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Abstract. Let 7,.;(R) be the algebra of all upper triangular n+ 1 by n+ 1
matrices over a 2-torsionfree commutative ring R with identity. In this paper, we
give a complete description of the Jordan automorphisms of 7}, (R), proving that
every Jordan automorphism of 7,;(R) can be written in a unique way as a product
of a graph automorphism, an inner automorphism and a diagonal automorphism for
n>1.
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1. Introduction. Let M, (R) be the R-algebra of all square matrices of order
n+ 1 over a commutative ring R with the identity 1. Jordan multiplication is defined
by x oy = xy + yx for any x, y € M, 1(R). Obviously xo y = y o x. If an R-module
automorphism ¢ of M, (R) satisfies ¢p(x o y) = ¢(x) o ¢(»), then ¢ is called Jordan
automorphism of M, 1(R). Itis well known that an R-algebra automorphism, which is a
ring automorphism and also an R-module automorphism of M, ;(R), must be a Jordan
automorphism. However, there are Jordan automorphisms which are neither R-algebra
automorphisms nor R-algebra anti-automorphisms [3]. Let 4 and B be subsets of
M, 1(R). We denote Jordan multiplication of 4 and Bby Ao B={xoy|x € A,y € B}.
Let us consider the sub-algebra of M, |(R) denoted by T,,,1(R), which consists of all
upper triangular matrices of M, 1(R). Jordan isomorphisms of associative algebras
have been studied by many authors for several decades [1-4, 6, 7, 10, 11, 12]. The
algebra of all triangular matrices is an interesting topic for many researchers. Many
papers are concerned with the study of automorphisms and Lie automorphisms [5, 8, 9,
13]. On the basis of these papers, we consider the problem on decomposition of Jordan
automorphism of upper triangular matrix algebra into some standard automorphisms.

Throughout this paper, R denotes a 2-torsionfree commutative ring with the
identity 1. The main results are as follows:

THEOREM 1.1. For any Jordan automorphism ¢ of T, 1(R)(n > 1), there exist unique
graph, inner and diagonal automorphisms, respectively, ¢., 6 and dq of T,+1(R) such that

© =EO0Mhy.

THEOREM 1.2. Let G, T and D be the graph, inner and diagonal automorphism group,
respectively. When n > 1, then

Aut(ng) = G x (Z x D).
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2. Preliminaries. Let ¢; denote the matrix unit of M,1(R) and e the identity
matrix of M, 1(R). The matrix set {e;;kli=1,...,n—k+1, k=0,1,...,n}isa
basis of 7,41(R). Forany x € T,+1(R), it can be expressed x = Y ;_, Z?:_lk“ Qi i1 k€iitk
for some a; ;.1 € R. Let n; be the sub-algebra of all strictly upper matrices of 7,4 (R).
The matrix set {e;;4xli=1,...,n—k+1, k=1,...,n} is a basis of n;. Let ng =
T,+1(R) and Aut(ny), k=0,1 denote the Jordan automorphism group of n, respectively.
If R is 2-torsionfree, then a Jordan automorphism of M, (R) coincides with the semi-
automorphism of M, ;(R) such that ¢(x?) = [¢(x)]* and ¢(xpx) = ¢(x)p(y)e(x) for
any x, y € My,11(R).

LEMMA 2.1. Let ¢ be an R-module automorphism ofn,. The following two statements
are equivalent:
(1) ¢ is in Aut(n;);
(ii) For any e € my, (e ivk) = @(€iiym) © Q(eiym ivk) for 1< m < k and ¢(ej) o
o(emr) =0 forj £ mandi # k.

Proof. See [12, Lemma 2.1]. O

LEMMA 2.2. Let ¢ be a Jordan automorphism of ny. The following two statements
are equivalent:
(1) ¢ is in Aut(ng);
(i) For any ek € my, [‘.D(en')]2 = g(ei), leiirk) = pleir) o p(eiik), ¢(eiirk) =
?(ez}é;k) o @(eirk,i+k), @ley) o plei) =00 # i) and ¢(ey) o p(eiirk) = 0( # i,
1+ K).

Proof- By Lemma 2.1 it is not difficult to prove Lemma 2.2. O

Lemma 2.2 implies that the set {¢(e11), p(eir1.i+1), ¢(eiir1)li = 1, ..., n} generates
Tu+1(R). So we will investigate ¢(e11), ¢(€ir1.i+1), ¢(€iir1), i=1,...,n

LEMMA 2.3. Let ¢ be in Aut(ng). For any x € ng and y, e; € ny, then [(p(ey-)]2 =0,
p(ej)xp(e;) = 0 and e;iye; = 0.

