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SINGULAR INTEGRALS ON ULTRASPHERICAL SERIES

CHARLES F. DUNKL

1. Introduction. One of the main uses of harmonic analysis on the sphere
is to discover new theorems about series of ultraspherical (Gegenbauer)
polynomials. In this paper, we will construct singular integral operators from
scalar functions on the sphere to vector functions. These operators when
restricted to zonal functions give L?-bounded (1 < $ < o) operators on
ultraspherical series.

We will use [7, Chapter 9] as our main reference. Let G denote a compact
group, with identity e, and G its dual, the set of equivalence classes of con-
tinuous irreducible unitary representations of G. Choose 7, € a, where
« € G; then T, is a continuous homomorphism of G into U(#n,), the unitary
group on complex #,-space. For 1 < ¢, j < n,, the function

Toijix— To(x)y; (x € G)

is the matrix entry function in 7,. Define the character x, of a by
Xa = 21T w;;. Then each integrable (with respect to the normalized Haar
measure m ¢ of G) function f has the Fourier series

fNZaeé NaXa *f
Henceforth, representation means a continuous unitary finite dimensional
representation.
Let H be a closed subgroup of G; then put G/H = {Hx:x € G}, the space
of right cosets of H, a compact homogeneous space. Functions on G/H are
identified with the functions on G which satisfy the condition:

(1-1) flhx) = f(x) (B € H,x € G).

Now let (7, V) be a representation of H (here, 7 is the homomorphism, V is
the vector space). We will consider various linear spaces of functions of G
into 1 satisfying the following condition:

(1-2) fx) =7(h)f(x) (h € H,x € G).

Further, G acts on such spaces by right translation R, where R(x)f(y) =
flyx) (x,y € G). A function f on G is said to be zonal if R(k)f = f (h € H).

Observe for each a € G, that T,|H splits into a direct sum of irreducible
representations of H.
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PROPOSITION 1. Suppose that there is an o € G such that TJJH =1 D1 @ o,
where 7 is irreducible, T %~ 1 (the representation H — {1}), and ¢ is a representa-
tion of H which does not involve 1 or 7 in its decomposition. Then there exists a
nonzgero, unique (up to muliiplication by a scalar) zomal fumction satisfying
(1-2), whose Fourier series has only an a-term.

Proof. Choose an orthonormal basis {v;}";—; for V (where = acts on V, an
n-dimensional space); then denote the matrix entries of (k) by 7(h);
(h€e H;1 =4,7=mn). For a continuous function f:G—V we write
[ = 2 "i1fwy, with f; scalar-valued, and let

= (f (5 1r)ame) ™

Now choose a matrix representation for 7, so that T,(h)e = 1, To(h);; =
r(h); for 1 < ] S mn,and T,(h);; = 0if

i) 2=0,7>

@) 2> 0,7 = 0

Gii) 1 27 =n,j>mn,

iv) t>n,1=j=mn,
for all # € H. Now let ¢or = X %211 4,0 It is easy to check that ¢, is the
required function. Further, it is uniquely determined (up to a constant of
absolute value 1) by the additional hypothesis that

”¢a1”2 = (n/na)%

Definition. A trig polynomial is a (possibly vector-valued) function on G
which has a terminating Fourier series. For a representation 7 of H, let C,(r)
denote the space of trig polynomials which satisfy condition (1-2). In parti-
cular, C;(1) is the algebra (under pointwise operations) of trig polynomials
on G/H, and each C,(r) is a C;(1) module.

We will consider G-operators (linear maps which commute with each
R(x),x € G) from C;(1) to C,(r). Note that each C,(r) is dense in the appro-
priate L?-space, 1 < p < oo. If fis a trig polynomial on G, then f € C,(1) if
and only if my * f = f (where my is the normalized Haar measure of H). Thus,
each f € C;(1) has the Fourier series > qcé#ada * f, Where ¢o = Xo * my
(a spherical function).

