ON THE PERIODICITY OF COMPOSITIONS OF ENTIRE FUNCTIONS

FRED GROSS

Introduction. For two entire functions $f(z)$ and $g(z)$ the composition $f(g(z))$ may or may not be periodic even though $g(z)$ is not periodic. For example, when $f(u)=\cos \sqrt{ } u$ and $g(z)=z^{2}$, or $f(u)=e^{u}$ and $g(z)=p(z)+z$, where $p(z)$ is a periodic function of period $2 \pi i, f(g(z))$ will be periodic. On the other hand, for any polynomial $Q(u)$ and any non-periodic entire function $f(z)$ the composition $Q(f(z))$ is never periodic (2).

The general problem of finding necessary and sufficient conditions for $f(g(z))$ to be periodic is a difficult one and we have not succeeded in solving it. However, we have found some interesting related results, which we present in this paper.

Theorem 1. Let

$$
f(z)=\sum_{i=1}^{n} Q_{i}(z) e^{g_{i}(z)}+Q_{0}(z)
$$

where $g_{i}(z)-g_{j}(z)$ and $g_{i}(z)$ are non-constant and entire and where $Q_{i}(z)$ are polynomials for all i and j with $i \neq j$. If $f(z)$ is non-constant and periodic, then $g_{i}(z)$ is of the form $p(z)+a z$, and $Q_{0}(z)$ must be a constant. Here a is a constant and $p(z)$ is periodic.

Proof. By a well-known theorem of Borel (1) if $f(z+t)=f(z)$, then

$$
\begin{aligned}
g_{1}(z) & =g_{i_{1}}(z+t)+\text { const. } \\
g_{i_{1}}(z) & =g_{i_{2}}(z+t)+\text { const. }, \\
\cdot & \\
\cdot & \\
g_{i_{k}}(z) & =g_{i_{k+1}}(z+t)+\text { const. },
\end{aligned}
$$

where $\left\{1, i_{1}, \ldots, i_{k}\right\}$ is a permutation of $\{1,2, \ldots, n\}$. Thus

$$
g_{1}(z)=g_{1}(z+m t)+\text { const. }
$$

for some fixed integer m and the first part of our assertion follows. If $Q_{0}(z)$ is non-constant, then again by Borel's theorem we would have $Q_{0}(z+t)=Q_{0}(z)$, which is impossible, and our proof is complete.

Remark. Borel proved: Let $a_{i}(z)$ be an entire function of order at most ρ, let $g_{i}(z)$ also be entire and let $g_{i}(z)-g_{j}(z)(i \neq j)$ be a transcendental function or polynomial of degree higher than ρ. Then

$$
\sum_{i=1}^{n} a_{i}(z) e^{\sigma_{i}(z)}=a_{0}(z)
$$

implies that

$$
a_{0}(z)=a_{1}(z)=\ldots=a_{n}(z)=0 .
$$

The following theorem yields an example of entire functions $f(z)$ and $g(z)$ such that $f(g(z))$ is periodic if and only if $g(z)$ is periodic.

For its proof we shall need the concept of order of magnitude due to Borel (1).
Let $F(x)$ and $G(x)$ be two increasing functions. F and G are said to be of the same order of magnitude if

$$
[G(x)]^{1-\epsilon}<F(x)<[G(x)]^{1+\epsilon}
$$

whatever the positive number ϵ may be, provided that x is sufficiently large.
In a similar manner one defines what is meant by the statement that F has a greater order of magnitude than G.

Borel associates with each entire function f an increasing function $\rho_{f}(r)$ and defines the order of magnitude of f denoted by $O(f)$ via $\rho_{f}(r)$. He proves that
(i) $O(g)=O\left(g^{\prime}\right)$,
(ii) $O\left(e^{g}\right)>O(g)$,
(iii) if $O(f)>O(g)$, then $O(f+g)=O(f \cdot g)=O(f)$.
(Borel's proof is incomplete. The argument was completed by R. Nevanlinna in his book Le théorème de Picard Borel (Paris, 1929), who used his characteristic $T(r, f)$ as $\left.P_{f}(r).\right)$

We are now prepared to prove
Theorem 2. If $g(z)$ is any non-periodic entire function, then $e^{g(z)}+g(z)$ is not periodic.