Proof. For any e; € ny, clearly (e;)* = 0 so that [p(e;)]* = 0. It is easy to check that
for ek € My, ejemie; = 0 so that ejxe; = 0 for any x € ng. Therefore eyxp*l(x)ey- =0
then ¢(e;)x¢(e;) = 0. Similarly, for e, € ny, ej;enie; = 0 leads to e;ye; = 0. O

LEMMA 2.4. Let ¢ be in Aut(ng). Then ¢(ny) = n;.
Proof. We express ¢(e;;) and ¢(e; ;+1), respectively, as

n+1

o(e;) = Zag,lekk modn;, i=1,2,...,n+1,
k=1
n+l1

pleiiy1) = szkekk modny, i=1,...,n.
k=1
Then, we have

n+1
vlei) = lpea)] Z(a Yewmodm, i=1,2,....n+1.
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So(a)=dal,i=1,2,....n4+1,k=1,2,...,n+ 1. Moreover,

n+1

v(eiir1) = plei) o p(eiy1) = Z 2a§f,1b,i’zekk modny, i=1,...,n
k=1

Then b;{’,)( = Zaﬁfibg{, i=1,....,n,k=1,2,...,n+ 1. Therefore
(i) 7.(1) () () (i) (i) (i) (i) 7.(0) (i) ()27,
WDy = gy, (2bk/c - bkk) = gy, (2bkk - 2akkbkk) = 2[akk - (akk) ]bkk =0,

thaltis, b,((’,)( = Zag,)cb;:,)( =0,i= ll, ...,nk=1,2,...,n+ 1. That means ¢(n;) C n;. So
@~ (1) C my, thatis, n; = po~" () C @(ny). 0

Let my=njon;, mp=mom_;, k=2,...,n It is clear to know n; =
>k Z;’:—{”H Rejjvm, k=2, ...,n Notice that n,,; = 0. Without loss of generality,
an element in n; is often denoted by #;. It is obvious that 7,1, t,, o t; € n,, for
m+k<nor t,ty =0 and ¢, oty =0 for m+ k > n. For any ¢ €Aut(ny), we have
that o(n;) =n;, ¢(m) =@m)ogm) = non =m,..., ) =mn, k=2,...,n
Therefore o(ng\ngy 1) =m\ngyq, k=0,1,...,n— 1. Let R* be the multiplicative
group of all the invertible elements of R. For any ¢ €Aut(ng), there exists b € R*
such that <,0(€1,n+1) = b€1,n+1.

LEMMA 2.5. Let ¢ in Aut(ng). Then

1 1
plen) = 0(11)811 + ai,_;,)_]’n+1en+l,n+l + 4

(09] (1) 1 . .
where ayy +a, .1 = 1 and ay| is an idempotent of R.

Proof. We express ¢(e11) as ¢(e11) = Zi} agk)ekk + t1. Letey,, € nj. By Lemma2.4
¢ (e1n) € ny. By Lemma 2.3 ;190 (e1n)er; = 0. Consequently,

1
‘/’(6’11)91;11<P(311) = a(ll)ag,l,)ﬂelm +ty=0 m=2...,n+1

Let ey 541 € ny. Similarly,

1
(0(€1l)€m,n+lfﬂ(€ll) = al(qiy)nailll,nJrlem,n-H + thm2 = 07 m = 1’ cees
So a(lll)aﬁ,l,)n =0 and aﬁ,l,,),,agilynﬂ =0,m=2,...,n From g(e| n+1) = bej yt1, b € R*,
we have
1 1
ple1 1) = plen) o pler 1) = (”(11) + ag,ll,,,ﬂ)bel,nﬂ,

then a(lll) + aizlll,nﬂ =1. So dy = aﬁ,l,)n(a(lll) + aﬂl,nH) =0, m=2,...,n From the
process of proving Lemma 2.4 we know (a(lll))2 = a(lll). ]

Now let us introduce standard Jordan automorphisms of 7}, (R).