ProrosiTiON 2. If the pair (G, H) has the property that for a € G, T,|H never
contains two copies of the same irreducible representation of H, and, further,
if Jis a G-operator: C;(1) — Cy(r), with 7 irreducible, then there exists complex
numbers jo(e € G) such that

Jf = Zaéa ”ajd¢a7 *f (f e Cf(l))

Proof. Let f € Cy(1); then Jf = X n,(J¢a) * f, since J commutes with right
convolution. Further, J¢, is zonal. The rest is straightforward. Note that
¢o = 0 whenever T,|H does not contain 1, and ¢, = 0 unless 7,|H contains
both 1 and r.

https://doi.org/10.4153/CJM-1972-008-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-008-1

62 CHARLES F. DUNKL

LEMMA 3: Let po be a linear map: Ci(r) = V' such that po(R(h)f) =
' (Mpo(f) (f € Cilr), b € H), where (7', V') is a representation of H. Then
there exists a wumique G-operator p:C,(r) — Cy(v') such that po(f) = pf(e)
(f € Cy(1)), and p is defined by pof (x) = po(R(x)f) (x € G).

2. The rotation group and ultraspherical polynomials. The rotation
group is denoted by SO (n). For technical reasons, we require # = 4, but the
case n = 3 will be discussed later. The unit sphere

St = {s € Rufs| = (T s2)F = 1
is expressed as SO(n)/H, by choosing p = (1,0,...0) € S and letting
H = {g € SOm):pg = p}; that is, H = {g € SO(n):gnn = 1} 2 SO(n — 1).
The irreducible representations of SO () realized on C;(1) (trig polynomials
on S™1), are those equivalent to right translation acting on#,", the space of
harmonic homogeneous polynomials, in # real variables, of degree m, for
m =0,1,2,... . The degree of the representation on %, is denoted

n_ (n+m—3
Dm_( m ><n—~2+1)

Further, each f € C,(1) has the Fourier series

3 Dulgm £y where (@) = Pu®P ™ (gu).

Here, P,* is the ultraspherical polynomial of degree & and index s > 0, and
is normalized by P;*(1) = 1. A generating function for these is given by

o~ D@2 +m) n

2\ —
A =2t 4+)"° 20 T (35) Pl (1).
For later use we state the identity (see [8, p. 141]) (with 2 =0,1,2...,

and # > 3):

[x/2] \
(2-1) =3 @, P50,

=0
where

A Qk—4+n—3)n+k—2j —4)k!
BT 9K — 1)/2)k_s(n — 3)!1(k — 2/)Y!
Here, [«] is the largest integer < #u, and (#); = u(u + 1) ... (u + s — 1),
fors=1,2,....

We will use the following representations of H: for 2 =0,1,...,7; is
right translation of H acting on¢;*1; for convenience, we write the elements
of #,»1 as functions of points like x = (xy,...,x,) € R™! since
H = {g € SO(n):g1; = 1}. The space " ! is furnished with the inner
product

pal = | p@aede,
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where w is the normalized H-invariant measure on the unit sphere S"~2. An
element of C,;(r;) has the form f(g, x) with

flhg,x) = f(g,xh) (h € H,g € SO(n),x € R*1),

and for fixed g, x — f(g, x) is in 1,

Our next aim is to find the function ¢, the zonal function in C,(r;) with
only an m-term in its Fourier series. By the Branching Theorem [4], the pair
(SO (n), H) has the property described in Proposition 2, so we will construct
a differential SO (n)-operator: Cy(ry) — C;(r;) (note that 7o = 1) and use
Propositions 1 and 2 to compute ¢,;. The Branching Theorem shows that
éme = 0, unless m = k.

Definition. Let 1 £ p <g=n, —w <0 <7, and let #?2(6) € SO(n) be
defined by

(r79(0)]s; = 84;(1 4 (84p + 84)(cos 6 — 1))
+ (Sin 0) (511151'41 - 5iq6]‘p) (1 = ’i,j = ”)

For a trig polynomial f on SO (%), define
Ry f (g) = (d/d0)f(gr"*(0))|o=0 (g € SO(n)).

Observe that
Rpy(R(@)f ) = 212 i<izn(@i8es — ai€pi) R(©)R;f.

Let 7/ be the representation of H on &?;*1, the homogeneous polynomials
of degree &, in x3, . . ., X.

ProposiTION 4. Let f € Cy(7') (R =0, 1,...) and define of by
#Hex) = 3, w BRI ).

Then 8 1is an SO (n)-operator: Cy(ri’) — Cr(t'541).

Proof. By Lemma 3, it suffices to show that df(k, x) = df(e, xh)
(x € R4k € H). Now,

of (hy ) = g % R (R (W) (e, %)

I
™=

xikin(h)R”f(e, x)

2

2
fi

f
M§

(xh) jR1;f (b, x)

<
1l
)

n

IRCOPIICED

df (e, xh).

