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Abstract. Let X , Y be two Hilbert spaces, let E be a subset of X , and let G∶ E → Y be a Lipschitz

mapping. A famous theorem of Kirszbraun’s states that there exists G̃ ∶ X → Y with G̃ = G on E and

Lip(G̃) = Lip(G). In this note we show that in fact the function G̃ ∶= ∇Y(conv(g))(⋅, 0), where

g(x , y) = inf
z∈E
{⟨G(z), y⟩ + Lip(G)

2
∥(x − z, y)∥2} + Lip(G)

2
∥(x , y)∥2 ,

defines such an extension. We apply this formula to get an extension result for strongly biLipschitz

mappings. Related to the latter, we also consider extensions of C1,1 strongly convex functions.

1 An Explicit Formula for Kirszbraun’s Theorem

In 1934, M. D. Kirszbraun [23] proved that, for every subset E of Rn and every
Lipschitz function f ∶ E → R

m , there exists a Lipschitz extension F ∶ Rn → R
m of

f such that Lip(F) = Lip( f ). Here, Lip(φ) denotes the Lipschitz constant of φ,
that is,

Lip(φ) = sup
x≠y

∥φ(x) − φ(y)∥
∥x − y∥ .

�is theorem was generalized for Hilbert spaces X ,Y in place of Rn and R
m by

F. A. Valentine [30] in 1945, and the result is o�en referred to as the Kirszbraun–
Valentine theorem. �e proof is rather nonconstructive, in the sense that it requires
the use of Zorn’s lemma or transfinite induction at least in the nonseparable case.
In the separable case, the proof can be made by induction, considering a dense
sequence {xk} in X and at each step managing to extend f from E ∪ {x1 , . . . , xm} to
E ∪ {x1 , . . . , xm+1} while preserving the Lipschitz constant of the extension by using
Helly’s theorem or intersection properties of families of balls, but it is still not clear
what the extension looks like. Several other proofs and generalizations that are not
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Kirszbraun’s �eorem Via an Explicit Formula 143

constructive either have appeared in the literature; see [26, 21, 15, 11, 27, 5, 1]; apart
from Zorn’s lemma or induction these proofs are based on intersection properties
of arbitrary families of balls, or on maximal extensions of non-expansive operators
and Fitzpatrick functions. In 2008, H. H. Bauschke and X. Wang [9] gave the first
constructive proof of the Kirszbraun–Valentine theorem of which we are aware;
they relied on their previous work [8] on extension and representation of monotone
operators and the Fitzpatrick function. See also [2], where some of these techniques
are used to construct definable versions of Helly’s and Kirszbraun’s theorems in
arbitrary definably complete expansions of ordered fields. Finally, in 2015 E. LeGruyer
and T-V. Phan provided sup-inf explicit extension formulas for Lipschitz mappings
between finite dimensional spaces by relying on Le Gruyer’s solution to the minimal
C1,1 extension problem for 1-jets; see [25, �eorem 32 and 33] and [24].

In this note, we present a short proof of the Kirszbraun–Valentine theorem in
which the extension is given by an explicit formula.�is proof is based onour previous
work concerning C1,1 extensions of 1-jets with optimal Lipschitz constants of the
gradients [4]. See [14] for an alternative construction of such C1,1 extensions on the
Hilbert space, and [12, 16, 17, 18] for the much more difficult question of extending
functions (as opposed to jets) to C1,1 or Cm ,1 functions on R

n .
If X is a Hilbert space, E ⊂ X is an arbitrary subset, and ( f ,G)∶E → R × X is a 1-

jet on E , we will say that ( f ,G) satisfies condition (W 1,1) with constant M > 0 on E
provided that

f (y) ≤ f (x) + 1
2
⟨G(x) +G(y), y − x⟩ + M

4
∥x − y∥2 − 1

4M ∥G(x) −G(y)∥2 ,(1.1)

for all x , y ∈ E.
In [32, 24], it was proved that condition (W 1,1) with constantM > 0 is a necessary

and sufficient condition on f ∶E → R, G∶E → X for the existence of a function F ∈
C1,1(X) with Lip(∇F) ≤ M and such that F = f and ∇F = G on E . Here, ∇F(x)
denotes the gradient of F at the point x , that is, the unique vector∇F(x) ∈ X forwhich
DF(x)(v) = ⟨∇F(x), v⟩ for every v ∈ X, where DF(x) ∈ X∗ denotes the Fréchet
derivative of F at the point x . More recently, as a consequence of a similar extension
theorem for C1,1 convex functions, we have found an explicit formula for such an
extension F .