(1) Let ¢ be an idempotent of R. Then ¢, 1 — ¢ are orthogonal idempotents,
that is, (1 —¢) =0. Let ¢y = Z;’;l ein—it2. We define a map &: x+— ex+ (1 —
£)(eoxeg)”, where t denotes the transpose of a matrix. If both ¢ and £ are
idempotents of R, then 1 — (¢ — &)? is also an idempotent of R and ¢,¢; = Sl(e—zp-
This implies that ;;1 =¢ and ¢ is an R-module automorphism of T7,.;(R).
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Obviously, ¢; is the identity automorphism of 7,.;(R) and ¢, = e&; + (1 — €)&.
From ¢.(xoy) = ¢.(x) o ¢:(y) for any x,y € T4 1(R), we know that ¢, is a Jordan
automorphism of 7,,(R). We call ¢, a graph automorphism. If ¢ is non-trivial,
the graph automorphism ¢, is neither an R-algebra automorphism nor an R-
algebra anti-automorphism of T7,.1(R), unless one of the ideals &7,,;(R) or
(1 —-¢e)T,11(R) of T, 1(R) is commutative. The graph automorphism ¢, on the
basis of Tn+l(R) acts as ;a(ek]) = ¢ee + (1 - 8)eiz—j+2,n—k+2(1 <k< [%]v k <Jj=
n—k+1), ¢(ernris2) = knir2(l <k <1+[5]) and &e(enjro.nks2) = (1 — &)y +
gen_jron—k2(1 <k < [%], k <j<n—k+1), where [%] is the integer part of %
The set of all graph automorphisms of 7,,,1(R) is a subgroup of Aut(ng), which is
denoted by G.

(ii) For any y eny, let h =e+y. The map 6;: x — hxh~! is called an inner
automorphism which is an R-algebra automorphism of T,41(R). If h = hy(a) = e +
aej(i < j) with some a € R, then 6, is called the ‘simple’ form. Using [hy-(a)]_1 =
hij(—a) we know that 0y, (eii) = ei; — aej , Ona)(ej) = ej + aejfori < jand Oy, (exk) =
er for k # i, j and that 9},””.(,1)(61‘,,'_,_1) = e;i+1 + aey v and 911[“./.(”)(6,',,41) = eiy1 — dej
also Gl,m,(,,)(ek k+1) = kg1 and Oy, a)(€rir1) = exiy1 for k # i, m, j. It is easy to see
that Oh (o) = = Op;(—a)- The set of all the ‘simple” inner automorphisms of 7,11 (R) generates
a subgroup of Aut(ng), which is denoted by Z.

(iii) Let d = Z”+l diejjwhered; € R*,i=1,2,...,n+ 1. Themap A;: x — dxd~!
iscalled a dzagonal automorphism which is an R-algebra automorphism of 7,11 (R). Itis
obvious that 47! = A,-1. A diagonal automorphism on the basis of 7, (R) yields that

k —1
)‘d(eu) = €jj and )‘d(et,z-fk) nm 1 c,+m 1, 1+mel i+k for dl = 1 d = l_[mzz Ci—m+1,i-m+2 €

R* i=2,...,n+ 1. The set of all dlagonal automorphisms of T,,11(R) is a subgroup
of Aut(ng), which is denoted by D.

3. Lemmas for main results. In order to achieve our goal, we also need other
lemmas.

LEMMA 3.1. Let ¢ be in Aut(ng). There exists a graph automorphism ¢, such that
Ceplen) = en + 11

1
Proof- By Lemma 2.5, ¢(e1;) = a“ ey + an+1 nr1€ntlntl + 11 Take & = a(”), then

1 1
L) = ap) (e + @y S @nran) + o(n)
1 1 1
= a(ll)[a(ll)ell+(1 - a(ll))e"+1~"+1]+(l - a(ll))[all enttnri+(1 = all))ell]+ll
1 )2
(a(”)) el + (1 - a(n)) ejp+t =en + 4.
This completes the proof. Il

LEMMA 3.2. Let ¢ be in Aut(ng). If ¢(e1;) = ey + t1, then <p(e,,) =e;+1t, I =
1,2,....,n+1and ¢p(e;ir1) = f,l)ﬂe,,,ﬂ + 1, i=1,...,nwhere bl i1 € R%

Proof. If ¢;; € ny, then ¢~ '(¢;;) € n;. By Lemma 2.3 we have e;;p~'(¢;1)e;; = 0 then
@(ei)ejg(e;;) = 0. Therefore,

