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Abstract

This paper studies a system proposed by K. Gopalsamy and P. X. Weng to model a population
growth with feedback control and time delays. Sufficient conditions are established under
which the positive equilibrium of the system is globally attracting. The conjecture proposed
by Gopalsamy and Weng is here confirmed and improved.

1. Introduction

In [3], Gopalsamy and Weng proposed a system to model a population growth with
time delay and feedback control:

n\t) = rn(t)[l - n(t - r)/k - cu(t)],

u'(t) = -au(t) + bn{t - r),

where r, k, a, b, c and r are positive constants, n(t) represents the population density
at time t and u denotes an "indirect control" variable. One can see that system (1) has
a positive equilibrium («*,«*) where

n* = -£rr- and * = -?--. (2)
a + kbc a + kbc

Gopalsamy and Weng also proved that the condition

ensures that any positive solution (n(t), u(t)) of system (1) satisfies

lim (/i(r), H ( 0 ) = («*, «*). (4)
( - •+0O
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They conjectured that (4) remains valid if condition (3) is relaxed to

a n*

or to the even weaker condition

bi + ri) (6)

In [4], Wang and Ma showed that condition (5) is sufficient for (4) to hold. Therefore,
the first part of the conjecture is confirmed. We now come to the key result of this
paper.

THEOREM 1. Each positive solution of system (1) satisfies

lim (n(t), «(*)) = («*, "*),

provided that

kbc/a + rz < 1. (7)

Since n* = ka/{a + kbc), we see that n* < k, and therefore that condition (7) is
weaker than (6). This means that the conjecture proposed by Gopalsamy and Weng is
completely confirmed and improved.

2. Proof of the main result

Let R\ = {(n, u) : n > 0; u > 0} and let C([-r , 0], R2
+) denote the space of

continuous functions mapping the interval [—r, 0] into R+. For ecological reasons,
we shall assume that the initial conditions of system (1) take the form:

n(s) = Vl{s), s e [ -T , 0]; ^,(0) > 0,

u(s) = (ptis), s € [ - T , 0]; <(>2(Q) > 0, (8)

(fPi,<P2)eC<l-T,O},R2
+).

One can prove by the method of steps that any solution (n(t), u(t)) of system (1)
corresponding to initial condition (8) is defined for all t > 0 and satisfies n(t) > 0
and u(t) > 0 for all t > 0. Such solutions are called positive solutions.

A function x (t) defined on [0, +oo) is said to be oscillatory about x* if there exists
a sequence {tn}, tn -> oo as n -> oo, such that x(tn) =x*,n = 1,2, Otherwise,
we call x (0 nonoscillatory about x*.
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LEMMA 1. Let (7) hold. Thenkexp(rr) < a/(be).

PROOF. By (7), we have

k exp(rr) < a(\ - rx) exp(rr)/(bc). (9)

Hence it suffices to show (1 — rr)exp(rr) < 1. Let a(t) = (1 — t)e' — 1. Then
a(0) = 0 and a'(t) — — te' < 0 when t > 0. As a consequence, a(t) < 0 for t > 0.
Lemma 1 now follows.

Let Mo = fcexp(rr). Then Lemma 1 implies that one can choose € > 0 such that

exp{(l - e - M0/n*)rr} > 0.

We further restrict e so that ae/2 < bcM0.
Let sequences {Mn} and {Ln} be defined by

LEMMA 2. Z^̂  (7) ZioZd. Then for any positive solution (n(t), u(t)) of system (1),
exist sequences {r,} and {f*}, tt -*• +oo anrf r* -> +oo as i -> oo, 5Mcft

M, fort>ti, (10)

Li fort>t*. (11)

PROOF. We first verify the case where i = 0. There are two possibilities to be
considered: n(t) is nonoscillatory about k or is oscillatory about k.

In the first case, there exists a To > 0 such that n(t) > k for all r > To or n(t) < k
for all r > To. If the second alternative occurs, it is evident that n(t) < Mo for all
t > To. Suppose that n(t) > k for all t > To. Then n\t) < 0 for all t > To + z. It
follows that n(t) is decreasing when t > To + r, and therefore, there exists a constant
A such that n(t) —*• A as / -> +oo. Moreover, one can easily show that A < k. Note
that k < Mo. We may conclude that there exists a 7\ > 7o + r such that n(f) < Mo
for all f > 7i.

Let us now suppose that n{t) is oscillatory about k and let n(F) denote an arbitrary
local maximum of n{t). Then we have

0 = n\t) < rn(j)(\ - n(t-r)/k)
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and therefore

n{t-x)<k. (12)

It is easy to see that

n'(t)/n(t) < r. (13)

Integrating (13) from t — r to t and using (12), we obtain

n(t) < kexp(rr) = MQ.

Since n(i) is an arbitrary local maximum of n(t), one can conclude that there exists a
T2 > 0 such that n(t) < Mo for all t > T2.

Let t0 = max{ T\, .T2}. The above discussions indicate that n(t) < Mo for all t > t0.
We show below that there exists a t$ such that n(t) > Lo for all t > t£. By the second
equation of system (1), one obtains

u'(t) < -au(t) + bMQ for t > t0. (14)

It follows that there exists T3 > t0 such that

«(r) < bMo/a + e/c for f > 73,

in which e > 0 is the same as before. As a consequence, we have

n'(t) > rn(t)[l - n(f - x)/k - (fccM0/a + e)] (15)

for / > T}. Using arguments similar to those above, one can show from (15) that there
exists a fg > T3 + r such that for t > t£,

n(t) > k\l-e I exp j I 1 - e 1 rx \ = Lo,

in which the equality be/a + l/k = l/n* is used. This verifies the conclusion that
Lemma 2 holds for i = 0.

