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Abstract. Let R be a ring with a monomorphism α and an α-derivation δ.
We introduce (α, δ)-weakly rigid rings which are a generalisation of α-rigid rings
and investigate their properties. Every prime ring R is (α, δ)-weakly rigid for any
automorphism α and α-derivation δ. It is proved that for any n, a ring R is
(α, δ)-weakly rigid if and only if the n-by-n upper triangular matrix ring Tn(R) is
(ᾱ, δ̄)-weakly rigid if and only if Mn(R) is (ᾱ, δ̄)-weakly rigid. Moreover, various
classes of (α, δ)-weakly rigid rings is constructed, and several known results are
extended. We show that for an (α, δ)-weakly rigid ring R, and the extensions
R[x], R[[x]], R[x; α, δ], R[x, x−1; α], R[[x; α]], R[[x, x−1; α]], the ring R is quasi-Baer if
and only if the extension over R is quasi-Baer. It is also proved that for an (α, δ)-weakly
rigid ring R, if any one of the rings R, R[x], R[x; α, δ]andR[x, x−1; α] is left principally
quasi-Baer, then so are the other three. Examples to illustrate and delimit the theory
are provided.

AMS Subject Classification. 16S36. 16W60.

1. Introduction. Throughout this paper R denotes an associative ring with unity;
α is a monomorphism of R which is not assumed to be surjective; and δ an α-derivation
of R, that is δ is an additive map such that δ(ab) = δ(a)b + α(a)δ(b), for all a, b ∈ R.

According to Krempa [18], a monomorphism α of a ring R is called to be rigid if
aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid if there exists a rigid
monomorphism α of R.

The second author and E. Hashemi in [12] defined a ring R with a monomorphism
α and an α-derivation δ, to be called (α, δ)-compatible if for each a, b ∈ R, ab =
0 implies aδ(b) = 0, and ab = 0 if and only if aα(b) = 0.

We say a ring R with a monomorphism α and α-derivation δ, to be called (α, δ)-
weakly rigid if for each a, b ∈ R, aRb = 0 implies aδ(b) = 0, and aRb = 0 if and only
if aα(Rb) = 0.

By [12], a ring R is α-rigid if and only if it is (α, δ)-compatible and reduced. Notice
that the class of α-rigid rings and (α, δ)-compatible rings is a narrow class of rings, and
it is easy to see that every (α, δ)-compatible ring is (α, δ)-weakly rigid; but there are
various classes of (α, δ)-weakly rigid rings which are not (α, δ)-compatible, as we will
see in Section 2.

It is clear that every prime ring R is (α, δ)-weakly rigid for any automorphism α

and α-derivation δ. In this paper we prove that for any positive integer n, a ring R
is (α, δ)-weakly rigid if and only if the n-by-n upper triangular matrix ring Tn(R) is
(ᾱ, δ̄)-weakly rigid if and only if the matrix ring Mn(R) is (ᾱ, δ̄)-weakly rigid.
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We also show that if R is a semiprime (α, δ)-weakly rigid ring, then the ring of
polynomials R[X ], for X an arbitrary non-empty set of indeterminates, is a semiprime
(ᾱ, δ̄)-weakly rigid ring. If R is an α-rigid ring, then R[x]/〈xn〉 is an (ᾱ, δ̄)-weakly rigid
ring, for any n ≥ 2, where 〈xn〉 is the ideal generated by xn.

Suppose that R is a ring with a monomorphism α and α-derivation δ. We show
that when R has a classical quotient ring Q and R is (α, δ)-weakly rigid, Q is also
(ᾱ, δ̄)-weakly rigid.

Recall from [9, 17] that a ring R is called (quasi-) Baer if the right annihilator of
every (ideal) non-empty subset of R is generated, as a right ideal, by an idempotent of
R. Recall from [6] that a ring is called left (resp. right) principally quasi-Baer (or simply
left (resp. right) p.q.-Baer) if the left annihilator of a principal left (resp. right) ideal of
R is generated by an idempotent.

Armendariz [1] has shown that a reduced ring R (i.e. having no non-zero nilpotent
elements) is Baer if and only if R[x] is Baer.

The Ore extensions of quasi-Baer and p.q.-Baer rings have been investigated by
many authors [1, 5, 7, 11, 12, 14, 15, 21, 22, 24]. Most of these have worked either with
the case δ = 0 and α an automorphism or with the case in which α is the identity.

Birkenmeier et al. in [5, Theorem 1.2] show that if R is a quasi-Baer ring and α is an
automorphism of R, then R[x; α] is a quasi-Baer ring. They also provided an example
of a quasi-Baer ring R with an endomorphism α such that R[x; α] is not quasi-Baer. In
[7], they also proved that a ring R is right p.q.-Baer if and only if the polynomial ring
R[x] is right p.q.-Baer.

Hong et al. in [14] have shown that if R is an α-rigid ring, then R is Baer if and
only if R[x; α, δ] is a Baer ring if and only if the skew power series ring R[[x; α]] is a
Baer ring. By [5, Lemma 1.9], a reduced (and hence α-rigid) ring is Baer if and only if
it is quasi-Baer, and by [14] a ring R is α-rigid if and only if the Ore extension R[x; α, δ]
is reduced. The second author and E. Hashemi in [12], extended Hong et al.’s results
of [14]. Note also that there is a commutative reduced p.q.-Baer ring which the power
series ring is not a p.q.-Baer ring [20].

Although the class of α-rigid (or (α, δ)-compatible) quasi-Baer rings is too
narrow, we show that there are many rich classes of (α, δ)-weakly rigid quasi-Baer
rings. For every prime ring R and any automorphism α and α-derivation δ, the rings
Mn(R), Tn(R), R[X ] and power series ring R[[X ]] are (ᾱ, δ̄)-weakly rigid quasi-Baer
rings.

For an (α, δ)-weakly rigid ring R, the relationship between R, the skew polynomial
ring R[x; α, δ], skew Laurent polynomial ring R[x; x−1; α], skew power series ring
R[[x; α]] and skew Laurent power series ring R[[x; x−1; α]] is studied, and we show
that strong connections exist between these rings and their various properties. Known
results relating to α-rigid rings can be obtained as corollaries of our results. Among
applications, we show that a number of interesting properties of an (α, δ)-weakly rigid
ring R such as the quasi-Baer property and the principally quasi-Baer property transfer
to its extensions and vice versa.

