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Quantum cohomology of the Grassmannian and
alternate Thom—Sebastiani

Bumsig Kim and Claude Sabbah

ABSTRACT

We introduce the notion of an alternate product of Frobenius manifolds and we give, after
Ciocan-Fontanine et al., an interpretation of the Frobenius manifold structure canonically
attached to the quantum cohomology of G(r,n + 1) in terms of alternate products. We
also investigate the relationship with the alternate Thom—Sebastiani product of Laurent
polynomials.

Introduction

It is known that the Frobenius manifold structure attached canonically to the quantum cohomology
of the complex projective space P can also be obtained, in a canonical way, by considering the
Laurent polynomial f(uqy,...,u,) = ug + -+ + up + 1/uq -+~ uy on the torus U = (C*)™ and its
associated Gauss—Manin system (cf. [Bar00]).

The main result of [CKS06] applied to the case of the complex Grassmann variety G(r,n+ 1) of
r-planes in C"*! explains how to compute the Frobenius manifold structure canonically attached
to the quantum cohomology of G(r,n + 1) in terms of that of P".

In this article, we introduce the notion of an alternate product of Frobenius manifolds and we
give an interpretation of the previous result in terms of alternate products.

On the ‘mirror side’, let us consider the following data:

e the affine variety U(") obtained as the quotient of the r-fold product U” by the symmetric
group &y;

e the function f®) on U induced by the r-fold Thom-Sebastiani sum f&" : U" — C;

e the rank-one local system £ on the complement of the discriminant (image of the diagonals)
in U, corresponding to the signature sgn : &, — {£1}.

We show that the Gauss—Manin system attached to these data is the r-fold alternate product of
that of f, making these data a candidate for being a ‘mirror of the Grassmannian’.

The contents of this article are as follows. Section 1 recalls the correspondence between Frobenius
and Saito structures on a manifold. The point of view of Saito structures (primitive forms) enables
us to use the results of Hertling and Manin [HMO04] to generate Frobenius manifold structures.

This construction is applied to tensor and alternate products in § 2. We express the quantum co-
homology of the Grassmannian, as a Frobenius manifold, in terms of the alternate product of that of
the projective space in Theorem 2.13, which is mainly a reformulation of [CKS06, Theorem 4.1.1(a)]
in this context.
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In §3, we show that the Gauss—Manin system, with coefficients in the local system L, of the
function f(") considered above can be obtained as the r-fold alternate product of the Gauss—Manin
system of f.

In §4, we recall the notion of canonical Frobenius manifold attached to a Laurent polynomial
satisfying generic assumptions, and we conclude that the Gauss—Manin system of the pair (f (@r), L)
on U is also obtained from the quantum cohomology of the Grassmannian.

1. Saito and Frobenius manifold structures

In this section we work in the category of punctual germs of complex analytic manifolds, although
most of the results can be extended to simply connected complex analytic manifolds. We denote by
Oy the local algebra of M, by m its maximal ideal and by ©,; the tangent bundle of M.

1.1 Pre-Saito structures
We refer to [Sab02, § VI.2.c] for more details on what follows. By a pre-Saito structure (without
metric) on M we mean a t-uple (M, E,V, Ry, ®, Ry) where:

e [ is a vector bundle on M;

e V is a connection on F;

e Ry, Ry are Oy-linear endomorphisms of F;

o &:0) ®p,, F— Eisa Op-linear morphism;
which satisfy the following relations:

V=0, V(Rs)=0, ®ADP=0, [Roy,®]=0,

In particular, V is flat and ® is a Higgs field. These conditions are better understood by working
on the manifold M x A', where A! is the affine line with coordinate z. Let m : M x Al — M denote
the projection. Then, on E := 7n*FE, the connection V defined by

d
V =1"V+ 20+ (R —zRo)—Z (1.1)
z
is flat if and only if the previous relations are satisfied. We also denote a pre-Saito structure by
(E, V).
Let us fix local coordinates x1, ..., 2, on M and let e be a V-horizontal basis of E. We also set!

Roo(e) = e (~Bx), @p,(e)=e-C(z), Ro(e)=e-By(x).
Then the previous relations reduce to the constancy of By, and to

ac® oo U)
81‘]' - 8952 ’
[c® cW]=o,
[Bo, C] =0,
0By
81‘@'

(1.2)

c® 4+ = [Boo, CY].

!The use of —B instead of B is done to keep a perfect correspondence with [Sab02, ch. VI].
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1.2 Universal deformation

Let f : N — M be a holomorphic map and let T'f : O — f*©)s be its tangent map. Then the
pull-back of a t-uple (M, E,V, Roo, ®, Ry) is defined by

o [*E=0N®o,, E;

e for any section 1 of On, (f*V), = (L, @ 1d) + Vs, and (f @), = Prs(y);

o "Ry =Id®R, f*Ry = Id ® Ry;
where V and ® are understood to be linearly extended to f*©,;, and L, denotes the Lie derivative
with respect to 7.

If (M,E,V, Ry, ®, Ry) is pre-Saito structure on M, then so is its pull-back on N. If f is a closed
immersion, then we say that (E, V) is a deformation of f*(E, V).

Ezample 1.3 of a deformation. Let us start with a pre-Saito structure on a point, that is, a
triple (E°, Roo, R{}), where E° is a finite-dimensional vector space and R, R§ are two endomor-
phisms of E°. We consider the following “trivial” one-parameter deformation (Al, B = O i ®c B,
V, Roo, ®, Ry) (parametrized by the complex line Al with coordinate z), with

V =d,
Ry = Id®R,
Ro(x) _ 6ac(Roo—i-Id) . (Id ®R8) . e—mRoo _ em(adRoo—i-Id) (Id ®R8)7

® = —Ry(x) dx.
The only non-trivial relation to be checked is

OR

Do, + o + [Roo, Po,] = 0,
ox

which follows from the definition of Ry, as ®5, = —Ry. Let us remark that, according to this
relation, any one-parameter deformation with ®5, = —Ry(z) is isomorphic to the previous one.

One can also remark that the eigenvalues of Ry(z) are e” times the eigenvalues of Rf.

Last, let us note that, if R, is semisimple with integral eigenvalues, we can define the family in
an algebraic way with respect to the variable A € C*, by replacing e* with .
Remarks 1.4 on Example 1.3.

(1) From the point of view of the data (E, V), the construction of Example 1.3 only consists of a
rescaling in the variable z. On E° we have the connection V° = d,+(Roc—2R{)) dz/z and, if £ =
CIM\ A Y ®c¢ E°, we consider on E the trivial connection V' = d) + V° = d+ (R — 2R3) dz/ 2.
Let us now consider the rescaling

priCIMATL 2] — CIL AT 2], A= A,z Az

The inverse image of V' by this rescaling is d + (Roo — AzR§)(dA\/\ + dz/z). It has Poincaré
rank one along z = oo (we are not interested in the behaviour when A — 0 or A — o0). Up
to now, the construction is algebraic. However, we need to change the trivialization so that V
takes the Birkhoff normal form. In order to do so, we pull back (E, V) by the uniformization
C — C*, 2 — \ = ¢%, and we change the trivialization using e®f*>~. Let us also note that the
uniformization A = e* is not needed if R, is semisimple with integral eigenvalues.

(2) The construction of Example 1.3 can be done starting from any pre-Saito structure (M, Oy ®c
E°,d, Ry, ®, Ry) to produce a pre-Saito structure (M x Al Oprunt ®c E°,d, Rso, ®, Ry) with

EO _ ex(1d+ad Roo)(Id ®R0),
P = " +adF) (14 ©®) — Ry da.
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If the kernel of Id +ad Ry is non-zero, then there could exist other pre-Saito structures (i.e.
other ®) with the same Ry.

(3) The construction of Example 1.3 can be iterated, using (2), but this does not lead to any
interesting new deformation.

Let i : M — N be an immersion. We say that a pre-Saito structure (Ex, V) on N is a universal
deformation of its restriction (E, V) := ¢*(Ey, V) if any other deformation of (E, V) comes from
(En, V) by a unique base change inducing the identity on M.

If (M, E, V) is a vector bundle with flat connection, then there is no loss of information by fixing
a horizontal trivialization (E,V) ~ (O ®c E°,d), where E° = ker V is the space of V-horizontal
sections of E, which can also be identified with E/mE.

Let (M, Oy ®c E°,d, Ry, ®, Ry) be a pre-Saito structure. Let w® be any element of E° and let
w = 1)y ®w? denote the unique V-horizontal section determined by w®. Then ® defines a morphism
Y : Oy — Oy @c E°, € — —P¢(w), which can be regarded as a section of Q}V[ ®c E°, and which
is called the infinitesimal period mapping attached to w®. The conditions d® = 0 and dw = 0 imply
dp, =0 € Q3, ®c E°.

PRrOPOSITION 1.5 (Hertling—Manin [HMO04]). Let (M, Oy ®c E°, d, R, ®, Ry) be a germ at o € M
of pre-Saito structure. Let us assume that there exists w® € E° such that w® and its images under
the iteration of the maps R : £ — E? and ®¢ : E° — E° (for all £ € ©F,) generate E°. Let us set
w=1yw’

Let N be a germ of complex analytic manifold along M and let i : M — N denote the immersion.
Then, there is a one-to-one correspondence between deformations (N,Oy ®c E°,d, R._,®’, R{) of
the pre-Saito structure (M, Oy ®¢ E°,d, Roo, ®, Ry) parametrized by N and germs ¢ € Q0 ®¢ E°

such that

Z*SO = Puw, (*)
dp =0,

the correspondence being given by

(N, ON R EO, d, Réo, (I)/, RE)) — Q= Q1 y@we- (**)

Proof. We set Oy = C{z} with = = (x1,...,2,,) and Oy = C{z,y} with y = (y1,...,¥yn). On the
one hand, it is easy to check that ¢ defined by (%) satisfies properties (). Let us thus start, on
the other hand, with ¢ satisfying (). Clearly, if a deformation exists, then 1y ® w® is horizontal.
We can therefore argue by induction on n and assume that n = 1. We thus set y = y;. Let us
also remark that, under the assumption on w®, the images of w under the iteration of the maps
Ry : Oy ®@cE? — Oy @cEC and &¢ : Oy @c B2 — Oy @c B2 generate Oy @c £ as a Opr-module.