I

S
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Thus, the map 8* is an SO (#)-operator: C;(r¢) to C,(r;'). There is a canonical
H-projection 7, of 7/ onto 7, (which can be described as a convolution operator
over S"?),

Definition. Let V; be the map m; 0 9° of C;(r0) to C;(7;); then V, is an
SO (n)-operator, and is a differential operator of order k.

LemMMA 5. Let y = (¥2,...,%,) € R be fixed, k =1,2,..., and let
P(x) = (Z”i=2xiyi)k. Theﬂ p E gk —1 and

mp (x) = Ixik|y|kakopk(n_3)/2(z2 xiyi/[x[]y[> )
i=

where ay is described in (2-1). Denote myp (x) by i (x, v).

For g € SO(n), let g« denote the vector (go1, ga1, - .-, gua) € R*1; then
lgal = (1 — g2u)'
THEOREM 6. For k =1,2,...,m =1,2,...,

Vidn (g, %) = Awmibi(x, g*l)ant(;?_mﬂ(gn),
and

Aim _
Omi(g, %) = _C% Y (x, @) PRt 2)/2(g11),

where

c - k! (m!(n+k+m—3)!>l/2~ "
2% — 1)/2)e \(m — B)l(n +m — 3)] "

as m — 0 (@ ~ by as m — 0O means /b, — some constant as m — © ) and

m!in + k +m — 3)! 1

A = T )+ m — 3)1 2((n — 1)/2),"

determined by

d n— n—
<E>"Pm‘ PR = AgnPRSTRRQ).

Proof. First, we compute du (g, x) whereuis a function of g;; only, obtaining
ou(g, x) = (X imagux)u’ (gu1).

Let v(g, x) = Y. ";—9x:g.1, and note that dv(g, x) = —gul|x|?; then we claim
that dwu(g, x) = [v(g, x)*u® (g11) + |x|* {terms composed of lower powers
of v, g1, lower order derivatives of #, and powers of |x|?}. The expression in
{ } is a polynomial in x homogeneous of degree & — 2. To prove the claim,
observe that d™u is a sum of terms of the form »™|x|"f(g11) (r — m even),
since

9 @"|x[""f (gn)) = —mo" x| gnf (1) + v x| (gn).
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The only term in 8*# which does not contain a nonzero power of |x|? is 2*u®;
thus,

o' u = m (VFu®) = Y (x, ge1)u® (g11)

(see Lemma 5). The result for Vi¢,, follows by setting u = P,,®=/2,
The L2-norm on C,(r;) is

= o [ el

and ||Vidul|22 = |Cen|2Dy*1/D,". We choose Ci, > 0, and obtain the stated
value. The computation involves

1
J @rora-ora,
-1
for various 7, s.
3. Particular operators.

Definition. For f € Cy(r;), 1 = p < 0, define the L?-norm by

=1 (f e oraee) a)”

Then L?(7;) is the completion of C,(r;) under the norm ||-|l,.
Definition. For N > 0,1 £ p < o0, let L)?(—1, 1) be the space of measurable
functions # on (—1, 1) such that
1
f WP — 24 < oo,
—1

Let

1 1/p
ull, = [Kx L lu @)1 — tg)“‘”zdt] (1£p <o),

21 -1
Ky = [ J (1 —tz)"‘”zdt] .
-1

ProPoSITION 7. Let A =n/2 — 1,k =0,1,2,...,1 £ p < 0, and let u
be measurable on (—1,1) such that u(t) (1 — 2)*¥2 € LyP(—1, 1); then there
exists an element Uyu € L? (1), such that

[ Uullp = [l () (1 — £2)*[],.

The map Uy is linear, one-to-one, and onto the zonal functions in L? (1), and s
given by

where

(D

Uu (g, x) = u(g11) Yr (%, go1).
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Proof.
n—1 /2
ity = [ ae] [ 2 e s, ) i)

477

= f lu(gu)[?(1 — gn®)*®"dg
S0O(n)

=K, fll lu@) (1 — P —

= |lu@®) (@ — "],

Thus, Uwu € L?(r;). As u runs through finite linear combinations of
(P ™2=D/2(t): ;m = k}, Upu runs through finite linear combinations of
{dmr: m = k}. These two sets are dense in Ly?(—1,1) and {f € L?(r;): f is
zonal}, respectively; thus, Uy is onto.