We provide examples which show that, in general, the quasi-Baerness (or p.q.-
Baerness) of R and the aforementioned extensions do not depend on each other. As a
consequence we extend and unify several known results.

2. Weakly rigid rings. In this section the notion of (α, δ)-weakly rigid rings is
introduced, and a number of properties of this generalisation are established. We give
a good supply of examples of (α, δ)-weakly rigid rings.
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For a non-empty subset X of a ring R, rR(X) = {c ∈ R | Xc = 0} (respectively
�R(X) = {c ∈ R | cX = 0}) is called the right (respectively left) annihilator of X in R.

DEFINITION 2.1. A ring R with a monomorphism α, is called α-weakly rigid if for
each a, b ∈ R, aRb = 0 if and only if aα(Rb) = 0.

A ring R with a derivation δ is called δ-weakly rigid if for each a, b ∈ R, aRb =
0 implies aδ(b) = 0.

A ring R with a monomorphism α and α-derivation δ, is called (α, δ)-weakly rigid
if it is both α-weakly rigid and δ-weakly rigid.

Every α-compatible ring is α-weakly rigid, and (α, δ)-compatible rings are clearly
(α, δ)-weakly rigid; but there are various classes of (α, δ)-weakly rigid rings which are
not (α, δ)-compatible (and hence not α-rigid), as we will see in this section.

Let R be a ring, α an endomorphism and δ an α-derivation of R. It is easy to see that
for any subring S of the full matrix ring Mn(R), ᾱ : S → S, given by ᾱ((ai j)) = (α(ai j)),
is a homomorphism, and δ̄ : S → S, given by δ̄((ai j)) = (δ(ai j)), is an ᾱ-derivation. We
shall denote the (i, j)-th entry of a matrix A ∈ Mn(R) by Ai j.

In the following example we see that for an α-rigid ring R, Mn(R) or Tn(R) is not
necessarily ᾱ-compatible (and hence not ᾱ-rigid).

EXAMPLE 2.2. Let D be a domain and α be the automorphism of the polynomial
ring R := D[x1, x2, . . . , xm], with indeterminates x1, x2, . . . , xm, given by α(xi) = xi+1

for 1 ≤ i ≤ m − 1 and α(xm) = x1. Then R is an α-rigid ring. Take a = E11x1 + E12x2

and b = E12x2 − E22x1, where Ei j denotes the matrix unit. We have a, b ∈ Tn(R) ⊆
Mn(R). It is seen that ab = 0 but aᾱ(b) 
= 0. Hence neither Mn(R) nor Tn(R) is (ᾱ, δ̄)-
compatible.

Although the class of α-rigid (or (α, δ)-compatible) rings do not pass to matrix
rings by the above example, we show that the weakly rigid property overcomes these
shortfalls.

THEOREM 2.3. Let R be a ring and α an endomorphism of R. Then the following are
equivalent:

(i) R is an α-weakly rigid ring;
(ii) Mn(R) is an ᾱ-weakly rigid ring for every positive integer n;

(iii) Mn(R) is an ᾱ-weakly rigid ring for some positive integer n.

Proof. (i) ⇒ (ii). Suppose that R is α-weakly rigid and AMn(R)B = 0, with
A = (ai j), B = (bi j) ∈ Mn(R). To prove that Aᾱ(Mn(R)B) = 0, it is enough to show
that, for each r ∈ R and 1 ≤ i, j ≤ n, Aᾱ(rEi jB) = 0. To do this, we show that
(Aᾱ(rEi jB))tk = 0, for each 1 ≤ t, k ≤ n, where (Aᾱ(rEi jB))tk is the (t, k)-th entry
of the matrix Aᾱ(rEi jB). Now we have rEi jB = rbj1Ei1 + rbj2Ei2 + · · · + rbjnEin. So
ᾱ(rEi jB) = α(rbj1)Ei1 + α(rbj2)Ei2 + · · · + α(rbjn)Ein. Thus (Aᾱ(rEi jB))tk = (at1Et1 +
at2Et2 + · · · + atnEtn)(α(rbjk)Eik) = atiα(rbjk)Etk. Therefore it is enough to show that
atiα(rbjk) = 0, for each r ∈ R and 1 ≤ i, j, t, k ≤ n. But we have AMn(R)B = 0,
so (ArEi jB)tk = 0, and hence atirbjk = 0 for each r ∈ R and 1 ≤ i, j, t, k ≤ n. So
atiRbjk = 0, and hence atiα(Rbjk) = 0, since R is α-weakly rigid. Thus atiα(rbjk) = 0,
for each r ∈ R and 1 ≤ i, j, t, k ≤ n, and hence Aᾱ(Mn(R)B) = 0. Next assume that
Aᾱ(Mn(R)B) = 0, with A = (ai j), B = (bi j) ∈ Mn(R). To prove that AMn(R)B = 0, it
is enough to show that ArEi jB = 0, for each r ∈ R and 1 ≤ i, j ≤ n. To do this, we show
that (ArEi jB)tk = atirbjkEtk = 0, for each 1 ≤ t, k ≤ n. Since Aᾱ(Mn(R)B) = 0, we get
(Aᾱ(rEi jB))tk = 0, so atiα(rbjk) = 0, for each 1 ≤ i, j, t, k ≤ n. Thus atiα(Rbjk) = 0, and
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hence atiRbjk = 0 for each 1 ≤ i, j, t, k ≤ n. Consequently AMn(R)B = 0, and so Mn(R)
is ᾱ-weakly rigid. (ii) ⇒ (iii). Is trivial.
(iii) ⇒ (i). Suppose that for some n, Mn(R) is an ᾱ-weakly rigid ring and that
aRb = 0 with a, b ∈ R. It is easy to see that aE11Mn(R)bE11 = 0, and hence
aE11ᾱ(Mn(R)bE11) = 0, since Mn(R) is ᾱ-weakly rigid. So aE11ᾱ(rE11bE11) = 0, and
hence aα(rb)E11 = 0 for each r ∈ R; consequently aα(Rb) = 0. Next assume that
aα(Rb) = 0, so aE11ᾱ(Mn(R)bE11) = 0. Thus aE11Mn(R)bE11 = 0, since Mn(R) is ᾱ-
weakly rigid. Therefore for each r ∈ R, aE11rE11bE11 = 0 so aRb = 0, whence R is
α-weakly rigid. �

THEOREM 2.4. Let R be a ring and δ a derivation of R. Then the following are
equivalent:

(i) R is a δ-weakly rigid ring;
(ii) Mn(R) is a δ̄-weakly rigid ring for every positive integer n;

(iii) Mn(R) is an δ̄-weakly rigid ring for some positive integer n.