�eorem 1.1 [4, �eorem 3.4] Let E be a subset of a Hilbert space X. Given a 1-jet
( f ,G) satisfying condition (W 1,1) with constant M on E, the formula

F = conv(g) − M
2
∥ ⋅ ∥2 ,

g(x) = inf
y∈E
{ f (y) + ⟨G(y), x − y⟩ + M

2
∥x − y∥2} + M

2
∥x∥2 , x ∈ X ,

defines a C1,1(X) function with F∣E = f , (∇F)∣E = G, and Lip(∇F) ≤ M.

Here, conv(g) denotes the convex envelope of g, defined by

conv(g)(x) =
sup {h(x) ∶ h is convex, proper and lower semicontinuous, h ≤ g}.(1.2)
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144 D. Azagra, E. Le Gruyer, and C. Mudarra

Another expression for conv(g) is given by

conv(g)(x) =
inf { k

∑
j=1

λ j g(x j) ∶ λ j ≥ 0,
k

∑
j=1

λ j = 1, x =
k

∑
j=1

λ jx j , k ∈ N},(1.3)

and also by the Fenchel biconjugate of g, that is,

conv(g) = g∗∗ ,(1.4)

where

h∗(x) ∶= sup
v∈X
{⟨v , x⟩ − h(v)};(1.5)

see, for instance, [13, Proposition 4.4.3]. In the case where X is finite dimensional, say
X = Rn , the expression (1.3) can be made simpler: by using Carathéodory’s �eorem
one can show that it is enough to consider convex combinations of at most n + 1
points. �at is to say, if g ∶ Rn → R, then

conv(g)(x) = inf { n+1
∑
j=1

λ j g(x j) ∶ λ j ≥ 0,
n+1
∑
j=1

λ j = 1, x =
n+1
∑
j=1

λ jx j};(1.6)

see, for instance, [28, Corollary 17.1.5].
In general, the convex envelope does not preserve smoothness of orders higher

thanC1 andC1,1 . For instance, the function g(x , y) =√x2 + e−y2 defined onR2 is real
analytic and its convex envelope is conv(g)(x , y) = ∣x∣ for every (x , y) ∈ R2; see [10].
In [22], Kirchheim and Kristensen proved that the convex envelope of a differentiable
function g on R

n is of class C1 , provided that g is coercive. On the other hand, if g is
of class C1,1 on a Hilbert space X , or even if g only satisfies

g(x + h) + g(x − h) − 2g(x) ≤ M∥h∥2 , x , h ∈ X

for some M > 0, then conv(g) is of class C1,1 and Lip(∇ conv(g)) ≤ M; see [4,
�eorem 2.3]. In particular, if g = inf i(g i) is the infimum of an arbitrary family of
parabolas g i , whose second derivatives are uniformly bounded by a constant M > 0,
then conv(g) is of class C1,1 with Lip(∇ conv(g)) ≤ M , provided that g has a convex
lower semicontinuous minorant. However, conv(g) is not necessarily of class C2

even when g is the minimum of two parabolas: if we define g(x) =min{x2 , (x − 1)2}
for x ∈ R, then conv(g)(x) = x2 for x ≤ 0, conv(g) = 0 for 0 ≤ x ≤ 1, and conv(g) =
(x − 1)2 for x ≥ 1; and therefore conv(g) ∈ C1,1(R) ∖ C2(R).
�eorem 1.2 (Kirszbraun’s theorem via an explicit formula.) Let X ,Y be twoHilbert
spaces, let E be a subset of X , and let G ∶ E → Y be a Lipschitz mapping. �ere exists
G̃∶X → Y with G̃ = G on E and Lip(G̃) = Lip(G). In fact, if M = Lip(G), then the
function G̃(x) ∶= ∇Y(conv(g))(x , 0), x ∈ X, where

g(x , y) = inf
z∈E
{⟨G(z), y⟩Y + M

2
∥x − z∥2X} + M

2
∥x∥2X +M∥y∥2Y , (x , y) ∈ X × Y ,

defines such an extension.
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Here, ∥ ⋅ ∥X and ∥ ⋅ ∥Y denote the norm on X and Y , respectively. Also, the inner
products in X and Y are denoted by ⟨⋅, ⋅⟩X and ⟨⋅, ⋅⟩Y , respectively. For any function
F ,∇YF will stand for the Y-partial derivatives of F , that is, the canonical projection
from X × Y onto Y composed with ∇F.

