continuation

components:

ς ∈ Σ � Exp× Env ×Kont

ρ ∈ Env � Var ⇀ Value

κ ∈ Kont �
−−−→
Frame

φ ∈ Frame � Var× Exp× Env

v ∈ Value � Clo

clo ∈ Clo � Lam× Env

Binding environments (ρ) map variables in scope to values. The environment is a

partial map and accumulates points as execution progresses. Continuations (κ) are

sequences of stack frames (φ), which each contain a variable, an expression, and an

environment. In this simplified language, values may only be closures (clo), which

are syntactic lambda terms (lam) paired with environments.

Evaluation of atomic expressions is handled by an auxiliary function, A, which

produces a value (v) for an atomic expression in the context of a state (ς). This

is done by a lookup in the environment for variable references (x), and by closure

creation for λ-abstractions (lam). In a language containing syntactic literals, these

would be translated into equivalent semantic values by this helper.

A : AExp× Σ ⇀ Value

A(x, (e, ρ, κ)) � ρ(x)

A(lam , (e, ρ, κ)) � (lam , ρ)

The transition relation (→Σ) : Σ ⇀ Σ yields at most one successor for a given

predecessor in the state space Σ. The rule governing application is

ς︷ ︸︸ ︷
((let ([y (f ae)]) e), ρ, κ)→Σ (e′, ρ′, κ′), where

((λ (x) e′), ρλ) = A(f, ς)

ρ′ = ρλ[x �→ A(ae, ς)]

κ′ = (y, e, ρ) :κ

Execution steps to the body of the applied lambda (as determined by the atomic

evaluation of f). This closure’s environment (ρλ) is extended with a binding for the

formal parameter (x) to the atomic evaluation of ae. The current continuation is

extended with a stack frame containing the variable to assign (y) and the expression

(e) and environment (ρ) to reinstate.

The rule governing returns is

ς︷ ︸︸ ︷
(ae, ρ, (x, ρ, e) :κ)→Σ (e, ρ′, κ), where

ρ′ = ρ[x �→ A(ae, ς)]

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 13

Control propagates to the expression encoded in the top continuation frame (e)

and modifies its environment (ρ) by adding a binding for x to the return value. A

state becomes stuck if a return point is reached under the empty continuation or if

the program is malformed (e.g., a free variable is encountered).

To fully evaluate a program e0 using these transition rules, we inject it into our

state space using the helper I : Exp→ Σ, where

I(e) � (e,�, ε)

We may now perform the standard lifting of (→Σ) to a collecting semantics defined

over a set of states s ∈ S � P(Σ). Our collecting relation (→S) is a monotonic, total

function that gives a set including the trivially reachable state I(e0) plus the set of

all states immediately succeeding those in its input.

s→S s
′, where

s′ = {ς′ | ς ∈ s ∧ ς→Σ ς
′} ∪ {I(e0)}

If the program e0 terminates, then iteration of (→S) from ⊥ (i.e., the empty set

�) does as well. That is, (→S)n(⊥) is a fixed point containing e0’s full program trace

for some n ∈ � whenever e0 is a terminating program. No such n is guaranteed to

exist in the general case (when e0 is non-terminating) as our language (the untyped,

call-by-value, ANF λ-calculus) is Turing-equivalent, our semantics is fully precise,

and the state space we defined is infinite. Whether or not it is finite, however, this

collecting semantics gives us a well-defined fixed point to approximate (Tarski 1955).

Take note that the cause of this unboundedness is the set of unbounded stacks (i.e.,

continuations) and the mutual recursion of environments and values (in this case,

just closures).

4.2 An abstract operational semantics

Now that we have formalized the concrete semantics of our language as iteration

to a (possibly infinite and incomputable) fixed point, we are ready to design a

computable approximation of this fixed point (the exact program trace) using

the tools of abstract interpretation. Previous work on AAM has explored a

variety of approaches to systematically abstracting a semantics like these (Might

2010; Van Horn & Might 2010; Johnson et al. 2013). Broadly construed, these

changes simultaneously finitize the domains of our machine while introducing

non-determinism into both the transition relation (multiple successor states may

immediately follow a predecessor state) and value store (multiple values may become

conflated). We use value stores to model the heap and a finite address space to cut

the otherwise mutually recursive structure of values (closures) and environments

and of continuations/stacks. (Without addresses and value stores, the stack is

unbounded and environments map variables directly to closures that each contain

an environment). A finite address space then yields a finite state space overall and

ensures computability of the analysis. This process can be systematized as a series

of three steps (Might 2010).

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

14 T. Gilray et al.

Step 1: “Cut” direct recursion. Each source of direct recursion in the abstract

machine’s domains is “cut” by store allocation, indirecting the self-reference through

an address set which can then be finitized. Below are the domains of our modified

concrete semantics where (1) and (2) mark the two main sets of related changes—we

will detail these two changes next.

ς ∈ Σ � Exp× Env

× Store ×KStore ×KAddr

ρ ∈ Env � Var ⇀ Addr (1)

σ ∈ Store � Addr ⇀ Value (1)

a ∈ Addr � Var×� (1)

aκ ∈ KAddr � Exp×� (2)

s ∈ S � P(Σ)

σκ ∈ KStore � KAddr ⇀ Kont (2)

κ ∈ Kont � Frame ×KAddr (2)

φ ∈ Frame � Var× Exp× Env

v ∈ Value � Clo

clo ∈ Clo � Lam× Env

We have made two principal changes. First, the mutual recursion of environments

and closures has been cut using the address set Addr . Environments now map

variables in scope to heap addresses (a), and another top-level component, value

stores (σ), maps these addresses to values. Previously, binding environments mapped

variables directly to values (closures) which themselves contain environments

(making the set of possible environments unbounded); changes marked (1) have

introduced an unbounded set of addresses that must be used to construct all

bindings. This simplifies the unboundedness of binding environments and makes

it more explicit as an infinite set of addresses. As our refactoring progresses, this

change will allow us to define a finite set of abstract addresses to obtain a bounded

and approximate program analysis.

Second, the unboundedness of stacks (continuations) has similarly been cut, these

changes are marked (2). Continuations now pair a frame with a continuation

address (aκ) which references the tail of the stack in another top-level component,

continuation stores (σκ), that map these addresses to stored continuations. The

current continuation is now simply a reference (aκ) to a continuation stored in the

current σκ. As elsewhere, non-numeric subscripts (in this case, kappa) should be

interpreted as part of the symbol; this distinguishes continuation stores from value

stores. Value-store addresses and continuation-store addresses may be chosen to be

any unbounded set (such as �). The choice of pairing a variable name with a fresh

natural number (or program expression in the case of continuation addresses) is

somewhat more convenient both for defining our (forthcoming) transition relation

and notion of approximation.

Together these two changes requires that the set of states (Σ) be redefined. A state

now contains both a value store (σ) and a continuation store (σκ) and the current

continuation has been replaced by a current continuation address that refers to a

stack encoded in σκ.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 15

Atomic evaluation operates the same as before in the case of closure creation but

for variable references must lookup an address in the environment before looking

up that address in the store:

A : AExp× Σ ⇀ Value

A(x, (e, ρ, σ, σκ, aκ)) � σ(ρ(x))

A(lam , (e, ρ, σ, σκ, aκ)) � (lam , ρ)

The transition rule for application reflects these changes by updating the value

store and continuation store:

ς︷ ︸︸ ︷
((let ([y (f ae)]) e), ρ, σ, σκ, aκ)→Σ (e′, ρ′, σ′, σ′κ, a

′
κ), where

((λ (x) e′), ρλ) = A(f, ς)

ρ′ = ρλ[x �→ a]

σ′ = σ[a �→ A(ae, ς)]

σ′κ = σκ[a
′
κ �→ ((y, e, ρ), aκ)]

a = (x, |dom(σ)|)
a′κ = (e′, |dom(σκ)|)

The crucial change is that two addresses (a and a′κ for the argument to f and its

continuation, respectively) are allocated and the unboundedness of environments

and stacks is now encoded only by the unboundedness of the sets these addresses

are drawn from. One viable strategy for allocating fresh addresses is simply to pair

the variable name with the current size of the store (i.e., a = (x, |dom(σ)|)). There

is no garbage collection in these semantics, so each time addresses are allocated

the size of the current store strictly increases and is never reduced. Even assuming

the natural extension to n-ary lambdas, as no two parameters bound in a single

transition may share a variable name, all generated addresses will still be allocated

fresh. Likewise, the strategy used for allocating fresh continuation addresses is to

combine the target function body (which “owns” its own continuations in a sense)

and the current size of the continuation store. As a program makes a series of

non-tail function calls, evaluation builds up a linked list of continuation frames in

the continuation store, σκ.

For example, at a call site (let ([z ((λ (y) ey) g)]) ebody), if a function with

a parameter named y is applied on a value clo1 (here bound to g via the current

environment, ρ, and store, σ), a fresh address will be generated that binds clo1 to

y using an address based on the current size of the store. If 341 addresses have

previously been allocated in the value store, it will be updated with a binding

(y, 341) �→ clo1 and the current environment will be updated with a binding

y �→ (y, 341). Likewise, the continuation store will be updated with a binding like

(ey, 239) �→ ((z, ebody , ρ), aκ) where ρ is the current environment before (λ (y) ey)

is applied, 239 is the previous number of continuation addresses allocated, and aκ
points to the current stack before the state transition.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

16 T. Gilray et al.

Return transitions are more straightforward:

ς︷ ︸︸ ︷
(ae, ρ, σ, σκ, aκ)→Σ (e, ρ′, σ′, σκ, a

′
κ), where

((x, e, ρκ), a
′
κ) = σκ(aκ)

ρ′ = ρκ[x �→ a]

σ′ = σ[a �→ A(ae, ς)]

a = (x, |dom(σ)|)

The continuation for address a′κ is retrieved from the continuation/stack stored

at continuation address aκ. The stack/continuation is now encoded as a linked

list where aκ points to the current continuation and a′κ points to its tail. It

may be useful here to recall that (=) above refers to propositional equality and

is not an assignment or definition; the first condition of this rule unifies the

variable a′κ with the continuation address stored alongside the top-most frame at

location aκ in σκ.

In the above example, if the body ey of (λ (y) ey) is just the variable reference y,

then execution will immediately return the value clo1 after looking it up in the current

environment and store (at address (y, 341)) using A(y, ς). The current continuation

address, (y, 341) given that ey is y, maps to the continuation ((z, ebody , ρ), aκ) shown

above in the current σκ. The address newly allocated for the return value will then be

(z, 342) and the saved ρ (without the binding for y) will be extended with z �→ (z, 342)

and the current value store (with a now-unreachable binding for (y, 341)) will be

extended with (z, 342) �→ clo1.

Step 2: Finitize abstract machine domains. The next step is to approximate each

unbounded domain of machine components and replace it with a finite domain

of abstract machine components. We start by replacing the set of concrete

addresses with a finite set of abstract addresses, â ∈1Addr , relating these domains

to one another using a Galois connection ((P(Addr),⊆) −−−−−→←←−−−−−
αAddr

γAddr

(P(1Addr),⊆)).