Proof. Assume that $e^{g(z)}+g(z)$ is periodic of period t and $g(z)$ is not periodic. Thus

$$
\begin{equation*}
e^{g(z+t)}+g(z+t)=e^{g(z)}+g(z) \tag{1}
\end{equation*}
$$

If $O(g(z+t))>O(g(z))$, then $O\left(e^{g(z+t)}\right)>O(g(z+t))$ implies that

$$
O\left(e^{g(z+t)}+g(z+t)\right)>O\left(e^{g(z)}+g(z)\right) .
$$

Since this contradicts (1), we must have $O(g(z+t)) \leqslant O(g(z))$. In a similar manner one shows that
so that

$$
\begin{aligned}
& O(g(z+t)) \geqslant O(g(z)), \\
& O(g(z+t))=O(g(z))
\end{aligned}
$$

Now differentiating both sides of (1) and substituting for $e^{g(z)}$, we obtain after simplification

$$
\begin{equation*}
\left[g^{\prime}(z+t)-g^{\prime}(z)\right] e^{g(z+t)}=g^{\prime}(z)[g(z+t)-g(z)]+g^{\prime}(z)-g^{\prime}(z+t) \tag{2}
\end{equation*}
$$

Since $O(g(z+t))=O(g(z))$, (2) is possible only if $g(z)$ is periodic, contrary to our hypothesis. Our proof is now complete.

The following alternative proof was suggested by the referee and does not depend on Borel's order of magnitude.

Put $f(z)=e^{z}+z$ and assume that $g(z)$ is such that

$$
f(g(z+t))=f(g(z))=F(z), \quad t \neq 0
$$

Let L be the line $z_{0}+\lambda t,-\infty<\lambda<\infty$. The periodic function $F(z)$ is bounded on L. If $g(z)$ is unbounded on L, then $g(L)$ is a path extending arbitrarily far from the origin on which $f(z)$ is bounded; but the form of $f(z)$ shows that there is no such path. Hence $g(z)$ is bounded on L. Take a value z_{0} on L such that $\alpha=f\left(g\left(z_{0}\right)\right)$ is not an algebraic singularity of the inverse function of $f(z)$ (the algebraic singularities form a countable set). Now $\left\{g\left(z_{0}+n t\right)\right\}$, $n=1,2, \ldots$, is bounded, say $\left|g\left(z_{0}+n t\right)\right| \leqslant M$, while

$$
f\left(g\left(z_{0}+n t\right)\right)=f\left(g\left(z_{0}\right)\right)=\alpha
$$

Thus all $g\left(z_{0}+n t\right)$ are among the finite set of solutions of $f(w)=\alpha$ which belong to $|w| \leqslant M$. Hence for some $m \neq n, g\left(z_{0}+m t\right)=g\left(z_{0}+n t\right)$. Moreover, for all small ϵ,

$$
f\left(g\left(z_{0}+\epsilon+m t\right)\right)=f\left(g\left(z_{0}+\epsilon+n t\right)\right)=\beta(\epsilon)
$$

so that $g\left(z_{0}+\epsilon+m t\right)$ and $g\left(z_{0}+\epsilon+n t\right)$ are both equal to the unique root of $f(w)=\beta(\epsilon)$, which lies near $g\left(z_{0}+m t\right)$. Thus we must have

$$
g(z+m t) \equiv g(z+n t)
$$

and $g(z)$ has period $(m-n) t$.
Theorem 3. If $F(z)=f(g(z))=g(f(z))$ with $f(z)$ and $g(z)$ non-linear and $F(z)$ of finite order, then $F(z)$ cannot be periodic.

Proof. By a theorem of Polya (4), $f(z)$ and $g(z)$ are both of order zero unless one of them, say $f(z)$, is a polynomial. If, however, $f(z)$ were a polynomial and $g(z)$ not of zero order, then $f(g(z))$ and $g(f(z))$ could not be of the same order. It follows that $f(z)$ and $g(z)$ are both of zero order. Since $F(z)$ is periodic, there is a path L running to infinity on which $F(z)$ is bounded. Then either $g(z)$ is bounded on L or, if $g(L)$ is unbounded, then $f(z)$ is bounded on $g(L)$. Either case is impossible since f and g are of zero order.

Lemma 1. Let $f(z), \alpha(z)$, and $\beta(z)$ be any three entire functions such that $f(\alpha(z))=f(\beta(z))$. If there exists a number z_{0} such that $\alpha\left(z_{0}\right)=\beta\left(z_{0}\right)$ and $f^{\prime}\left(\alpha\left(z_{0}\right)\right) \neq 0$, then $\alpha(z)$ is identical with $\beta(z)$.

