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Introduction. For two entire functions f(z) and g(z) the composition 
f(g(z)) may or may not be periodic even though g(z) is not periodic. For 
example, when f(u) = cos \/u and g(z) = s2, or f(u) = eu and g(z) = p(z) + z, 
where p(z) is a periodic function of period 2iri,f(g(z)) will be periodic. On the 
other hand, for any polynomial Q(u) and any non-periodic entire function f(z) 
the composition Q(f(z)) is never periodic (2). 

The general problem of finding necessary and sufficient conditions for 
f(g(z)) to be periodic is a difficult one and we have not succeeded in solving it. 
However, we have found some interesting related results, which we present in 
this paper. 

THEOREM 1. Let 

m=itQi(zYi(2) + Qo(z), 

where gi(z) — gj(z) and gi(z) are non-constant and entire and where Qt(z) are 
polynomials for all i and j with i 9^ j . If f(z) is non-constant and periodic, then 
gi(z) is of the form p(z) + az, and Qo(z) must be a constant. Here a is a constant 
and p{z) is periodic. 

Proof. By a well-known theorem of Borel (1) if f(z + t) = f(z), then 

giO) = gn(z + i) + const., 

gn(z) = £*20 + I) + const., 

gtk(z) = gik+i(z + I) + const., 

where {1, ii, . . . , ik} is a permutation of {1, 2, . . . , n). Thus 

giO) = gi(z + mt) + const. 

for some fixed integer m and the first part of our assertion follows. If Qo(z) is 
non-constant, then again by Borel's theorem we would have Q0(z + t) = Qo(z), 
which is impossible, and our proof is complete. 
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Remark. Borel proved: Let at(z) be an entire function of order at most p, 
let giiz) also be entire and let gt(z) — gj{z) (i ^ j) be a transcendental function 
or polynomial of degree higher than p. Then 

E a , ( s y i ( 2 ) = a0(s) 

implies that a0(z) = ai(z) = . . . = are(s) = 0. 

The following theorem yields an example of entire functions f(z) and g(z) 
such that jf(g(;s)) is periodic if and only if g(z) is periodic. 

For its proof we shall need the concept of order of magnitude due to Borel (1 ). 
Let F(x) and G(x) be two increasing functions. F and G are said to be of the 

same order of magnitude if 

{G{x)Y~* < Fix) < [G(*)]1+« 

whatever the positive number e may be, provided that x is sufficiently large. 
In a similar manner one defines what is meant by the statement that F has a 

greater order of magnitude than G. 
Borel associates with each entire function / a n increasing function pf(r) and 

defines the order of magnitude of/denoted by 0(f) via p/(r). He proves that 
(i) 0(g) = O(g'), 

(ii) 0(e') > 0(g), 
(iii) if 0(f) > 0(g), then 0(J+ g) = 0(j-g) = 0(f). 

(Borel's proof is incomplete. The argument was completed by R. Nevanlinna 
in his book Le théorème de Picard Borel (Paris, 1929), who used his characteristic 
T(r,f) as P,(r).) 

We are now prepared to prove 

THEOREM 2. If g(z) is any non-periodic entire function, then eg(z) + g(z) is 
not periodic. 

Proof. Assume that eHz) + g(z) is periodic of period t and g(z) is not periodic. 
Thus 

(1) e^+v +g(z + t) = e^ +g(z). 

If 0(g(z + t)) > 0(g(z)), then 0(*'<*+f>) > 0(g(z + t)) implies that 

0(^(2+*) + g (s + /)) > o(e^ + g(z)). 

Since this contradicts (1), we must have 0(g(z + t)) < 0(g(z)). In a similar 
manner one shows that 

0(g(z + t)) > 0(g(z)), 

so that 0(g(z + t)) = 0(g(z)). 

Now differentiating both sides of (1) and substituting for e"(z), we obtain 
after simplification 

(2) [g'(z + t)- g'(z)]e^+» = g'(z)[g(z + t) - g(z)] + g'(z) - g'(z + t). 
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Since 0(g(z + t)) = 0(g(z))} (2) is possible only if g(z) is periodic, contrary 
to our hypothesis. Our proof is now complete. 

The following alternative proof was suggested by the referee and does not 
depend on Borel's order of magnitude. 

Pu t / ( s ) = ez + z and assume that g(z) is such that 

f(g(z + 0) = /(*(*)) = F(z), t*0. 

Let L be the line z0 + \t, — «> < X < » . The periodic function F(z) is bounded 
on L. If g(z) is unbounded on L, then g(L) is a path extending arbitrarily far 
from the origin on which f(z) is bounded; but the form of f(z) shows that there 
is no such path. Hence g(z) is bounded on L. Take a value z0 on L such that 
a = f(g(zo)) is not an algebraic singularity of the inverse function of f(z) 
(the algebraic singularities form a countable set). Now {g(zo + nt)}, 
n = 1, 2, . . . , is bounded, say \g(zo + nt)\ < M, while 

f(g(z0 + nt)) =f(g(z0)) = a. 