(Typographically, we use hats to differentiate abstract domains from their respective

concrete counterparts that do not wear hats.) A monotone Galois connection is a

pair of order-preserving adjoined morphisms (α and γ, encoding abstraction and

concretization) that describe a relationship between two ordered sets (in this case,

P(Addr) and P(1Addr), ordered by inclusion) such that α ◦ γ
 λx.x (i.e., α ◦ γ is

reductive)1 and γ ◦ α � λx.x (i.e., γ ◦ α is expansive). These two properties enforce

the precision and correctness (i.e., self-consistency) of this notion of abstraction,

respectively. The Galois connection formalizes corresponding notions of abstraction

(α) and concretization (γ) so that an abstract semantics over abstract domains can be

calculated (or justified post-hoc) as a sound simulation of a concrete semantics over

1 Here, λx.x denotes the mathematical identity function and not code in our target language. The partial
order (
) corresponds to the notion of precision used for the concrete and abstract domains. For sets,
the order we use is set-inclusion (⊆); for products and maps, the order distributes point-wise in the
natural way (i.e., g
 f ⇐⇒ ∀x.g(x)
 f(x)).

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 17

concrete domains (Cousot & Cousot 1979). Intuitively, αAddr takes a set of concrete

addresses and maps it to a most-precise set of abstract addresses that may be used

to approximate any of the input addresses; γAddr maps a set of abstract addresses

to a most-precise set of concrete addresses that must include any addresses that are

encoded by input abstract addresses. A forthcoming αS will be defined to abstract

whole concrete executions.

A Galois connection may be fully defined using an extraction function that maps

each concrete entity to its corresponding abstraction. In the case of addresses, this

would be a function η : Addr →1Addr that yields the abstract address to be used for

a given concrete address. For example, η((x, n)) = x represents each address by the

name of the variable it was allocated for. If a concrete execution were to allocate

an address (y, 341), as in our recent example, a flow analysis using the above notion

of abstraction would represent this concrete address using an abstract address y.

Deriving a Galois connection over powerset domains P(X) −−−→←←−−−α

γ
P(X̂) from an

extraction function η : X → X̂ is then straightforward:

α(xs) = {η(x) | x ∈ xs} γ(bxs) = {x | x̂ ∈ bxs ∧ η(x) = x̂}

We start with an abstract-address set for both values and continuations (1Addr and
2KAddr) along with Galois connections relating them to their concrete counterparts.

We make the choice of using the syntactic domains Var and Exp for abstract

value and continuation addresses, respectively, in order to construct an analysis

that is monovariant—meaning that there is a single representation (variant)

for flows to each syntactic entity (value flows to variables, continuation, and

control flows to functions). This choice tunes the present analysis to instantiate

a 0-CFA (see Section 2.1). Abstract values propagate to variables that may

become bound to concrete values they approximate; abstract continuations flow

to function bodies that may return values to continuations they approximate.

As our initial analysis is monovariant, each syntactic variable is modeled

by a single conservative approximation of its possible values; likewise, each

syntactic function is associated with a single overapproximation of its possible

continuations. Thus, our extraction map for value-store addresses maps all addresses

for a variable x to the same abstract address and our abstraction map for

continuation-store addresses maps all concrete continuation addresses for the

same function body to the same abstract continuation address (that function

body).

ηAddr ((x, n)) � x ηKAddr ((e, n)) � e

Then, at each step, moving from 1Addr up to Ŝ , we systematically compose existing

Galois connections with syntactic domains or with other Galois connections to derive

new Galois connections. This process is detailed in Might’s paper on obtaining

“abstract interpreters for free” (Might 2010). In most cases, these inferred Galois

connections are straightforward.

Lifting a Galois connection for addresses to one for environments yields a

set of abstract environments ρ̂ ∈ Var ⇀ 1Addr . Abstract environments remain

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

18 T. Gilray et al.

functions because only their co-domain is abstracted. Abstract stores, however,

become relational because the domain of stores is abstracted, so two points in

the domain may become conflated. In the end, we obtain the following abstract

domains:

ς̂ ∈ Σ̂ � Exp×bEnv

×1Store ×2KStore ×2KAddr

ρ̂ ∈ bEnv � Var ⇀1Addr

σ̂ ∈1Store � 1Addr → P(1Value)

â ∈1Addr � Var

âκ ∈2KAddr � Exp

ŝ ∈ Ŝ � P(Σ̂)

σ̂κ ∈2KStore � 2KAddr → P(1Kont)

κ̂ ∈1Kont � 1Frame ×2KAddr

φ̂ ∈ 1Frame � Var× Exp×bEnv

v̂ ∈1Value � bClo

cclo ∈bClo � Lam×bEnv

This compaction of the address set to ensure the finiteness of our analysis

leads to relationality (i.e., non-determinism) in the store—each value address or

continuation address is associated with a set of zero or more possible values or

continuations, respectively. Note that any given input program will use a finite set

of syntactic variables, Var, even if the set of all possible variables is unbounded.

Because abstract addresses may overapproximate multiple concrete addresses, each

abstract address denotes a flow set of possible abstract closures (closures with an

environment referencing further approximate abstract addresses). Non-determinism

in the store, in turn, leads to non-determinism in the abstract transition relation. It

will be possible for multiple abstract states to immediately succeed a single abstract

antecedent.

Now that these abstract machine domains can express different granularities of

precision in approximating concrete machine components, we may associate an

ordering for precision (
) with each abstract domain. For powersets, the lifted order

is simply inclusion.

ŝ
 ŝ′ ⇐⇒ ŝ ⊆ ŝ′ ⇐⇒
(
∀ς̂.

(
ς̂ ∈ ŝ =⇒ ς̂ ∈ ŝ′

))
These are each defined by lifting orders for sub-components in the natural way. For

products, the lifted order is conjunctive.

(e, ρ̂, σ̂, σ̂κ, âκ)
 (e′, ρ̂′, σ̂′, σ̂′κ, â
′
κ) ⇐⇒ e
 e′ ∧ ρ̂
 ρ̂′ ∧ σ̂
 σ̂′ ∧ σ̂κ
 σ̂′κ ∧ âκ
 â′κ

(x, e, ρ̂)
 (x′, e′, ρ̂′) ⇐⇒ x
 x′ ∧ e
 e′ ∧ ρ̂
 ρ̂′

(lam , ρ̂)
 (lam ′, ρ̂′) ⇐⇒ lam
 lam ′ ∧ ρ̂
 ρ̂′

For maps, the order distributes point-wise (respecting any order on the domain):

σ̂
 σ̂′ ⇐⇒ â
 â′ ∧ â ∈ dom(σ̂) ∧ â′ ∈ dom(σ̂′) =⇒ σ̂(â)
 σ̂′(â′)

ρ̂
 ρ̂′ ⇐⇒ x ∈ dom(σ̂) ∧ x ∈ dom(σ̂′) =⇒ σ̂(x)
 σ̂′(x)

The order over syntactic domains is simply equality. Thus, the order on both concrete

and abstract addresses is degenerate as well:

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 19

x
 x′ ⇐⇒ x = x′

e
 e′ ⇐⇒ e = e′
a
 a′ ⇐⇒ a = a′

â
 â′ ⇐⇒ â = â′

A total Galois connection produced by this process may be defined:

αS (s) � {ηΣ(ς) | ς ∈ s}
ηΣ((e, ρ, σ, σκ, aκ)) � (e, ηEnv (ρ), ηStore(σ), ηKStore(σκ), ηKAddr (aκ))

ηEnv (ρ) � {(x, ηAddr (a)) | (x, a) ∈ ρ}

ηStore(σ) �
⊔

(a,v)∈σ
[ηAddr (a) �→ {ηValue(v)}]

ηKStore(σκ) �
⊔

(aκ,κ)∈σκ

[ηKAddr (aκ) �→ {ηKont (κ)}]

ηKont ((φ, aκ)) � (ηFrame(φ), ηKAddr (aκ))

ηFrame((x, e, ρ)) � (x, e, ηEnv (ρ))

ηValue(clo) � ηClo(clo) ηClo((lam, ρ)) � (lam , ηEnv (ρ))

ηAddr ((x, n)) � x ηKAddr ((e, n)) � e

This specification for αS implicitly defines a unique adjoint γS such that αS ◦ γS is

reductive and γS ◦ αS is expansive. Here we use the interpretation of maps as sets of

tuples and μ to denote injection functions that map a single abstract entity back to

a set of concrete entities.

γS (ŝ) �
⊔
{μΣ(ς̂) | ς̂ ∈ ŝ}

μΣ((e, ρ̂, σ̂, σ̂κ, âκ)) � {(e, ρ, σ, σκ, aκ) | ρ ∈ μEnv (ρ̂) ∧ σ ∈ μStore(σ̂)

∧ σκ ∈ μKStore(σ̂κ) ∧ aκ ∈ μKAddr (âκ)}
μEnv (ρ̂) � {(x, a) | a ∈ μAddr (â) ∧ (x, â) ∈ ρ̂}
μStore(σ̂) � Π{{(a, v) | a ∈ μAddr (â) ∧ v ∈ μValue(v̂)} | (â, v̂) ∈ σ̂}

μKStore(σ̂κ) � Π{{(aκ, κ) | aκ ∈ μKAddr (âκ) ∧ κ ∈ μKont (κ̂)} | (âκ, κ̂) ∈ σ̂κ}
μKont ((φ̂, âκ)) � {(φ, aκ) | φ ∈ μFrame(φ̂) ∧ aκ ∈ μKAddr (âκ)}

μFrame((x, e, ρ̂)) � {(x, e, ρ) | ρ ∈ μEnv (ρ̂)}
μValue(ˆclo) � μClo(ˆclo) μClo((lam , ρ̂)) � {(lam , ρ) | ρ ∈ μEnv (ρ̂)}
μAddr (x) � {(x, n) | n ∈ �} μKAddr (e) � {(e, n) | n ∈ �}

The Π operator performs a Cartesian-product-style transformation of a set of sets

(into a new set of sets) where the inner output sets contain each combination of

points from across the inner input set, like so

Π{ps0, . . . , psm} � {{p0, . . . , pm} | p0 ∈ ps0 ∧ . . . ∧ pm ∈ psm}

This is used to yield a set of concrete stores (or continuation stores) that covers

all combinations of concrete points (i.e., [a �→ v, . . .]) that are approximated by a

given abstract store. Note well that the abstraction map and concretization maps

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

20 T. Gilray et al.

for components (i.e., extractors η and injectors μ) may not properly form a Galois

connection (as do αS and γS) unless both are lifted to operate over partial orders

such as sets.

Step 3: Justify or calculate an abstract semantics. So far, this systematic process

for abstracting an abstract machine (starting from address sets and moving up to

domains that depend on them) yields a full set of abstract domains but not an

abstract semantics (i.e., not a transition relation over these domains). To produce a

relation (�∧

Σ
) ⊆ Σ̂×Σ̂ between abstract states we have two options: justify it as sound

post-hoc or directly calculate it. Note that the hatted-Sigma-subscript indicates that

this relation associates abstract predecessor states with abstract successor states. By

contrast, (→S) relates whole concrete program traces (i.e., sets of states in S) to their

incremental extension (also in S).

An analysis is sound if the information it provides for a target program is correct

and represents a definite bound on possible concrete executions. A sound analysis

can definitively exclude some program behaviors as provably impossible under any

actual execution or can definitively include some behaviors as provably occurring

under any actual execution. The kind of control-flow information the analysis of this

section (Section 4.2) obtains is a sound conservative overapproximation of program

behavior, it places a strict upper bound on the propagation of closures through a

program.