Let us fix a basis e® of E°. We then get matrices C?)(x), By(z) and By, satisfying (1.2). If
the desired pre-Saito structure exists, it must have 1 ® e° as a horizontal basis. So, we search for
C"(z,y), D'(x,y), By(x,y) (and we set B, = By,) satisfying (1. 2) with one variable more (where

D' is the component of C’ on dy). One sets C")(z,y) = Zk>0 (m)y etc., and one computes
inductively the coefficients C’,lg(i) (), Dy (), By ().

One sets first C(/)(i) (z) = CW(z) and By o(z) = Bo(z). One also must have ), C') (w°) da; +
D'(w%) dy = —.

If C;(Z) (), By <x(z) and Dy () are found (satisfying (1.2) mod y¥), the generating assump-

tion and the desired commutation of D’ with C’®) and B}, implies that D (w?) (which is deter-
mined by ¢, hence known) uniquely determines such a D/gk' Let us also note for future use that,
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modulo y*F*1, D’ . belongs then to the commutative algebra generated by the classes modulo Than
of the C (k) and B} .. (2).

Then C g( k) 4 and Bo, <k41 are uniquely determined by their initial values and the equations

acls(gﬂ 0D, 0B, <kl

= = [Boo, D] — DLy
That all desired relations at the level k + 1 are satisfied is then easily verified. It remains to prove
convergence. This is done in [HMO04]. O

Remark 1.6. Let us assume that the conditions of the proposition are fulfilled. Given ¢, € Q}w QcE°
satisfying dy,, = 0, an extension ¢ = >, p;dx; + Vi dy; as in the proposition is determined in
a unique way from ¥ = Zj ©; dy; provided that v is dy-closed. Therefore, there is a one-to-one
correspondence between the deformations (N, On @c E°, d, Rso, ', R{)) as in the proposition (with
a chosen projection N — M), and the set of ¥ € On ®c E° satisfying ¥(z,0) = 0: one associates
to ¥ the unique @', R, defined by ¢, where ¢ is determined by ¢ = d, V.

In particular, if we fix ¢ = 3, ¢u i(z) do; + 3 ; ¥j(2, 0) dyj, that is, if we fix ¢(z,0), there exists

Y (z,y) which is dy-closed and restricts to ¥ (z, O) at y = 0. Therefore, given any such ¢, there
exists a deformatlon (N,On ®c E°,d, R, ', Rpy) such that 1g.0y—0 = @

COROLLARY 1.7 (Hertling-Manin [HMO04]). Let (M, E,V, R, ®, Ry) be a germ of pre-Saito struc-
ture with w® € E° satisfying the assumptions of Proposition 1.5. If, moreover, ¢?, : ©9, — E° is injec-
tive, then (M, E,V, Roo, ®, Ro) has a universal deformation parametrized by the germ E° = (E°,0).

Proof. As above, let us identify (E,V) with (O ®c E°,d). For any N as above, we can therefore
identify a section of Oy ®c E° vanishing at o with a morphism N — EO, where E° is the analytic
germ of the C-vector space E° at the origin. For ¢ as in the proposition, we have dy = 0, hence
¢ = dx where x € Oy ®@c E° is uniquely determined by the initial condition (o) = 0. We regard
x as a morphism y : N — E°. In particular, to ¢, we associate x,, : M — E°.

From Proposition 1.5, one deduces that giving a deformation of the pre-Saito structure
(M, E,V, Ry, ®, Ry) parametrized by N is equivalent to giving a commutative diagram

and, given a base change v : N’ — N inducing the identity on M, the pull-back v*(M, E,V, Ry, ®,
Ryp) corresponds to x’ = x o v. In particular, (N, ) is universal if and only if for any (N’, x’) there
exists a unique v : N’ — N inducing the identity on M such that x’ = y ov. The assumption on ¢,
means that x,, is an immersion. The universal deformation must then correspond to the following

diagram.
M Fo
E°

From the last point in Remark 1.6, we obtain the following.
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COROLLARY 1.8. Let (M, E,V, Roo, ®, Ry) be a germ of pre-Saito structure with w® € E° satisfying
the assumptions of Proposition 1.5. Given any smooth analytic germ N O M together with an
isomorphism ¢ : i*Oyn — E restricting to ¢, on Oy C i*Op, there exists on N a universal
deformation of (M, E,V, R, ®, Ro) such that pigum = ¢

Such a deformation is not unique, but one can obtain any such deformation from a given one
through a unique base change N — N, and it is tangent to the identity when restricted to M.

Concerning uniqueness, one also obtains the following.

COROLLARY 1.9. Under the assumptions of Corollary 1.7, let us consider two deformations of
(M,E,V, R, ®, Ry) with parameter spaces N, N' D M being two smooth analytic germs, for
which the corresponding x,x : N,N' — E° are immersions with the same image. Then these
two deformations are isomorphic, i.e. one comes from the other by a base change inducing an
isomorphism on tangent bundles.

Ezample 1.10. In the situation of Example 1.3, let us assume that R has a cyclic vector w® € E°. If
d = dim¢ E°, then w°, ..., (R§)%(w°) is a basis of E°. The generating condition of Proposition 1.5
is satisfied, hence there exists a universal deformation of the one-parameter pre-Saito structure
defined in Example 1.3, parametrized by E°. Setting w = 1®w®, and denoting by z; the coordinate
on Al the map

Yo O — Opn ®c E°
is given by
u(02,) = —®o,, (w) = Ro(a1)(w°) = "0 T2 R (RE) (00),

and we have
eml(Id—i-adRoo) —1d

[dtadRy) 0"

Using the notation of Remark 1.6, let us set ¢ = Z?;é Ro(x1)7 (w®) dzj. It defines an isomorphism

Xw(ml) =

@AIX(Cd—l,O)‘Al — O ®c E°, and induces a local biholomorphic map x : Al x (€1 0) — E°. If

(zo,...,x4_1) denote the coordinates on Al x (C?~1,0), we thus have Py, (1®w?)u = Ro (21)7 (w°).
Let us consider the case where w® and R§(w?) are eigenvectors of R, with respective eigenvalues

d0,01. Then

e(01—=do+1)z1 _

01 —d0p+1
In such a case x,, is a parametrization of the line C- R§(w?) minus the point (—1/(6; —do+1))R§(w?)
(if 61 = dp—1, this point is at infinity, so does not have to be deleted). Moreover, for any x° € Al the

analytic germ (E°, x,(2°)) is the universal deformation of the germ at x° of the pre-Saito structure
constructed in Example 1.3. In the local coordinates (zg,...,x4-1), we have <I>8I‘|A1 = Ro(z1)’:
J

Pu(0sy) = €OTOTDIRE(WO) and xu(@) = R (w?).

indeed, this holds when applying both operators to w?; as w® is a cyclic vector for Ry(z1) for any
r1, and as @, |, commutes with Ro(x1), we get the desired assertion.
J

If 61 = do— 1, then x,,(21) = 1 R(w®) defines a closed embedding A < E°. We mainly consider
this case later on, and we then denote by E° the analytic germ (E°, C - R§(w?)).

1.3 Pre-Saito structures with a finite group action

Let M be a punctual germ of complex manifold and let us assume that M is acted on by a finite
group W of automorphisms. For w € W, we denote by w : M — M the corresponding automorphism
and by w* : Oy — Oy the associated morphism of C-algebras. The fixed subspace MW is also a
smooth analytic germ.
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If F is a free Op;-module, we say that the action of W lifts linearly to FE if, for any w € W, there
exists an isomorphism ay : E — w*E and, for any w,w’ € W, the following diagram commutes.

a../

w'w

E

w*w* E

N

w*E

In particular, the restriction E|yw is equipped with a linear action of W. For instance, there is a
canonical linear lifting of the W-action to the tangent bundle ©,,, if we set ay, = T'w : Oy — Ww* Oy,
and we have O ,w = (@M|Mw)w

Given a pre-Saito structure (M, E,V, Ry, ®, Ry), we say that the W-action on M lifts linearly
to (M, E,V, R, ®, Ry) if it lifts linearly to E and each ay, induces an isomorphism of pre-Saito
structures. If we fix the horizontal trivialization (E,V) ~ (Op ®c E°,d), then we must have
aw = Id®a$,, with a2, = a%,af for any w,w’ € W. If we fix coordinates (z1,...,zy) on M, we
get, setting w; = xj ow,

aﬁvRoo(agv)_l = R,

a2, Ro(z)(a) " = Ro(w(x)).
OV (1) - @, (w(z)).

a5 ®a,, () as) 1 = 37 S
k 7

In particular, W acts C-linearly on E° and a?, commutes with R, and Rf.

Let w = ) wi(z) ® € be a section of E. We have w'w = ) wij(w(z)) ® € and ay(w) =
Yo wi(x) ®@a,(e?). We say that w is W-equivariant if, for any w € W, we have w*(w) = aw(w). If w
is W-equivariant, then its restriction to MW is W-invariant. Conversely, assume that w Mw is a flat
W-invariant section of Ejj;w. Let w be its flat extension to E. Then w is W-equivariant. Similarly,
if w® € E° is W-invariant, then its flat extension w is W-equivariant.

If w is W-equivariant, then the following diagram commutes.

@M Pw E
Twl law (1.11)

w* P
w*E

w O

Moreover, l:?o is naturally equipped with a W-action (coming from the linear action on E°) and
Xw : M — E°is W-equivariant.

W-equivariant version of Proposition 1.5 and Corollary 1.7 Let (M, E,V, R, ®, Ry) be a pre-
Saito structure with W-action and let w® € E°. Let us assume that w® is W-invariant and let w be
its flat extension, which is W-equivariant.