Proof. Our hypotheses imply that f is $1-1$ on a neighbourhood of $\alpha\left(z_{0}\right)$ and $f(\alpha(z))=f(\beta(z))$ in this neighbourhood. It follows that $\alpha(z)$ is identical with $\beta(z)$ on a continuum of z and hence everywhere.

Lemma 2. Let $f(z)$ be entire and t be any complex number. If

$$
[f(z+2 t)-f(z)] \cdot[f(z+t)-f(z)]
$$

has no zeros, then $f(z)$ must be of the form

$$
\begin{equation*}
e^{p(z)+a z}\left(c+\int_{k}^{z} p^{*}(w) e^{-a w} d w\right) \tag{3}
\end{equation*}
$$

where a, c, and k are constants and $p(z)$ and $p^{*}(z)$ satisfy $p(z+t)=p(z)$ and $p^{*}(z+t)=p^{*}(z)$.

Proof. We have

$$
f(z+t)-f(z)=e^{\alpha(z)}, \quad f(z-t)-f(z)=-e^{\alpha(z-t)}
$$

and $f(z+t)-f(z-t)=e^{\gamma(z)}$, where $\alpha(z)$ and $\gamma(z)$ are entire functions.
It follows from Borel's theorem that $\alpha(z)=\alpha(z-t)+$ const., so that

$$
\alpha(z)=p(z)+a z
$$

where $p(z)$ has the property $p(z+t)=p(z)$. Hence $f(z+t)-f(z)=e^{p(z)+a z}$.
Let $f(z)=g(z) e^{p(z)+a z}$. Then

$$
e^{p(z)+a z}=f(z+t)-f(z)=\left(e^{a t} g(z+t)-g(z)\right) e^{p(z)+a z} .
$$

Thus $e^{a t} g(z+t)-g(z)=1$ and, differentiating, we obtain

$$
e^{a t} g^{\prime}(z+t)-g^{\prime}(z)=0
$$

Let $p^{*}(z)=e^{a z} g^{\prime}(z)$; then

$$
p^{*}(z+t)=e^{a z} e^{a t} g^{\prime}(z+t)=e^{a z} g^{\prime}(z)=p^{*}(z)
$$

and p^{*} has period t. Hence

$$
g(z)=\int_{k}^{z} p^{*}(t) e^{-a t} d t \text { and } f(z)=e^{p(z)+a z} \int_{k}^{z} p^{*}(t) e^{-a t} d t
$$

and our lemma follows.
Theorem 4. Let $f(z)$ be an entire function such that $f^{\prime}(z)$ is never zero. If $g(z)$ is not periodic and not of the form (3), then $f(g(z))$ cannot be periodic.

Proof. Were $f(g(z+n t))=f(g(z))$ and $f^{\prime}(z) \neq 0$, it would follow by Lemma 1 that $g(z+n t)-g(z)$ has no zeros; hence, by Lemma 2, $g(z)$ must have the form (3).

We have seen in Theorem 1 that if $\phi(z)$ is entire and $e^{\phi(z)}$ is periodic, then $\phi(z)=p(z)+a z$, where $p(z)$ is periodic and a is a constant.

In the opposite direction we have
Theorem 5. If $\phi(z)$ is periodic and non-linear, then for any given $k>0$ there exists an $r>0$ such that the number of zeros of $e^{\phi(z)}-w$ in a period strip of e^{ϕ} for any w, with $|w|=r$, is greater than k.

To prove this theorem we need a lemma due to Hayman (3).
Lemma 3. Suppose that $f(z)$ is entire and $f(z) \neq 0$ in $|z|<1$, and that for each $r>0$ there is a w such that the equation $f(z)=w$ has at most p roots in $|z|<1$ and $|w|=r, p$ being a fixed integer. Then we have for $|z|<1$

$$
\left|f^{\prime}(z)\right| \leqslant \frac{4(p+1)}{1-|z|^{2}}|f(z)|
$$

We now proceed with the proof of Theorem 5.
Suppose that for every r there is a w, with $|w|=r$, such that the number of zeros of $e^{\phi}-w$ in a period strip is less than k. Then the number of zeros of $e^{\phi}-w$ in $|z|<\rho / \sqrt{ } 2$ is less than $p=c \rho$, where c is some constant. Thus letting $f(z)=e^{\phi(z)}$ and applying Lemma 4, we have

$$
\left|\frac{f^{\prime}(z)}{f(z)}\right|<\frac{8(c \rho+1)}{\rho}<c^{\prime}
$$

for sufficiently large ρ. Here c^{\prime} is a constant. Hence $(d(\log f(z))) / d z$ is a constant and consequently $f(z)=e^{c z+b}$, contrary to our hypotheses.

