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0. Introduction and summary

The well-known Banach Contraction Principle asserts that any self-map
F of a complete metric space M with the property that, for some number
k<l,

d(F(x),F(y))^k-d(x,y)

for all x, y e M, possesses a unique fixed point in M. Some extensions and
analogues have recently been given by Edelstein [1]. For the reader's
convenience we state here the result of Edelstein which we shall employ.
It asserts that if F is a self-map of a metric space M having the property
that

d{F(x),F{y))<d(x,y)

for any two distinct points x and y of M, and if x0 is a point of M such that
the sequence of iterates xn = F" (x0) contains a subsequence which converges
in M, then the limit of this subsequence is the unique fixed point of F.

Our aim is to apply these results to the case in which M is a subset of
some topological vector space, the metric d being chosen in a manner depend-
ent in some measure upon F. The resulting general theorems have applica-
tions to the study of convolution equations over groups, yielding results
more refined than those stemming from the Contraction Principle applied
to the initial metric on the spaces involved.

1. Notations and definitions

In the general theorems to follow, E will denote a topological vector
space, M a subset of E, and F a self-map of M. It is evident that the follow-
ing condition, (A), is necessary for the existence of a fixed point of F:

(A) There exists a point x0 of M such that the iterates

xn=F»(x0) ( » = 1 , 2 , •••)

for a bounded subset of E.
335
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The aim is to combine (A) with a type of contraction hypothesis on F
in such a way as to obtain sufficient conditions in order that F shall admit
at least one fixed point.

Although we do not assume outright that E is locally convex, yet we
shall introduce the weakened topology a(E, E') on E, E' denoting the topo-
logical dual of E; this topology may be the zero topology (having <f> and E
as the only open sets). On E' we shall employ the strong topology /?(£', E),
that of convergence uniform on the bounded subsets of E.

The contraction hypothesis on F will be framed in terms of a family of
seminorms on E, concerning which we introduce a definition.

Definition. By an adequate family of seminorms on E is meant a count-
able family (pm) such that

(1) each p m is a weakly continuous seminorm on E;
(ii) the family (pm) is strongly bounded, i.e.,

snppm(B) < +00
m

for each bounded subset B of E;
(iii) the vector subspace V of E', generated by those linear forms on E

which are continuous (i.e., bounded) with respect to some pm, is strongly
dense in E'.
If condition (i) is weakened to

(i') each pm is a seminorm on E which is sequentially weakly continuous,
i.e., limnpm(xm) = 0 for each sequence (xn) converging weakly to 0 in E,
then we speak of (pm) as a '-adequate family.

Remarks. (1) If E is an infrabarrelled space, (ii) is satisfied whenever
the family (j>m) is bounded at each point of E, i.e., whenever

snppm(x) < +00

for each x in E.
(2) If E is separated and locally convex, condition (ii) entails that the

pm separate points of E.
(3) There is a real distinction between (i) and (i'). On the one hand, a

seminorm p on E is weakly continuous if and only if there is a finite family
of points of E' such that

p() i i < ; > 1
for all x in E. On the other hand, a seminorm p on E is sequentially weakly
continuous whenever it satisfies an inequality
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for all a; in E, Q being a separated locally compact space, (i a positive Radon
measure on Q, and q -> x'(q) being an E'-valued function on Q which is such
that the scalar-valued function q -> <x, x'(q)y is yu-measurable for each x in
E, and such that furthermore

••
sup | (x, x'(q)} | d/i(q) < + oo

>Q xeB

for each bounded subset B of E. That weak sequential continuity obtains
under these conditions, is a simple consequence of the Lebesgue dominated
convergence theorem.

For example, if T is a separated compact space and E the Banach space
of real — or complex — valued continuous functions on T (with the usual
maximum modulus norm), consider the seminorm

i:

i>(x)=jT\x(t)\d/x(t),

H being a positive Radon measure on T. Then p is sequentially weakly
continuous, whatever the choice of //.; but it is weakly continuous if and only
if the support of ft is finite.

2. Statement of the main theorems

These are two in number.