Our Galois connection for states represents a notion of simulation that any

acceptable (�∧

Σ
) must respect to soundly approximate (→Σ). It also implies many

different analyses that are sound with respect to it (precise or not). For example,

an abstract transition relation that yields the entire abstract state space at every

step is trivial and fully imprecise but is still sound with respect to (→Σ) and αΣ (i.e.,

as induced by the ηΣ shown). There are two traditional approaches to showing an

analysis is guaranteed to be sound: (1) we can write an analysis that is convenient to

implement and then justify that it is sound after the fact, or (2) we can compute the

most precise analysis allowable by the Galois connection. The first option requires

showing that, in any bisimulation of the abstract semantics and concrete semantics,

a sound simulation is preserved at every iteration of the fixpoint computation:

Theorem 4.1 (Soundness of 0-CFA)

Bisimulation is preserved across every transition.

αS (s) ⊆ ŝ ∧ s→S s
′ =⇒ ŝ�∧

S
ŝ′ ∧ αS (s

′) ⊆ ŝ′

Diagrammatically this is

s
→S−−−−→ s′

αS

⏐⏐
⊆ αS

⏐⏐
⊆
ŝ

�∧
S−−−−→ ŝ′

This manually shows that our chosen (�∧

S
) yields a successor ŝ′ that overapproximates

the concrete successor s′ whenever their respective predecessors are in simulation.

Eventually, as the lattice (Ŝ ,∪,∩) is finite, iteration of (�∧

S
) yields a fixed point in

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 21

a finite number of steps and thereafter simulates all further concrete steps without

itself changing.

The second option is to directly compute the most precise acceptable (�∧

S
) that

this commuting diagram allows; in particular, this is the abstract transition that

accomplishes the same work as concretizing, transitioning, and abstracting again:

(�∧

S
) � αS ◦ (→S) ◦ γS

This is what is known as the calculational approach, invented and championed

by Cousot and Cousot. Our technique for generalizing polyvariance as abstract

allocation is agnostic with regard to post-hoc justification versus direct calculation

of sound analyses. The analysis presented here is the optimal, calculated, abstract

transition for the Galois connection given above.

A sound abstract transition for ANF can be defined:

ς̂︷ ︸︸ ︷
((let ([y (f ae)]) e), ρ̂, σ̂, σ̂κ, âκ)�∧

Σ
(e′, ρ̂′, σ̂′, σ̂′κ, â

′
κ), where

((λ (x) e′), ρ̂λ) ∈ Â(f, ς̂)

ρ̂′ = ρ̂λ[x �→ â]

σ̂′ = σ̂ � [â �→ Â(ae, ς̂)]

σ̂′κ = σ̂κ � [â′κ �→ ((y, e, ρ̂), âκ)]

â = x

â′κ = e′

This has three main changes from the concrete semantics. First, we reuse the same

address for every binding to a variable x (i.e., its name) and the same continuation

address for every call to a function (i.e., its body). Second, values and continuations

become conflated at these addresses by using a weak update on the store (�) that

yields the least upper bound of the existing store and each new binding. Third, we

non-deterministically select closures from the abstract binding for f, and an abstract

successor state results for each.

Join on abstract stores distributes point-wise:

σ̂ � σ̂′ � λâ. σ̂(â) ∪ σ̂′(â)

Soundness normally requires that we never remove values from the store, once

added, however there are sound techniques for doing so under specific conditions

(Might & Shivers 2006). Instead, we accumulate every closure bound to each â (i.e.,

abstract closures that simulate closures bound to addresses that â simulates) over

the lifetime of the program. A flow set for an address â indicates a range of values

that over approximate all possible concrete values that can flow to any concrete

address approximated by â. For example, if a concrete machine binds (y, 341) �→ clo1

and (y, 902) �→ clo2, its approximation might bind y �→ {cclo1,cclo2}. Precision is lost

for (y, 341) both because its value has been merged with cclo2, and because the

environments for cclo1 and cclo2, in turn, generalize over many possible addresses for

their free variables (i.e., the environment in cclo1 is less precise than the environment

in clo1).

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

22 T. Gilray et al.

The abstract atomic evaluator produces flow sets instead of individual concrete

values. In the case of closure creation, a singleton flow set is returned as follows:

Â : AExp× Σ̂ ⇀ P(1Value)

Â(x, (e, ρ̂, σ̂, σ̂κ, âκ)) � σ̂(ρ̂(x))

Â(lam , (e, ρ̂, σ̂, σ̂κ, âκ)) � {(lam , ρ̂)}

In the same way that a successor results for each closure in call position, at a

return point, a successor results for each possible continuation:

ς̂︷ ︸︸ ︷
(ae, ρ̂, σ̂, σ̂κ, âκ)�∧

Σ
(e, ρ̂′, σ̂′, σ̂κ, â

′
κ), where

((x, e, ρ̂κ), â
′
κ) ∈ σ̂κ(âκ)

ρ̂′ = ρ̂κ[x �→ â]

σ̂′ = σ̂ � [â �→ Â(ae, ς̂)]

â = x

We again lift (�∧

Σ
) to obtain a collecting semantics (�∧

S
), for a target e0, defined

over sets of states:

ŝ�∧

S
ŝ′, where

ŝ′ = {ς̂′ | ς̂ ∈ ŝ ∧ ς̂�∧

Σ
ς̂′} ∪ {Î(e0)}

This uses a starting-state injection function

Î(e) � (e,�,⊥,⊥, âhalt)

where the special address âhalt has no continuations and so halts the machine when

reached.

Because 1Addr and 2KAddr (and thus Σ̂ and Ŝ) are now finite, we know the

abstract evaluation of even non-terminating e0 will terminate. That is, there is some

n ∈ � such that (�∧

S
)n(⊥) is a fixed point. Furthermore, this value contains an

approximation of the target program e0’s full concrete program trace.

4.2.1 Extension to larger languages

Setting up a semantics for real language features such as conditionals, primitive

operations, direct-style recursion, objects, mutation, etc., is straightforward but adds

complication to the transition rules and soundness proof. Handling other forms is

sometimes as straightforward as including an additional transition rule (or case in

atomic evaluation, Â), for each. Consider the inclusion of booleans, conditionals,

vectors (or desugared structures, objects), and n-ary lambdas via the following

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 23

changes:

e ∈ Exp ::= (let ([y (f ae . . .)]) e) | ae | (if ae e e)

ae ∈ AExp ::= lam | x | vec | #t | #f
lam ∈ Lam ::= (λ (x . . .) e)

vec ∈ Vec ::= (vector x . . .) | (vector-ref x n)

Vectors require their fields to be administratively bound so an address is immediately

available—this simplifies vector semantics and requires the same kind of code

expansion/desugaring involved in conversion to ANF. Likewise, conditionals require

their guard expression to be previously let-bound. Vectors can be encoded as a tuple

of addresses that each reference that field’s flow set:

v̂ ∈1Value � bClo +bVec + bBool

cvec ∈bVec � 1Addr
∗

bbool ∈ bBool � {true, false}

Atomic evaluation can be extended with a case for each new atomic expression:

Â(x, (, ρ̂, σ̂, ,)) � σ̂(ρ̂(x))

Â(lam , (, ρ̂, , ,)) � {(lam , ρ̂)}
Â((vector x0 . . . xj), (, ρ̂, , ,)) � {(ρ̂(x0), . . . , ρ̂(xj))}

Â((vector-ref x n),

ς̂︷ ︸︸ ︷
(, , σ̂, ,)) �

⊔
(â0 ,...,âj)∈Â(x,ς̂)

σ̂(ân)

Â(#t,) � {true}
Â(#f,) � {false}

A vector expression yields a singleton set containing a tuple of addresses to encode

the object’s fields. A vector-ref expression looks-up all possible tuples with a

matching nth field and returns the least-upper-bound of the value (from the store)

at all those fields.

The “then” and “else” transitions for conditionals are straightforward. Scheme

and Racket semantics treat all non-false values as truthy, so the first rule applies

whenever any non-false value may reach the guard expression:

ς̂︷ ︸︸ ︷
((if ae ethen eelse), ρ̂, σ̂, σ̂κ, âκ)�∧

Σ
(ethen , ρ̂, σ̂, σ̂κ, âκ), where

⊥ � Â(ae, ς̂) \ {false}

ς̂︷ ︸︸ ︷
((if ae ethen eelse), ρ̂, σ̂, σ̂κ, âκ)�∧

Σ
(eelse , ρ̂, σ̂, σ̂κ, âκ), where

{false}
 Â(ae, ς̂)

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

24 T. Gilray et al.

An extension to n-ary lambdas ensures that the number of arguments matches the

number of parameters and generates an address, and a binding to ρ̂ and σ̂, for each:

ς̂︷ ︸︸ ︷
((let ([y (f ae0 . . . aej)]) e), ρ̂, σ̂, σ̂κ, âκ)�∧

Σ
(e′, ρ̂′, σ̂′, σ̂′κ, â

′
κ), where

((λ (x0 . . . xj) e′), ρ̂λ) ∈ Â(f, ς̂)

ρ̂′ = ρ̂λ[x0 �→ âi] . . . [xj �→ âi]

σ̂′ = σ̂ �
⊔

i∈{0...j}

[âi �→ Â(ae, ς̂)]

σ̂′κ = σ̂κ � [â′κ �→ ((y, e, ρ̂), âκ)]

âi = xi

â′κ = e′

4.3 Store widening

Various forms of widening and further approximations can be layered on top of the

basic unwidened analysis (�∧

S
). One such approximation is store widening, which

is necessary for our analysis to be polynomial time in the size of the program.

To see why store widening is so important, consider the complexity of an analysis

using (�∧

S
). The height of the power-set lattice (Ŝ ,∪,∩) is the number of elements

in Σ̂, which is the product of the number of call sites, environments, and stores. A

standard worklist algorithm does work that is at most proportional to the number

of states it can discover (Might et al. 2010). Analysis run-time is thus in

O(

|Call×bEnv×KAddr |︷︸︸︷
n ×

|1Store |︷︸︸︷
2n

2 ×

|2KStore |︷︸︸︷
2n

2

)

The number of syntactic points in an input program is in O(n). In our monovariant

analysis, environments map variables to themselves (environments only contain

points like [y �→ y]) and so are isomorphic to the sets of free variables at

each syntactic point. In addition, each program expression is unique to its

containing function body, so there is only one continuation address per syntactic

point.

Regarding the store, the number of addresses produced by our monovariant

analysis is in O(n) as these are just syntactic variables. Likewise, the number of

abstract closures is in O(n) because there are these many syntactic lambdas and

each lambda is unique to a monovariant environment for the same reason as all

program expressions. The number of value stores may thus be visualized as a table

of possible mappings from every address to every abstract closure—each may be

included in a given store or not as seen in Figure 2. The number of addresses

times the number of abstract closures gives O(n2) possible additions to the value

store.

The crux of the present issue is that, in exploring a basic unwidened state

space (where each state contains a whole store), we may explore both sides of

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 25

O(n)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(n)︷ ︸︸ ︷
⎡
⎢⎢⎢⎢⎢⎢⎣

ĉlo0 ĉlo1 ··· ĉloi ···
â0 0 0 · · · 0 · · ·
â1 0 0 · · · 1 · · ·
...