Proof We consider on X × Y the norm given by ∥(x , y)∥ =√∥x∥2X + ∥y∥2Y
for every (x , y) ∈ X × Y . �en X × Y is a Hilbert space whose inner product is
⟨(x , y), (x′ , y′)⟩ = ⟨x , x′⟩X + ⟨y, y′⟩Y for every (x , y), (x′ , y′) ∈ X × Y . We define
the 1-jet ( f ∗ ,G∗) on E × {0} ⊂ X × Y by f ∗(x , 0) = 0 and G∗(x , 0) = (0,G(x)).
�en the jet ( f ∗ ,G∗) satisfies condition (W 1,1) on E × {0} with constant M (see
inequality (1.1)). Indeed, by the definition of f ∗ , and G∗ , we can write, for every
(x , 0), (y, 0) ∈ E × {0},

f ∗(x , 0) − f ∗(y, 0) + 1
2
⟨G∗(x , 0) +G∗(y, 0), (y, 0) − (x , 0)⟩

+ M
4
∥(x , 0) − (y, 0)∥2 − 1

4M ∥G∗(x , 0) −G∗(y, 0)∥2
= 1

2
⟨(0,G(x)) + (0,G(y)), (y, 0) − (x , 0)⟩
+ M

4
∥x − y∥2X − 1

4M ∥G(x) −G(y)∥2Y
= M

4
∥x − y∥2X − 1

4M ∥G(x) −G(y)∥2Y ,
and the last term is nonnegative, because G isM-Lipschitz on E .

�erefore, �eorem 1.1 asserts that the function F defined by F = conv(g) − M
2
∥ ⋅

∥2 , where
g(x , y) = inf

z∈E
{ f ∗(z, 0) + ⟨G∗(z, 0), (x − z, y)⟩ + M

2
∥(x − z, y)∥2}
+M

2
∥(x , y)∥2 ,

is of class C1,1(X × Y) with (F ,∇F) = ( f ∗ ,G∗) on E × {0} and Lip(∇F) ≤ M . In
particular, the mapping X ∋ x ↦ G̃(x) ∶= ∇YF(x , 0) ∈ Y isM-Lipschitz and extends
G from E to X . Finally, the expressions defining G̃ and g can be simplified as

G̃(x) = ∇Y( conv(g) − M
2
∥ ⋅ ∥2)(x , 0)

= ∇Y(conv(g))(x , 0) −∇Y(M2 ∥ ⋅ ∥2)(x , 0) = ∇Y(conv(g))(x , 0)
and

g(x , y) = inf
z∈E
{⟨G(z), y⟩Y + M

2
∥x − z∥2X} + M

2
∥x∥2X +M∥y∥2Y . ∎

Let X be a Hilbert space with inner product and associated norm denoted by ⟨⋅, ⋅⟩
and ∥ ⋅ ∥, respectively. If E ⊂ X is arbitrary and G ∶ E → X is a mapping, we say that G
is firmly non-expansive if

⟨G(x) −G(y), x − y⟩ ≥ ∥G(x) −G(y)∥2 for all x , y ∈ E .

Important examples of firmly non-expansive mappings are the metric projections
onto closed convex sets of Hilbert spaces and the proximal mappings prox f ∶X → X of

proper lower semicontinuous convex functions f ∶X → (−∞,+∞]; see [6, Chapter
12]. Firmly non-expansive mappings arise naturally in convex feasibility problems
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146 D. Azagra, E. Le Gruyer, and C. Mudarra

too: given a family C1 , . . . ,CN of closed convex sets of a Hilbert space, find a
point x ∈ ⋂i C i . Also, these mappings are known to be resolvents JA = (A+ I)−1 of
monotone or maximally monotone operators A∶X ⇉ X , and they play a crucial role
in the following basic problem that arises in several branches of applied mathematics:
given a maximally monotone operator A∶X ⇉ X , find a point x ∈ X with 0 ∈ Ax . For
more information about firmly non-expansive mappings and their applications, see
[5, 6, 7, 9] and the references therein.