By a W-equivariant deformation of (M, E,V, R, ®, Ry) we mean a deformation parametrized
by N D M with a W-action, such that M is left stable by the W-action on N, and which restricts
(with W-action) to (M, E,V, Ro, ®, Ry). Proposition 1.5 can be extended as follows.

COROLLARY 1.12. With the assumptions of Proposition 1.5, let us moreover assume that:

(1) w® is W-invariant;

(2) the W-action on M extends to a W-action on N.

Then, under the correspondence of Proposition 1.5, W-equivariant deformations of (M, E,V, Ry,

®, Ry) parametrized by N correspond to W-equivariant closed sections ¢ € Q]lv ®c E° (i.e. the
diagram corresponding to (1.11) commutes).
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Proof. Starting from a W-equivariant deformation, and as w® is W-invariant, the associated ¢ is
easily seen to be W-equivariant. Conversely, if ¢ is W-equivariant, then we have two deformations
of (M,E,V, Ry, ®, Ry) defined in coordinates  on N by Re, Ro(x) and ®p, (x) on the one hand,
and by (a2) ' Recal, (a%) tRo(w(x))al, and >, (0w /0z:)(z) - (agv)—l@a% (w(z))ag, on the other
hand. That ¢ is W-equivariant means that the ¢,, associated to each of these deformations coincide.
By uniqueness in Proposition 1.5, these deformations coincide. ]

COROLLARY 1.13. With the assumptions of Corollary 1.12, let us moreover assume that @2, : ©4, —
E° is an immersion. Then the W-action on E° coming from the linear action on E° can be lifted
as a W-action on the universal deformation of (M, E,V, R, ®, Ry) given by Corollary 1.7 and this
action restricts, through x,, to the given one on (M, E,V, Ry, ®, Ry).

W -invariant version of Proposition 1.5 and Corollary 1.7 Let us consider the case where W
acts trivially on M. We say that the action is linearized. In particular, £° has a W-action and Rf
and the <I>g commute with this W-action.

One can define the notion of a deformation with linearized W-action, and that of a universal
deformation with linearized W-action. The results of Hertling and Manin can be extended as follows.

(1) In Proposition 1.5, one assumes that w® is W-invariant and that the images of w® under the
iteration of the maps Rf and ®f generate the invariant subspace (E°)V. Then w is a section of
EWV. The W-invariant version of Proposition 1.5 is that there exists a one-to-one correspondence
between the set of deformations with linearized W-action and the set of ¢ € QL @c (E9)W
satisfying (x).

)

For the proof, one notices that, by induction, the matrices C,;(i
the W-action.

(2) If moreover ¢ is an immersion ©9, — (E°)WV, then (E°)W is the base space of a universal
deformation with linearized W-action of (M, E,V, Ry, ®, Ry) (same proof as for Corollary 1.7).

(3) Corollaries 1.8 and 1.9 can be extended in the same way.

, D and B(,J,k commute with

Remark 1.14. Let (M, E,V, Ry, ®, Ry) be a pre-Saito structure with a (not linearized) W-action,
and let w® € E° be W-invariant. Let us assume that w fulfills the conditions in Corollary 1.7.
Then the universal deformation with parameter space E° comes equipped with a (non-linearized)
W-action. The restriction of this deformation to the subspace (EO)W therefore has a linearized
W-action. However, it may not be, as such, a universal deformation with linearized W-action of
(M,E,V, R, ®, Ro)|prw, as the images of w® under the iterates of R and the Pg (£ € ©%,w) may
not generate (E£°)W. One can ask whether there exists an interesting smooth subspace contained in
(E°)W so that (M, E,V, R, ®, Ro)|prw is the universal deformation with linearized action of its
restriction to this subspace.

1.4 Metric

DEFINITION 1.15. A pre-Saito structure (M, E,V, Ry, P, Ry, g) (with metric) of weight w consists
of the following data:

(1) a pre-Saito structure (without metric) (M, E,V, Roo, ®, Ry) as in §1.1;
(2) a nondegenerate symmetric Ops-bilinear form g on E

which satisfy the following relations, denoting by * the adjoint with respect to g:
V(g) =0, Ro+ R, =-wld, ®" =&, R;=R,.
Let us note that ®* = ® means that for all { € Oy, (P¢)* = ®.
228

https://doi.org/10.1112/50010437X07003120 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003120

THE GRASSMANNIAN AND ALTERNATE THOM—SEBASTIANI

Ezample 1.16. In the situation of Example 1.3, if we moreover have a nondegenerate symmetric
bilinear form ¢g® on E° such that R§" = R and R}, + Roc = —wld, then, setting g = Id ®g° (i.e.
extending trivially ¢°, so that g is V-flat) we still have R’ + Ro = —wId and

RS _ e—:cR’goRS*e:c(R;o-i-Id) — e:cRoo ewadRS e(l—w)aclde—acRoo = Ry,

so the deformed pre-Saito structure remains of weight w.

COROLLARY 1.17 (Hertling-Manin [HMO04]). Let (M, Oy ®c E°,d, Roo, ®, Ry) be a pre-Saito struc-
ture with w® € E° satisfying the conditions of Proposition 1.5. Let (N,On ®c E°, d, Rso, ®', RY))
be any deformation of (M, Oy ®c E°,d, R, ®, Ry). Assume that g is a flat metric on Oy ®c E°
giving (M, Oy ®¢ E°,d, Ry, ®, Ry) weight w and let ¢’ be the unique d-flat metric on On Q¢ E°
extending g.

Then (N,On ®c E°,d, R, ®', R{, ¢') is a pre-Saito structure of weight w.
Proof. In the proof of Proposition 1.5, let us choose the basis e€° so that it is orthonormal with

/(1)

respect to ¢g°. Assume, by induction, that the matrices Cgkv B6,<k and D/gk—l are symmetric.

Then D’<k is symmetric, as it can be expressed as a polynomial in C;(Q,B(’)’gk modulo y**1, then

8Cl<(§€+1/8y and 0B, <k+1/8y are symmetric, hence also C’<(k)+1, Bj <kl O

Remark 1.18. The adaptation of the previous result with W-action is straightforward.

1.5 Frobenius manifolds

We still assume that M is a punctual analytic germ. Let us recall well-known results (see, e.g.,
[Sab02, ch. VII]).

DEFINITION 1.19. A Frobenius manifold structure (M, *, g, e, €) of weight D consists of:

(i) asymmetric nondegenerate Op-bilinear form g on © 5/, with associated Levi-Civita (i.e. torsion

free) connection V : Oy — QL ®0,, Our;

(ii) a Ops-bilinear product * on O py;
(iii) two sections e and € of O;
subject to the following relations:

(a) Vis flat;

(b
(c
(d
(e

* is commutative and associative;
e is a unit for * and is V-horizontal;
Le(e) = —e, Le(x) =%, Le(g) = Dg for some D € C;

if c € T'(M,Q},%3) is defined by c(&1,&2,&3) = g(€1 % €2,&3), then Ve is symmetric in its four
arguments.

~— — ~— ~—

Let (M,E,V,Rx,®, Ry, g) be a pre-Saito structure. Let w be a V-horizontal section of E.
It defines a Op-linear morphism ¢, : Oy — E by £ = —®¢(w).

DEFINITION 1.20. Given a pre-Saito structure (M, E,V, Ry, ®, Ry, g) of weight w, we say that a
V-horizontal section w of E is:

(1) primitive if the associated period mapping ¢, : O — E is an isomorphism;
(2) homogeneous of degree q € C if Roow = qu.

A pre-Saito structure (M, E,V, Ry, ®, Ry, g) of weight w equipped with a primitive homogeneous
section w is called a Saito structure.
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If w is primitive and homogeneous, ¢, induces a flat torsion-free connection “V on ©,;, and an
associative and commutative Oy;-bilinear product x, with e = ¢ !(w) as unit, and “Ve = 0.

The Euler field is € = 1 (Ro(w)). It is therefore a section of ©;. We have “V€& = “R., + q1d,
with YRy = gp;l o Ry 0 ¢, — Id. In particular, “V¥VE& = 0.

Remark 1.21. We have Lg(e) = —e, Lg(*) = *. If we set D = 2q 4+ 2 — w, we have, for “g induced
by ¢, as above:

Le(¥g) =D -“g.

PROPOSITION 1.22. Let (M,E,V,Ry,®, Ry, g) be a pre-Saito structure of weight w. To any
homogenous primitive section w of E having weight q is associated canonically on M, through
the infinitesimal period mapping ., a Frobenius manifold structure of weight D = 2q + 2 — w.

Conversely, any Frobenius manifold structure (M,x, g, e, €) defines a Saito structure (M, E,V,
Ro, ®, Ry, g) having e as homogeneous primitive form.

Proof. Let us give the correspondence (M, x,g,e, &) — (M, E,V, Ry, ®, Ry, g). We define:

o /=0,

e V is the Levi-Civita connection of g;

o Oe(n) =—(E*n);

e Ry =Cx = —Pg;

e R . =VE-—1Id;

e =0, w=2—-D. O
Remark 1.23. Let (M, E,V, Ry, ®, Ry, g) be a pre-Saito structure. If w is a primitive homogeneous

section of F, then so is Aw for any A € C*. It gives rise to the Frobenius manifold structure
(M, %, \?g, e, @). In particular, w and —w give the same Frobenius manifold.

DEFINITION 1.24. Let (M, E,V, R, ®, Ry, g) be a pre-Saito structure of weight w. Let w € E be
a V-horizontal section. We say that w is pre-primitive if it satisfies the following properties:

(1) w? and its images under the iterates of ®¢ ({ € ©F) generate E’;
(2) ¢ : 09, — E° is injective.
We say that w is strongly pre-primitive if it moreover satisfies:

(3) weImg,.