...
...

. . .
...

...
â j 1 0 · · · 1 · · ·
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 2. The value space of stores.

every diamond in the store lattice. All combinations of possible bindings in a

store may need to be explored, including every alternate path up the store lattice.

For example, along one explored path, we might extend an address â1 with cclo1

before extending it with cclo2, and along another path we might add these closures

in the reverse order. We might also extend another address â2 with cclo1 before,

between, or after either of these cases, and so forth. Therefore, a potential for

exponential blow-up is unavoidable without further widening or coarser structural

abstraction.

A bound on the number of continuation stores is obtained in the same manner.

The number of abstract continuations is bounded by the size of the program for

essentially the same reason as the number of abstract closures.

Global-store widening is an essential technique for combating this exponential

blowup. This lifts the store alongside a set of reachable states instead of nesting

them inside states ς̂. To formalize this, we define new widened state spaces that

pair a set of reachable configurations (states sans stores) with a single, global

value store that we maintain as the least upper bound of all stores we encounter

during analysis. The widened state spaces include both a single, global value store

and a single, global continuation store. Instead of accumulating whole stores, and

thereby all possible sequences of additions to such stores, the analysis strictly

accumulates new values in the global store (independent of other values being

accumulated at other addresses). This is similar to the way (�∧

S
) accumulates

reachable states in a collection ŝ, independent of the distinct paths that lead

to them:

ξ̂ ∈ Ξ̂ � R̂ ×1Store ×2KStore [state spaces]

r̂ ∈ R̂ � P(Ĉ) [reachable configurations]

ĉ ∈ Ĉ � Exp×bEnv ×2KAddr [configurations]

A widened transfer function (�∧

Ξ
: Ξ̂ → Ξ̂) can then be defined that, like (�∧

S
), is

a monotonic, total function we may iterate to a fixed point. This can be defined

in terms of (�∧

Σ
) and (�∧

S
) by transitioning each reachable configuration using the

global store to yield a new set of reachable configurations and a set of stores whose

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

26 T. Gilray et al.

least upper bound is the new global store:

(r̂, σ̂, σ̂κ)�∧

Ξ
(r̂′, σ̂′′, σ̂′′κ), where

ŝ = {(e, ρ̂, σ̂, σ̂κ, âκ) | (e, ρ̂, âκ) ∈ r̂}
ŝ′ = {ς̂′ | ς̂ ∈ ŝ ∧ ς̂�∧

Σ
ς̂′} ∪ {Î(e0)}

r̂′ = {(e′, ρ̂′, â′κ) | (e′, ρ̂′, σ̂′, σ̂′κ, â′κ) ∈ ŝ′}

σ̂′′ =
⊔

(, ,σ̂′ , ,)∈ŝ′
σ̂′ σ̂′′κ =

⊔
(, , ,σ̂′κ,)∈ŝ′

σ̂′κ

In this definition, underscores match anything (i.e., are wildcards). The height of the

R̂ lattice is linear (as environments are monovariant) and the height of the store

lattices are quadratic (as each global store is strictly extended). Each extension of

the store may require O(n) transitions because at any given store, we must transition

every configuration to be sure to obtain any changes to the store or otherwise reach

a fixed point. A traditional worklist algorithm for computing a fixed point is thus

cubic and in time:

O(

|Ĉ|︷︸︸︷
n ×

|1Store + 2KStore |︷︸︸︷
n2)

Using advanced bit-packing techniques (Midtgaard & Horn 2009; Midtgaard 2012),

the best known algorithm for global-store-widened monovariant CFA is in O(n3

log n
).

5 Allocation as a tunable parameter

In the previous section, we developed a global-store-widened analysis of ANF λ-

calculus based on the concrete semantics of an abstract machine. It is monovariant,

which means each variable or intermediate expression that we track during analysis

receives exactly one flow set to overapproximate all its possible values. A closely

related term is context insensitive, which means insensitive to any form of context

and is a somewhat broader term that may, for example, include analyses less precise

than this as well (e.g., the univariant analysis we present shortly). In Section 4.2,

the crucial propositional statement (among those defining our abstract transition

relation (�∧

Σ
)) that makes the analysis monovariant is this one:

â = x

For each variable in the program, exactly one address is allocated to represent it.

The goal of this section is to produce a semantics that is parametric over the

allocator ealloc and that is sound regardless of how this function is defined. Although

we formalize this semantics on its own, the primary change is that ã is chosen by

an arbitrary allocator and thus

ã = ealloc(x, ς̃)

Instead of defining the set of abstract addresses explicitly as done in Section 4.2,

we define this set implicitly by the image and co-domain of the allocation function.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 27

Typographically, we also switch to using tildes instead of hats for distinguishing

components in our new parametric semantics.

This allows us to define monovariance as the following tuning of this function:

ealloc0CFA(x,) � x

An equivalence relation on these addresses can be lifted from a notion of equality for

syntax. However, we must either affix unique labels to every program expression or

assume that two identical pieces of syntax found in different parts of the same pro-

gram are syntactically unequal. For simplicity in our formalism, we assume the latter.

The least polyvariant allocator produces only a single address � that

overapproximates all concrete addresses:

ealloc�(x,) � �

We call this the univariant allocation scheme as it produces only a single address and

conflates all program values. As imprecise as this is, it has some uses. For example,

univariant allocation would make for an exceptionally cheap analysis powering

dead-code elimination (yielding a worst-case quadratic analysis instead of a cubic

one by collapsing O(n) addresses to O(1) addresses).

By contrast, the most polyvariant allocator produces new, previously unused

addresses each time. The resulting analysis is infinitely polyvariant and precisely

models the concrete semantics.

ealloc⊥(x, (e, ρ̃, σ̃, σ̃κ, ãκ)) � (x, |dom(σ̃)|)

It is also an example of an allocator that introspects on the current program state in

order to choose an address. It uses the size of the current store to ensure it always

produces a fresh address. Being able to represent concrete evaluation as a choice of

allocator is also useful because it allows us to write a precise interpreter and a static

analysis simultaneously as a single body of code. Along with promoting code reuse

and concision, this means testing either one also aids the robustness and stability of

the other (Jenkins et al. 2014).

Having seen these examples and the two extremes in terms of allocation strategies

(i.e., univariant and concrete), there are two important questions. First, is there

any allocation strategy that leads to an unsound analysis? Second, is there any

polyvariant strategy that is not implementable by an allocation strategy? We answer

these in the remainder of this section.

5.1 A Posteriori soundness

The usual process for proving the soundness of an abstract interpretation is a

priori in the sense that it can be performed entirely before the analysis is executed.

This is the kind of soundness theorem we described in Section 4.2. By contrast,

Might & Manolios (2009) describes an a posteriori soundness process where the

abstraction map is not fully constructed until after analysis. This approach factors

each abstraction map (αX for some component X) to separate the abstraction of

addresses ηAddr , producing a family of parametric maps βX such that βX(ηAddr) = αX .

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

28 T. Gilray et al.

A non-deterministic abstract interpretation is then constructed that attempts all

possible allocation strategies to show that all lead to sound approximations. (This

could also be an arbitrary allocation function without loss of generality.) After

the analysis is performed, regardless of the allocation strategy used, a consistent

abstraction map can be constructed a posteriori that justifies each choice of abstract

address whatever it was. It is then always possible to use this Galois connection for

addresses in the parametric Galois connection defined by β to obtain a complete

connection and proof of soundness.

For example, the parametric Galois connection for the analysis of the last section

may be defined:

βS (ηAddr)(s) � {βΣ(ηAddr)(ς) | ς ∈ s}
βΣ(ηAddr)((e, ρ, σ, σκ, aκ)) � (e, βEnv (ηAddr)(ρ), βStore(ηAddr)(σ),

βKStore(ηAddr)(σκ), βKAddr (ηAddr)(aκ))

βEnv (ηAddr)(ρ) � {(x, ηAddr (a)) | (x, a) ∈ ρ}

βStore(ηAddr)(σ) �
⊔

(a,v)∈σ
[ηAddr (a) �→ {βValue(ηAddr)(v)}]

βKStore(ηAddr)(σκ) �
⊔

(aκ,κ)∈σκ

[ηKAddr (aκ) �→ {βKont (ηAddr)(κ)}]

βKont (ηAddr)((φ, aκ)) � (βFrame(ηAddr)(φ), ηKAddr (aκ))

βFrame(ηAddr)((x, e, ρ)) � (x, e, βEnv (ηAddr)(ρ))

βValue(ηAddr)(clo) � βClo(ηAddr)(clo)

βClo(ηAddr)((lam , ρ)) � (lam , βEnv (ηAddr)(ρ))

ηKAddr ((e, n)) � e

Note that each abstract domain that depends transitively upon the notion of

abstraction used for addresses takes ηAddr explicitly as a parameter.

What is special about the allocation of abstract addresses that makes even a

random number generator a sound choice of allocator? Clearly, we could not define

the operation of most other components of our abstract machine randomly and

still guarantee a sound analysis. Intuitively, it is because in a concrete evaluation of

any program, we can select a fresh and unique address for every new allocation. (In

fact, we might justify a garbage collection scheme as safe by showing that when an

address becomes unreachable, it can be reclaimed and the semantics are guaranteed

to remain equivalent to allocating a fresh address.) Allocating a sequence of fresh,

unique addresses that never duplicate previous concrete addresses is thus a central

characteristic of what it means to be a concrete allocator. Because of this property,

whatever the behavior of abstract address allocation, no inconsistency can arise

within the ηAddr it induces. Because no concrete address is allocated more than once,

no single concrete address can become abstracted to two different abstract addresses

along a sound abstract program trace.

To illustrate this, consider Figure 3. It shows a program e0 being injected into a

starting state, ς0, and evaluated step by step. A static analysis performed by iterating

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 29

Fig. 3. All strategies for allocation induce a consistent Galois connection for addresses.

an abstract transition relation produces a transition graph, but for the analysis to

be sound, the concrete program trace must abstract to some path through this

graph. Such a path is illustrated in the bottom of Figure 3, with spurious transitions

dangling from it. Dotted lines are used to illustrate “abstracts to” relationships

for states and addresses (points in ηΣ and ηAddr). If a concrete machine and

its abstract machine are simulated in lock-step, each abstract transition that allocates

an address has two choices: either it can allocate an address âi that it has allocated

before, or it can allocate a new address âi. In both cases, it is deciding what the

corresponding (necessarily fresh) concrete address ai must abstract to in ηAddr . In

this way, a bisimulation incrementally builds up an abstraction map for addresses,

incrementally adding each point [ai �→ âi], one at a time.

In the original presentation of the a posteriori soundness theorem, Might and

Manolios state a dependent simulation condition, which requires that each new map

ηAddr [ai �→ âi] must be consistent with whatever partial abstraction map ηAddr was

built previously. No further intuitions are given for this assumption, though it is the

central property that allows the entire a posteriori soundness process to work—a

property implied by the definition of concrete allocation. For the abstraction induced

by the pairing of a concrete allocator and abstract allocator to be inconsistent, the

same concrete address needs to be abstracted to two different abstract addresses. Be-

cause a concrete allocator must, by definition, produce a fresh address for every invo-

cation, no such inconsistency is possible, regardless of the abstract allocator chosen.