The proof of the following theorem was communicated to the author by I. N. Baker.

Theorem 6. If $p(z)$ is a polynomial of degree k greater than 2 and $f(z)$ is any non-constant entire function, then $f(p(z))$ is not periodic.

Proof. We may assume that $f(z)$ is transcendental.
Suppose that (the necessarily non-constant function) $F(z)=f(p(z))$ is periodic and that the period is i (this may be achieved by a linear change of variable, if necessary). Since the strip $S:-\frac{1}{2}<\operatorname{Im} z \leqslant+\frac{1}{2}$ is a period strip, it follows that $\max |F(z)|=M_{F}(r)$ must be attained on that part of the circle $|z|=r$ which lies in S. Let z_{0} be a point where $|F(z)|$ attains its maximum on $|z|=r$. Solve $p\left(z_{0}\right)=p\left(z^{\prime}\right)$, taking that solution z^{\prime} for which

$$
\left\{\begin{array}{c}
\arg z^{\prime} \approx \arg z_{0}+2 \pi / k, \tag{4}\\
|z| \approx\left|z_{0}\right|=r
\end{array}\right.
$$

as $r \rightarrow \infty$. Now

$$
M_{F}(r)=\left|F\left(z_{0}\right)\right|=\left|F\left(z^{\prime}\right)\right|
$$

and, since

$$
F\left(z^{\prime}\right)=F\left(x^{\prime}+i y^{\prime}\right)=F\left(x^{\prime}+i \tilde{y}\right)
$$

for some point

$$
x^{\prime}+i \tilde{y} \quad \text { with } x^{\prime}=\operatorname{Re} z^{\prime},|\tilde{y}|<\frac{1}{2}
$$

we have

$$
M_{F}(r)=\left|F\left(z^{\prime}\right)\right|=\left|F\left(x^{\prime}+i \widetilde{y}\right)\right| \leqslant M_{F}\left(x^{\prime}+1\right)
$$

and by (4), since $\arg z_{0} \approx 0$ or π,

$$
\left|x^{\prime}+1\right|=\left|1+\left|z^{\prime}\right| \cos \left(\arg z^{\prime}\right)\right| \leqslant 1+\left|z^{\prime}\right|\{\cos (2 \pi / k)+\epsilon\} \leqslant \gamma r
$$

for some γ with $\cos (2 \pi / k)<\gamma<1$.
Thus for large r we have $M_{F}(r) \leqslant M_{F}(\gamma r)$, which can only occur (by the maximum modulus theorem) if $F(z)$ is constant. Thus we have a contradiction.

For $p(z)$ a polynomial of degree 2 , Theorem 6 does not hold. The first of our examples in the Introduction illustrates this fact. We can, however, prove the following:

Theorem 7. If $p(z)$ is a polynomial of degree 2 and $f(z)$ is periodic, then $f(p(z))$ is not periodic.

Proof. Let us first prove this for $p(z)=z^{2}$. We note that if $f(z)$ and $f\left(z^{2}\right)$ are entire periodic functions with periods τ_{1} and τ_{2} respectively, then there exists an entire function $F(z)$ such that $F(z)$ and $F\left(z^{2}\right)$ are periodic and have the same period $\tau_{2}{ }^{2} / \tau_{1}$. For let

$$
F(z)=f\left(\frac{\tau_{1}{ }^{2}}{\tau_{2}{ }^{2}} z\right)
$$

Then

$$
\begin{gathered}
F\left(z+\frac{\tau_{2}{ }^{2}}{\tau_{1}}\right)=f\left(\frac{\tau_{1}{ }^{2}}{\tau_{2}{ }^{2}} z+\tau_{1}\right)=f\left(\frac{\tau_{1}{ }^{2}}{\tau_{2}{ }^{2}} z\right)=F(z), \\
F\left(\left(z+\frac{\tau_{2}{ }^{2}}{\tau_{1}}\right)^{2}\right)=f\left(\left(\frac{\tau_{1}}{\tau_{2}} z+\tau_{2}\right)^{2}\right)=f\left(\frac{\tau_{1}{ }^{2}}{\tau_{2}{ }^{2}} z^{2}\right)=F\left(z^{2}\right) .
\end{gathered}
$$

