Geometrical Proof of $\frac{\tan \frac{1}{2}(B-C)}{\tan \frac{1}{2}(B+C)}=\frac{b-c}{b+c}$.

Consider triangle $A B C$.
From $A C$ cut off $A D=A B$; join $B D$: draw $A E$ perpendicular to $B D$ and produce to meet $B C$ in F; draw $E G$ parallel to $B C$. Then, by Geometry, E and G are mid-points of $B D$ and $D C$ respectively; $A \widehat{B} D=A \widehat{D} B=\frac{1}{2}(B+C)$ since \widehat{A} common to triangles $A B D$ and $A B C ; E \widehat{B} F=B-\frac{1}{2}(B+C)=\frac{1}{2}(B-C)$.

$$
\begin{aligned}
& \frac{\tan \frac{1}{2}(B-C)}{\tan \frac{1}{2}(B+C)}=\frac{E F / B E}{E A / B E}=\frac{E F}{E A}=\frac{G C}{G A}=\frac{\frac{1}{2}(b-c)}{\frac{1}{2}(b+c)}=\frac{b-c}{b+c} \\
& \text { Alex. D. Russele. }
\end{aligned}
$$

Angles between the Medians and Sides of a Triangle.

Fig. 1.

