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In recent years, various Compressive Sensing (CS) approaches have been applied to Scanning 

Transmission Electron Microscopy (STEM) images [1-3], demonstrating that subsampled image 

acquisition, accompanied by an appropriate method of inpainting the missing pixel information, 

provides an alternative method for achieving low-dose STEM and imaging beam-sensitive materials [4]. 

A full image inpainting algorithm (taking only a subsampled measurement as its input) typically consists 

of a blind dictionary learning algorithm such as Beta-Process Factor Analysis (BPFA) (developed in [5]) 

which learns the representative patterns within the target image, followed by a sparse-coding algorithm 

which aims to find the optimum combination of the learned dictionary ‘elements’ to best represent each 

overlapping patch of the image provided in the target batch. These methods, however, are usually very 

computationally expensive, meaning that time-to-solution for even reasonably small greyscale images 

such as [512x512] range from 5-10 mins depending on the input parameters [3], and for larger images 

will easily reach multiple hours when operating in serial. While this is acceptable for post-acquisition 

STEM image analysis, such as generating a final (optimum) reconstruction from a previously acquired 

subsampled scan, these reconstruction times are prohibitively long for real-time operation and 

calibration of an electron microscope; something which is crucial for any successful real-life application 

of low-dose CS-STEM. In addition to a lengthy time-to-solution for reconstructing subsampled images, 

many implementations of Bayesian dictionary learning and reconstruction require vast amounts of 

RAM, requiring the storage of a total number of pixel values hundreds of times the total size (area) of 

the target image, due to pixel information being duplicated many times over in memory; for larger (e.g. 

4k) images this can quickly exceed the amount of memory available on a typical consumer 

device/workstation. 

 

One way to speed up reconstructions is to take advantage of the independent nature of many of the steps 

that need to be performed throughout the dictionary learning and sparse-coding process. In both cases, a 

separate algorithm is performed for each dictionary element or overlapping signal (2D patch) in the 

given batch respectively, making the process highly parallelizable. By developing a method for 

generating batches of target signals (patches) from an image on-demand (rather than attempting to build 

a full matrix of all overlapping signals), the amount of RAM required can be drastically reduced, and 

time-to-solution decreased further due to less time spent creating and copying memory. Additionally, 

this gives us the ability to determine new strategies for choosing the locations (within the target image) 

to sample signals from in the next batch, perhaps adjusting the sampling strategy on-the-fly to target the 

most important regions of the image, or ‘covering’ the total image area in a much more efficient way, 
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avoiding re-encoding pixels which are already sufficiently recovered, and resulting in even faster 

reconstructions. Finally, unlike existing methods where the image is only available when the full 

recovery process is finished, our method enables live/online inspection of image recovery and early 

halting by the user when a sufficient quality of reconstruction has been reached. Figure 1 showcases the 

results of this implementation applied to a (STEM) image of high-resolution Ceria, showing the input 

image (subsampled to 25%), the ‘live’ reconstruction at Batches 6 and 56 (after ~1s and ~10s 

respectively), as well as the (fully-sampled) reference image / ground truth. As shown in Figure 2, while 

the inpainting method may be continued for many iterations, the relative improvements in Peak Signal-

To-Noise Ratio (PSNR) fall extremely quickly, with the majority of the ‘useful information’ (such as, in 

this case, the resolving of atomic columns) being adequately recovered in the first 10 seconds. This 

significant speed improvement from a range of minutes/hours down to a matter of seconds provides a 

pathway to real-time reconstructions of subsampled STEM images and/or each frame of a live feed from 

an electron microscope, allowing the operator to preview a beam-sensitive sample under low-dose 

(subsampled) conditions and make appropriate adjustments to position and focus before acquiring a final 

(subsampled) scan. While currently implemented in parallel on a CPU, this implementation lends itself 

well to being performed on a high-performance GPU to reach even faster speeds and enable true real-

time CS-STEM (frame-by-frame) video reconstruction [6]. 
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Figure 1: Reconstruction results for a [1024x1024] STEM image of high-resolution Ceria showing the 

result and PSNR metric at Batch 6 (after ~1 second) and Batch 56 (after ~10 seconds) as well as the 

(fully sampled) reference image 
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Figure 2: Reconstruction quality (as 

measured here by PSNR) after each 

mini-batch (plotted here against time-

to-solution at the end of each batch) 

for the STEM image of Ceria shown 

above (in Figure 1). 

 

All computation was performed in 

parallel via a shared memory 

paradigm on an Intel Xeon E5-2678 

v3 CPU with 24 threads.  
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