Proof. (i) ⇒ (ii). Suppose that R is δ-weakly rigid and AMn(R)B = 0, with A =
(ai j), B = (bi j) ∈ Mn(R). To prove that Aδ̄(B) = 0, it is enough to show that, for each
1 ≤ i, j ≤ n, (Aδ̄(B))i j = 0. Now for each 1 ≤ i, j ≤ n, we have (Aδ̄(B))i j = (ai1δ(b1j) +
ai2δ(b2j) + · · · + ainδ(bnj))Ei j. Since AMn(R)B = 0, we get ArEttB = 0 for each r ∈ R
and 1 ≤ t ≤ n. So (ArEttB)i j = 0 for each 1 ≤ i, j ≤ n. But (ArEttB)i j = aitrbtjEi j, so
aitrbtj = 0 for each r ∈ R and 1 ≤ i, j, t ≤ n. Thus aitδ(btj) = 0, so (Aδ̄(B))i j = 0, and
hence Mn(R) is δ̄-weakly rigid.
(ii) ⇒ (iii). Is trivial.
(iii) ⇒ (i). Assume that Mn(R) is δ̄-weakly rigid for some n, and aRb = 0 with a, b ∈ R.
Then we have aE11Mn(R)bE11 = 0, and since Mn(R) is δ̄-weakly rigid, aE11δ̄(bE11) = 0.
Thus aδ(b)E11 = 0, consequently R is δ-weakly rigid. �

COROLLARY 2.5. For any positive integer n, a ring R is (α, δ)-weakly rigid if and only
if Mn(R) is an (ᾱ, δ̄)-weakly rigid ring.

THEOREM 2.6. Let R be a ring and α an endomorphism of R. Then the following are
equivalent:

(i) R is an α-weakly rigid ring;
(ii) Tn(R) is an ᾱ-weakly rigid ring for every positive integer n;

(iii) Tn(R) is an ᾱ-weakly rigid ring for some positive integer n.

Proof. The proof is similar to that of Theorem 2.3. �
THEOREM 2.7. Let R be a ring and δ a derivation of R. Then the following are

equivalent:
(i) R is a δ-weakly rigid ring;

(ii) Tn(R) is a δ̄-weakly rigid ring for every positive integer n;
(iii) Tn(R) is a δ̄-weakly rigid ring for some positive integer n.

Proof. The proof is similar to that of Theorem 2.4. �
EXAMPLE 2.8. Let D be a prime ring and α be the automorphism of the polynomial

ring R := D[x1, x2, . . . , xm], with indeterminates x1, x2, . . . , xm, given by α(xi) = xi+1

for 1 ≤ i ≤ m − 1 and α(xm) = x1. Then R is an α-weakly rigid ring. As in Example
2.2, it is seen that neither Mn(R) nor Tn(R) is (ᾱ, δ̄)-compatible. However by Theorems
2.3 and 2.6, Mn(R) and Tn(R) are both ᾱ-weakly rigid rings.
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Let R be a ring. Define Rn = RIn + ∑n
i=1

∑n
j=i+1 REi j, for n ≥ 2, where Ei j is the

matrix units for all i, j and In is the identity matrix. Note that Rn is a subring of Tn(R).

THEOREM 2.9. If R is an α-rigid ring, then Rn is an (ᾱ, δ̄)-weakly rigid ring, for
any n.

Proof. Assume A, B ∈ Rn and ARnB = 0. Since Rn = RIn + ∑n
i=1

∑n
j=i+1 REi j, in

order to prove that Aᾱ(RnB) = 0, it is enough to show that Aᾱ(rInB) = Aᾱ(rEi jB) = 0,
for each r ∈ R and 1 ≤ i ≤ n, i + 1 ≤ j ≤ n. First suppose that r ∈ R and 1 ≤ i ≤ n,
i + 1 ≤ j ≤ n; then (Aᾱ(rEi jB))tk = atiα(rbjk)Etk. Since ARnB = 0, (ArEi jB)tk = 0, so
atirbjk = 0, and hence atiRbjk = 0. Since R is α-weakly rigid, atiα(Rbjk) = 0, so
(Aᾱ(rEi jB))tk = 0; hence Aᾱ(rEi jB) = 0. Now, for each 1 ≤ i ≤ j ≤ n, (Aᾱ(rInB))i j =
aiiα(r)α(bi j)Ei j + ai,i+1α(r)α(bi+1,j)Ei j + · · · + ai jα(r)α(bj j)Ei j. Since ARnB = 0, we
get ArInB = 0. Hence (ArInB)i j = aiirbi jEi j + ai,i+1rbi+1,jEi j + · · · + ai jrbj jEi j = 0. (∗)
Since (AEi jB)i j = 0, aiibj j = 0; and since (AEi+1,jB)i j = 0, ai,i+1bj j = 0. By this way,
after j − i steps, we get ai,j−1bj j = 0, since (AEj−1,jB)i j = 0. We have aiibj j = ai,i+1bj j =
· · · = ai,j−1bj j = 0. Since R is α-rigid, it is reduced, bj jaii = bj jai,i+1 = · · · = bj jai,j−1 =
0. So by multiplying (∗) from left by bj j we get bj jai jrbj j = 0. Thus ai jrbj j = 0,
since R is reduced. Hence ai jRbj j = 0, and since R is α-rigid, ai jα(Rbj j) = 0. We
have (AEi,j−1B)i j = 0, so aiibj−1,jEi j = 0. Also (AEi+1,j−1B)i,j = 0, so ai,i+1bj−1,jEi j = 0.
Continuing in this way (AEj−2,j−1B)i j = 0, so ai,j−2bj−1,j = 0. By multiplying (∗)
from left by bj−1,j we get bj−1,jai,j−1rbj−1,j = 0, which implies ai,j−1Rbj−1,j = 0, and
hence ai,j−1α(Rbj−1,j) = 0, since R is α-rigid. By this way, after j − i steps, we
get (Aᾱ(rInB))i j = 0, so Aᾱ(rInB) = 0, and hence Aᾱ(RnB) = 0. Now suppose that
Aᾱ(RnB) = 0. By a similar method as employed in the above argument we can show
that ARnB = 0, and hence Rn is a ᾱ-weakly rigid. Next assume that ARnB = 0;
we then show that Aδ̄(B) = 0. For each 1 ≤ i ≤ j ≤ n, (Aδ̄(B))i j = aiiδ(bi j)Ei j +
ai,i+1δ(bi+1,j)Ei j + · · · + ai jδ(bj j)Ei j. Since ARnB = 0, ArInB = 0, so (ArInB)i,j = 0,
and hence aiirbi jEi j + ai,i+1rbi+1,jEi j + · · · + ai jrbj jEi j = 0. As we have seen in the
first part of the proof, aiirbi j = 0, ai,i+1rbi+1,j = 0, · · · , ai jrbj j = 0. Since R is α-rigid,
aiiδ(bi j) = 0, ai,i+1δ(bi+1,j) = 0, · · · , ai jδ(bj j) = 0. This implies that (Aδ̄(B))i j = 0 for
each i, j, and the result follows. �

In [19], T. K. Lee and Y. Zhou defined Vn = ∑n−1
i=1 Ei,i+1, for n ≥ 2, where Ei j is

the matrix units for all i, j.
For even integers n = 2k ≥ 2, Ae

n(R) := ∑k
i=1

∑n
j=k+i REi j, so we have An(R) =

RIn + RVn + RV2
n + · · · + RVk−1

n + Ae
n(R).

For odd integers n = 2k + 1 ≥ 3, Ao
n(R) := ∑k+1

i=1

∑n
j=k+i REi j, so we have An(R) =

RIn + RVn + RV2
n + · · · + RVk−1

n + Ao
n(R).

Note that An(R) is a subring of Tn(R).

THEOREM 2.10. If R is an α-rigid ring, then An(R) is an (ᾱ, δ̄)-weakly rigid ring, for
any n ≥ 2.

Proof. The proof is similar to that of Theorem 2.9. �

The trivial extension of R, which is denoted by T(R, R) = {( a b
0 a ) | a, b ∈ R}, is

a ring with matrix addition and multiplication. By Theorem 2.9, we see that if R is
α-rigid, then T(R, R) is (ᾱ, δ̄)-weakly rigid.
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Let R be a ring, and let

T(R, n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 · · · an

0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
...

...
. . .

...

0 0 0 · · · a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

| ai ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

with n ≥ 2. Then T(R, n) is a subring of the triangular matrix ring Tn(R).
Observe that T(R, n) ∼= R[x]/〈xn〉, for any n ≥ 2. A proof similar to that of

Theorem 2.9, can be employed to prove that when R is an α-rigid ring, T(R, n),
and hence R[x]/〈xn〉 is an (ᾱ, δ̄)-weakly rigid ring, for any n ≥ 2.

Let R be a ring, α an endomorphism and δ an α-derivation of R. Then
ᾱ : R[x] → R[x], given by ᾱ(

∑n
i=0 aixi) = ∑n

i=0 α(ai)xi, and δ̄ : R[x] → R[x], given by
δ̄(

∑n
i=0 aixi) = ∑n

i=0 δ(ai)xi. Then ᾱ is an endomorphism and δ̄ is an ᾱ-derivation of
R[x].

According to Hirano [13], a ring R is called quasi-Armendariz if for polynomials
f (x) = a0 + a1x + · · · + anxn, g(x) = b0 + b1x + · · · + bmxm ∈ R[x], f (x)R[x]g(x) = 0
if and only if aiRbj = 0 for each i, j. In [13], Hirano studied some properties of
quasi-Armendariz rings and proved that the condition quasi-Armendariz is a Morita
invariant property and that every semiprime ring is quasi-Armendariz.

In [13, Theorem 3.16] Hirano shows that quasi-Armendariz conditions preserves
by polynomial rings. Now we get the following:

THEOREM 2.11. If R is a quasi-Armendariz (α, δ)-weakly rigid ring, then R[x] is a
quasi-Armendariz (ᾱ, δ̄)-weakly rigid ring.

Since semiprime rings are quasi-Armendariz by [13], we get the following:

COROLLARY 2.12. If R is a semiprime (α, δ)-weakly rigid ring, then R[x] is a semiprime
(ᾱ, δ̄)-weakly rigid ring.

Recall that an idempotent e ∈ R is left (respectively right) semi-central in R if
Re = eRe (respectively eR = eRe).

THEOREM 2.13. If R is an (α, δ)-weakly rigid ring and e is a left semi-central
idempotent of R, then eR, Re and eRe are also (α, δ)-weakly rigid rings.

Proof. Suppose that er, es ∈ eR and ereRes = 0. Since Re = eRe, we have erRes =
0, so erα(Res) = 0, erδ(es) = 0, and hence erα(eRes) = 0, as R is (α, δ)-weakly rigid.
Now, if erα(eRes) = 0, then erα(Res) = 0, and hence erRes = 0. Thus ereRes = 0, and
the result follows. �

Notice that in Theorem 2.13, in order to restrict α, δ from R to eR, we need to
assume that α(e), δ(e) ∈ eR, and this condition is satisfied for semi-central idempotents,
since R is (α, δ)-weakly rigid.

We now show that there exists an example of a ring R with an idempotent e ∈ R
and an endomorphism α : R → R such that α(e) 
∈ eR, so the condition semi-central
in Theorem 2.13 is not superfluous.
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EXAMPLE 2.14. Let � be the ring of rational numbers; then M2(�) is a prime
ring. Let α be the automorphism of M2(�), given by α((a b

c d)) = (1 1
0 1)(

a b
c d)(1 −1

0 1 ), for
each a, b, c, d ∈ �. Since M2(�) is a prime ring and α an automorphism, M2(�) is an
(α, δ)-weakly rigid ring. Now e = (0 0

1 1) is an idempotent. We have α(e) = (1 0
1 0), and

eα(e) = (0 0
2 0) 
= α(e).