The third condition is only useful when considering tensor products. Let us note that, because of
this condition, a primitive section is not strongly pre-primitive. Let us also note that the generating
condition is somewhat stronger than what is needed to apply the results of Hertling and Manin,
as R is not used in Definition 1.24(1). This is also useful when considering tensor products. On
the other hand, adding a new parameter as in Example 1.3 enables us to skip R in the generating
condition of Hertling and Manin.

From Corollary 1.7 we get obtain the following.
COROLLARY 1.25. Let (M, E,V, Ry, ®, Ry, g) be a pre-Saito structure of weight w. Let w be a
V-horizontal pre-primitive section of E. Let us moreover assume that w is homogeneous with
respect to Ro. Then, on the base space N of any universal deformation of (M, E,V, Ry, ®, Ry, g)

exists a canonical Frobenius manifold structure. The Frobenius manifold structures on two such
deformations N and N' are isomorphic by an isomorphism which induces the identity on M.

230

https://doi.org/10.1112/50010437X07003120 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003120

THE GRASSMANNIAN AND ALTERNATE THOM—SEBASTIANI

Proof. The V-horizontal extension wy of w on any universal deformation space N (whose existence
is granted by Corollary 1.7) is primitive and remains homogeneous. It therefore defines a Frobenius
manifold structure on N. Given another deformation with base space N’, it is obtained by pull-back
by v: N’ — N. We have En» = Oy @0, En and wyr = 1 @ wy. Keeping the notation of the proof
of Corollary 1.7, we have x,,, = Xwy © ¥, hence ¢, , = @y o TV, and the structures on Oy and
©p correspond through the isomorphism 7w (for the metric, one uses Corollary 1.17). O

Remark 1.26. For (M, E,V, Ry, ®, Ry, g) and w pre-primitive and homogeneous, there is a meaning
to speak of the Frobenius manifold structure determined by the pre-primitive homogeneous section
w on the universal deformation.

Ezxample 1.27. Let (E°, Roo, R,w°) be as in Example 1.10 with rtk E° > 2. Then w is strongly
pre-primitive. Indeed, we have @0 (0;) = Rf(w?) € C-w? as rk E° > 2.

Assume moreover that w® and R§(w®) are eigenvectors of R, with respective eigenvalues &g
and §; = Jp — 1. Then the germ E° = (E°,C - Rj(w°)) gets equipped with the structure of
a Frobenius manifold. The Euler vector field € is tangent to the line M = C - R§(w®) and, in
the coordinates zo,...,z4-1 considered in Example 1.10, €3y = 0,,5s. The subsheaf of algebras
Ouml€nm] C (© ol 1> *) 1s isomorphic to Onrly]/p(e™*1y), if p denotes the characteristic polynomial
of Rj and the inclusion above is in fact an equality.

Ezample 1.28 (Quantum cohomology of the projective space). Let us consider the pre-Saito struc-
ture (E°, Roo, RY, g°) equipped with the pre-primitive form w® given by the following data:

o

e E°is C"*! with its canonical basis w°® = We, Wiy wh;

e the matrix of Rf is

= O
Sl

(@)
O =

(n+1) 0 1 O 0
0 0 1 0

and that of R is —diag(0,1,...,n);
e we have g°(wp,wy) = 1if k4 ¢ = n and 0 otherwise.

The germ of universal Frobenius manifold defined by (E°, Roo, R, g°,w?) is equal to that defined by
the quantum cohomology of P" (cf. [Man99, §11.4]). Let us denote by to,...,, the flat coordinates
corresponding to the basis w, ..., wp.

The trivial deformation parametrized by Al is given by the linear map x,(z) = (n + 1)zw?,
and the Frobenius manifold structure is defined along this line. Working in the flat coordinate

t1 = (n + 1)z, the pre-Saito structure at the point ¢; is (E°, Roo, Ro(t1),9°), with

0o --- 0 el
1 0 : 0
Ro(t1)=(n+1) |V 1 0 0t =—(nt1)P, (1)
0O -+ 0 1 0
Moreover, by construction, we have Dy, (w")‘ a = —wi for any 4, and therefore, denoting now

<I>3ti = —0, *, we get
(ati*)‘Alz(atl*)TAl, 'L:O,,TL
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In this example, E° denotes the germ of E° along Al = C- w{, equipped with the flat coordinates
(to,...,tn), and we have an isomorphism of sheaves of algebras (GEOIAI’*W) — Oulyl/(p(t1,9)),

with p(y) = y" ™! — e, given by 0y, — [y*].
Let us also note that the Frobenius manifold structure on E° is invariant by translation of £ by
2.

2. Application to tensor products and alternate products

2.1 Tensor product of two Frobenius manifolds

Let us show how the previous results enable us to recover existence and uniqueness results concerning
tensor products of Frobenius manifolds (see [Kau99] and also [Man99, § II1.7]).

Let us start with pre-Saito structures. The tensor product of two pre-Saito structures
(M,E,V,Rs,®, Ro,g) and (M,E' V' R, ,®' R, ¢') on a given manifold M, of respective weights
w and ', is (M, E", V" Rl_,®" Rj,¢"), with:

e ' =E®o, £

o V'=V®Id+IdeV/,

R! = R ®Id+Id®R._;

o &' =0 xId+1dxd

e Rj = Ro®Id+Id®Ry;

e Flead, [ f) = gle, (¢, ).

This produces a pre-Saito structure of weight w” = w + w’. Let us note that, from the point of
view of the connection V defined in (1.1), the tensor product is associated to the tensor product
connection on E®p, -] E’. Given r > 2, we can similarly define the r-fold tensor product, the r-fold

symmetric product and the r-fold alternate product of a pre-Saito structure. From the point of view
of (E, V), they correspond respectively to the natural connection V on

D0u B Symo,, B Aoy, E

Let us now consider two pre-Saito structures (M;, E;, V;, Roo i, @i, Ro.i, gi) of weights w; (i =
1,2). Let us denote by pi,ps the projections M; x My — Mj, My. The external tensor product of
these pre-Saito structures is, by definition,

1M1, Ev, Vi, Roo 1, @1, Ro1, 91) @0, sar, P2(Ma, B, Vo, Roo 2, P2, Ro 2, g2),

where the pull-back p! (i = 1,2) has been defined in §1.2. The external tensor product has weight
w1 + wo. We denote it by X.

LEMMA 2.1. Assume that wi,ws are strongly pre-primitive horizontal sections of Ei, F. Then
w=w1 Kwy € F1 X FEy is a strongly pre-primitive horizontal section of F1 X Ej.

If moreover w1, w9 are homogeneous of respective degrees g1, g2, then w is homogeneous of degree
q1 +q2.
Proof. If we denote by x the coordinates on M; and by y that on Ms, we remark that @5, (w) =

(®1,0,, (w1)) KMws and a similar result for <I>ayj (w). Therefore, w and the iterates of ®¢ (£ € @]\leMQ)
acting on w generate £ X Fj.

Moreover, w{ ® w§ does not belong to the vector space generated by the ¢, (9z,) ® w§ and the
w{ ® ¢uwg(dy;), which clearly form a part of a basis of Y ® Ef, hence the strong pre-primitivity.

Lastly, the homogeneity condition for w directly follows from the formulas above. O
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The reason to impose the third condition in the definition of a strongly pre-primitive section is
to insure that, in the previous lemma, ¢, remains injective. Otherwise, if we set e¢; = go;il(wi) € O,
(i = 1,2), and if we denote similarly the corresponding vector field on M; x M, then o, (e; —e2) =
w1 Mwy —wy Mwy =0, so p, is not injective. Let us also note that the lemma holds if only one of
the pre-primitive sections w; and wy is strong.

In conclusion, the tensor product is well-defined for pre-Saito structures equipped with a strongly
pre-primitive homogeneous section. We say that the Frobenius manifold structure associated accord-
ing to Corollary 1.25 to this tensor product is the tensor product of the Frobenius manifold structures
corresponding to each term, although this is incorrect, strictly speaking. (Another approach to the
tensor product is given in [Kau99]; see also [Man99, § II1.7].)

Ezxample 2.2. Let (E°, R, RS) and (E'°, R, Rf’) be two pre-Saito structures (without metric),
with underlying manifold M, M’ reduced to a point. We define their tensor product (E"°, RY_, R(°)
as an object of the same kind:

E/lo — EO ®(C E/O
R!, = R ® Id+Id®R.,,
Ry’ =R} @ Id+1d®Ry.

Assume that there exist w® € E° and w® € E' such that the (R§)*(w®) (k > 0) generate E°, and
similarly with ‘prime’. Then, by Corollary 1.7, there exists a universal deformation of (E°, R, R])
and (E'°, R, RY). However, the (R ® Id +1d ® R)* (w® ® w'°) may not generate E° ®c¢ E'°, and
the same corollary cannot be applied to the tensor product.

We can use Example 1.3 to overcome this difficulty. Indeed, let us denote by (M, E,V, Ry, P, Ry)
and (M',E',V',R._,®' R}) the one-parameter deformations of (E°, R, R}) and (E"°, R._, R{)
defined there. The external tensor product is defined as above on M” = M x M’ and E" =
P*E ®0,,, *E' (p,p’ the projections from M" to M, M'), adding the relations

V'=VeIld+IldeV, & =0oxIld+ld @ 3".
We thus have

), fo=r—o = ~RE@1d,

), =-ld® Ry.

! |e=a'=0

Let us note that the flat extensions of w? and w’® are now strongly pre-primitive. From Lemma 2.1, we
conclude that the flat extension w” of wW°®w’ is strongly pre-primitive, and therefore the generating
condition of Proposition 1.5 is fulfilled (even without using R(j), so a universal deformation of
(M",E" V", ®" R{) does exist. Moreover, according to Example 1.27 and if metrics ¢°, ¢’ do
exist, giving weights w, w’, the tensor product of the corresponding Frobenius manifold structures

is well-defined if we moreover assume that w®,w’” are homogeneous.