Thus all g(zo + nt) are among the finite set of solutions of f(w) = a which 
belong to \w\ < M. Hence for some m T6- n, g(z0 + mi) = g(z0 + nt). More
over, for all small e, 

f(g(zo + * + nit)) = f(g(z0 + e + nt)) = /3(e), 

so that ^(^o + e + mi) and g(s0 + € + ^ 0 are both equal to the unique root 
of f(w) = /3(e), which lies near g(z0 + m/). Thus we must have 

g(z + mi) = g (2 + w/), 

and g(2) has period (m — n)t. 

THEOREM 3. If F{z) = f(g(z)) = g(f(z)) with f(z) and g{z) non-linear and 
F(z) of finite order, then F{z) cannot be periodic. 

Proof. By a theorem of Polya (4), /(s) and g(;s) are both of order zero unless 
one of them, say/(z) , is a polynomial. If, however, f(z) were a polynomial and 
g(z) not of zero order, then f(g(z)) and g(f(z)) could not be of the same 
order. It follows tha t / (s ) and g(z) are both of zero order. Since F{z) is periodic, 
there is a path L running to infinity on which F(z) is bounded. Then either g(z) 
is bounded on L or, if g(L) is unbounded, then f(z) is bounded on g(L). Either 
case is impossible s ince/and g are of zero order. 

LEMMA 1. Let f(z), a(z), and /3(z) be any three entire functions such that 
f(a(z)) = f(0(z)). If there exists a number z0 such that a(z0) = @(z0) and 
f'(a(z0)) 9e 0, then a(z) is identical with fi(z). 

Proof. Our hypotheses imply t h a t / is 1-1 on a neighbourhood of a(z0) and 
f(a(z)) = f(P(z)) in this neighbourhood. It follows that a(z) is identical with 
fi(z) on a continuum of z and hence everywhere. 
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LEMMA 2. Let f(z) be entire and t be any complex number. If 

[f(z + 2t) -f(z)]-[f(z + t)-f(z)] 

has no zeros, then f(z) must be of the form 

(3) ep(z)+az (c + JZp*(w)e-aw dw) 

where a, c, and k are constants and p{z) and p*(z) satisfy p(z + t) = p{z) and 
p*(z + t) =P*(z). 

Proof. We have 

f(z + t) -f{z) = e^\ f(z - t) -f(z) = -*•<*-'>, 

and f(z + /) — f(z — t) = eyiz\ where a(z) and y(z) are entire functions. 
I t follows from Borel's theorem that a(z) = a(z — t) + const., so that 

a(z) = p{z) + az 

where p(z) has the property p(z + t) = p(z). Hence f(z + t) - f(z) = ep(z)+az. 
L e t / 0 ) = g(z)ep^+az. Then 

ep(z)+az = j(z + j) _ f(z) = (eatg(z + t) - g(z))ep^+az. 

Thus eat g(z + t) — g(z) = 1 and, differentiating, we obtain 

eatg'(z + t) - g'(z) = 0. 

Let p*(z) = eazg'(z)) then 

p*(z + t)= eazeatg!{z + t) = eazg'(z) = p*(z) 

and p* has period t. Hence 

* (*)= f'p*(t)e-"dt and /(*) = / ( 2 ) + a* [p*(t)e~at 

•Sir *Jjc 
dt 

and our lemma follows. 

THEOREM 4. Letfiz) be an entire function such thatf'iz) is never zero. If g(z) 
is not periodic and not of the form (3), thenf(giz)) cannot be periodic. 

Proof. Were f{g{z + nt)) = f(g(z)) and f(z) ^ 0, it would follow by 
Lemma 1 that g(z + nt) — g(z) has no zeros; hence, by Lemma 2, g(z) must 
have the form (3). 

We have seen in Theorem 1 that if <j>{z) is entire and e*{z) is periodic, then 
<t>(z) = P(z) + azi where p(z) is periodic and a is a constant. 

In the opposite direction we have 

THEOREM 5. If <i>{z) is periodic and non-linear, then for any given k > 0 there 
exists an r > 0 such that the number of zeros of e^z) — w in a period strip of e* 
for any w, with \w\ = r, is greater than k. 
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To prove this theorem we need a lemma due to Hayman (3). 