For an index set I , suppose that for each i ∈ I , Ri is a ring, αi : Ri → Ri an
endomorphism and δi : Ri → Ri an αi-derivation of Ri. So ᾱ :

∏
i∈I Ri → ∏

i∈I Ri

given by ᾱ({ri}i∈I ) = {αi(ri)}i∈I is an endomorphism, and δ̄ :
∏

i∈I Ri → ∏
i∈I Ri given

by δ̄({ri}i∈I ) = {δi(ri)}i∈I is an ᾱ-derivation of
∏

i∈I Ri.
It is easy to see that if for each i ∈ I , Ri is an (αi, δi) weakly rigid ring, then

∏
i∈I Ri

is also an (ᾱ, δ̄)-weakly rigid ring.
Now we concern the classical quotient rings of (α, δ)-weakly rigid rings. A ring R

is called right Ore if given a, b ∈ R with b regular there exist a1, b1 ∈ R with b1 regular
such that ab1 = ba1. It is a well-known fact that R is a right Ore ring if and only if
there exists the classical right quotient ring of R.

Let R be an Ore ring, α an endomorphism and δ an α-derivation of R. Define
α̃ : Q → Q given by α̃(rc−1) = α(r)α(c)−1 and δ̃ : Q → Q given by δ̃(rc−1) = (δ(r) −
rc−1δ(c))α(c)−1. Then α̃ is an endomorphism and δ̃ an α̃-derivation of the classical
quotient ring Q of R. The set of regular elements of R is denoted by C.

THEOREM 2.15. Suppose that there exists the classical quotient ring Q of a ring R
with an endomorphism α and α-derivation δ. If R is (α, δ)-weakly rigid, then Q is (α̃, δ̃)
weakly rigid.

Proof. Assume that aQb = 0, with a = r1c−1
1 , b = r2c−1

2 for some r1, r2 ∈ R and
c1, c2 ∈ C. We first show that aα̃(Qb) = 0. For each r3c−1

3 ∈ Q, it is enough to show
that r1c−1

1 α(r3)α(c3)−1α(r2)α(c2)−1 = 0. Since R satisfies the Ore condition, there
exist r4 ∈ R, c4 ∈ C such that r3c−1

3 = c−1
4 r4. Hence r1c−1

1 α(r3)α(c3)−1α(r2)α(c2)−1 =
r1c−1

1 α(c4)−1α(r4)α(r2)α(c2)−1. Since R satisfies the Ore condition, there exist r5 ∈
R, c5 ∈ C such that r1(α(c4)c1)−1 = c−1

5 r5. Hence r1c−1
1 α(r3)α(c3)−1α(r2)α(c2)−1 =

c−1
5 r5α(r4)α(r2)α(c2)−1. Therefore it is enough to show that r5α(r4)α(r2)α(c2)−1 = 0.

Since r1c−1
1 Qr2 = 0 and α(c4)−1Qr4 ⊆ Q, we have r1c−1

1 α(c4)−1Qr4r2 = 0, and hence
c−1

5 r5Qr4r2 = 0. Thus r5Qr4r2 = 0 so r5Rr4r2 = 0, and since R is (α, δ)-weakly rigid,
r5α(Rr4r2) = 0. So r5α(r4)α(r2) = 0; therefore aα̃(Qb) = 0.

Now we show that aδ̃(b) = 0. We have aδ̃(b) = r1c−1
1 (δ(r2) − r2c−1

2 δ(c2))α(c2)−1.
Since r1c−1

1 Qr2 = 0, we have r1c−1
1 r2c−1

2 δ(c2)α(c2)−1 = 0. So it is enough to show that
r1c−1

1 δ(r2) = 0. Since R satisfies the Ore condition, there exist r3 ∈ R, c3 ∈ C such
that r1c−1

1 = c−1
3 r3. So it is enough to show that r3δ(r2) = 0. Since r1c−1

1 Qr2 = 0, we
have c−1

3 r3Qr2 = 0, so r3Rr2 = 0. Since R is (α, δ)-weakly rigid, r3δ(r2) = 0; therefore
aδ̃(b) = 0.

Next suppose that aα̃(Qb) = 0, with a = r1c−1
1 , b = r2c−1

2 for some r1, r2 ∈ R and
c1, c2 ∈ C; we then show that aQb = 0. For each r3c−1

3 ∈ Q, it is enough to show that
r1c−1

1 r3c−1
3 r2c−1

2 = 0. Since R satisfies the Ore condition, there exist r4, r5 ∈ R, c4, c5 ∈ C
such that r1c−1

1 = c−1
4 r4 and c−1

3 r2 = r5c−1
5 . So it is enough to show that r4r3r5 = 0. Since

aα̃(Qb) = 0, c−1
4 r4α̃(Rr3c−1

3 r2c−1
2 ) = 0; so r4α(Rr3r5) = 0. Since R is (α, δ)-weakly rigid,

r4Rr3r5 = 0, and the result follows. �
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3. Ore extensions of weakly rigid rings. The study of Baer rings has its roots
in functional analysis [2, 17]. In [17] Kaplansky introduced Baer rings to abstract
various properties of von Neumann algebras and complete regular C∗-rings. In [9]
Clark defined a quasi-Baer ring and used it to characterise when a finite-dimensional
algebra with unity over an algebraically closed field is isomorphic to a twisted matrix
units semigroup algebra. Every prime ring is a quasi-Baer ring. Further examples of
quasi-Baer rings are the Martindale right ring of quotients of any semiprime ring [8]
and any semiprime right FPF ring [10, p. 168]. The class of quasi-Baer rings is closed
under n × n upper triangular matrix rings and Morita invariance by [23].

A ring R is called a right (respectively left) p.p.-ring if the right (respectively left)
annihilator of an element of R is generated by an idempotent; R is called a p.p.-ring if
it is both a right and a left p.p.-ring. The class of p.q.-Baer rings includes all biregular
rings, all quasi-Baer rings and all abelian (i.e. every idempotent is central) p.p.-rings
and is closed under direct products and Morita invariance. Further work has appeared
in [3–9, 13, 23].

The class of α-rigid (or (α, δ)-compatible) quasi-Baer (or left p.q.-Baer) rings does
not contain the class of prime rings, because prime rings are not necessarily reduced,
and is not closed under extensions to matrix rings or triangular matrix rings, by
Example 2.2. However the notion of an (α, δ)-weakly rigid quasi-Baer (or p.q.-Baer)
ring overcomes these shortfalls.