ProprosITION 8. Let u € { f € L (r;): f is zonal}; thus, u has a Fourier series
S ® ek Do bz (o scalar), and if f € L? (1), 1 < p < 00, then u x f € L? (1),

= f{lo = Tl ]S

and
u *fN Z Dmnﬁ/m‘bmk *f-
m=k
Proof. The inequality is a standard convolution inequality.

For the subsequent theorems we need information about some special series
given in the work of Askey and Wainger [3].

LEMMA 9. Let N = 3,4,...,1 =7 = N — 1, {a,} be a sequence of complex
numbers such that

N—1
—i
Ay = Z a;m + am’y
Jj=r
an' = Om V) asm— ©,a,,...,ay_1fixed. Then there exists

u € Ll y_9,2(—1,1)
such that

[ee)

N N—2) /2

u~ Z D,, aum( )/
m=0

(this is the ultraspherical expansion of u),

1

tn =ty = Kovn f w®Pn @) (1 = )NV,
1

and
N—71—

2
ut) = 2, B,-BH(’“_N) + vy log 6 + E(6),
=0

where cos 0 = t, 0 < 0 < =, B, v are constants, E(0) is continuous on [0, 7].
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Askey and Wainger’s result deals directly with series of the form
> D VmIP,MN-2/2 and the series Y. D,Na, P,® 22 converges absolutely.
The Laplacian A is defined by Y- i<;R?;;; then for f € C,(ry),

Af = —lem"m<m 1 — 2) (¢ *f).

Definition. Let A be the SO (n)-operator on C,(ry) defined by

A = 2 D m(m +n — 2)) g f.

Note that AA%Y = f, — f, where

7=

Fork =1,2,...,f € Cs(ry) we obtain

VA f= 3 Dy Comlmm +n — 2)) s f

m=k

(by Theorem 6). We will now show that V;A* is L?-bounded, 1 < p < o0, and
is a singular integral SO (n)-operator.

THEOREM 10. For each k = 1,2, ..., there exists a measurable function Fy on
(=1, 1) such that

Vi f = (Fi(gu)dx(x, ge1)) *f,

where the convolution integral is a principal value (to be defined in the proof), and
is defined for f € LP(ry), 1 < p < 0, with ||Vid*f ||, £ Bul| f llsy Bap @ con-
stant depending only on k and p (f € C(r¢)).

Proof. Formally, we write

VkAka {Z Dmn(m(m +n — 2))_k/2Akm‘pk(x1 g*l)P:j—(I?_2)/2(g11)} * f.
m=k
Let
am = [n + B 4 b+ 1= 2 Ay i

then {a,} satisfies the hypotheses of Lemma 9 with N = n + 2k, r = k; thus,
there exists Fj, € Ll(y—g,2(—1, 1) such that

Fult) ~ 3o Do ¥a, P20 ()

m=0
and
Fk(t) ~ 50(1 — ,;)—(n+k—1)/2

as t—1_ (since 6 ~[2(1 — £)]¥2 as 6 >0, t = cos ). For 0 < e < 1, let

1 —1<t=1—¢
K‘(t)_{o l—e<ts1
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then

K (g11) Fi (g (x, ga1) € L (7y)
and K Fyy * f is defined for all ¢ > 0, f € C(r) and

KEs @) = | 0 R0 6)den(s),

n=
where

yi:ZIg”sj (’i=1,...,n)
=
(let s = pg’; then

(g8 Mo = 281y = 2855 = Vi
where o, is the normalized SO (z)-invariant measure on S"~1; see [7, Chapter 9]
for expressing SO (n)-convolutions as integrals over S*1). The integrand has
a singularity at s = pg(y; = 1) of order (1 — y;)~® /2 and since the great
circle distance between pg and s is arccosy; ~ 2(1 — y1)2, this is
(distance)=™=V. Further, the integral of the kernel with respect to s around
any (n — 2)-sphere centred at pg is easily seen to be zero; take any s # pg

and the required sphere through s is {sg~thg: h € H}, since (pg)- (sg~hg) =
p-(sg~h) = (pg)-s, and if u € L'(ry), then

J et ey wama ) = [ wthgg™, wyima )

= [ wle™, whyima ()

H
= O’
for pg’ = s,k =1,2,3,... (note that p-q¢ = > "i—1p:q:).
Now, by a local transfer argument similar to that used by Seeley in [11],

it follows that the Calder6n—Zygmund inequality holds locally. But S"! is
compact, so we can conclude

K P+ f |l = Bill f1l, 1 <p <o0),

where B, is independent of ¢, and lim.o K Fuy = f exists in L?. Thus,
ViA* extends to a bounded SO (n)-operator: L? (o) — L? (7).