It is well known that a mappingG∶E → X is firmly non-expansive if and only 2G −
I ∶ E → X is 1-Lipschitz, where I denotes the identity map; see [6, Proposition 4.2]
for a proof of this fact. Using this characterization and �eorem 1.2, we obtain the
following corollary.

Corollary 1.3 Let G∶E → X be a firmly non-expansive mapping defined on a subset E
of aHilbert space X .�enG can be extended to a firmly non-expansivemapping G̃∶X →
X by means of the formula G̃(x) ∶= 1

2
(P2(∇(conv(g))(x , 0)) + x), x ∈ X, where

P2(x , y) = y, (x , y) ∈ X × X , and

g(x , y) = inf
z∈E
{2⟨G(z), y⟩ + 1

2
∥z − (x + y)∥2} + 1

2
∥x − y∥2 , (x , y) ∈ X × X .

2 Extensions of Strongly BiLipschitz Mappings

In this section, we consider strongly biLipschitz mappings, which appear naturally as
derivatives of strongly convex C1,1 functions, and we provide an extension result for
this class of mappings.

Definition 2.1. Let E be a subset of a Hilbert spaceX.We say that amappingG ∶ E →
X is strongly biLipschitz provided that

SBilip(G) ∶= inf
x ,y∈E ; x≠y

2⟨x − y,G(x) −G(y)⟩
∥x − y∥2 + ∥G(x) −G(y)∥2 > 0.

Strongly biLipschitz mappings may be interesting with regard to some problems
in computer vision or image processing where one needs to match points in R

n : for
instance, given two sets of points inRn with equal cardinality, find a homeomorphism
from R

n onto itself that does not distort distances too much and takes one set onto
the other. Supposing that the data satisfy the strongly biLipschitz condition, our
explicit formula for such an extension can be useful. Also, in [7, Corollary 4.5], it was
shown that strongly biLipschitz mappings are closely related to contractivemappings:
a maximally monotone mapping G is strongly biLipschitz if and only if its reflected
resolvent N = 2(G + I)−1 − I is a contractive mapping. See [29, Chapter 12] for more
information about resolvent mappings and maximally monotone operators.

It should also be noted that it is not generally true that a biLipschitzmappingwhose
domain and range is a subset of the sameHilbert spaceX extends to a total one-to-one
continuous mapping, as shown by the following example.
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Example 2.2. Let ∣ ⋅ ∣ denote the euclidean norm onRn . Let C = {x ∈ Rn ∶ ∣x∣ = 1} ∪
{p}, let p be any point with ∣p∣ > 1, and let g ∶ C → R

n be defined by g(x) = x for
∣x∣ = 1 and g(p) = 0. �en both g and g−1 are Lipschitz but no continuous extension
of g to Rn can be one-to-one.

However, this is true for the class of strongly biLipschitz mappings, and moreover,
the extension can be performed without increasing what seems natural to call the
strong biLipschitz constant SBilip(G), as we will show by using the extension formula
for Lipschitz mappings given by�eorem 1.2.

Proposition 2.3 If G ∶ E → X is strongly biLipschitz, then G is biLipschitz.

Proof For every x , y ∈ E , we have

2∥x − y∥∥G(x) −G(y)∥ ≥ 2⟨x − y,G(x) −G(y)⟩
≥ α(∥x − y∥2 + ∥G(x) −G(y)∥2),(2.1)

where α = SBilip(G) is as in Definition 2.1. It follows that G is one-to-one. Note that
we can write (2.1) in the equivalent form

∥G(x) −G(y) − 1
α (x − y)∥2 ≤ 1−α2

α2 ∥x − y∥2 .(2.2)

Setting λ ∶=
∥G(x) −G(y)∥
∥x − y∥ for x ≠ y, (2.1) holds if and only if

λ2 − 2
α λ + 1 ≤ 0,(2.3)

which is equivalent to 1
K ≤ λ ≤ K; where K =

1
α + ( 1

α2 − 1)1/2 . �is means that for any
x , y ∈ E with x ≠ y, we have

1

K
≤
∥G(x) −G(y)∥
∥x − y∥ ≤ K .

�erefore, G is a biLipschitz mapping. ∎

Remark 2.4. (i) If X = R, then the strongly biLipschitz functions are exactly the
strictly increasing biLipschitz functions.