THEOREM 1. Let E be a topological vector space, M a subset of E, and F
a self-map of M. Suppose that M is sequentially weakly complete, that (A)
holds, and that furthermore the following condition, (B), is fulfilled:

(B) There exists a '-adequate family (pm) and a number k < 1 such that

pm{F(x)-F(y))^k-pm(x-y)

for all m and all x, y e M•
Then the sequence (xn) = (Fn(x0)) converges weakly in E to a point x^ e M
such that

- s O = 0

for all m. If furthermore the pm separate the points of E, x^ is the unique fixed
point of F.

THEOREM 2. Let E be a topological vector space, M a subset of E, F a
self-map of M. Suppose that the following two conditions, (A') and (B'), are
fulfilled:

(A') There exists a point x0 of M such that the sequence (xn) = (Fn(a;0))
has a bounded subsequence admitting a weak limiting point x^ e M.

(B') There exists an adequate family (pm) such thai

pm{F(x)-F{y))^pn(x-y)
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for all m and aUx.ye M; and if x and y are distinct points of M, there exists
an index m such that

K(F(x)-F(y)) < j>m{x-y).

Then x^ is the unique fixed point of F.
Finally, if in (A') it be assumed that (xn) admits a subsequence converging

weakly to a point x^ e M, then in (B') it suffices to assume that the family
(j>m) is '-adequate.

Remark. In the same vein as the final statement of Theorem 2 it may
be noted that if in (A') it be assumed that a bounded subsequence of (xn)
exists which admits a limiting point arM e M, then weak continuity of each
pm may be relaxed to continuity.

3. Proofs of the main theorems

It will suffice to deal with Theorem 2, which is the more interesting
result. The same general technique, together with a few minor variations,
suffices to establish Theorem 1.

Introduce into E the metric

it being supposed that the family (pm) is indexed by some subset of the set
of natural numbers. The second clause of (B') ensures that d(x, y) > 0
if x =£ y.

Suppose that (a;Bt) is a bounded subsequence of {xn) admitting a weak
limiting point xx e M. On each bounded subset B of E, hence in particular
on the bounded subset {xn } u {#„,}, the weakened topology induces a
topology stronger than that defined by d. This is apparent from the inequality

(1) \d(x, y)-?.m-*pm{x-y)\ ^ 2c • J r J ,
m>r

valid for &\lx,yeB and c = supm^>m(B) < + oo, combined with the assumed
weak continuity of each pm. It therefore follows that xx is a limiting point
of (xn^j for the topology defined by d, so that a subsequence (x*) of (xn)
exists for which d{x*, x^) ->• 0 as n -*• oo.

Besides this, if x and y are distinct points of M, (B') entails that

d(F(x),F(y))<d(x,y).

At this stage we may appeal to Edelstein's theorem to conclude that xx

is the unique fixed point of F.
Finally, if in (A') we assume that (xn) has a subsequence (x*) converging

weakly to xx e M, and if (pm) is '-adequate, we may still infer that
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d{x*, &<„) -*• 0 as « -»• oo. It suffices for this to use (1) once again, taking
x = x* and y = x^, and use the weak sequential continuity of each pm.
Edelstein's theorem can then be applied as before.

4. Supplements to theorems 1 and 2

In either theorem it is admissible to replace the weakened topology
a(E, E') by a weak topology a(E, L), where L is some subspace of E',
provided that at the same time one demands that (a) weak sequential
continuity of pm be replaced, by sequential continuity relative to the topo-
logy a(E, L), and (b) the vector subspace V figuring in condition (iii) of § 1
is assumed to have a strong closure containing L.

This remark is useful in case E is itself the dual, X', of some topological
vector space X, in which case one might wish to take for L the image of X
under the natural injection of X into X". If X is infrabarrelled, one would
then require that V be a dense vector subspace of X. For more general
spaces X, the strong topology on X" will in general induce on X a topology
stronger than the initial one.

5. Affine linear maps

Consider the case in which F takes the form

^(a;) = Ax+y,

where y e Eis given and A is a continuous endomorphism of E. An applica-
tion of Theorem 2 leads to the following result.

THEOREM 3. Let E be a topological vector space, A a continuous endomor-
phism of E, and A' the adjoint of A (an endomorphism of E'). Suppose that A'
has a countable, strongly bounded family (e'm) of eigenvectors, each belonging
to an eigenvalue of modulus inferior to I, which are total over E and which
generate a strongly dense vector subspace of E'. Let y e E be given. If there exists
xeE such that the sequence (xn) defined by

xn = Anx0+y+Ay-\ \-An^y

admits a bounded subsequence admitting a weak limiting point x^ e E, then
the equation

x—Ax = y

has x = xx as its unique solution in E.