For every prime ring R and any automorphism α and α-derivation δ, the rings
Mn(R), Tn(R) and R[X ] and the power series ring R[[X ]] are quasi-Baer (α, δ)-weakly
rigid rings.

We denote R[x; α, δ] the Ore extension whose elements are the polynomials∑n
i=0 rixi ∈ R, ri ∈ R, where the addition is defined as usual and the multiplication

by xb = α(b)x + δ(b) for any b ∈ R.
The skew Laurent polynomial ring R[x, x−1; α], whose elements are finite sums

of elements of the form x−jrxi, where r ∈ R and i, j are non-negative integers.
Multiplication is subject to xr = α(r)x for all r ∈ R.

We also denote R[[x; α]] the skew power series ring, whose elements are power
series of the form

∑∞
i=0 rixi with coefficients ri ∈ R, where the addition is defined as

usual and the multiplication subject to the condition xb = α(b)x, for any b ∈ R. The set
{xi}i≥0 is an Ore subset of R[[x; α]], so that one can localise R[[x; α]] and form the skew
Laurent series ring R[[x, x−1; α]]. Elements of R[[x, x−1; α]] are formal combinations
of elements of the form x−jrxi, where r ∈ R and i, j are non-negative integers.

In this section we consider the relationship between the properties of being
quasi-Baer and left p.q.-Baer of a ring R and of the rings R[x; α, δ], R[x, x−1; α],
R[[x; α]], and R[[x, x−1; α]], respectively.

We provide examples which show that, in general, the quasi-Baerness (or p.q.-
Baerness) of R and the aforementioned extensions do not depend on each other.

We will begin by considering some properties of (α, δ)-weakly rigid rings.

LEMMA 3.1. Suppose that R is an α-weakly rigid ring; then for each a, b ∈ R and
positive integers i, j, aRb = 0 if and only if αi(a)Rαj(b) = 0.

Proof. Suppose that aRb = 0, so αi(aRb) = 0, and hence αi(a)αi(Rb) = 0. Since R
is α-weakly rigid, αi(a)Rb = 0. So for each r ∈ R, αi(a)rRb = 0; hence αi(a)rαj(Rb) =
0. Thus αi(a)rαj(b) = 0 whence αi(a)Rαj(b) = 0, for each i, j. Now assume that
αi(a)Rαj(b) = 0, for each i, j. Since R is α-weakly rigid, αi(a)αi(Rαj(b)) = 0, so
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αi(aRαj(b)) = 0. Since α is injective, aRαj(b) = 0. So aαj(Rb) = 0, since R is α-weakly
rigid aRb = 0, and the result follows. �

LEMMA 3.2. Suppose that R is (α, δ)-weakly rigid; then for each a, b ∈ R and positive
integers i, j, aRb = 0 implies δi(a)Rδj(b) = 0.

Proof. Suppose that aRb = 0, so for each r ∈ R, arRb = 0. Since R is (α, δ)-weakly
rigid, arδj(b) = 0 for each r ∈ R, and hence aRδj(b) = 0 for each positive integer j.
Now we show by induction that for each positive integer i, δi(a)Rδj(b) = 0. For i = 1,
since aRδj(b) = 0, for each r ∈ R, δ(arδj(b)) = 0 so δ(a)rδj(b) + α(a)δ(rδj(b)) = 0. Since
aRδj(b) = 0, we get α(a)Rδj(b) = 0 by Lemma 3.1. So α(a)Rrδj(b) = 0 for each r ∈ R.
Since R is (α, δ)-weakly rigid, α(a)δ(rδj(b)) = 0, so δ(a)rδj(b) = 0. Now assume that the
result is true for each t < i. So we have δi−1(a)Rδj(b) = 0. Hence δ(δi−1(a)rδj(b)) = 0
for each r ∈ R. So δi(a)rδj(b) + α(δi−1(a))δ(rδj(b)) = 0. Since δi−1(a)Rδj(b) = 0, we have
α(δi−1(a))Rδj(b) = 0 by Lemma 3.1. Since R is (α, δ)-weakly rigid, α(δi−1(a))δ(rδj(b)) =
0 for each r ∈ R. So δi(a)rδj(b) = 0 for each r ∈ R, and so the result follows. �

In [22, Proposition 3.2], the authors proved that a right semi-central idempotent e
of a ring R is a right semi-central idempotent of R[x; α, δ] if and only if e ∈ Rα(e).

COROLLARY 3.3. If R is an α-weakly rigid ring, then each right semi-central
idempotent of R is a right semi-central idempotent of R[x; α, δ].

Proof. Let e be a right semi-central idempotent of R. Then eR = eRe, so
eR(1 − e) = 0. Since R is α-weakly rigid, eα(R(1 − e)) = 0, so e = eα(e). Now the
result follows by [22, Proposition 3.2]. �

Recall that for a quasi-Baer ring R, for each left ideal I of R, �R(I) = Re for some
idempotent e of R. Since �R(I) is an ideal, e is right semi-central.

THEOREM 3.4. Let R be an α-weakly rigid ring. If R is a quasi-Baer ring, then
R[x; α, δ] is a quasi-Baer ring.

Proof. Let I be an ideal of S = R[x; α, δ]. Let I0 be the set of all leading coefficients
of elements of I together with 0R. Then I0 is a left ideal of R. So �R(I0) = Re for some
right semi-central idempotent e of R. We prove that �S(I) = Se. Let f = a0 + · · · +
anxn ∈ I so ef = ea0 + · · · + ean−1xn−1 ∈ I , since ean = 0. So ean−1 ∈ I0; hence ean−1 =
eean−1 = 0. Continuing in this way it implies that eai = 0 for each 0 ≤ i ≤ n and that
ef = 0. So Se ⊆ �S(I). Let g = b0 + · · · + bmxm ∈ �S(I), so for each f = a0 + · · · +
anxn ∈ I and r ∈ R, grf = 0. So bmαm(ran) = 0 for each r ∈ R, and hence bmαm(Ran) =
0. Since R is α-weakly rigid, bmRan = 0. So bm ∈ �R(I0) = Re, and hence bm = bme. On
the other hand by Corollary 3.3, e is a right semi-central idempotent of S. Thus bmxm =
bmexm = bmexme = bmxme, and hence grf = (b0 + · · · + bm−1xm−1)rf + bmxmerf = 0.
But since Se ⊆ �S(I), we get bmxmerf = 0 so (b0 + · · · + bm−1xm−1)ef = 0. By a similar
way we get bm−1 = bm−1e and that bm−1xm−1 = bm−1xm−1e; so after m steps, we can see
that bi = bie and that bixi = bixie for each i. Thus g = ge, and hence �S(I) ⊆ Se, and
the result follows. �

In [22, Example 2.1] the authors show that there exists a reduced Baer ring R with
a monomorphism α of R such that R[x; α] is not a p.q.-Baer ring. The example shows
that α-weakly rigid condition on R, in Theorem 3.4, is not superfluous.