LEMMA 3. Suppose that f{z) is entire and f(z) ^ 0 in \z\ < 1, and that for 
each r > 0 there is a w such that the equation f(z) = w has at most p roots in 
\z\ < 1 and \w\ = r, p being a fixed integer. Then we have for \z\ < 1 

ir«i<^rj^i/wi. 
We now proceed with the proof of Theorem 5. 
Suppose that for every r there is a w, with \w\ = r, such that the number 

of zeros of e* — w in a period strip is less than k. Then the number of zeros of 
e* — w in \z\ < p/\/2 is less than p = cp> where c is some constant. Thus 
letting/(s) = e^z) and applying Lemma 4, we have 

<8^+V<c> 
p 

for sufficiently large p. Here cf is a constant. Hence (d(logf(z)))/dz is a con
stant and consequently jf(z) = ecz+b> contrary to our hypotheses. 

The proof of the following theorem was communicated to the author by 
I. N. Baker. 

THEOREM 6. If p{z) is a polynomial of degree k greater than 2 and f{z) is any 
non-constant entire function, then f{p{z)) is not periodic. 

Proof. We may assume tha t / (z ) is transcendental. 
Suppose that (the necessarily non-constant function) F(z) = f(p(z)) is 

periodic and that the period is i (this may be achieved by a linear change of 
variable, if necessary). Since the strip S : —\ < I m s < - f j i s a period strip, 
it follows that max \F(z)\ = MF{r) must be attained on that part of the 
circle |s| = r which lies in S. Let z0 be a point where \F(z)| attains its maximum 
on \z\ = r. Solve p(z0) = p{zf), taking that solution zr for which 

(4) 

as r —> oo. Now 

and, since 

for some point 

{ 
arg z' ~ arg z0 + 2w/k, 

z\ ~ bol = r 

MF(r) = \F(zo)\ = IFOOI 

F(z') = F(xf + iy') = Fix' + iy) 

we have 

x' + iy with x' = Re s', \y\ < | , 

MF(r) = \F(z')\ = |F(x' + # ) | < ^ F ( X ' + 1) 
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and by (4), since arg z0 ~ 0 or x, 

\x' + 1| = |1 + \z'\ cos(args')l < 1 + |S'|{COS(2TT/&) + e} < yr 

for some y with cos(27r/&) < y < 1. 
Thus for large r we have MF(r) < M"F(7r), which can only occur (by the 

maximum modulus theorem) if F(z) is constant. Thus we have a contradiction. 

For p{z) a polynomial of degree 2, Theorem 6 does not hold. The first of 
our examples in the Introduction illustrates this fact. We can, however, prove 
the following: 

THEOREM 7. If p(z) is a polynomial of degree 2 and f(z) is periodic, then 
f(p(z)) is not periodic. 

Proof. Let us first prove this for p(z) = z2. We note that if f(z) and/(z2) are 
entire periodic functions with periods n and n respectively, then there exists 
an entire function F(z) such that F(z) and F(z2) are periodic and have the same 
period r2

2/Ti- For let 

Then 

Thus we may assume that for some 6 

/ ( (* + Or) = /(z2) and / ( * + d)= /(«). 
Hence 

(5) f((z + nd)2 + md) — f{z2), m and n integers. 

I t follows from Lemma 1 that 

/ ' I I — ) ) = 0 for all integers m,n (n 9e 0). 

Differentiating (5), we obtain 

2(2 + nd)f((z + nd)2 + m6) = 2g/'(a2). 

We now show that there exists a dense set of values z for which 
(z + wo0)2 + m06 is of the form [(n26 + ra)/2?z]2 for appropriate integers 
n0 and m0. 

Setting 

(6) (z + n0 6)2 + m0 6 = — , m0 = 0 and n0 = |w, 
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we get 

so that z = \m/n is a solution of (6). Hence f (m/2n) ^ 0 for some integers 
m and n with 

(, + «e)*0 and / ' ( ( ^ ^ ) 2 ) ^ 0 , 

which gives us a contradiction. 
To complete the proof, we note that for any polynomial of degree 2 

az2 + bz + c = a((s + \b)2 + k), k = c - {\b)\ 

Th.\\$f(p(z)) = g((z + \b)2) where g{u) = f(a(u + k)). One can easily verify 
that if f(z) and f(p(z)) are periodic, then the same is true of g{z) and g(z2) and 
our proof is complete. 

Finally we have 

THEOREM 8. Let f(z) and g{z) be two entire functions with f(z) periodic and 
g(z) non-linear. If f(g(z)) is of finite lower order, then it cannot be periodic. 

Proof. From Polya's theorem (4) it follows that either/(z) is of lower order 
zero or g(z) is a polynomial. By a generalization of Wiman's theorem (5), 
however,/(s) cannot be of lower order zero, so that g{z) is a polynomial. Our 
conclusion now follows from Theorems 6 and 7. 

We have already seen in the Introduction that if the lower order is infinite, 
then both/(z) and/(g(s)) can be periodic. 

Using the arguments of the alternative proof of Theorem 2 and the proof 
of Theorem 8, one obtains 

THEROEM 9. Let g{z) be non-periodic and not a polynomial of degree < 2 . If 
f(g) is of finite lower order, then it cannot be periodic. 
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