Now suppose that the lemma is true for i. Then there exists a t* such that n(t) > L,
for t > t*. It follows that there exists a T4 > t* such that

"(0 > —- - ,. , „. for f > r4,a ( i+2 )c

which yields

' c/(i + 2) - 6cL,-/a - n(t - x)/k] for t > T4.
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By an argument similar to those used above, we may show that there exists a tt+\ such
that

— '"i+l

i + l

for t > ti+\. By this one can also show that there exists a t*+l such that

/ € bcMi+l\ tf 6 M 1 + 1 \ 1
n(t) > k I 1 I exp 1 \rx\ = L

\ i + 2 a ) V \ \ i + 2 n* ) J

for t > t*+l. Thus the induction is complete and the lemma is proved.

LEMMA 3. Under the assumptions of Lemma 2, Mt is monotonically increasing
and Lt < M,.

We omit the proof of this lemma since it is similar to that of Gopalsamy (see [2]).
Set m = lim.^oo M, and / = lim,.^ L,. It is easy to see that

m = k(l- bell a) exp{(l - l/n*)rx), (16)

/ = /fc(l - bem/a) exp{(l - m/n*)rx). (17)

Put

f(x) = k(\ - bcx/a)exp{(\ -x/n*)rx]

and denote / (f (x)) by f2(x). Then (16) and (17) imply that m and / are the fixed
points of f2(x). It is easy to see that n* is also a fixed point of f2(x). To establish
m = I, we therefore need only to make the fixed points of f2(x) unique.

LEMMA 4. Let (7) hold. Thenf2(x) has a unique fixed point in [0, a/(be)].

PROOF. We verify that f2(x) satisfies the conditions of the contraction mapping
principle. By direct calculation, one obtains

i — x/n ) rx), u s ;
a n* an*

which implies that / (x) is strictly decreasing on [0, a/(be)]. Observe that / (0) =
itexp(rr) < a/(be) and f (a/(be)) = 0. Weknow/([0,a/(fcc)]) c [0,a/(bc)l As
a consequence, we have/2([0, a/(bc)]) C [0, a/(bc)].
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We show below that/2 is contracting on [0,a/(bc)]. Setg(x) = f2{x) =f(f(x)).
Then we have

g'(x)=f'\f(x)]f\x)

_ 2 [be rx bcrxf (x)~\T be rx bcrxxl
\_a n* an* J [_ a n* an* J

( be rx\ bcrx

By direct calculation we have

It is evident that / "(x) > 0 if 0 < x < a/(be). Thus / ' (* ) is strictly increasing
on [0, a/(bc)]. Since f'(x) < 0 on [0, a/(fcc)], we know that (f'(x))2 is strictly
decreasing when x e [0, a /(be)] and that

S'(JC)>0 forx e[0,a/(bc)]. (20)

Set /i(x) = (x + f(x))/2, x € [0, a/(bc)] and assume that the function h(x) is
minimised JC0. Notice that/([0, a/(ic)]) c [0, a/(bc)]. We have 0 < h(x) < a/(bc)
for ^ € [0, a/(bc)]. It follows from (19) and the monotonicity of [f (x))2 that

g'(x) < (f'(h(x0)))
2 foTX€[0,a/(bc)]. (21)

Since h(0) = / ( 0 ) / 2 = kerz/2 < a/(2bc) = h{a/{bc)) by Lemma 1, we see that
x0 < a/{bc). If ^o = 0, then h'(0+) > 0. It follows that / ' (0+) > - 1 . If
x0 € (0, a/(be)), then h Qc0) = 0 and therefore/ (x0) = — 1. Observe that condition
(7) implies

r>, *x . (be rx bcrx\ ( kbc\
f (/i*) = - * ( — + — = - [rx + > - 1 ,

\a n* a J \ a J
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in which l/n* = bc/a + \/k is used. We further note that/'(;t) is strictly increasing.
Thus we must have xo < «*.

Remember that f(x) is strictly decreasing on [0, a/(be)}. We have f (xQ) >
/ (n*) = n* > x0- As a consequence, h(x0) > x0, and therefore

f'(h(xo))>f'(xo)>-l. (22)

Since f'(x) < Oforx e [0,a/(bc)], (22) leads to \f'(h(xo))\ < 1. It follows from
(20) and (21) that/2 is contracting on [0, a/(bc)], and therefore, there exists a unique
fixed point on this interval. The proof is completed.

PROOF OF THEOREM 1. By Lemmas 1, 2 and 3 we have

0< Lo< Li < n(t) < Mi <M0< a/(bc) (23)

if t > th i = 1, 2, It follows that 0 < / < m < a/(be). Since n*, I and m are the
fixed points of f2(x) on [0, a/(bc)], Lemma 4 yields / = m = n*. We then conclude
from (23) that lim,_,.+00 n(t) = n*. Finally, from the second equation of system (1),
one can easily show that lim,_+0O u(t) = u*. The proof is completed.
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