PROOF. Suppose that A'e'm = Xme'n, where |AJ < 1. Put F(x) = Ax+y
and pm(x) = \(x, e'm}\ for x e E. The hypotheses of Theorem 2 are then
fulfilled, and an application of that theorem leads to the stated conclusion.

Naturally, Theorem 1 leads to a corresponding result.
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6. Convolution equations over compact groups

In this section the aim is to apply Theorems 2 and 3, supplemented
where necessary by the remarks in § 4, to the study of convolution equations
of the type

(2) x— ix *x — y,

H being a Radon measure, and x and y Radon measures or functions, on a
compact group T. We adopt the usual notation, LP(T), for the various
Lebesgue spaces formed with respect to Haar measure on T. In addition,
M(T) will denote the space of all Radon measures on T, normed in the usual
way as the dual of the Banach space C(T) of continuous, complex-valued
functions on T. The symbol {U} is used to denote a complete set of inequiv-
alent, irreducible, continuous, unitary representations of 7\ If x belongs
to L"(T) [or to M(T)] we write

£(U) = jTx(t)U(t)dt [or jTU(t)dx(t)]

for each U e {£/}. If H(U) is the representation space corresponding to U
(a finite-dimensional Hilbert space), each U(t) is a unitary endomorphism
of H(U) and x(U) is an endomorphism of H(U) too. \\x(U) | | denotes the usual
norm of the endomorphism x (U).

Our arguments make use of the consequences of the Peter-Weyl theory
in so far as they affect harmonic analysis, amongst which we note particular-
ly the Parseval formula

M\h = 2d(U)-Tr [x(U)*x(U)]

for x e L2 (T); here the sum extends over {U}, d(U) is the dimension or degree
of the representation U, "Tr" is short for "trace", and x(U)* is the Hilbert
adjoint of x(U). Since also

\\£{U)\\ ^ \\x\\Ll,

and L*{T) is dense in Ll(T), it follows that

= 0

for any x eL1^); this is the generalised Riemann-Lebesgue lemma. As a
corollary, x(U) = 0 for all U save those of a countable subset of {[/}.

We shall begin by applying Theorem 3 to a study of the equation (2)
for x and y in a space LP(T) with 1 < p < oo.

THEOREM 4. Let n be a Radon measure on T such that \\(i(U)\\ < 1
for all U e {U}, let 1 < p < oo, and let y be a given element of L*(T). Then
either
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(a) limB \\/j.n * x+y+fi * y-\ \-fi"-1 * y\\L, = +co

for each x e L"(T), the powers of fi being convolution powers;

or (b) the equation (2) has a unique solution xeLp(T).

PROOF. Suppose that (a) is false. If we write F(x) = /j. *x-\-y, it
follows that there exists x0 e L"(T) such that the sequence (xn) = (Fn(x0))
has a bounded subsequence. Let M denote the closed vector subspace of
L"(T) generated by all left-translates of x0 and of y. According to the general-
ised Riemann-Lebesgue lemma, the transforms £0 and $ simultaneously
vanish outside some countable "subset {Um} of {U}. F is a self-map of M since

is the limit in LV(T) of finite linear combinations of left-translates of x.
This statement is most easily confirmed (and the minor difficulties relating
to a pointwise interpretation of the integral most easily evaded) by regarding
the integral as $Tx,dp(s), an integral of the continuous vector-valued
function s -y x, from T into L"(T), x, being the class of the function t -> x
{s-H).

In applying Theorem 2, supplemented as in § 4, we shall take pm(x) ==
ll^(^m)ll- For L we choose the closed subspace of L"'(T) = E' formed of
those elements / of LP'(T) for which f(U) = 0 for U different from all the
Um. (As usual, p' is defined by l/p+l/p' — 1.) The subspace V attached to
this choice of the pm is then strongly dense in L.