TueoreEM 11. Let {a,: m = k} be a sequence of complex numbers such that

n+k—1

Up = Z a;m — k) + a,

=0

an = O0m™*") asm — 0, and let f € LP(r¢), 1 < p < 0 then the map

J:f'_) i Dmnam¢mk *f

m=k

https://doi.org/10.4153/CJM-1972-008-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-008-1

SINGULAR INTEGRALS 69

is bounded 1n L?, and

1) = a0 2D g, 0766, 2) + (R ) 0 o),

where F € L' (1) and F s zonal.

Proof. By Lemma 9, there exists u € L, i_9y2(—1,1) (N = n + 2k, 7 = 1),
such that

l:ozog&-%M Fi(gu) + u(gu):l‘//k(x» g1) ~ mi::k Dyt b,

and
u(t) ~ (1 — g)~+h=/2,

Then

1
H”%lh = cf |u(t)|(1 _ t2)(/c+n—3)/2dt <
-1
(c some constant; see Proposition 7), and

e * £ 1y = Nl Wl £ 1], (1 < p < 0).

TueEOREM 12. Let {a,} be as above and f € LPq_g,2(—1,1) (1 < p < 0);
then there is a linear map

Jo: fr=Jof € Liuogn(—1,1)

such that
JOfN Z D amfm Akm Pk+(n~2) /2’
Cin
and
Jof ) (1 — )2 € LP9y0(—1, 1)
with

[ITof () — 22|, = Byl f[l, A <p < 0).
Proof. Let J be defined as above; then
J(Uof ) € L*(r), M (Uof)ls = Busll f o,

and
J(Uof) ~ Z—k Dm”amf.mqsmk
= n Am n—
~ Z—L Dm A Cv’L jm (k+( 2)/2¢k
Then

QAro

oy e JUS

Jof =
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is the required map. Hélder’s inequality shows that Jof € Lly_2,(—1, 1),
which justifies the series
= n_ 3 A4 m n—
Jof ) ~ X Dulanfn G PRETPE().

m=k

Remark. For

_ —1/2
k=1’am=n—1—1{1+nm2} ,

the conjugate series theorem of Stein and Muckenhoupt [10] is obtained. This
theorem is a “‘transplantation” theorem. For results dealing with transplanta-
tion between Fourier and ultraspherical series, see Askey and Wainger [2].

4. Remarks.

The case n = 3. The propositions and theorems of § 3 are still valid when
n = 3. Note that the polynomials P;° are the Tchebyshev polynomials given
by Pi’(cos ) = cos kf (k = 0,1,...). The main change in § 2 is that 7; is
no longer irreducible for £ = 1, but breaks up into 2 one-dimensional com-
ponents. So Do? = 1, and D;? = 2, for £ = 1,2, ... . In the expression (2-2)
given for ay;, the limit as n — 3, is found to be

k) 1
o= (&) g

where b, = 2 for p > 0 and by = 1.

Vector bundles. Some of the results obtained could be phrased in the language
of vector bundles. For example, one may construct singular integrals on
C,(7o) of any desired symbol (a symbol here is essentially a “smooth” function
u on SO(n) X S™? such that

u(hg, x) = u(g, xh) (g € SO(n),h € H,x € S"?).
Now let

7@ = [ 3 e vule xde),
for suitable constants ¢, independent of f and u (see [6]), where V(A° is the
identity map. Then J has the symbol #. By replacing V;A* in the above
formula by VA, various j, one may construct differential operators with any
specified symbol (note that V;A’ is a differential SO (n)-operator of order
k + 2j of C(ro) into C,(7x)).

Calder6n and Zygmund [5] first constructed singular integrals on R”.
Seeley [11; 12] extended the theory to vector bundles over manifolds. Levine
[9] has also investigated singular integrals on spheres.
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