Each ηAddr [ai �→ âi] must be consistent with ηAddr because the concrete address, ai,

cannot already be present in ηAddr . This makes abstract allocation a tunable param-

eter with the unique property that every possible tuning results in a sound analysis.

5.2 Introspection and instrumentation

Now consider whether more precise forms of call sensitivity, such as 1-CFA or

2-CFA, can be implemented as a tuning of the allocation function. A 1-call sensitive

allocator is straightforward. It can be defined by introspecting on the state being

transitioned from and incorporating the most recent call site into the address being

produced:

ealloc1CFA (x, (e, , , ,)) � (x, e)

This makes addresses (and their flow sets) uniquely defined by both the variable x

and the call site that preceded the binding. If we were to attempt an implementation

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

30 T. Gilray et al.

of a more precise variant of call sensitivity, however, such as 2-CFA, we run into a

problem because the analysis simply does not include the information necessary to

guide this style of polyvariance. The current abstract state contains the most recent

call site passed through, but it does not include the second most recent call site.

To permit a tuning for ealloc2CFA, we can instrument this core flow analysis with a

new sixth component of machine states that specifically tracks the second most recent

call site. In the original formulation of AAM, this was encoded in a function btick :

Σ̂→1Time, where the additional information was construed as an abstract timestamp

encoding (in this case) a call history (Van Horn & Might 2010). If we were to extend

our analysis with such information, a 2-call sensitive allocator could be defined as

ealloc2CFA(x, (e, , , , , e′)) � (x, e, e′)

In this case, e′ is a new component of machine states that represents the second

most recent call site. Naturally, (�∧

Σ
) and Î would need to be extended to include

this information.

Crucially, due to the a posteriori soundness theorem, we can add whatever instru-

mentation is needed to guide the behavior of an allocator. An analysis designer may

wish to extend the core flow analysis in a way that is sound with respect to a dynamic

analysis or instrumentation of the concrete semantics. However, even if the analysis

is extended with unsound information about a program, this information can still

be used to guide allocation behavior without it causing unsoundness within the core

flow analysis (i.e., within the store and set of reachable control-flow configurations).

This means we can leave such instrumentation open, as another parameter to our

semantics, and place no restrictions on its behavior. This can be thought of as an ab-

stract timestamp, as in the original AAM framework, but it can also be an arbitrary

extension to the core flow analysis, and this generality is crucial to our observation

that this framework can encompass arbitrary flavors of polyvariant analysis. Because

we lose no expressivity in this instrumentation, all conceivable allocation functions

can be expressed as well. This means all strategies for merging and differentiation of

abstract addresses (and their flow sets) are possible, and thus all forms of polyvari-

ance can be expressed as a combination of some allocator and some instrumentation.

5.3 A parametric semantics

In this section, we present a parametric semantics that can be tuned by two allocation

functions and an instrumentation relation (i.e., an arbitrary extension of the analysis).

As before, we exclusively use tildes to keep this machine distinct from the machine

of Section 4.

Our parametric semantics is encoded in the function:

CFA :

start state︷︸︸︷
Σ̃ ×

instrumentation︷ ︸︸ ︷
(Σ̃× Call×eEnv ×AStore ×BKStore ×BKAddr → P�1(Ĩ))

→

value allocator︷ ︸︸ ︷
(Var× Σ̃→AAddr)→

analysis︷ ︸︸ ︷
(S̃ → S̃)

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 31

Fig. 4. Abstract domains for our parametric semantics.

Fig. 5. Parameters to these semantics.

CFA is a curried function of several arguments: first, a starting state, ς̃0, which

specifies the program to interpret and its initial ι̃0, paired with an instrumentation,

(
Inst�), which may be used to extend the core analysis arbitrarily; then, a value

allocator, ealloc. Figure 4 shows the signatures of these parameters to CFA.

The allocator implicitly defines a set of addresses, AAddr , used by the analysis.

The instrumentation relation defines a set of instrumentation data, Ĩ , to extend the

core flow analysis and enable a greater variety of allocators. An instrumentation is a

function that, fully taking the underlying analysis transition into account, determines

the instrumentation data to be included in successor states. Although this may not

constrain the core flow analysis, to emphasize that it can encode an arbitrary analysis

of its own, we use the following syntactic sugar:

ς̃
Inst�(e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, ι̃
′) ⇐⇒ ι̃′ ∈ (

Inst�)(ς̃, e′, ρ̃′, σ̃′, σ̃′κ, ã
′
κ)

The computed analysis is then a reduced product of the two analyses where

the instrumentation analysis can only impact the core flow analysis (reachable

(e, ρ̂, σ̂, σ̂κ, âκ)-tuples), via the allocation of addresses. The first five components of

the successor state are inputs to (
Inst�), constraining the instrumentation data ι̃ that

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

32 T. Gilray et al.

is reached in the next step. The instrumentation may not yield an empty set, or it

could lead to unsoundness. Figure 5 shows the remaining domains that the machine

operates over. These are similar to the domains in Section 4 except that states and

configurations contain instrumentation data (̃ι) and addresses are specified implicitly

by the allocator chosen.

Provided a starting state and instrumentation, CFA(ς̃0,
Inst�) yields a parametric

analysis that can be tuned further by an allocator. Provided all arguments,

CFA(ς̃0,
Inst�)(ealloc) yields a monotonic analysis function that can be iterated to a

fixed point:

CFA(ς̃0,
Inst�)(ealloc) � (��

S
), where

s̃��
S
{ς̃′ | ς̃ ∈ s̃ ∧ ς̃��

Σ
ς̃′} ∪ {ς̃0}

and the state transition relation (��
Σ
) for applications and returns is as follows:

ς̃︷ ︸︸ ︷
((let ([y (f ae)]) e), ρ̃, σ̃, σ̃κ, ãκ, ι̃)��

Σ
(e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, ι̃
′), where

((λ (x) e′), ρ̃λ) ∈ Ã(f, ς̃)

ρ̃′ = ρ̃λ[x �→ ã]

σ̃′ = σ̃ � [ã �→ Ã(aei, ς̃)]

σ̃′κ = σ̃κ � [ã′κ �→ ((y, e, ρ̃), ãκ)]

ã = ealloc(x, ς̃)

ã′κ = eallocκ(ς̃)

ς̃
Inst�(e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, ι̃
′)

ς̃︷ ︸︸ ︷
(ae, ρ̃, σ̃, σ̃κ, ãκ, ι̃)��

Σ
(e, ρ̃′, σ̃′, σ̃κ, ã

′
κ, ι̃
′), where

((x, e, ρ̃κ), ã
′
κ) ∈ σ̃κ(ãκ)

ρ̃′ = ρ̃κ[x �→ ã]

σ̃′ = σ̃ � [ã �→ Ã(ae, ς̃)]

ã = ealloc(x, ς̃)

ς̃
Inst� (e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, ι̃
′)

In this transition, there are three meaningful changes from the semantics of Section 4,

one for each parameter. First, the starting state ς̃0 is as provided and not produced by

an injection function (this allows the user to control the initial instrumentation data

along with the program to be analyzed). Second, addresses ã are constrained only

by the allocator ealloc provided. Third, the instrumentation function (
Inst�) constrains

the instrumentation data ι̃′ based on all other components of the transition. (At no

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 33

point may the instrumentation relation yield an empty set of instrumentation data,

this could lead to unsoundness.)

A continuation allocation is performed by the helper eallocκ that is not treated as

a parameter because it has a simple optimal definition (Gilray et al. 2016b):

eallocκ((e
′, ρ̃′, , , ,)) � (e′, ρ̃′)

This could be made a parameter as easily as value allocation, but this strategy

for continuation allocation yields an analysis that can be implemented with no

asymptotic complexity overhead and perfect stack precision—that is, return flows

that are as precise as a more expensive pushdown model. Roughly speaking, the

inclusion of ρ̃′ ensures that continuations are allocated in a way that differentiates

them as much as is necessary to adapt to the behavior of ealloc and keep return

flows distinct. Although it may appear that the same polyvariance could be used for

both calls and returns to obtain precision equivalent to a pushdown model, this is

not the case due to the structure of higher order environments (i.e., a return value

can depend on multiple distinct polyvariant allocations referenced in the binding

environment). As it turned out, however, the additional, heavyweight machinery

used in other approaches such as PDCFA (Earl et al. 2012) and CFA2 (Vardoulakis

& Shivers 2010) could be captured as a tuning of continuation allocation that was

simple to engineer and that provides a guarantee of a posteriori soundness at no

asymptotic complexity cost. Discovering this optimal strategy for instantiating a

continuation allocator is an example of productively applying our more general

approach to polyvariance and tunable flow analyes—and the subject of its own

paper. For more details on this specific technique, the reader is referred to Gilray

et al. (2016b).

The atomic evaluator is defined in the same way as before:

Ã : AExp× Σ̃ ⇀ AValue

Ã(x, (, ρ̃, σ̃, , ,)) = σ̃(ρ̃(x))

Ã(lam , (, ρ̃, , , ,)) = {(lam , ρ̃)}

If the image of ealloc (the set AAddr it can produce) and the image of (
Inst�) (the

set of sets of Ĩ it can produce) are finite sets, then there must exist an n ∈ � such

that (CFA(ς̃0,
Inst�)(ealloc))n(⊥) is a fixed point encoding a sound analysis of ς̃0 using

the instrumentation and style of polyvariance specified. As in the previous section,

a global-store-widened variant of this analysis can just as easily be defined.

5.4 A parametric abstraction

Now we can present the a posteriori soundness process in greater detail. The proof

operates by factoring apart the concrete and abstract state-transition relations to

separate the allocation of addresses from the rest of the semantics. In the concrete

case, this recasts (→Σ) as a curried function f : Σ → Addr → Σ that takes both a

predecessor state and a concrete address (to use for the current state transition) to

produce a successor state. In the abstract case, this recasts (��
Σ
) as a curried function

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

34 T. Gilray et al.

f̃ : Σ̃→ P(AAddr → Σ̃) that takes a predecessor state and yields a set of successors,

each parameterized over the address allocated to produce them. The soundness

process then requires a dependent simulation condition (Might & Manolios 2009)

that requires that two identical concrete addresses not be used in the same concrete

execution. The soundness process then takes a completed analysis and directly

computes the justifying abstraction map for addresses a posteriori by exploiting the

following property:

Definition 5.1 (Dependent simulation)

A policy-factored abstract transition function f̃ : Σ̃→ P(AAddr → Σ̃) is a dependent

simulation of a policy-factored concrete transition function f : Σ → Addr → Σ,

under a factored abstraction βΣ : (Addr →AAddr) → Σ → Σ̃, if and only if for all

(partial) address extraction maps ηAddr : Addr →AAddr such that βΣ(ηAddr)(ς)
 ς̃,

for any pair of concrete address a and abstract address ã, there exists a parametric

successor state h̃ ∈ f̃(ς̃) where βΣ(ηAddr [a �→ ã])(f(ς)(a))
 h̃(ã).