2.2 Symmetric and alternate product of a Frobenius manifold

Let us fix a pre-Saito structure (M, E,V, Ry, ®, Ry, g) of weight w. For any » > 1, we can con-
sider the r-fold external tensor product as in §2.1, with base space M" and vector bundle X" FE.
Assume that w is a strongly pre-primitive (respectively homogeneous) flat section of E. Then, we
have seen that X"w is so for X" E.

Moreover, we have a natural action of the symmetric group W = &,. on the pre-Saito structure
X"(M,E,V, R, ®, Ry, g), and X"w is W-invariant.

It follows from Corollary 1.25 that é;“\E/o is equipped with the r-fold tensor product Frobenius
manifold structure, and the natural action of W is compatible with this structure.
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From now on, we only consider the situation of Example 1.27 (in particular, we assume that w®
and R{(w?) below are eigenvectors of R, with respective eigenvalues dp and d; = dp — 1). Let us
fix a pre-Saito structure (E°, R, Rf, g°) of weight w (with base manifold M reduced to a point)
with a homogeneous Rj-cyclic vector w® € E°. Let r be an integer at most two. Now, there is no
difference between the external tensor product and the tensor product over C. On ®"E° we have
operators denoted by ®"R, ®"RS: for instance,

TRE=Y 1d®-- @ldoR{elde-- ®1d,
i=1 v

These operators are W-invariant. Therefore, they induce on the symmetric product Sym”"E° :=
(®"E°)W and on the alternate product A" E° similar operators.

Let (A, E,V, Ry, ®, Ry) be the one-parameter deformation of (E°, R, R}) constructed in Ex-
ample 1.3, together with the flat extension w = 1 ® w® of w®. Then, by assumption on w’ and
according to Example 1.27, w is strongly pre-primitive and homogeneous.

The r-fold tensor product. The external tensor product X7"(Al,E,V,R.,® Ry) is an
r-parameter deformation of (®"E° ®"Ry,*"R]), equipped with the strongly pre-primitive
homogeneous section X'w = 1 ® (®"w?). Its germ at the origin has a universal deformation with

base manifold equal to the germ ®"FE° of ®"E° at 0 that we denote by

(27E°, O ®c (2"E®),d, “"Ro, &, Ry). (2.3)
The tangent map pgr,, of the embedding ygre, : (A7, 0) — g’“\E/" sends the jth vector basis of

[0
(AL)r to

W QW R W)W R @wC.
j

This universal deformation defines a Frobenius manifold structure (@“\E/O,*, ®"g,e,€) of weight

D = 2 — rw. The natural action of W on ®"FE° is by automorphisms of the Frobenius manifold
structure.

Let us set d = dim¢ E°. For any multi-index a € {0,...,d —1}" we set €%, = (R§)*"(w°) ® - ®
(R§)* (w?), thus obtaining a basis e of ®" E°. We denote by (x,) the corresponding coordinates
on ®"E°.

LEMMA 2.4. For any multi-index o, we have
3, = —(RY™ @ © (RY)™.

——

Proof. If 1 ® (®"w?) denotes the horizontal extension of ®"w® on ®"E°, we have by definition
go‘l)®(®rwo)(8ma) = ey, that is, 3 (®"w?) = —ej. On the other hand, the images of ®"w® under

the iteration of the operators :153 , with 7 = 1,...,r, generate ®" E°. The commutation relations
(@4 ,®9 ] =0 imply that ®§ is determined by its value on ®"w®, hence the assertion. O
T T Ty

Remark 2.5. The previous results hold all along (A!)" € ®"E° and not only at the origin, so that
@7 E° can be regarded as the analytic germ of @"E° along (A!)".

The r-fold symmetric product. The space (2" E°)W = Sym”E° has a basis obtained by sym-
metrization of the basis e€° of ®"E°. We consider the subspace Elem"E° generated by the
symmetrization of the vectors ef, with o € {0,1} for any j and ag = 1 for at least one k. It
has dimension r.
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LEMMA 2.6. The restriction

—_ W o~ ~
(ElemTEO, OEI:m\T/EO e (®TEO) ,d, ®TROO, P, Ro)
is a pre-Saito structure admitting 1 ® (®"w®) as pre-primitive homogeneous section.

P

Proof. A basis of the tangent space to Elem” E° at o, that is, Elem” E°, consists of the elementary
symmetric vector fields & = >°,c 4, Oz,, where Ay = {a € {0,1}" | > a; =k}, and k=1,...,r
Any element of (®"E°)W can be obtained from ®"w° by applying a symmetric polynomial in
the égm. By the lemma above, it can thus be obtained by applying iterations of the elementary

operators @gk . O

Lemma 2.6, together with Corollary 1.25, endows Sy/In\’_"TEO with the structure of a Frobenius
manifold, through the infinitesimal period mapping defined by 1 ® (®"w?).

On the other hand, let us consider the restriction of (2.3) to Sym”E° or to Elem” E°. The action
of W on the base manifold is equal to the identity, so these restrictions have a linearized W-action.
We claim that

(Sym"E°, Oy, ®c (®"E?), d, ¥ Ros, ®, Ro)
is the universal deformation with linearized W-action of
(Elem” E°, O =, ®c (8"E°),d,* R, ®, R).
This follows from the W-invariant version of Proposition 1.5 and Corollary 1.7 explained after

Corollary 1.13.

Remark 2.7. As in Remark 2.5, the results above hold all along the W-invariant part of (A!)", that

is, the diagonal A', and we can regard Elem” E° or Sym”E° as the analytic germs of Elem”E° or
Sym”E° along the diagonal Al.

The r-fold alternate product. We assume here that r < d. In order to obtain a Frobenius
manifold structure on the subvariety /\’“EO, we do not use the same procedure as for SymTEO, as
W does not act trivially on this subvariety. We note, however, that the bundle (9 —70 ®C (®RTE°),
and therefore O Bl o OC (®TE0), is equipped with a linearized W-action. We can _thus consider
the antl-mvarlant subbundle (9 , ®c (A"E°), which is left invariant by "R, Ry and <I>5 for

any vector field £ tangent to SymTEO.

P

On Sym"E° (hence, on Elem" E°) exists the anti-invariant part of the restriction of the pre-Saito

structure (2.3) to Sym” E°, which is a pre-Saito structure that we denote by

(Sym’"EO, OSy/n?“E‘O Kc (/\TEO), d, ®TROO, P, Ro) (28)
LEMMA 2.9. The restriction
(Elem" E°, OElmO ®c (A"E°),d, ®TROO, (AI;, Eo)

is a pre-Saito structure admitting
1@w?:=1® (W’ ARGW?) A--- A (R(‘)’)T_l(wo))

as pre-primitive section. If R§(w®),...,(R3)""1(w°) are eigenvectors of Ry, then &° is
homogeneous.
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Proof. The homogeneity condition is clear, according to the assumption. Let us also note that, for
k=1,...,r,

B2, 3% = —w” A+ A (R w?) A (BEY (@) A A (RY)T(w),

so the injectivity condition is clear.

In order to check the generating condition, it is convenient to use the presentation of the
algebra (E°, ) as C[y|/p(y), where y denotes R§(w®) and p is the minimal polynomial of R§. Then
Q"(E% %) = Cly1,---,yr]/(p(y1),...,p(yr)). Any (anti-)invariant element of ®"E° has a represen-
tative in Clyy,...,y,] which is (anti-)invariant (by taking the (anti-)symmetrization of any repre-
sentative), and @° = [1] A [y] A--- A [y" 1] is the class of [1i~; (i —yj). Moreover, it is easy to check
that [[,~;(vi —y;) : Clya, ... )W — Clyi, . .., y-)*" is onto. On the other hand, C[y1,...,y,]"W is
generated by the elementary symmetric polynomials. This gives the generating condition for w°. O

COROLLARY 2.10. Let (E°, Ry, RS, ¢°) be a punctual pre-Saito structure with dim E° = d. Let w®
be a cyclic vector for R§. Assume that w°, ..., (RS) 1 (w®) are eigenvectors of Ry, and, as above,
that 61 = 69 — 1. Then the r-fold alternate product of the (germ of) Frobenius manifold E° is well-
defined as the Frobenius manifold attached to the universal deformation of the pre-Saito structure

(Emo, OEle Q¢ (/\TEO)7 d; ®TR007 (AI;a E07 ®rg0)7

lem” E°
with primitive homogeneous section w°.

Let us denote by x the product on 9@ given by the Frobenius manifold structure constructed
above. By Lemma 2.4, we have

Prwe (Opo % 8z5) = (RN (W) ® - @ (R (W),
where, if a; + 3; > d, we expand (Rg)% %% (w°) in terms of the (R$)*(w?), with k = 0,...,d — 1.

Then, from Corollary 1.25 we can give a realization of the r-fold alternate Frobenius structure.

COROLLARY 2.11. Under the assumptions of Corollary 2.10, let N be a germ of complex manifold

—_—~—

with Elem"E° C N C Sym" E° such that the product with 0°:

* w7 : 62/\@ = Sym"E° — ATE°
ym" E°

induces an isomorphism ©%; — A"E°. Then the restriction to N of (2.8) is a universal deformation

—_——

of its restriction to Elem” E°, and the primitive homogeneous section 1 ® w° induces a Frobenius
manifold structure on N, which is independent, up to isomorphism, on the choice of N.

Remark 2.12. As in Remark 2.7, one can note that Corollary 2.10 holds all along the diagonal Al
and that Corollary 2.11 holds on any open set of the diagonal on which the isomorphism condition
on w? is satisfied.