(ii) IfG∶ E → X is such that SBilip(G) = 1, thenG is the restriction of a translation.
(iii) If G ∶ E → X is an isometry such that

α ∶= inf
x ,y∈E ; x≠y

⟨x − y,G(x) −G(y)⟩
∥x − y∥2

> 0,

then G is a strongly biLipschitz function with SBilip(G) = α. However, the
composition of strongly biLipschitz isometries need not be strongly biLipschitz
(for instance, if r∶R2 → R

2 is defined by r(z) = eπi/4z, then r is strongly
biLipschitz, but r2 is not (and in fact r4 = −id is not strongly biLipschitz locally
on any disk).
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�eorem 2.5 Let G ∶ E → X be a strongly biLipschitz mapping. �en G extends to a
strongly biLipschitz mapping on X preserving the strongly bilipchitz constant SBilip(G).
Moreover, if α = SBilip(G), the formula G̃(x) ∶= P2(∇(conv(g))(x , 0)) + 1

α x, x ∈ X;
where

P2(x , y) = y, (x , y) ∈ X × X , and

g(x , y) = inf
z∈E
{⟨G(z), y⟩ − 1

α ⟨z, y⟩ +
√
1−α2

2α ∥x − z∥2}
+
√
1−α2

α
( 1
2
∥x∥2 + ∥y∥2), (x , y) ∈ X × X ,

defines such an extension.

Proof We know from the characterization (2.2) that G − 1
α I is Lipschitz on E with

Lip(G − 1
α I) ≤

√
1−α2

α2 . By �eorem 1.2, the mapping T ∶X → X defined as T(x) ∶=
P2(∇(conv(g))(x , 0))x ∈ X; where P2(x , y) = y for every (x , y) ∈ X × X, and

g(x , y) = inf
z∈E
{⟨G(z), y⟩ − 1

α ⟨z, y⟩ +
√
1−α2

2α ∥x − z∥2}
+
√
1−α2

α
( 1
2
∥x∥2 + ∥y∥2), (x , y) ∈ X × X ,

is an extension of G − 1
α I to all of X such that Lip(T) = Lip(G − 1

α I) ≤
√

1−α2

α2 .

�erefore, if we define the function G̃ = T + 1
α I, we have that

∥G̃(x) − G̃(y) − 1
α (x − y)∥2 = ∥T(x) − T(y)∥2 ≤ 1−α2

α2 ∥x − y∥2

for all x , y ∈ X. We obtain from (2.2) that G̃ is strongly biLipschitz on X with
SBilip(G̃) = α. Also, since T is an extension of G − 1

α I, it is obvious that G̃ is an
extension of G . ∎

3 C
1,1 Strongly Convex Functions

In this section, we characterize the 1-jets that can be interpolated by strongly convex
functions of class C1,1 in Hilbert spaces. A function F∶X → R is strongly convex
if F − c∥ ⋅ ∥2 is convex for some c > 0. In Proposition 3.2, we will see that the
gradient of a C1,1 strongly convex function is a biLipschitz mapping. �ese functions
arise naturally when studying smooth manifolds of positive curvature as well as in
problems involving Monge–Ampère equations. See the papers [19, 20, 31] for some
results and problems involving smooth strongly convex functions.

�roughout this section X denotes a Hilbert space with norm and inner product
denoted by ⟨⋅, ⋅⟩ and ∥ ⋅ ∥, respectively.
Definition 3.1. Let E ⊆ X be arbitrary, let ( f ,G) ∶ E → R × X be a 1-jet and c ∈
R, M > 0 constants such thatM > c. We say that ( f ,G) satisfies condition (SCW 1,1)
with constants (c,M) provided that
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f (x) ≥ f (y) + ⟨G(y), x − y⟩ + c
M−c ⟨G(x) −G(y), y − x⟩ + cM

2(M−c)∥x − y∥2
+ 1

2(M−c)∥G(x) −G(y)∥2
for every x , y ∈ E .

Proposition 3.2 Assume that ( f ,G) ∶ E → R × X satisfies condition (SCW 1,1) with
constants (c,M).�en the following properties hold.

(i) For every x , y ∈ E , we have

(c +M)⟨G(x) −G(y), x − y⟩ ≥ cM∥x − y∥2 + ∥G(x) −G(y)∥2 .

(ii) G is Lipschitz with c ≤ Lip(G) ≤ M .
(iii) If c > 0, then G is strongly biLipschitz with SBilip(G) ≥ 2

c+M min{1, cM}.