This property states that the analysis must simulate the concrete semantics at

non-address components, assuming a partial simulation for addresses used already,

and that extending this map arbitrarily preserves simulation across a transition. This

property is exactly what is needed to incrementally build up a justifying abstraction

map for addresses post-hoc, regardless of what abstract addresses were used. What

may be less clear at first is why this property should hold for allocation and not

arbitrary analysis components. The reason is no concrete address can be allocated

more than once. If a concrete address could be used twice in the same analysis, then

it could be already present in the partial extraction map for addresses, ηAddr , and

the final inequality in the definition of dependent simulation could not be derived

from its premises.

With this general requirement and notation introduced, we may review the a

posteriori soundness theorem in the context of polyvariant AAM.

Theorem 5.1 (A posteriori soundness)

If

– (�ς ,�a) is a concrete execution where �ς is a sequence of states 〈ς0, ς1, ς2, . . .〉 and

�a = 〈a0, a1, a2, . . .〉 is the sequence of concrete addresses allocated at each transition,

– f̃ is a dependent simulation of f under the factored abstraction map βΣ,

– (̃s,��
Σ
) is the closed abstract transition graph yielded by f̃, with ς̃0 ∈ s̃, and

– for all ηAddr , βΣ(ηAddr)(ς0)
 ς̃0,

then there exists an ηAddr that makes (̃s,��
Σ
) a sound simulation of (�ς ,�a) under

βΣ(ηAddr).

Proof

We proceed by performing an a posteriori construction of ηAddr . This is done

by building up a simulating sequence of abstract states �̃ς = 〈ς̃0, ς̃1, ς̃2, . . .〉, their

respective abstract addresses �̃a = 〈ã0, ã1, ã2, . . .〉, and a sequence of partial extraction

maps for addresses �ηAddr = 〈η0, η1, η2, . . .〉. We then show by induction that

βΣ(ηi)(ςi)
 ς̃i.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 35

Let N be the length of �ς and the initial map η0 be ⊥. At each step, a next abstract

address ãi and abstract state ς̃i+1 are chosen simultaneously from the set of candidate

transitions {(ãi, ς̃i+1) | ς̃i+1 = h̃(ãi), h̃ ∈ f̃(ς̃i), βΣ(ηi)(ςi)
 ς̃i+1}, which is guaranteed

to be non-empty by the dependent simulation condition. Each new point [ai �→ ãi] is

accumulated into an updated intermediate abstraction map ηi = ηi−1[ai �→ ãi] which

inductively builds up ηAddr in its limit:

ηAddr = lim
i→N

ηi

Then, (̃s,��
Σ
) is a simulation of (�ς ,�a) with respect to β(ηAddr). �

6 Allocation characterizes polyvariance

This section explores the design space opened up by a semantics parameterized over

both an instrumentation and an abstract allocator, showing how it encompasses

a variety of previously published polyvariant techniques, novel techniques, and

variations on these.

6.1 Call sensitivity (k-CFA)

Call-sensitive instrumentation tracks a history of up to k call sites for use in

differentiating addresses.

((let ([y (f ae)]) e), , , , , ι̃)
Inst�call (k)(, , , , , takek((f ae) : ι̃))

The function takek returns the front at-most k elements of its input as a new list.

For this instrumentation to distinguish between two syntactically equivalent call

sites located in different parts of a program, we assume two pieces of syntax are

only equal when they are the same piece of syntax from the same part of the

same program. This allows us to safely lift an equivalence relation on syntax to an

equivalence relation for addresses.

Using (
Inst�call (k)), we may tune our analysis to implement k-CFA using an allocator

which incorporates these k-length call histories in the addresses it produces.

ealloccall(x, (, , , , , ι̃)) � (x, ι̃)

The parametric semantics of Section 5.3 can be tuned to recapitulate the k-call

sensitive style of polyvariance for a program e0 using the parameterization:

CFA((e0,�,⊥,⊥, ãhalt, ε), (
Inst�call (k)), ealloccall)

6.1.1 Ambiguity in k-CFA

The original formulation of k-CFA by Shivers (1991) was described as tracking a

history of the last k call sites execution passed through, however, it was applied to a

continuation-passing style intermediate representation. After a continuation-passing

style transformation, every return point has been encoded as a call site. This means,

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

36 T. Gilray et al.

as implemented, k-CFA was actually tracking a history of the first k call sites or

return points. Our call sensitivity, as just formalized, only remembers call sites but

not return points and is a somewhat different form of polyvariance from what

Shivers originally implemented.

To formalize a tuning of k-CFA that does track both call and return points, we

are only required to change the behavior of our instrumentation to include both

cases:

((let ([y (f ae)]) e), , , , , ι̃)
Inst�call+ret(k)(, , , , , takek((f ae) : ι̃))

(ae, , , , , ι̃)
Inst�call+ret(k)(, , , , , takek(ae : ι̃))

We can then instantiate our framework to a 2-call+return sensitive analysis as

follows:

CFA((e0,�,⊥,⊥, ãhalt, ε), (
Inst�call+ret(2)), ealloccall)

We can also produce tunings which represent an analysis that remembers only

return points or an analysis sensitive to the top k stack frames. This means there

are at least four reasonable interpretations of k-CFA which resolve the ambiguity

between its original description and its original formalization. Each of these four

styles of polyvariance are subtly different and may yield a different analysis

result. Furthermore, none of these four styles of polyvariance strictly dominates

the precision of any other. For each, we can find examples where that specific

interpretation of k-CFA produces the best result. For example, the following snippets

of code differentiates 2-call+return sensitivity and 2-call-only sensitivity.

(let ([id (λ (x) x)])

(let ([f (λ (y)

(let ([v (id y)]) v))])

(let ([r0 (f #f)])

(let ([r1 (f #t)])

r1))))

(let ([id (λ (x) x)])

(let ([f (λ (g)

(let ([v (g)]) v))])

(let ([r0 (f (λ () (id #f)))])

(let ([r1 (f (λ () (id #t)))])

r0))))

The last two calls before binding v the first time are (id y) and (f #f), and

the second time they are (id y) and (f #t). The last two calls or returns before

binding v the first time are (id y) and (f #f), and the second time they are (id

y) and (f #t). However, when returning the values #t and #f from f, the last two

calls are (id y) and (f #f) and then (id y) and (f #t), respectively, but the

last two calls or returns in these cases are x and (id y) and then x and (id y),

respectively. This means 2-call-only sensitivity will keep both addresses returned to

r1 distinct, while 2-call+return sensitivity will not.

Different styles of polyvariance represent different heuristics for the trade-off

between precision and complexity and may strike a poor balance on one program

while striking an excellent balance on another. Having a safe parametric framework

which may instantiate any conceivable heuristic may be an important step in

understanding which styles of polyvariance work best in what situations and thereby

inform us how to better adapt polyvariance to suit a particular target of analysis.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 37

We could also define a predicate I : Exp → Boolean that decides whether to

include a particular expression (be it call or return) in the running context history:

(e, , , , , ι̃)
Inst�inc(I, k)

{
(, , , , , takek(e : ι̃)) I(e)

(, , , , , ι̃) otherwise

Then call sensitivity, return sensitivity, call+return sensitivity, and many other

strategies all become expressible as tunings of the predicate I .

6.1.2 Variable call sensitivity

Wright & Jagannathan (1998) presents just such an adaptive heuristic for varying

call sensitivity according to the syntax of a program. Their polymorphic splitting

is a simple form of adaptive call sensitivity inspired by let-polymorphism where

the degree of polyvariance can vary between functions. The number of let-form

binding expressions (right-hand sides) a lambda was defined within forms a simple

heuristic for its call sensitivity when invoked.

We generalize this to an arbitrary strategy for varying the depth of call sensitivity

with a per-function k; to do so, we assume a parameter function L : Call → �
that takes the body of a lambda and gives back a k for its let-depth (or any other

heuristic for varying the maximum-length call history).

(e, , , , , ι̃)
Inst�variable(L)(e

′, , , , , take(L(e′))(e : ι̃))

This variable call history is then used for allocating addresses.

CFA((e0,�,⊥,⊥, ãhalt, ε), (
Inst�variable(L)), ealloccall)

Because all parameterizations of our semantics are sound, all possible heuristics L

are too. No tuning of L can produce an infinite k, only arbitrarily large k. In the

case of polymorphic-splitting, because no program can contain an infinite nesting

of let-forms, every program has a let-polymorphic tuning of L.

This instrumentation and allocator generalize the behavior of polymorphic

splitting and could be further generalized by adding a function to decide which

call sites versus return points to extend.

6.2 Object sensitivity

Smaragdakis et al. (2011) distinguishes multiple variants of object sensitivity, first

described by Milanova et al. (2005). This style of context sensitivity is entirely

different from call sensitivity and uses a history of the allocation points for objects

to guide polyvariance.

For this section and the next, we temporarily extend our language with n-ary

lambdas (in the straightforward manner) and a vector form as we did previously in

Section 4.2.1. We assume a desugaring such that the first argument to any function

will be its receiving object.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

38 T. Gilray et al.

We define abstract-object values permitted within flow sets (tuples of pointers):

ṽ ∈AValue � eClo +eVec

fvec ∈eVec � AAddr
∗

And give vector syntax an interpretation in the atomic-expression evaluator:

Ã((vector x0 . . . xj), (, ρ̃, , ,)) � {(ρ̃(x0), . . . , ρ̃(xj))}

Ã((vector-ref x n),

ς̃︷ ︸︸ ︷
(, , σ̃, ,)) �

⊔
(ã0 ,...,ãj)∈Ã(x,ς̃)

σ̃(ãn)

As the fields of our objects are effectively each vector’s indices, and because these

are strictly kept distinct instead of being merged, we may call this representation

for vectors field sensitive (Liang & Might 2012). A flow set of objects could be

{(ã1, ã2, ã3), . . .} but not {ã1, ã2, ã3, . . .}, as they preserve the relationship between keys

and values. Allowing these tuples of addresses within flow sets is not a new source

of unboundedness in the machine because the longest possible tuple is the length of

the longest vector form in the finite program text.

In Smaragdakis’ framework, k-full-object sensitivity tracks the allocation point

of each object, the allocation point for the object which created it, and so forth—

up to a limited depth of k allocation points. We instrument our analysis with an

object-sensitivities store σ̃O and a current allocation history (õ):

ι̃ ∈ Ĩ � BOStore × Õ

õ ∈ Õ � Exp∗

σ̃O ∈BOStore � AAddr ×eVec → P(Õ)

Each state is extended with an object-sensitivities store, σ̃O , which maps an

abstract object at an address to a set of possible allocation histories for that object,

and a current allocation history, õ, a sequence of allocation points for the current

receiver object (and its allocating object, etc). Each transition extends σ̃O with a new

allocation history (produced by extending the current allocation history Õ with a

new allocation point, the current expression) for each ae that constructs an object.

Existing objects bound to a variable (some y) have their histories propagated along

with the objects. Each transition then yields a successor for each possible allocation

history associated with a receiving object. If global-store widening is used for an

analysis, a similar form of widening should likely be used for object-sensitivities

stores to parallel the global value store.