2.3 Quantum cohomology of the Grassmannian as an alternate product of a
Frobenius manifold

In this section, we consider Example 1.28 with its notation and we take r < n. The assumptions

of Corollary 2.10 are then satisfied. The germ Elem”E° is now a germ along the diagonal Al =

C - (wf®- - ®@wy) C Sym"E°. We can apply the previous results all along the diagonal. We also
replace above R with 0y, and we set 0% = wiAw{A---Aw?_;. For any multi-index a € {0,...,n}",
we also set wg, = wg, ® -+ @ wg and we denote by J;, the corresponding germs of vector fields

on @“\E/O along (A")". We denote by 1; the multi-index a with a; = &; for all j = 1,...,7.
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The infinitesimal period mapping induces an isomorphism of algebras
Oz Dy — Oy v - wel/(P(t, 91), - - Pt yr),
(8ta)|(A1)T — [y°],
with p(t,y) = y" ! — el
Along the diagonal Al with coordinate ¢, the tangent algebra of the r-fold alternate product
Frobenius manifold is [OAl (Y1, ur)/(p(t, Y1), .- ,p(t,g,/,«))]zmt and 1 ® @° is the class of

Hi>j(yi — y;). Let us also remark that this Frobenius structure is invariant under the translation
of t by 2inZ.

From the main result in [CKS06] we obtain the following.

(s % %)

THEOREM 2.13. The Frobenius manifold structure attached to the quantum cohomology of the
complex Grassmannian G(r,n+1) of r-planes in C"! is isomorphic to the germ at t° = (r—1)ir € Al
of the r-fold alternate Frobenius manifold structure of the quantum cohomology of P" defined
through the pre-primitive homogeneous section & := p,(1 ® ©°), with p? = (—1)(;) /rl.

Let us note that the choice of a square root of (—1)(;) /r! is not important, according to
Remark 1.23.

Proof. Let us denote by IP the r-fold product of P". We set £° = H*(P") and (wy)i=o,...n is the
basis generated by the hyperplane class H = w§. Then ®"E° = H*(P). The Frobenius structure
attached to the quantum cohomology of P is known to be the r-fold tensor product of that of P".

If S(Y1,...,Y,) is any polynomial in r variables with degrees in each variable belonging to [0, n],
we define S(w§ ® -+ ® wf) € ®"E° by replacing each monomial Y/ --- Y™ in S by wy, ®---®
wy, - Let us denote by sy the Schur polynomials in r variables indexed by partitions A having
Young diagrams in a rectangle r x (n+1—r) and let N C Sym" E° be the linear subspace having
wg, = sx(w§ ® -+ @w§) as a basis. In particular, N D Elem"E° and the ordinary cup product
@°U : Sym"E° = H*(P)W — H*(P)*' = A" E° induces an isomorphism N —— H*(P)a"t,

Let us denote by &, the vector field on N corresponding to wg, . By definition of the product *
and the isomorphism (* * %) above, and as &, is a linear combination of the 0y, the restriction
fw(Al)r is sent to [sx(y1,...,yr)]. Proving that the isomorphism condition of Corollary 2.11 is
satisfied for N amounts then to proving that

H(yz - y]) : [OAl [yh cee 7yT]/(p(t7 yl)) cee ap(t) yT))]W
1>
— [OAl [yb e 7y7“]/(p(t7 y1)7 e ap(t) yr))]ant
induces an isomorphism on the subsheaf generated by the [sx(y1,...,¥yr)].

The sheaf Ouly1,...,u|/(p(t,y1),...,p(t,yr)) is filtered according to the total degree in
Y1,...,yr and the graded sheaf is Ouly1,...,yr]/(Po(¥1),---,po(yr)) With po(y) = y"*1. As the
action of W on Ouilyi,...,y/(p(t,y1),...,p(t,yr)) strictly preserves the filtration, taking the
(anti-)invariant subsheaf commutes with gradation. Lastly, the morphism induced by the multi-
plication by [[;- j(yi — y;) induces the same morphism at the graded level.

Now, at the graded level, we recover the ordinary cup product w°U : N — A"E°, which is an
isomorphism. We conclude that W : © yu — O ®c(A"E?) is an isomorphism, and Corollary 2.11
equips the germ of N along Al of a canonical Frobenius structure isomorphic to the r-fold alternate
product of that attached to the quantum cohomology of P™.

Now, Corollary 2.11, when applied to the germ of N at t° = (r — 1)im € Al gives a Frobenius
structure isomorphic to that attached to the cohomology of the Grassmannian G(r,n+1) (up to the
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normalizing factor p,): indeed, the main result in [CKS06] gives a similar statement, but working
with a Novikov variable @ (the sign change in the Novikov variables in [CKS06] amounts here to
the translation of the variable ¢ by (r — 1)im); from the previous considerations, we conclude in
particular that the Gromov—Witten potential on N is convergent, hence we can set the Novikov
variable to one in the result of [CKS06]. O

3. Alternate Thom—Sebastiani

This section, which is independent of the previous section, gives the necessary tools for the geometric
interpretation given in §4 of the alternate product of Frobenius manifolds constructed in §2.2.

3.1 Holonomic D-modules and perverse sheaves with an action of a finite group

Let Z be a complex manifold (respectively a smooth complex algebraic variety) and let Dz be the
sheaf of holomorphic (respectively algebraic) differential operators on Z.

Let W be a finite group equipped with a non-trivial character sgn : W — {+1}. For instance,
W = G, is the symmetric group on r letters and sgn is the signature.

Let M be a holonomic (left or right) Dz-module equipped with an action of the group W by
Dz-automorphisms. Let M?2 be the biggest submodule on which any w in W acts by sgn(w). Let
ap 2 M — M be the antisymmetrization map

1
m— Wi Z sgn(w)w(m).
weWw
We denote by DM the dual holonomic Dz-module. It comes naturally equipped with a dual action
of W.

PROPOSITION 3.1. We have M®* = Imay, and a decomposition M = ker ars & M. Moreover,
we have Dayq = appy and an isomorphism D(M?™) ~ (DM)?1t,

Proof. The first point follows from the identity ajs o apq = aaq and the identification Mt =
ker(apq — Id). That Dapg = apa follows from the exactness of the contravariant functor D on
holonomic modules. The second assertion is then clear. ]

Remark 3.2 (Q-perverse sheaves). The same result holds for Q-perverse sheaves G on any reduced
analytic space Z, if G is equipped with an action of W by automorphisms, where ker, coker and 2%
are taken in the abelian category of QQ-perverse sheaves. The point is that the antisymmetrization
morphism ag is well-defined as a morphism in this category, as Hompe,y(2)(G,G) is a Q-vector space.

PROPOSITION 3.3. Let g : Z — Z' be a proper map (between complex analytic manifolds or between
smooth complex algebraic varieties). If M is as above, then for any k € Z, the Dz -modules H* g, M
are naturally equipped with an action of W by automorphisms, we have an,. = H* g ap and

(Mg M)™ = HEg, (M),
A similar result holds for Q-perverse sheaves on reduced complex analytic spaces and perverse
cohomology sheaves of the direct image.

Proof. The first two points are clear by functoriality. We then have H*g, ker arq C ker Aykg, pm and

H* g (M) € (HFgL M) and as the sum of both modules is equal to H*g, M, we get the third
assertion. O
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3.2 Alternate Thom—Sebastiani for perverse sheaves

Let X be a reduced complex analytic space and let f : X — C be a holomorphic function. Let F
be a perverse sheaf of Q-vector spaces on X. Consider the r-fold product X" = X x --- x X with
the function f®" := f@ .- @ f: X" — C defined by

O (2, ..., 2) = flay) + -+ f(zr),
and the perverse sheaf 72" .= FX ... X F.

Denote by X() the quotient space? of X" by the natural action of the symmetric group &, and
let p: X" — X be the projection. The space X () is a reduced analytic space (usually singular
along the image of the diagonals, even if X is smooth). The function f®" being invariant under
S,., defines a holomorphic function (&) : X(") — C such that f& = f(&) o p.

The complex G := Rp, F*" is a perverse sheaf (as p is finite) and comes equipped with an action

of &,. We denote by F\" = G its anti-invariant part (in the perverse category). If DF denote
the Verdier dual of F on X, we have

D(f-/\r) —_ D(gant)

12

(DG)™™  according to Remark 3.2,
(Rp, (DFX))2t  as p is finite, (3.4)
~ (Rp.((DF)® )™ = (DF)".

12

The case dim X = 0. We assume that X is a finite set of points. A Q-perverse sheaf F on X
is then nothing but the data of a finite-dimensional Q-vector space F. for each = € X.

(1) If X is reduced to a point {z}, and if we set F' = F,, then X() is reduced to a point and we
have F\" = A"F.

(2) If X is finite, we use the compatibility with the direct image X — pt to see that I'(X "), F ATY =
N (DByex i) If 2" = p(x1,...,x,) is a point of X" the germ of F" at z(") is the subspace
of N"(B,¢x Fr) generated by the vy A--- Aw,, where vy € F,...,v, € F, that we denote
by Fp, A~ NFy,.

Ezample 3.5. Assume that X is finite and dimF, = 1 for any # € X. Let D c X() be the
image of the diagonals in X". Then ]—"AD’“ = 0. Indeed, if 1 = x9 for instance, then F, = F}, and
Fy, NFy, =0.

Restriction to a subset. Let iy : Y — X be the inclusion of a closed analytic subset. Let F be
a perverse sheaf on X. Assume that 2';,1]: is perverse up to a shift.

LEMMA 3.6. Under these assumptions, we have (iy' F)\" = i}

y(r) (]:M)y where iy () Is the natural
inclusion V(") — X ()

Proof. Assume that iy,' F[k] is perverse, for some k € Z. Then iy+ 72" [kr] is perverse. On the other

hand, we have Gy := Rw*i;,}}“‘zr = i;}T)Rp*}"w =: i;}r)g, as the diagram

X P X(r)

%YT ,Liy(T)

Yyr—>y

is cartesian. Then i;%r)g [kr] is perverse. The decomposition G = ker ag & G*" induces a similar
~1

decomposition after applying the functor Ty () [kr], and we conclude as in Proposition 3.3. ]

2X (" is usually denoted by Sym” X, but we do not use the latter notation to avoid any confusion with §2.2.
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Fibre of F". Assume that, up to a fixed shift, the restriction at x1,...,x, of the perverse
sheaf F is a sheaf (in the following, we forget about the shift, which applies uniformly to all of the
sheaves that we consider). Applying Lemma 3.6 to Y = {z1,...,z,} and the case dim X = 0, we
get

,7:,;\(;17”"%) ~ Fur Ao A Fay CA[Fay @+ ® Fa,].