Since there exists a bounded subsequence of (xn), and since M is closed,
this subsequence admits a weak limiting point x^eM (norm-bounded
subsets of L"(T) being weakly relatively compact if 1 < p < oo). This
x.,0 is a fortiori a limiting point for the topology a(E, L).

Finally, observe that

)

We conclude from the supplemented form of Theorem 2 that the equa-
tion (2) has a unique solution in M. However, it is clear on taking Fourier
transforms that (2) can admit at most one solution in E = L"{T).

Remarks. (1) An exactly similar argument applies to the equation

(3) x—x * ft = y.

(2) The preceding proof is complicated to the extent of introducing M
and L, only because at most countably many seminorms pm are admissible.
This difficulty evaporates if T is such that {U} is countable, as is the case if
T is metrisable. In such cases one may take M = L"(T) and use Theorem 3
directly.
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(3) There are two main difficulties standing in the path of dealing like-
wise with the case p = l. In the first place, Z.1(J) is not reflexive and the
Dunford-Pettis criterion for weak relative compactness renders complicated
the criterion (A') in Theorem 2. In the second place, the finite linear combi-
nations of coordinates of the representations U are no longer strongly dense
in the dual space L°°(T). However, Theorem 2 and the remarks in § 4 permit
one to establish an analogue for the space M(T). We regard this as the dual
of X = C(T) and recall that the norm-bounded subsets of M(T) are relati-
vely compact for the topology a(M(T), X). The finite linear combinations
of coordinates of the representations U are dense in C(T). But one complica-
tion remains in comparison with the case E = L"(T) (1 < p < oo): the
transform a; now no longer vanishes of necessity outside a countable subset
of {U}. With these remarks in mind we may state the following analogue of
Theorem 4.

THEOREM 4 bis. Suppose that T is such that {U} may be chosen to be
countable. The analogue of Theorem 4 remains true if L'(T) be replaced
throughout by M(T).

7. Truncated convolutions over (0, oo)

There is an analogue of Theorem 4 for the case in which T is taken to
be the semi-axis (0, oo) and the convolutions are truncated. For s 2̂  0
and x eLp = Lp(0, oo) we define x, e Lp by

0 if 0 < t < s,
x{t—s) if t > s.

If /* is any bounded Radon measure on [0, oo), ft * x is the element of L9

defined by the vector-valued integral

/t*x=jx,dfi(s);

this entails that
ft * x(t) = j x(t—s)d/i(s)

for almost all t.
For complex £ with Re £ "^ 0 we define

an analogous definition is made for £(£) when x e L" and Re f > 0. Then

ft * x(£) = (i(£)x(£) for Re I > 0.

With these notations fixed, the analogue of Theorem 4 runs as follows.
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THEOREM 5. Suppose that 1 < p < oo, that yeL9 = L"(0, oo) is
given, and that ft is a bounded Radon measure on [0, oo) such that

(4) Inf{|/J(f)|:Ref ^ 0} < 1.

Then at least one of the following two assertions, (a) and (b), is true:
(a) For each x e Lv it is the case that

]im\\/tn*x+y+p*y-\ +/t"-1 * y\\L, = +°o.
n

the powers of ft being convolution powers.

(b) The equation

(2) z—ju, *x = y

has a unique solution x e L".
PROOF. We shall apply Theorem 3 with E = L" and Ax — fi * x.

Assuming (a) to be false, there will exist an x0 e Lp such that the sequence
(xn) defined by

xn = Anx0+y+Ay+ • •

has a bounded subsequence. Since L" is reflexive, this bounded subsequence
admits a weak limiting point in L". (In fact, since L"' is in this case separ-
able, one can extract a weakly convergent subsequence.)

On the other hand, our hypothesis concerning ft combines with the
fact that [I is continuous on the half-plane Re £ 2| 0 to show that one can
find a point f0 satisfying Re #0 > 0 and a sequence (|m) of distinct points
of this open half-plane which converges to £0 and for which !#(£„,) I < 1 for
all m. Consider the elements e'm of the dual space L"' defined by e'm(t) =
exp (—£mt). The adjoint A' of A is easily seen to be defined by

where J(t) = f(t+s). It appears thence that e'm is an eigenvector of A'
belonging to the eigenvalue Am = #(!„). Accordingly it remains only to
show that the finite linear combinations of the e'm are dense in L*'. This
well-known result is a consequence of the Hahn-Banach theorem. Thus it
suffices to show that if g eL' has the property that

vanishes for f = fm(>* = 1, 2, • • •), then g = 0 a.e. Now G is evidently
holomorphic for Re f > 0, and the | m have a limiting point £0 in this domain
of holomorphy. The vanishing of G at the points fm therefore entails that it
vanishes identically on the said half-plane. Equating to zero the successive

https://doi.org/10.1017/S144678870003901X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003901X