(p(en)elm(p(en) = a(l) g/,)melm + tu— i+1 = 0 = 1 - l(m > 2)7

pleiemipler) = af D%+hmﬂ—01—m+1 L+ 1(m < n),

mm
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SO agf-')ag?m =0, i#m. When i#j, ¢(e;)op(e;) = ZZ:} az}iag}){ekk +t =0, so
ag,)(agz =0, i#j. Let us express ¢(e;i+1) as ¢(ei+1) = ZZ:l b,((i?k+1ek,k+1 + 1.
Therefore g(e12) = @(e11) o plen) = b(llz)é’lz + 1,. From ¢~ 'p(e11) = ¢~ '(e11) + 11, we
have o~ !(e11) = ey + t1. Then o~ !(e1y) = 13(112)612 + t,. Furthermore, e;r = ¢ 'p(en) =
b(llz)B(llz)elz + 15, then bﬁlgiaﬁ‘; =1, that is, b(llz) € R*. Also we have ¢(en) = ¢(ern) o
plen) = (a(lzl) + a%) )b(llz)elz + t5. Then a(lzl) + agzz) = 1. From a(lll) a(lzl) = 0, we know a(lzl) =
0, that is, a(zzz) = 1. Using induction we assume that ¢(e;—1m—1) = €m—1.m—1 + 1,
@emtm) = b0 et + 1,00 € R* and afyy = 1 hold. Then ) =0, k # m,
that is, p(e,m) = €pm + t>. From

(P(em,m+l) = @(emm) © w(em,m+l) = b,(:'l,)nJrlem,m-#—l + b,(;n,)lymem—l,m + 1,

we have 5"

k] =0, k #m—1,m. From

(p(em—l,m—l) o (p(em,n1+l) = bizj_)lgmem—l,m +5=0,

we have bi,’f_)l’m = 0, that is, p(€pn m+1) = bﬁ;"in +1€mm+1 + to. In the same way, we know

bg;"gn 41 € R*. Furthermore,
1
(p(em,m+1) = (p(em,erl) © @(eerl,erl) = (a%j_]) + ai/:/lﬂ$’3’1+l)b£;/':lln+lem,m+l + b
Then ait " + al(;'fllﬁiwl =1.So aﬁ;ﬁl’;H =1. When m = n, the proof is completed. []

LEMMA 3.3. Let ¢ be in Aut(ng). If p(e;;)) = e+ t,i=1,2,...,n+1, then
_ (1)
plen) = e +apen+ b,
j i—1 .
plei) = eii + aﬁf3+lei,i+1 - af-l_l’zeifl,i +h,i=2,...,n(n>2),

(n)
P(en+1,n+1) = €ntintl — Ay py€nntl + L2

Proof. We write ¢(e;;) as
n P
plei) = eii + Zag’)kﬂfk,kﬂ +0,i=1,2,...,n+1
k=1
From ¢(e;;) = [p(e;)]* we have
— (0]
plen) = e +apen+t,
plei) = e + lef,?+1€’i,i+1 + aﬁf,,iei_l,i +h,i=2,...,n,

(n+1)
‘P(en+1,n+l) = eptlntl + Ay nr16nn+l + 6.

Then
. " )
p(en) 0 gleinriv)) = (@ +ai e + =0, i=1,....n.
S
Soauﬂ_—aiﬂl,z_l,...,n. 0
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LEMMA 3.4, Let ¢ be in Aut(ng). If p(e;;)) = ey +t1,i = 1,2, ..., n+ 1, we take that

n
0= Heh,,,ﬂ(aff,m'
i=1
Then

Oplei)=ei+t, i=1,2,....,n+1.

| Proof. From 6§, o (i) = ei — ag,lt)-&-lei,i—&-l and 6, (0 (€ir1ir1) = €ivtiv1 +
aﬁ’l) ,1€.i+1 and then by Lemma 3.3 it is not difficult to complete the proof. O
LEMMA 3.5. Let ¢ be in Aut(ng). If p(e;;)) = ejj+ tm—1,i=1,2,...,n+ 1, then

0

p(eir) = i+ a; ;1 Ciitm1 +tm, 1 < i <minfm —1,n—m+ 2},

(i) (i—m+1)
§0(€jl‘) =e¢;+ A iym—1Ciitm—1 — Qi1 1 €Ci—m+1,i + tm,

. n+1
m<i<n—-m+2{m< 3 ,

p(eir) = eii + tm,

n+1 n+1

i|+1 or when n is odd, m > [T]—}—l),

n—M+3§i§m<mz[
— .
(ei) = e — a\ " e it i by, max{n —m+3,my <i<n+ 1.