If for instance F is a shifted local system of rank one, we can apply Example 3.5 to obtain that
FM is a shifted local system of rank one on the complement of the image of the diagonals in X (")
and is zero on this image.

Application. Let X be a complex manifold, let PQ y = Qx[dim X] be the constant sheaf shifted
by dim X (this is a perverse sheaf). Let us describe the perverse sheaf PQ4y’. Denote by D ¢ X ()
the image by p of the diagonals of X" and by V the open set X \ D (note that it is smooth). Let
§: V — X denote the open inclusion.

As p.Qxr is a sheaf equipped with an action of &,, we can also consider the anti-invariant
subsheaf (p,Qx+)** (in the sense of sheaf theory). We denote it by Q4.

PRrOPOSITION 3.7. We have the following.

(1) We have PQY = QY [r dim X].

2) The sheaf PQY,, is a rank-one local system on V shifted by rdim X.

X|\V

(3) With respect to Poincaré-Verdier duality, the perverse sheaf PQ% is self-dual.

(4) We have PQY = 6,6 'PQY = R0 1PQY .
Proof. Let us compute the germ of Q% at some point 2 of X Denote by Y = |x(T)\ C X the
support of z("). This is a finite set of points. We can apply Lemma 3.6 to it, and then we can apply

Example 3.5. This shows part (2) and the first equality in part (4). The second equality in part (4)
is a consequence of the first equality and of Poincaré duality (3).
Poincaré duality (3) follows from (3.4) and the self-duality of PQx.
Except from Poincaré duality, similar arguments can be applied to Q%’, showing that Q" =
5167 1QY . Tt is moreover clear that §~1PQ%" = §~1Q% [r dim X]. This completes the proof of part (1).
U

Remark 3.8. The complex PQ% is thus also equal to the intermediate extension 8,6~ 1PQ%" (i.e. the
intersection complex attached to the rank-one shifted local system 6~ 1PQ4").

Ezample 3.9. Assume that X = Al. Then the space (A!)(") is an affine space isomorphic to A”. Let
D C A" be the discriminant hypersurface and denote by § : A" . D < A" the open inclusion.

The sheaf 5_1(@&1’“ is a local system of rank one on A" \. D with monodromy equal to —Id locally
around the smooth part of D and we have

Q=00 'Q) = Ra6Q)

Ezample 3.10 (Vanishing cycles). Let us come back to the case of a general perverse sheaf F on X.
Denote by P¢ the functor of vanishing cycles shifted by —1 (see, e.g., [Dim04]). This is an exact
functor on Perv(X). Let C C X be the set of critical points of f with respect to F: by definition
z? € C if and only if the germ at x of the perverse sheaf P¢r_;,0)F is non-zero. Let us assume
that C' is finite. Then, for any z° € C, the germ of POr_r@eyF at 2 is the direct image by the
embedding {z°} — X of a finite-dimensional vector space E,o (vanishing cycles of (f,F) at z°).

Let z1,...,2, € X. According to the Thom—Sebastiani isomorphism for perverse sheaves with
monodromy (see [Mas01, Sch03]),

X ~
PO fe@-o(—1@)F Vs — PO par)) Faor B WP p ) Fo,-
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It follows that C" is the set of critical points of f®" (hence, is finite) and that, if we denote by
pqﬁf’tot}" the direct sum ®r€C p(bf_f(x)}“, then pgzbf@r,tot(fx’“) AN (p¢f7t0tf)®T.

For any complex number ¢, Rp,/P¢or_. =P¢p@r)_ Rp. and, as P rer)_, is an exact functor on
Perv(X (T)), it commutes with 2%, It follows that the set of critical points of f (@) with respect to
F is contained in C("), which is also finite. We then obtain

p‘bf(ear),tot(fw) — (p¢f,tot~7:)w~ (3.11)
More precisely, let us set C' = {x; | i € I} and let us choose some total order on I. The set C(")
consists of the points x;,, ;. = p(i,...,x;,.) with iy <--- <4,. Let us set E; = E,,. The critical

value of f®) at ;i is f@) (i) = f(zi,) + -+ f(2,). Then, according to the previous
results, the space (pgbf(@,«)_f(@r)(mil . )(,7:/\’"))%.1 """ .. of vanishing cycles of F@) at ;. relatively

to F\" is the (i1,...,i,)-component of the alternate product A"(D,c; Ei)-

Assume that all critical points of f are simple (i.e. dim E; = 1 for any i € I). Then the space of
vanishing cycles of f (@) at Tiy,...i, relatively to F AT vanishes as soon as two indices i, and i, (with
a # b) coincide.

3.3 Alternate Thom—Sebastiani for cohomologically tame functions

Let f: U — Al be a regular function on a smooth affine algebraic variety? U. Assume that there
exists an algebraic variety X in which U is Zariski dense and a projective morphism F : X — Al
inducing f on U, such that, denoting by j the inclusion U — X, for any ¢ € Al the complex
Pép_Rj.PQy is supported on a finite set of points in U (that is, in f~!(c)). We then say that f is
cohomologically tame with respect to the constant sheaf PQy;.

In the remainder of this section we assume that f is cohomologically tame with respect to the
constant sheaf.

LEMMA 3.12. If f is cohomologically tame with respect to PQy;, then f©m) is so with respect to the
perverse sheaf PQy .

Proof. As pQ@T is a direct summand of Rp,PQy», it is enough to prove the assertion for the latter
perverse sheaf. Using the isomorphism Rp.’¢per_. = P¢p@r_ Rps, we are reduced to proving the
assertion for the Thom—Sebastiani sum f®" with respect to PQq» and the partial compactification

U <2 x7 E% €. The result follows then from the Thom Sebastiani theorem of [Mas01, Sch03],
applied to Rj"?Qq» and FO". O

Remark 3.13. Let us assume that the critical points of f are simple. It follows then from Exam-
ple 3.10 that the restriction f(#") to the open set V C U is cohomologically tame with respect to
the rank-one local system Q@TV, and its critical points are simple. However, even if f has distinct

critical values, this may not remain true for f(®). Let us also note that V is smooth but usually
not affine.

The alternate Gauss—Manin system. Let us recall how the Gauss—Manin system G is defined
from f. One first defines the differential system My on the affine line with coordinate ¢ by setting

My = QM U)[3,]/(d — 8 df Q"L (T)[B]  (n = dim U).

This is a finite C[t](0;)-module with regular singularities. From the point of view of D-modules,
it is the direct image H°f, Oy, where we regard Oy as a left module on the sheaf of differential
operators Dy. As a consequence, the analytic de Rham complex of My is the zeroth perverse

3When considering perverse sheaves, we implicitly use the underlying analytic objects.
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cohomology of the direct image R f,PCy, where we denote as above by PCy the constant sheaf
shifted by dim U.

On the other hand, G is interpreted as the localized algebraic Laplace transform of M;: we set
z =0, 0, = —t, s0
Gy = Q"(U)[z,=71)/(d — 2 df QA (U)[z, 27,
It is a free C[z, z~!]-module, whose rank is equal to the dimension of the relative cohomology
H™(U, f~'(c)) for a generic ¢ € Al. The Brieskorn lattice

Gro = Q"(U)[¢)/(¢d — df Q" H(U)[¢]

is a free C[¢]-submodule of the same rank, where we set ( = z~1 (cf. [Sab06]).

Let us begin with the tensor product.

LEMMA 3.14 [NS99]. The r-fold tensor product ®%[<}Gf70 is isomorphic to the Brieskorn lattice
system of the r-fold Thom-Sebastiani sum f® : U" — Al, where we set f@T(u(l),...,u(T)) =
f(u(l)) 4o+ f(u(r))‘

Proof. Let us recall the proof. By an easy induction on 7, it is enough to prove the result for the
tensor product corresponding to cohomologically tame functions f : U — Al and g : U’ — Al. We
consider the complex (Q**(U)[¢], (d—df A). As Cd—df A is the twisted differential e//Codoe™7/¢, we
can write this complex as (Q*+*(U)[¢]e~//¢, d), where e~//¢ is now a symbol denoting the twist of

the differential (to follow the definition of a shifted complex, we should use the differential (—1)"d,
but it is of no use here).

We have a natural morphism of complexes
(@ (U)[Cle ™, d) @ciq) (" (U)[le ™9, d) — (U x UN)[lem U ). (x5 5 %)
It induces a surjective morphism of the corresponding H as C[¢]-modules, because
HOQ (U x U")[¢le"U®9/¢ q)
= QU x UN)[]/(¢d — d(f @ )N THU x U)[C] = G regyo-

As we have seen above (cf. also [NS99, §2]), f @ g is cohomologically tame, hence Gqy40 is a free
C[¢]-module of finite rank (cf. [Sab06]). On the other hand, using that Gy and Gy are free C[(]-
modules of finite rank (as a consequence of cohomological tameness), we identify the H° of the
left-hand term in (x x % x) to G ®cye] Gg,0, which is also free. We thus have a surjective morphism
Gro ®ci] Ggo — Grago of free C[¢]-modules. Moreover, a simple computation shows that their
rank is the same. Therefore, this morphism is an isomorphism. O

Ezample 3.15. Let us give the explicit description of the action of the symmetric group &, on
G jer o coming from the isomorphism of Lemma 3.14, when U is the torus (C*)" with coordinates
ug, ..., u, and volume form vol = duj /uy A -+ A duy,/uy,. For w € Q™(U)[¢], we write w = ¢(u) vol
with p(u) € O(U)[¢]. Then w1 ® - -+ @ w, is sent to

wl(u(l)) e SOT(U(T)) voly A+ -+ Avoly,
and w(wy @ -+ @ wr) = Wy(1) @« + @ Wy () 1s sent to
SOW(l)(u(l)) T Pw(r) (U(r)) voly A+ -+ Avol, .