394 R. E. Edwards [10]

derivatives of G at the point 1 = 1 gives the equations

J"g(*)Pexp (-*)*»=<>

for p = 0, 1, 2, • • •. On the basis of Lerch's theorem, one infers that g = 0
a.e.

Theorem 3 is thus applicable and goes to show that (b) must be true.
Thus the negation of (a) implies (b), and Theorem 5 is established.

Remark. If the measure /i is such that ju({0}) == 0, then the condition
(4) is certainly fulfilled. For in this case when f ->• + oo through real values
the functions e~il converge boundedly to zero a.e. for /i, so that correspon-
dingly fi(S) -> 0.

8. The case of measures and distributions with compact supports

We conclude with some remarks concerning the application of the
method to the equation

(2) x—(x *x = y

when n and y are given, and x is sought, in Me or Dc. These instances com-
bine some of the features of §§ 6 and 7.

Mc and De denote, respectively, the spaces of measures and of distri-
butions on Rn having compact supports. They are regarded as the duals of
C and of C°°, respectively, C being the space of continuous functions with
the topology of locally uniform convergence, and C°° that of indefinitely
differentiable functions with the topology of locally uniform convergence of
each derivative. Me and Dc are endowed with the associated weak topologies.

Three observations form the basis of the application.
(i) C and C°° are separable Fre'chet spaces, so that any bounded se-

quence in Me or in Dc contains a weakly convergent subsequence, and the
strong topologies 0(C, Mc) and j3(C°°, De) coincide with the initial topologies
on C and C°° respectively. (C°° is also reflexive and a Montel space, so that
weakly convergent sequences in Dc are even strongly convergent.)

(ii) If one arranges as a sequence (fJJ,) the set of points of the form

(r-\ 0, • • -, 0), (0, r~\ 0, • • •, 0), • • •, (0, • • •, 0, r~l),

where r = 1, 2, • • •, the functions e'm(x) = exp(—i£mx), where fm = £+£!,
and f is an arbitrary fixed point of Zn, are total in C and in C00. Zn denotes
the M-dimensional complex number space,

(iii) The Fourier transform

is an entire function of £ so that, unless ft = c. e (c = constant, s = Dirac
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measure at 0),

Hence one can find £ e Z" such that the e'm are total in C and in C°°, and such
that \fi(im)\ < 1 for all m.

One can now apply Theorem 3 directly to conclude that, given ft and y
in Mc (or £>„), /i ^ c • e, either for each x0 in Mc (or £)„) the sequence (xn)
defined by

xn = /*,"* xo+y+fi *y-\ \-fjtn~l * y

contains no subsequence which is bounded in Mc (or Dc), or the equation
(2) has a unique solution x in Mc (or De). If p = c • e, equation (2) reduces
to the trivial form (1— c)x = y.

In the case of De one has a more direct aid in determining the solubility
of (2) in the shape of the Paley-Wiener-Schwartz theorem, which charac-
terises the Fourier transforms of elements of Dc as the entire functions of
exponential type and of polynomial rate of growth at infinity on 2?\
This may be combined with results concerning the division of functions of
this category (see, e.g., [2], p. 38, Theoreme 1). Notice that the existence of a
bounded subsequence of (xn) entails that $(£) = 0 whenever /2(f) = 1,
but this is a priori not sufficient to ensure even that (1— fi^y is an entire
function.

Note added in proof. I am grateful to Mr. Fearnley-Sander for the
following two interesting remarks: (a) by avoiding direct appeal to Banach's
Contraction Principle, Theorem 1 can be proved without assuming either
countability or strong boundedness of the family (pm); (b) Theorem 2 can
be established without using condition (iii) in § 1, so that the statement
of Theorem 3 and the proofs of Theorems 4 and 5 may be correspondingly
simplified.
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