Proof. Itisthecasein Lemma 3.3 if m = 2. Using the method of proving Lemma 3.3
we may verify the consequence. O

LEMMA 3.6. Let ¢ be in Aut(ng). If p(ei)) = eji+ ty—1,i=1,2,...,n+ 1, we take
that

n—m-+2

h[.i+m—l(af'.?+m—l )

i=1
Then
Oplei)=eii+1tm, i=1,2,....,n+ 1.
Whenm=n+1, 0¢(e;) =e;, i=1,2,...,n+ 1.
Proof. The process for verifying the result is similar to that of Lemma 3.4. O

LEMMA 3.7. When n > 1, let ¢ be in Aut(ng). If p(e;;) = ey, there exists a diagonal
automorphism Aq such that Aq@(e;ir1) = €1+, i=1,...,n

Proqﬁ By Lemma 3.2 we know that <p(e,;l-f1)=b§f?+1€i,i+1 +t,i=1,...,n,
where b;’m € R*. Let A, satisfy e (bﬁf?+1)*lei,i+1, where dy =1, d; =
]_[in=2 bﬁ:ﬁqlffm 42 i=2,...,n+1. Applying As¢ to e;;11 we get the asserted
property. Il
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LEMMA 3.8. Whenn > 1, let ¢ be in Aut(ng). If p(e;;) = e, i=1,2,...,n+ 1 and
pleiiv))=eiir1+t,i=1,...,n theng(ejir1) =e€ir1, i=1,...,n

Proof- We express ¢(e; ;1) as

n n—k+1
pleiiv1) = €1 + Z Z bﬁ,’,),m%em,mw, i=1,...,n
k=2 m=1
Therefore,
n
1
p(en) = g(err) o p(ern) = enn + Zb(l,)1+k€1~1+k(n >2),
k=2
p(e23) = plen) o p(ex) = ex(n = 2),
n—1
2
p(e23) = p(en) o ple) = e + Z b(z,)2+k€2,2+k(” > 3),
k=2
n—i+1
(p(el l+1) - ¢(etl) © (p(el H—l) = €jit1 + Z b, itk Ciiithk + bel)kl ,l)k,
k=2 k=2

x(B3<i<n-1,n>4),

QO(C‘,, n+l) = (p(enn) © (p(en n+l) = epnt+1 T+ Z b;n)k n ;n)k n(l’l = 3)
k=2

Sofori=1,2,...,n

@(eiir1) = @(eiir1) 0 p(eir1,ir1) = @(€iit1) © €itl,it1 = €jit1-

In the case n = 1, ¢(er2) = eq3. O

4. Proofs of main results. Proof of Theorem 1.1. By Lemma 3.1, Lemma 3.4 and
Lemmas 3.6-3.8 there are A;!, 6! and ¢, such that

A0 eplen) = e, i=1,2,...,n+ 1.
)k,;lg_lﬁeﬁﬂ(é’i,iﬂ) =e1, i=1,...,n

Since ey, €i+1.i+1, €iir1, 1 = 1, ..., n, generate T, 1(R), then ¢ = {.0A,. The uniqueness
of the decomposition follows from Theorem 1.2. ]

Proof of Theorem 1.2. By Theorem 1.1 we have Aut(ng) = GZD. For any x € ny we
have O,14(x) = h(dxd =" Yh™" = Ag0,-134(x), thus Ophy = AgOs-14. SO0 L < ID. Obviously,
IND =1, then ZD =T x D. Also we have ¢y0;(x) = [eo(hxh~V)eo]” = Ozo-1)%0(X),
that is, o0, = Og,h-1)0. From

Och(1—ereotrH(X) = [eh + (1 — &)go(h™ x[eh + (1 — &)go(h™ ]!

[eh + (1 — &)¢o(h™ HIx[eh™ + (1 — e)o(h~")™']
e2hxh™" + (1 — &)’ ¢o(h™ " )x(go(h™") ™!

£0,(x) + (1 — &)8z, 1) (x)

= [e0n + (1 — €)oOnol(x),
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we have 6.4 (1—e)eon-1) = €61 + (1 — £)064¢0. Furthermore,

CeOnte = [e¢1 + (1 — &)olOnle¢1 + (1 — )&o]
= &0, + (1 — &)*%obndo

= Ochr(1—e)to(h)-

Similarly, . il = Aedr(1-e)z@-)- Thus D 9 GID. Clearly, GNID =1, then GID =
G X (Z x D), that is, Aut(ng) = G x (Z x D). O
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