Therefore, after dividing by voly A - -+ Avol,, the action of &, on G ser o amounts to the usual action
induced by that on O(U").

We are now interested in the alternate product Aé[c] G0, that is, the antisymmetric submodule
of Gar . In the situation of Example 3.15, it is isomorphic to O(U")*"*[¢]. We now give another
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interpretation of this antisymmetric submodule, or at least of the corresponding submodule of the
Gauss—Manin system G er, as the Gauss—Manin system attached to the morphism f (&) induced by
fo7 on the quotient variety U") = U"/&,., with respect to the perverse sheaf PCj" = Cp'[r dim U]
described by Proposition 3.7. Let us note that the quotient variety U(") is affine, but usually singular.

Let us consider the zeroth perverse cohomology PH'R ff@r)p(c/[}’". This is a perverse sheaf on A,

which corresponds to a unique (up to isomorphism) regular C[¢](9;)-module that we denote by M JN.

PRroOPOSITION 3.16. The localized algebraic Laplace transform of M JN is isomorphic to A"G.

Sketch of proof. Let us choose an embedding U(") < U/ into a smooth affine variety and let us still
denote by p the finite morphism U™ — U x Al obtained by composing p : U" — U") with the graph
embedding ¢ : U — 1 x Al of f(&7),

We work with right D-modules and we denote by wy the right Dy-module Q?}mU. The Dy--
module X"wy is &,-equivariant, so p4(K"wy) has an action of &,. Taking Spencer complexes
(which plays the role of the de Rham complex for right D-modules), we have an isomorphism
Sp; o 1 (P4 (Bwrr)) = p<PCyr which is compatible with the &,-action. Therefore,

B3y ) = 07Ty
Using the compatibility with direct images we find

RATPCY = Spy (177 wi)) = Sp (@ wr)™)).
Therefore,
Spy MJ" = PHORFLEIPCY ~ Sply (HO(f27 (R w))™).
If we set M?T =H(f{" (Xwy)), we thus have MJ/)’" o~ (M?T)ant. On the other hand, by definition,

the localized Laplace transform of MP", with its &,-action, is isomorphic, by Lemma 3.14, to
®¢[, .-Gy with the natural action of &,. -

4. Alternate Thom—Sebastiani and Frobenius manifolds

In this section, we consider a function f: U — Al satisfying the assumptions of §3.3.

4.1 The canonical pre-Saito structure
We denote by G the C-vector space Gy on which the action of C[z, 271](8,) is modified by a sign:
we set, for any g € Gy, 2- g = —zg and 0, - g = —0.g. In other words,
Gy = WU, =)/ (d+ = df M@ (1) 2, 271]
equipped with the action of 0, defined by 0, [w] = [fw] for any w € Q"(U). The Brieskorn lattice
G, is defined similarly.
We use the following two results (cf. [Sab06]).
(1) Poincaré duality for the morphism f induces a canonical nondegenerate (—1)"-Hermitian
sesquilinear pairing
Sy:Gy ACz,2-1] éf — Clz, Z_l]
which is compatible with the action of 9, (that is, 9.(Sf(¢',¢")) = Sf(0.4',9") — S¢(¢',0.9")).
This pairing induces a perfect pairing
Sy : Gro®cpe) Gro — ¢"C[¢-
243

https://doi.org/10.1112/50010437X07003120 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003120

B. Kim AND C. SABBAH

(2) The limit mixed Hodge structure on lim._... H"(U, f~!(c), Q) enables one to produce, through
a construction due to Saito [Sai89], a canonical C-vector space E? of Gyp, such that Gyg =
C[¢] ®c B}, and in which 8, = —(?; takes the form

R
_R8_|__O°,
z

where Rf and R4, are two endomorphisms of E? Moreover, restricting Sy to E; RC E; gives
a symmetric nondegenerate pairing

9°: Ef®c By — C.

Lastly, on the one hand, R, is semisimple and its spectrum is the opposite of the spectrum
at infinity of f; if R} denotes its g°-adjoint, we have R, + R5, = —nld. On the other
hand, through the isomorphism E¢ — Gy /CGo = QUU)/df NQ"HU), R§ corresponds to
the endomorphism induced by the multiplication by f on Q"(U) and satisfies R§* = Rg. Its
eigenvalues, counted with multiplicity, are the critical values of f counted with multiplicity.

In other words, to any such function f is associated (mainly using Hodge theory related to it) a
canonical pre-Saito structure (E?, R, RY, ¢°) of weight w = dim U = n with base manifold reduced
to a point.

4.2 The trivial deformation

We now show that the trivial deformation, as constructed in Example 1.3, of the pre-Saito structure
(E?, R, R§, g°) defined above can be obtained from a deformation of f itself.

Let C* be the one-dimensional torus with coordinate A. Later, we consider the analytic uni-
formization A = e* to be compatible with Example 1.3. For f as in § 3.3, we consider the unfolding

F:UxC" — A, (u,\) — Af(u).

The Gauss—Manin system G of F' is a one-parameter deformation of that of f. We set (still denoting
by d the differential with respect to the U-variables only)

Gro=Q"(U)NAC/(Cd = XdfN)QHU)IN AL

The action of (29, is induced by the multiplication by Af on Q"(U)[X\, A™!] (and extended with the
Leibniz rule). The action of (9 is induced by the multiplication by —f on Q"(U)[(] (and extended
with the Leibniz rule).

Let us denote by 7 the map (), z) — Az and by 7* : C[z] — C[\,\71, 2] or C[¢] — C[\, A71, (] the
corresponding morphism of algebras, defined by z — Az and ¢ — A~!¢. Then G ro =7 Gy, where
7+ means 7* of the C[¢]-module and the natural lifting of the connection. Regarding C[A\, \7!, (]
as a C[¢]-module through 7*, we have Gro = C[A, A1, (] ®¢e G0 and

Co(1®g) =A@ ((P0cg), Co1®g)=—-1®((*09).

Using the space E; C Gy given by Hodge theory and Saito’s procedure for f, we obtain the trivi-
alization Gro = C[\,\71, (] ®c E%, and we get a pre-Saito structure by changing the trivialization
as in Remark 1.4 (using here the variable ¢ instead of z). From Remark 1.4 we obtain the following.

ProrosSITION 4.1. Let (E;, R, R§, g°) be the canonical pre-Saito structure of weight n attached

to f. Then, for any x € Al the canonical pre-Saito structure of weight n attached to e® f is the fibre
at x of the trivial deformation of (E?, R, R§, ¢°) constructed in Example 1.3 (plus Example 1.16
for the metric). O
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4.3 Frobenius manifold structure

In order to obtain a Frobenius manifold, we need a pre-primitive homogeneous section w®, canoni-
cally associated to the geometry. Such a section exists when U is a torus, so we only consider this
case.

ASSUMPTION 4.2. We assume that U ~ (C*)" is a torus with coordinates w1, ..., u, and f: U — Al
is a Laurent polynomial such that:

(i) f is convenient and nondegenerate with respect to its Newton polyhedron (cf. [Kou76]);

(ii) the critical points of f are simple and the critical values are distinct.

As a consequence, the Jacobian algebra O(U)/(0f) is finite-dimensional, and the multiplication
by f induces on it a regular semisimple endomorphism, whose eigenvalues are the critical values
of f. Moreover, f is cohomologically tame with respect to the constant sheaf. We can apply to it
the results indicated above (cf. [DS03, §4]).

The class w® of the volume form duj /uj A - -+ A duy, /u, belongs to the canonically defined vector
space E? and is homogeneous of degree zero with respect to Rs,. Moreover, it is a cyclic vector
for R§. It is thus pre-primitive and homogeneous. Therefore, the data (E;, R, R§, g°,w°) define a

canonical Frobenius manifold structure on E? of weight n. Let us note that any other coordinate
system on the torus, obtained from (uq,...,u,) by a monomial change of coordinates, leads to a
new volume form equal to +w?. According to Remark 1.23, the Frobenius structure does not depend
on the choice of the coordinate system on the torus.

Let us now consider the r-fold alternate product. From Proposition 3.16, we obtain the following.

COROLLARY 4.3. The restriction to Al of the differential system (F°,V°) on P! associated to the

r-fold alternate product of the canonical Frobenius manifold attached to f is the Gauss—Manin
system A"Gy of the pair (f(®),PC}") on U). O

Ezample 4.4. Let f(u) = ug+uj+- - -+uy, where we have set ug = 1/(u;g - - - uy, ). The canonical pre-
Saito structure (E?, R, R§, g°,w°) is obtained in the following way (see, for instance, [DS04] with
all of the weights set to one). The space E; is the C-vector space generated by w§ = w°, w9, ..., wy,
where, for k > 1, w is the class of ug- - up—1 dui/uy A -+ A duy/uy. In this basis, the matrices of
Roo, RS, ¢° are those of Example 1.28.4

From Theorem 2.13 and Corollary 4.3 we conclude that the Gauss—Manin system of the pair
(elr=Dim/(n+1) ¢ (@’"),p(C/[}’") can also be obtained from the Frobenius manifold attached to the quan-
tum cohomology of the Grassmannian at its origin.

Remark 4.5. It would be desirable to give an interpretation of /\E? and of the metric induced by

®"¢° purely in terms of (f(®) PC{") (by using Hodge theory at f(®7) = o0), so that the canonical
process of §4.1 could be directly applied to (f(@T),pC@T).

On the other hand, it would also be desirable to define a suitable small deformation of f(#7) which
would be enough to recover the r-fold alternate product of the pre-Saito structure attached to f.
A natural choice would be the deformation induced by the deformation of f®" by the elementary
symmetric functions of the f(u(?) (i = 1,...,r), but this deformation usually introduces new critical
points, which would have to be eliminated in some way.

1A similar computation can be done with weights, for instance by setting uo = 1/(u}* - u¥™) with w1, ..., w, € N*
(cf. [CCLTO06, DS04, Man07]).
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