In the proof of Lemma 3.5 and Theorem 3.6, we adapt the method which has been
employed by Y. Zhou in [24].
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LEMMA 3.5. Let R be an (α, δ)-weakly rigid ring. Let L = {�R(RU) | U ⊆ R}, M =
{�S(SU) | U ⊆ S = R[x; α, δ]} and � : L → M, given by �(I) = I [x; α, δ] and � : M →
L, given by �(J) = J ∩ R; then �o� = idL.

Proof. We first show that, for U ⊆ R, �R(RU)[x; α, δ] = �S(SU). Let f = a0 + · · · +
anxn ∈ �R(RU)[x; α, δ]. So for each i, ai ∈ �R(RU), and for each u ∈ U , aiRu = 0. So
by Lemmas 3.1 and 3.2, aiRαj(u) = aiRδj(u) = 0 for each j ≥ 0. Thus f ∈ �S(SU),
and hence �R(RU)[x; α, δ] ⊆ �S(SU). Now assume that g = b0 + · · · + bmxm ∈ �S(SU);
then (b0 + · · · + bmxm)ru = 0 for each r ∈ R and u ∈ U . So bmαm(ru) = 0, and hence
bmαm(Ru) = 0. Since R is α-weakly rigid, bmRu = 0, and hence bm ∈ �R(RU). On the
other hand 0 = gru = (b0 + · · · + bm−1xm−1)ru + bmxmru. Since bmRu = 0, by Lemmas
3.1 and 3.2, bmRαj(u) = bmRδj(u) = 0 for each j ≥ 0. So bmxmru = 0; hence (b0 + · · · +
bm−1xm−1)ru = 0. By the same way we conclude that for each i, bi ∈ �R(RU). Thus
g ∈ �R(RU)[x; α, δ], and hence �R(RU)[x; α, δ] = �S(SU). Therefore � is well defined.
Next assume that V ⊆ R[x; α, δ]. We show that �S(SV ) ∩ R = �R(RCV ), where CV is
the set of all coefficients of elements of V . If f ∈ �S(SV ) ∩ R, then it is clear that
f ∈ �R(RCV ). Let a ∈ �R(RCV ); then aRb = 0 for each b ∈ CV . So by Lemmas 3.1
and 3.2, aRαj(b) = aRδj(b) = 0 for each j ≥ 0. So a ∈ �S(SV ) ∩ R, whence �S(SV ) ∩
R = �R(RCV ), and � is well defined. Therefore �o�(�R(RU)) = �(�R(RU)[x; α, δ]) =
�R(RU)[x; α, δ] ∩ R = �S(SU) ∩ R = �R(RCU ) = �R(RU), and the result follows. �

THEOREM 3.6. Let R be an (α, δ)-weakly rigid ring. If S = R[x; α, δ] is quasi-Baer,
then R is quasi-Baer.

Proof. Let I be an ideal of R. By Lemma 3.5, �R(I)[x; α, δ] = �S(SI). Since S is
quasi-Baer, for some idempotent f = a0 + · · · + anxn ∈ S, �S(SI) = S f . But �S(SI) =
�R(I)[x; α, δ], so for each 0 ≤ i ≤ n, ai ∈ �R(I). On the other hand, by Lemma 3.5,
�R(I) = �R(I)[x; α, δ] ∩ R = �S(SI) ∩ R = S f ∩ R. So for each a ∈ �R(I), a = af , so
a = aa0. Since a0 ∈ �R(I), a0 = a2

0, and hence �R(I) = Ra0, so the result follows. �
COROLLARY 3.7. Let R be an (α, δ)-weakly rigid ring. Then, R is quasi-Baer if and

only if R[x; α, δ] is quasi-Baer.

In [21, Example 3.6] the authors provided some examples of quasi-Baer rings
R[x; δ], such that R is not p.q.-Baer. So the condition δ-weakly rigid in Theorem 3.6 is
not superfluous.

The following (see [14, Example 9]) is an example of a ring R such that R[x; α] is
quasi-Baer, but R is not p.q.-Baer, so the condition α-weakly rigid in Theorem 3.6 is
not superfluous.

EXAMPLE 3.8. Let R = {(a, b) ∈ � ⊕ � | a ≡ b mod 2}; α : R → R given by
α(a, b) = (b, a). Then by [14, Example 9], R[x; α] is quasi-Baer, but R is not p.q.-Baer.

THEOREM 3.9. Let R be an α-weakly rigid ring. If R is a left p.q.-Baer ring, then
R[x; α, δ] is a left p.q.-Baer ring.