ς̃︷ ︸︸ ︷
(let ([z (f ae0 . . . aej)]) e), ρ̃, , , , (σ̃O, õ))

Inst�vec(k)(e
′, ρ̃′, , , , (σ̃′O, õ

′))

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 39

where ((λ (x0 . . . xj) e′),) ∈ Ã(f, ς̃)

vec0 ∈ Ã(ae0, ς̃)

õ′ ∈ σ̃′O((ρ̃′(x0), fvec0))

σ̃′O = σ̃O �
⊔

aei=(vector ...)

fvec∈Ã(aei ,ς̃)

[(ρ̃′(xi), fvec) �→ {takek((f . . . aej) : õ)}]

�
⊔

aei=yi

fvec∈Ã(aei ,ς̃)

[(ρ̃′(xi), fvec) �→ σ̃O(ρ̃(yi), fvec)]

Recall that this is syntactic sugar for defining a function that yields a set of

instrumentations, in this case, each (σ̃′O, õ
′), from examining other components of

the transition. The first line in the transition’s constraints fixes the lambda being

invoked and its list of parameters x0 . . . xj . The next two lines non-deterministically

select a new allocation history, õ′, as any possible history for any possible receiver

object mapped to in the new object-sensitivities store σ̃′O . This store σ̃′o is produced

by modifying the existing sensitivities store, σ̃O , joining new histories into the

parameter’s address ρ̃′(xi), and each object at that address fvec, where the argument

ae i is a vector-form, a new history formed by extending the current object history

with the current point, takek((f . . . aej) : õ), and where the argument aei is a variable,

pulling out any objects bound to the variable and propagating their histories.

An allocator for this style of polyvariance pairs each variable with the current

allocation history (ignoring the sensitivities store which only needs to be used

internally to track histories associated with objects).

eallocobj(x, (, , , (σ̃O, õ))) � (x, õ)

Smaragdakis et al. (2011) and Lhoták & Hendren (2006) find object sensitivity to

be particularly efficient for object-oriented languages in their empirical investigations

using the Java DaCapo and SpecJVM benchmarks. The intuition for this seems to

be that object sensitivity is particularly good at modeling correct flows for dynamic

dispatch. Kastrinis & Smaragdakis (2013) present combinations of object and call

sensitivity. Combinations of styles of polyvariance can also be accomplished in our

framework by a tuning of instrumentation and allocation as we will observe in

Section 6.5.

6.3 Argument sensitivity

Agesen (1995) introduces a CPA as an enhancement to a type recovery algorithm.

We will consider the source of imprecision that the original formulation attempts

to address, generalize its solution as a form of polyvariance in our approach, and

discuss CPA’s complexity and precision relative to call and object sensitivity.

The basic monovariant inference algorithm, that CPA extends, assigns a flow set

of dynamic types for each variable in the program, it establishes constraints based

on the program text, and it propagates values until all these constraints have been

met. The primary method for overcoming this merging, is introduced as the p-level

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

40 T. Gilray et al.

expansion algorithm of Oxhøj et al. (1992)—a polyvariant type-inference algorithm

and analog to the call-string histories of Harrison and then Shivers, where the use

of p parallels that of k in k-CFA. This is shown to be insufficient however, as the

authors of CPA give a case of merging which cannot be strictly overcome by any

value of p. Besson (2009) further illustrates this point in the context of Java, claiming

“CPA beats ∞-CFA.”

The original motivating example for CPA was a polymorphic max function:

... (let ([max (λ (a b) (if (> a b) a b))])

...)

Here, the only constraint for an input to max is that it support comparison, so a

call (max “a” “at”) makes as much sense as a call (max 2 5). However, if both

these calls are made with a sufficient amount of obfuscating call (or object) history

behind them, merging will cause the flow sets for both a and b to each include both

string and int (i.e., abstract values for those types). This is imprecise as it implies

that a call (max 2 “at”) is possible, even when it is not. The problem then, can

be summarized as the existence of spurious inter-argument patterns which become

inevitable when the flow sets for different syntactic arguments are entirely distinct.

The solution CPA proposes is to replace flow sets of per-argument types, with flow

sets of per-function tuples of types. In such an analysis, the function max itself would

be typed {(int, int), (string, string) . . .} preserving inter-argument patterns and

eliminating spurious calls where the types do not match.

In essence, this change makes flow sets for each argument specific to the entire

tuple of types received in a call. This suggests that, although no amount of call history

will ensure the preservation of inter-argument correlations, a form of polyvariance

which makes addresses specific to a tuple of abstract values for arguments can.

We must be careful here in extending this idea to an allocator for our general

framework. If a tuple of closures is included inside addresses, the mutual recursion

of addresses, closures, and environments makes the analysis unbounded. Instead, we

assume a helper function T which further abstracts abstract values so they cannot

contain addresses. For an approach especially similar to CPA itself, we might define

T so it yields dynamic types. For a functional language, we may define T so that

it strips environments out of closures and leaves just a set of syntactic lambdas. For

example,

T(�̃v) � {lam | (lam , ρ̃) ∈ �̃v}

In a sense, syntactic lambdas are at least as specific as a type (their type signature,

whatever type system is used) whether or not that type is known a priori by an

analysis (Gilray & Might 2014).

With this, we may define an argument sensitive style of polyvariance, like CPA, as

an abstract allocator. Each abstract address is produced specific to a variable and

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 41

the exact tuple of dynamic types for the arguments passed at the same time:

eallocCPA(x,

ς̃︷ ︸︸ ︷
((let ([y (f ae0 . . . aej)]) e), , , , ,))

� (x, (T(Ã(ae0, ς̃)), . . . , T(Ã(aej , ς̃))))

eallocCPA(x, (ae, , , , ,)) � x

We can also observe how natural it would be to construct less precise variations

of this allocator by including only some arguments within addresses. For example,

including only the first argument might yield enough precision in many cases:

eallocarg0
(x,

ς̃︷ ︸︸ ︷
((let ([y (f ae0 . . . aej)]) e), , , , ,)) � (x,T(Ã(ae0, ς̃)))

eallocarg0
(x, (ae, , , , ,)) � x

We could even vary the arguments an analysis is sensitive to on a per-function basis

like we did for polymorphic splitting in Section 6.1.2.

Like call sensitivity and object sensitivity, CPA can be of exponential complexity in

the size of the program and is exceedingly impractical for use on sufficiently complex

input programs. CPA is also, however, an excellent illustration of the principle that,

in practice, more precision can also lead to smaller model sizes and faster analysis

times. Where CPA improves precision, it is also fastest, and where CPA is unnecessary

and delivers no improvement over k-CFA, it is enormously inefficient. For a function

like max, one where the types of the arguments should match, CPA accumulates

only a single value for each type that can flow to the function. For a function where

all combinations of arguments are possible, CPA requires each combination to

be enumerated explicitly. k-CFA implies all inter-argument combinations for equal

precision at far greater efficiency. Such observations would seem to support an effort

to discover more adaptive nuanced variations on CPA.

6.4 Extreme-precision allocators

We can even further generalize the central idea of CPA to consider forms of

polyvariance which preserves inter-address correlations in the store. Consider an

extreme case for the precision of an allocator where an analysis allocates addresses

specific to entire stores (or portions of stores, or specific addresses in the store). In

fact, in this manner, we can even recover all the precision lost through structurally

store widening (as discussed in Section 4.3) as a form of store-sensitive polyvariance.

We assume the underlying allocator (in a store-sensitive setting) is ealloc and

its instrumentation is
Inst�. Using these, we may produce an instrumentation for

recovering store sensitivity within a structurally store widened parametric semantics

by rebuilding the state-specific environments and stores lost due to store widening.

ς̃︷ ︸︸ ︷
((let ([y (f ae)]) e), ρ̃, σ̃, σ̃κ, ãκ, (̃ι, ρ̃Σ, σ̃Σ))

Inst�
ss(ealloc,

Inst�)
(e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, (̃ι

′, ρ̃′Σ, σ̃
′
Σ))

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

42 T. Gilray et al.

where ((λ (x) e′), ρ̃λ) ∈ Ã(f, ς̃)

ρ̃′Σ = ρ̃λ[x �→ ã]

σ̃′Σ = σ̃Σ � [ã �→ Ã(ae, ς̃)]

ã = ealloc(x, ς̃)

((let ([y (f ae)]) e), ρ̃, σ̃, σ̃κ, ãκ, ι̃)
Inst�(e′, ρ̃′, σ̃′, σ̃′κ, ã

′
κ, ι̃
′)

We then use an allocator which embeds these recovered exact environments and

stores to differentiate addresses.

eallocss(x, (, , , , , (̃ι, ρ̃Σ, σ̃Σ))) � (x, ι̃, ρ̃Σ, σ̃Σ)

Using a similar instrumentation which rebuilds exact environments, we can also

recover the full environment sensitivity lost through closure conversion, or the use

of mCFA (Might et al. 2010) or poly-k-CFA (Jagannathan & Weeks 1995).

ealloces(x, (, , , , , (̃ι, ρ̃Σ))) � (x, ι̃, ρ̃Σ)

In this way, we can observe that some important forms of coarser structural

abstraction (store widening and the use of flat environments) are encompassed

by our design space for polyvariance.

6.5 Combining forms of polyvariance

For two forms of polyvariance, we may combine them by essentially taking the

product of their instrumentations and the product of their allocators. Consider two

forms of polyvariance characterized by ealloc0 paired with (
Inst�0) and ealloc1 paired

with (
Inst�1), respectively.

We can produce a new instrumentation which compiles the information added by

both (
Inst�0) and (

Inst�1):

(e, ρ̃, σ̃, σ̃κ, ãκ, (̃ι0, ι̃1))
Inst�×(e

′, ρ̃′, σ̃′, σ̃′κ, ã
′
κ, (̃ι

′
0, ι̃
′
1))

where (e, ρ̃, σ̃, σ̃κ, ãκ, ι̃0)
Inst�0(e

′, ρ̃′, σ̃′, σ̃′κ, ã
′
κ, ι̃
′
0)

(e, ρ̃, σ̃, σ̃κ, ãκ, ι̃1)
Inst�1(e

′, ρ̃′, σ̃′, σ̃′κ, ã
′
κ, ι̃
′
1)

Then, we produce a new allocator which returns an address specific to both

addresses returned by ealloc0 and ealloc1:

ealloc×(x, (e, ρ̃, σ̃, σ̃κ, ãκ, (̃ι0, ι̃1))) �

(ealloc0(x, (e, ρ̃, σ̃, σ̃κ, ãκ, ι̃0)), ealloc1(x, (e, ρ̃, σ̃, σ̃κ, ãκ, ι̃1)))

7 Conclusion

We have presented a general approach to encoding arbitrary strategies for

polyvariance in systematically developed CFA. Different styles of polyvariance

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 43

represent different ways of differentiating program flows that vary in their efficiency

and effectiveness across targets of analysis. As such, having a general approach for

encoding them that is simultaneously straightforward to engineer, fully general, and

guaranteed to yield a sound analysis, provides a solid foundation for investigation

and targeted adaptation.

A key requirement of our approach is to perform a store-passing transformation

to the target language’s semantics that exposes an address set. This infinite set

of concrete addresses may then be finitized to yield a bounded set of abstract

addresses (each overapproximating a set of concrete bindings). The manner in which

these addresses are allocated and reused then becomes crucial—different designs for

grouping and conflating concrete bindings encode different styles of polyvariance.

Using a posteriori soundness, we show that the defining characteristic of concrete

allocation, namely that every concrete address is allocated fresh, also means that

no process of abstract allocation can result in an inconsistent abstraction map for

addresses. This in turn means that any tuning of an abstract allocation function

yields a sound analysis.