(iv) For c = −M we recover Wells’s condition W 1,1 considered in [32, 24, 4]. For c = 0,
(SCW 1,1) is just condition (CW 1,1) of [3, 4]. For c ∈ (0,M]we have what can be
called a C1,1 strongly convex 1-jet, which in the extreme case c = M becomes the
restriction of a quadratic function to E.

Proof (i) Let x , y ∈ E . By summing the inequalities

f (x) ≥ f (y) + ⟨G(y), x − y⟩ + c
M−c ⟨G(x) −G(y), y − x⟩ + cM

2(M−c)∥x − y∥2
+ 1

2(M−c)∥G(x) −G(y)∥2 ,
f (y) ≥ f (x) + ⟨G(x), y − x⟩ + c

M−c ⟨G(y) −G(x), x − y⟩ + cM
2(M−c)∥x − y∥2

+ 1
2(M−c)∥G(x) −G(y)∥2 ,

we obtain

0 ≥ (1 + 2c
M−c )⟨G(x) −G(y), y − x⟩ + cM

M−c ∥x − y∥2 + 1
M−c ∥G(x) −G(y)∥2 ,

which is equivalent to the desired estimation.
(ii) Let x , y ∈ E be such that x ≠ y. Writing λ = ∥G(x) −G(y)∥/∥x − y∥, the

inequality in (i) yields λ2 − (c +M)λ + cM ≤ 0, which in turn implies c ≤ λ ≤ M .
(iii) It follows immediately from (i) and Definition 2.1. ∎

We say that a 1-jet ( f ,G) ∶ E → R × X satisfies condition (CW 1,1) with constant
M > 0 on E provided that

f (x) ≥ f (y) + ⟨G(y), x − y⟩ + 1
2M ∥G(x) −G(y)∥2 for every x , y ∈ E .

In [4, �eorem 2.4], it was shown that (CW 1,1) is a necessary and sufficient
condition on ( f ,G) for the existence of aC1,1(X) convex extensionF of f with∇F = G
on E .

Lemma 3.3 �e 1-jet ( f ,G) satisfies (SCW 1,1) with constants (c,M) on E if and
only if the 1-jet ( f̃ , G̃) = ( f − c

2
∥ ⋅ ∥2 ,G − cI) satisfies condition (CW 1,1) with constant

M − c on E .
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Proof Assume first that ( f ,G) satisfies (SCW 1,1) with constants (c,M) on E . We
have

f̃ (x) − f̃ (y) − ⟨G̃(y), x − y⟩ − 1
2(M−c)∥G̃(x) − G̃(y)∥2

= f (x) − f (y) − ⟨G(y), x − y⟩ − c
2
∥x − y∥2

− 1
2(M−c)(∥G(x) −G(y)∥2 + c2∥x − y∥2 + 2c⟨G(x) −G(y), y − x⟩)

= f (x) − f (y) − ⟨G(y), x − y⟩ − c
M−c ⟨G(x) −G(y), y − x⟩

− cM
2(M−c)∥x − y∥2 − 1

2(M−c)∥G(x) −G(y)∥2 ≥ 0.
Conversely, if ( f̃ , G̃) = ( f − c

2
∥ ⋅ ∥2 ,G − cI) satisfies condition (CW 1,1)with constant

M − c, we can write

f (x) − f (y) − ⟨G(y), x − y⟩ − c
M−c ⟨G(x) −G(y), y − x⟩

− cM
2(M−c)∥x − y∥2 − 1

2(M−c)∥G(x) −G(y)∥2
= f̃ (x) − f̃ (y) − ⟨G̃(y), x − y⟩ + c

2
∥x − y∥2

− c
M−c ⟨G̃(x) − G̃(y), y − x⟩ + c2

M−c ∥x − y∥2
− cM

2(M−c)∥x − y∥2 − 1
2(M−c)

× (∥G̃(x) − G̃(y)∥2 + c2∥x − y∥2 + 2c⟨G̃(x) − G̃(y), x − y⟩)
= f̃ (x) − f̃ (y) − ⟨G̃(y), x − y⟩ − 1

2(M−c)∥G̃(x) − G̃(y)∥2 ≥ 0. ∎

Proposition 3.4 Let F ∈ C1,1(X) be such that Lip(∇F) ≤ M and g ∶= F − c
2
∥ ⋅ ∥2 is a

convex function, where c ∈ R, M > 0 are two constants (if c > 0, we call such a function
F a C1,1 (globally) strongly convex function). �en the following properties hold.