Thus we may assume that for some θ

$$
f\left((z+\theta)^{2}\right)=f\left(z^{2}\right) \text { and } f(z+\theta)=f(z) .
$$

Hence

$$
\begin{equation*}
f\left((z+n \theta)^{2}+m \theta\right)=f\left(z^{2}\right), \quad m \text { and } n \text { integers. } \tag{5}
\end{equation*}
$$

It follows from Lemma 1 that

$$
f^{\prime}\left(\left(\frac{n^{2} \theta+m}{2 n}\right)^{2}\right)=0 \quad \text { for all integers } m, n(n \neq 0)
$$

Differentiating (5), we obtain

$$
2(z+n \theta) f^{\prime}\left((z+n \theta)^{2}+m \theta\right)=2 z f^{\prime}\left(z^{2}\right)
$$

We now show that there exists a dense set of values z for which $\left(z+n_{0} \theta\right)^{2}+m_{0} \theta$ is of the form $\left[\left(n^{2} \theta+m\right) / 2 n\right]^{2}$ for appropriate integers n_{0} and m_{0}.

Setting

$$
\begin{equation*}
\left(z+n_{0} \theta\right)^{2}+m_{0} \theta=\left[\frac{n^{2} \theta+m}{2 n}\right]^{2}, \quad m_{0}=0 \text { and } n_{0}=\frac{1}{2} n, \tag{6}
\end{equation*}
$$

we get

$$
z+\frac{n \theta}{2}= \pm \frac{1}{2}\left[\frac{n^{2} \theta+m}{n}\right]
$$

so that $z=\frac{1}{2} m / n$ is a solution of (6). Hence $f^{\prime}(m / 2 n) \neq 0$ for some integers m and n with

$$
(z+n \theta) \neq 0 \quad \text { and } \quad f^{\prime}\left(\left(\frac{n^{2} \theta+m}{2 n}\right)^{2}\right) \neq 0
$$

which gives us a contradiction.
To complete the proof, we note that for any polynomial of degree 2

$$
a z^{2}+b z+c=a\left(\left(z+\frac{1}{2} b\right)^{2}+k\right), \quad k=c-\left(\frac{1}{2} b\right)^{2} .
$$

Thus $f(p(z))=g\left(\left(z+\frac{1}{2} b\right)^{2}\right)$ where $g(u)=f(a(u+k))$. One can easily verify that if $f(z)$ and $f(p(z))$ are periodic, then the same is true of $g(z)$ and $g\left(z^{2}\right)$ and our proof is complete.

Finally we have
Theorem 8. Let $f(z)$ and $g(z)$ be two entire functions with $f(z)$ periodic and $g(z)$ non-linear. If $f(g(z))$ is of finite lower order, then it cannot be periodic.

Proof. From Polya's theorem (4) it follows that either $f(z)$ is of lower order zero or $g(z)$ is a polynomial. By a generalization of Wiman's theorem (5), however, $f(z)$ cannot be of lower order zero, so that $g(z)$ is a polynomial. Our conclusion now follows from Theorems 6 and 7 .

We have already seen in the Introduction that if the lower order is infinite, then both $f(z)$ and $f(g(z))$ can be periodic.

Using the arguments of the alternative proof of Theorem 2 and the proof of Theorem 8, one obtains

Theroem 9. Let $g(z)$ be non-periodic and not a polynomial of degree $\leqslant 2$. If $f(g)$ is of finite lower order, then it cannot be periodic.

References

1. E. Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1897), 357-396.
2. F. Gross, Entire solutions of the functional equation $\alpha(\beta(z))=\alpha(\gamma(z))+c$, to appear.
3. W. K. Hayman, Symmetrization in the theory of functions, Stanford University Tech. Rep. No. 11 (1950), 21.
4. G. Polya, On an integral function of an integral function, J. London Math. Soc., 1 (1926), 12.
5. J. M. Whittaker, The lower order of integral functions, J. London Math. Soc., 8 (1933), 20-27.
U.S. Naval Research Laboratory, Washington, D.C.