Then, in order to capture all conceivable styles of polyvariance, we further permit

the flow analysis to be instrumented arbitrarily. While we are unable to make

guarantees about arbitrary extensions of a core flow analysis, regardless of how this

added information is used by the abstract allocator, we are guaranteed to have a

sound core flow analysis. This allows us to be both fully general for our clearly

defined notion of polyvariance and fully sound for control-flow and data-flow results

yielded by the analysis.

Acknowledgments

The authors would like to thank the anonymous ICFP and JFP reviewers for their

thorough and insightful feedback. It has been gratefully received.

The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon.

References

Agesen, O. (1995) The Cartesian Product Algorithm. Lecture Notes in Computer Science,

vol. 952. Berlin, Heidelberg: Springer, pp. 2–26.

Amtoft, T. & Turbak, F. (2000) Faithful Translations Between Polyvariant Flows and

Polymorphic Types. Lecture Notes in Computer Science, vol. 1782. Berlin, Heidelberg:

Springer, pp. 26–40.

Appel, A. W. (2007) Compiling with Continuations. Cambridge University Press.

Banerjee, A. (1997) A modular, polyvariant and type-based closure analysis. In Proceedings of

the 2nd ACM SIGPLAN International Conference on Functional Programming, ICFP ’97.

New York, NY, USA: ACM, pp. 1–10.

Besson, F. (2009) CPA beats ∞-CFA. In Proceedings of the 11th International Workshop

on Formal Techniques for Java-like Programs, FTfJP ’09. New York, NY, USA: ACM,

pp. 7:1–7:6.

Bravenboer, M. & Smaragdakis, Y. (2009) Strictly declarative specification of sophisticated

points-to analyses. In Proceedings of the 24th ACM SIGPLAN Conference on Object

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

44 T. Gilray et al.

Oriented Programming Systems Languages and Applications, OOPSLA ’09. New York,

NY, USA: ACM, pp. 243–262.

Cousot, P. (1997) Types as abstract interpretations. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97.

New York, NY, USA: ACM, pp. 316–331.

Cousot, P. & Cousot, R. (1976) Static determination of dynamic properties of programs.

In Proceedings of the 2nd International Symposium on Programming. Paris, France,

pp. 106–130.

Cousot, P. & Cousot, R. (1977) Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’77. New York, NY, USA: ACM, pp. 238–252.

Cousot, P. & Cousot, R. (1979) Systematic design of program analysis frameworks.

In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, POPL ’79. New York, NY, USA: ACM, pp. 269–282.

Earl, C., Sergey, I., Might, M. & Van Horn, D. (2012 September) Introspective

pushdown analysis of higher-order programs. In International Conference on Functional

Programming, pp. 177–188.

Flanagan, C., Sabry, A., Duba, B. F. & Felleisen, M. (1993) The essence of compiling with

continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming

Language Design and Implementation, PLDI ’93. New York, NY, USA: ACM, pp. 237–247.

Gilray, T. & Might, M. (2013 November) A unified approach to polyvariance in abstract

interpretations. In Proceedings of the Workshop on Scheme and Functional Programming,

Scheme ’13.

Gilray, T. & Might, M. (2014) A Survey of Polyvariance in Abstract Interpretations. Theoretical

Computer Science and General Issues, vol. 8322. Berlin, Heidelberg: Springer, pp. 134–148.

Gilray, T., Adams, M. D. & Might, M. (2016a) Allocation characterizes polyvariance: A

unified methodology for polyvariant control-flow analysis. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016. New York,

NY, USA: ACM, pp. 407–420.

Gilray, T., Lyde, S., Adams, M. D., Might, M. & Van Horn, D. (2016b) Pushdown control-flow

analysis for free. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’16. New York, NY, USA: ACM,

pp. 691–704.

Harrison, W. L. (1989) The interprocedural analysis and automatic parallelization of Scheme

programs. Lisp Symb. Comput. 2(3–4), 179–396.

Holdermans, S. & Hage, J. (2010) Polyvariant flow analysis with higher-ranked polymorphic

types and higher-order effect operators. In Proceedings of the 15th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’10. New York, NY, USA:

ACM, pp. 63–74.

Jagannathan, S. & Weeks, S. (1995) A unified treatment of flow analysis in higher-order

languages. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’95. New York, NY, USA: ACM, pp. 393–407.

Jagannathan, S., Weeks, S. & Wright, A. (1997) Type-Directed Flow Analysis for Typed

Intermediate Languages. Lecture Notes in Computer Science, vol. 1302. Berlin, Heidelberg:

Springer, pp. 232–249.

Jenkins, M., Andersen, L., Gilray, T. & Might, M. (2014 November) Concrete and abstract

interpretation: Better together. In Workshop on Scheme and Functional Programming,

Scheme ’14.

Johnson, J. I., Labich, N., Might, M. & Van Horn, D. (2013) Optimizing abstract machines.

In Proceedings of the 18th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’13. New York, NY, USA: ACM, pp. 443–454.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

Abstract allocation as a unified approach to polyvariance 45

Jones, N. D. & Muchnick, S. S. (1982) A flexible approach to interprocedural data flow

analysis and programs with recursive data structures. In Proceedings of the 9th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’82.

New York, NY, USA: ACM, pp. 66–74.

Kahn, G. (1987) Natural Semantics. Lecture Notes in Computer Science, vol. 247. Berlin,

Heidelberg: Springer, pp. 22–39.

Kastrinis, G. & Smaragdakis, Y. (2013) Hybrid context-sensitivity for points-to analysis. In

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13. New York, NY, USA: ACM, pp. 423–434.

Kennedy, A. (2007) Compiling with continuations, continued. In Proceedings of the 12th

ACM SIGPLAN International Conference on Functional Programming, ICFP ’07. New

York, NY, USA: ACM, pp. 177–190.

Koot, R. & Hage, J. (2015) Type-based exception analysis for non-strict higher-order

functional languages with imprecise exception semantics. In Proceedings of the 2015

Workshop on Partial Evaluation and Program Manipulation, PEPM ’15. New York, NY,

USA: ACM, pp. 127–138.

Lhoták, O. (2006) Program Analysis Using Binary Decision Diagrams. Ph.D. thesis, McGill

University.

Lhoták, O. & Hendren, L. (2006) Context-Sensitive Points-to Analysis: Is it Worth It?

Theoretical Computer Science and General Issues, vol. 3923. Berlin, Heidelberg: Springer,

pp. 47–64.

Lhoták, O. & Hendren, L. (2008) Evaluating the benefits of context-sensitive points-to analysis

using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18(1), 3:1–3:53.

Liang, D., Pennings, M. & Harrold, M. J. (2005) Evaluating the impact of context-sensitivity

on Andersen’s algorithm for Java programs. In Proceedings of the 6th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, PASTE ’05,

vol. 31, no. 1. New York, NY, USA: ACM, pp. 6–12.

Liang, S. & Might, M. (2012) Hash-flow taint analysis of higher-order programs. In

Proceedings of the 7th Workshop on Programming Languages and Analysis for Security,

PLAS ’12. New York, NY, USA: ACM, pp. 8:1–8:12.

Maurer, L., Downen, P., Ariola, Z. M. & Peyton Jones, S. (2017) Compiling without

continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017. New York, NY, USA: ACM,

pp. 482–494.

Midtgaard, J. (2012) Control-flow analysis of functional programs. ACM Comput. Surv. 44(3),

10:1–10:33.

Midtgaard, J. & Horn, D. V. (2009 May) Subcubic Control Flow Analysis Algorithms. Computer

Science Research Report 125. Roskilde, Denmark: Roskilde University.

Might, M. (2010) Abstract Interpreters for Free. Programming and Software Engineering,

vol. 6337. Berlin, Heidelberg: Springer, pp. 407–421.

Might, M. & Manolios, P. (2009) A Posteriori Soundness for Non-Deterministic Abstract

Interpretations. Theoretical Computer Science and General Issues, vol. 5403. Berlin,

Heidelberg: Springer, pp. 260–274.

Might, M. & Shivers, O. (2006) Improving flow analyses via ΓCFA: Abstract garbage

collection and counting. In Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’06. New York, NY, USA: ACM,

pp. 13–25.

Might, M., Smaragdakis, Y. & Van Horn, D. (2010) Resolving and exploiting the k -CFA

paradox: Illuminating functional versus object-oriented program analysis. In Proceedings

of the 31st ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’10. New York, NY, USA: ACM, pp. 305–315.

Milanova, A., Rountev, A. & Ryder, B. G. (2005) Parameterized object sensitivity for points-to

analysis for Java. ACM Trans. Softw. Eng. Methdol. 14(1), 1–41.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

46 T. Gilray et al.

Naik, M., Aiken, A. & Whaley, J. (2006) Effective static race detection for Java. In

Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’06. New York, NY, USA: ACM, pp. 308–319.

Oxhøj, N., Palsberg, J. & Schwartzbach, M. I. (1992) Making Type Inference Practical. Lecture

Notes in Computer Science, vol. 615. Berlin, Heidelberg: Springer, pp. 329–349.

Palsberg, J. & Pavlopoulou, C. (2001) From polyvariant flow information to intersection and

union types. J. Funct. Program. 11(3), 263–317.

Plotkin, G. D. (1981) A Structural Approach to Operational Semantics. Tech. rept. DAIMI

Arhus, Denmark.

Racket Community. (2015) Racket Programming Language. Accessed December 26, 2017.

Available at: http://racket-lang.org/.

Sharir, M. & Pnueli, A. (1981) Two approaches to interprocedural data flow

analysis. In Program Flow Analysis: Theory and S pplications, Muchnick, S. S.

& Jones, N. D. (eds), Prentice Hall International, pp. 189–234. Available at:

http://www.cmi.ac.in/∼madhavan/courses/program-analysis-2011/papers/
sharir-pnueli-interproc-analysis-1981.pdf.

Shivers, O. (1991 May) Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,

Pittsburgh, PA: Carnegie-Mellon University.

Smaragdakis, Y., Bravenboer, M. & Lhoták, O. (2011) Pick your contexts well:

Understanding object-sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’11. New York,

NY, USA: ACM, pp. 17–30.

Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.

5(2), 285–309.

Van Horn, D. & Mairson, H. G. (2008) Deciding kCFA is complete for EXPTIME.

In Proceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’08. New York, NY, USA: ACM, pp. 275–282.

Van Horn, D. & Might, M. (2010) Abstracting abstract machines. In Proceedings of the 15th

ACM SIGPLAN International Conference on Functional Programming, ICFP ’10. New

York, NY, USA: ACM, pp. 51–62.

Vardoulakis, D. & Shivers, O. (2010) CFA2: A context-free approach to control-flow analysis.

In Proceedings of the European Symposium on Programming, vol. 6012, LNCS, pp. 570–

589.

Verstoep, H. & Hage, J. (2015) Polyvariant cardinality analysis for non-strict higher-order

functional languages: Brief announcement. In Proceedings of the 2015 Workshop on

Partial Evaluation and Program Manipulation, PEPM ’15. New York, NY, USA: ACM,

pp. 139–142.

Wright, A. K. & Jagannathan, S. (1998) Polymorphic splitting: An effective polyvariant flow

analysis. ACM Trans. Program. Lang. Syst. 20(1), 166–207.

https://doi.org/10.1017/S0956796818000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000138