(i) We have M ≥ c and if M = c, then F is a quadratic function.
(ii) g is of class C1,1(X) with Lip(∇g) ≤ M − c.
(iii) Assume that M > c. For every x , y ∈ X we have

F(x) ≥ F(y) + ⟨∇F(y), x − y⟩ + c
M−c ⟨∇F(x) −∇F(y), y − x⟩ +

cM
2(M−c)∥x − y∥

2

+ 1
2(M−c)∥∇F(x) −∇F(y)∥

2 .

�erefore, according to Definition 3.1, (F ,∇F) satisfies condition (SCW 1,1) on
X with constants (c,M).

Proof (i) and (ii). Given x , h ∈ X , the fact that Lip(∇F) ≤ M and the convexity of
g yield

0 ≤ g(x + h) + g(x − h) − 2g(x)
= F(x + h) + F(x − h) − 2F(x) − c

2
(∥x + h∥2 + ∥x − h∥2 − 2∥x∥2)

≤ (M − c)∥h∥2 .
�is shows that c ≤ M and, again by convexity of g , that Lip(∇g) ≤ M − c. Finally
observe that if M = c, then g is affine and therefore F is a quadratic function.
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(iii). By virtue of (ii), the convexity of g implies that (g ,∇g) satisfies con-
dition (CW 1,1) with constant M − c on X . �us, Lemma 3.3 gives the desired
inequality. ∎

�eorem 3.5 Let E be an arbitrary subset of a Hilbert space X, let f ∶E → R, G∶E →
X be two functions, and let c ∈ R, M > 0 be two constants. �ere exists a function
F ∈ C1,1(X) such that F = f , ∇F = G on E , Lip(∇F) ≤ M , and F − c

2
∥ ⋅ ∥2 is a convex

function if and only if the jet ( f ,G) satisfies condition (SCW 1,1)with constants (c,M)
on E . In fact, F can be defined by means of the formula

F = conv(g) + c
2
∥ ⋅ ∥2 ,

g(x) = inf
y∈E
{ f (y) + ⟨G(y), x − y⟩ + M

2
∥x − y∥2} − c

2
∥x∥2 , x ∈ X .

Moreover, if H is another function of class C1,1(X) satisfying the above properties, then
H ≤ F on X .

Proof �e necessity of the condition (SCW 1,1) with constants (c,M) on the jet
( f ,G) follows immediately from Proposition 3.4 (iii). Conversely, assume that ( f ,G)
satisfies condition (SCW 1,1) with constants (c,M) on E . By Lemma 3.3, the jet
( f̃ , G̃) = ( f − c

2
∥ ⋅ ∥2 ,G − cI) satisfies condition (CW 1,1) with constant M − c, and

we can apply [4, �eorem 2.4] to obtain that F̃ = conv(g), where
g(x) = inf

y∈E
{ f̃ (y) + ⟨G̃(y), x − y⟩ + M−c

2
∥x − y∥2}

= inf
y∈E
{ f (y) + ⟨G(y), x − y⟩ + M

2
∥x − y∥2} − c

2
∥x∥2

is convex and of class C1,1(X) with Lip(∇F̃) ≤ M − c and (F̃ ,∇F̃) = ( f̃ , G̃) on E .
If we consider the function F ∶= F̃ + c

2
∥ ⋅ ∥2 , Lemma 3.3 says that (F ,∇F) satisfies

condition (SCW 1,1) with constants (c,M) on X (because (F̃ ,∇F̃) satisfies (CW 1,1)
with constantM − c on X) and (F ,∇F) = ( f ,G) on E . It is obvious that F − c

2
∥ ⋅ ∥2 is

convex on X and, by Remark 3.2(ii), Lip(∇F) ≤ M .
Finally, if H is a function of class C1,1(X) such that (H,∇H) = ( f ,G) on

E , Lip(∇H) ≤ M and H̃ ∶= H − c
2
∥ ⋅ ∥2 is convex, then it is easy to see (using the

same calculations as in the proof of Proposition 3.4 (ii)) that Lip(∇H̃) ≤ M − c, and
obviously (H̃,∇H̃) = ( f̃ , G̃) on E . We thus have from [4, �eorem 2.4] that H̃ ≤ F̃
on X , and therefore H ≤ F on X . ∎
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