Proof. Let R be a left p.q.-Baer α-weakly rigid ring. Let f = a0 + · · · + anxn ∈ S =
R[x; α, δ]. For each 0 ≤ i ≤ n we have �R(Rai) = Rei for some right semi-central idem-
potent ei ∈ R. Put e = enen−1 · · · e0. Since for each 0 ≤ i ≤ n, ei is a right semi-central
idempotent of R, we get e2 = enen−1 · · · e0enen−1 · · · e0 = enen−1 · · · e0en−1en−2 · · · e0 =
enen−1 · · · e0en−2 · · · e0 = · · · = enen−1 · · · e0 = e. Now for each r ∈ R we have er =
enen−1 · · · e0ren = enen−1 · · · e0renen−1 = · · · = enen−1 · · · e0renen−1 · · · e0 = ere. Thus e
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is a right semi-central idempotent of R. By Corollary 3.3, e is a right semi-
central idempotent in S. Now we claim that �S(S f ) = Se. Since e is right semi-
central in S, we have eS f = eS ef = 0. So Se ⊆ �S(S f ). Now suppose that g =
b0 + b1x + · · · + bmxm ∈ �S(S f ), so gRf = 0, and hence bmαm(Ran) = 0. Since R is
α-weakly rigid, bmRan = 0, and hence bm ∈ �R(Ran). Thus bm = bmen. Since gS f =
0, genRf = 0. But enR = enRen, so genRen(a0 + · · · + anxn) = 0. So genRen(a0 +
· · · + an−1xn−1) = 0. Thus bmαm(enRan−1) = 0. On the other hand enR = enRen so
enR(1 − en) = 0; hence enα(1 − en) = 0, since R is α-weakly rigid. Thus en = enα(en). So
en = enα(enα(en)) = enα(en)α2(en) = enα

2(en). Inductively we can see that en = enα
t(en)

for each positive integer t. Hence 0 = bmαm(enRan−1) = bmenα
m(en)αm(Ran−1) =

bmenα
m(Ran−1) = bmαm(Ran−1). So we get bmRan−1 = 0, and hence bm = bmen−1 =

bmenen−1. After repeating this argument n times we get bm = bmenen−1 · · · e0 = bme.
Since gS f = 0, we deduce that (b0 + b1x + · · · + bmxm)S f = 0, so (b0 + b1x + · · · +
bm−1xm−1)S f + bmxmS f = 0. But bm = bme so bmxmS f = bmexmS f = bmexmSef = 0.
So (b0 + b1x + · · · + bm−1xm−1)S f = 0. By the same method we see that bm−1 = bm−1e.
After repeating this argument m times, we see that bi = bie for each 0 ≤ i ≤ m.
Therefore g = ge, and the result follows. �

Note that [22, Example 2.1] shows that the α-weakly rigid condition in Theorem
3.9 is not superfluous.

COROLLARY 3.10. If R is a left p.q.-Baer ring with a derivation δ, then R[x; δ] is a
left p.q.-Baer ring.

THEOREM 3.11. Let R be an (α, δ)-weakly rigid ring. If R[x; α, δ] is left p.q.-Baer,
then R is left p.q.-Baer.

Proof. The proof is similar to that of Theorem 3.6. �
COROLLARY 3.12. Let R be an (α, δ)-weakly rigid ring. Then R is left p.q.-Baer if

and only if R[x; α, δ] is left p.q.-Baer.

Example 3.8 and [21, Example 3.6] show that the condition (α, δ)-weakly rigid in
Theorem 3.11 is not superfluous.

The set {xi}i≥0 is easily seen to be a left Ore subset of S = R[x; α], so that one can
localise S and form the skew Laurent polynomial ring T = R[x, x−1; α]. Elements of
T are finite sums of elements of the form x−jrxi, where r ∈ R and i, j are non-negative
integers. Multiplication is subject to xr = α(r)x for all r ∈ R. In the case in which α is
an automorphism; elements of T have the form �n

i=mrixi, where ri ∈ R and m, n ∈ �.
We consider D. A. Jordan’s [16] construction of the ring A(R, α). Let A(R, α) or A be
the subset {x−irxi | r ∈ R , i ≥ 0} of the skew Laurent polynomial ring R[x, x−1; α].
For each j ≥ 0, x−irxi = x−(i+j)αj(r)x(i+j). It follows that the set of all such elements
forms a subring of R[x, x−1; α] with

x−irxi + x−jsxj = x−(i+j)(αj(r) + αi(s))x(i+j)

and

(x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)x(i+j)

for r, s ∈ R and i, j ≥ 0. Note that α : A(R, α) → A(R, α), given by α(x−irxi) =
x−iα(r)xi, is actually an automorphism of A(R, α); this is because x−irxi =
α(x−(i+1)rxi+1), for each i ≥ 0 and each r ∈ R. We have R[x, x−1; α] � A[x, x−1; α],
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by way of an isomorphism which maps x−irxj to α−i(r)xj−i, for each i, j, (See [16], for
more details).

PROPOSITION 3.13. Let R be an α-weakly rigid ring. Then R is quasi-Baer if and only
if A(R, α) is quasi-Baer.

Proof. Let R be a quasi-Baer ring and I an ideal of A = A(R, α). Put B = {a ∈
R | x−iaxi ∈ I for some i ≥ 0}. Let J = RBR; then �R(J) = Re for some right semi-
central idempotent e of R. Now we show that �A(I) = Ae. Since eR(1 − e) = 0 and
R is α-weakly rigid, α(e)R(1 − e) = 0 so α(e) = α(e)e. So for each i > 0, αi(e) =
αi(e)αi−1(e) . . . α(e)e. Hence for each x−iaxi ∈ I , we have ex−iaxi = x−iαi(e)axi =
x−iαi(e)αi−1(e) . . . eaxi = 0, which implies that Ae ⊆ �A(I). Now if x−iaxi ∈ �A(I),
then for each x−tbxt ∈ I and r ∈ R, x−iaxirx−tbxt = 0. So x−(i+t)αt(a)αi(rb)xi+t = 0.

Hence αt(a)αi(Rb) = 0. Since R is α-weakly rigid, αt(a)Rb = 0, and hence aRb = 0
by Lemma 3.1. So a ∈ �R(J), and hence a = ae; thus x−iaxi = x−iaexi. On the other
hand since eR(1 − e) = 0 and R is α-weakly rigid, eαi(R(1 − e)) = 0, so e = eαi(e).
Thus x−iaxi = x−iaexi = x−iaeαi(e)xi = x−iaexie = x−iaxie. Therefore �A(I) ⊆ Ae,
and the result follows. Conversely suppose that A(R, α) is a quasi-Baer ring and I
an ideal of R. So rA(IA) = eA for some idempotent e ∈ A. Let e = x−iaxi, where
a = a2 ∈ R. We now show that rR(I) = aR. Since IAe = 0, for each r ∈ R and
b ∈ I , bx−irxix−iaxi = 0. So x−iαi(b)raxi = 0, and hence αi(b)Ra = 0. Since R is α-
weakly rigid, bRa = 0, so aR ⊆ rR(I). Now if b ∈ rR(I), then for each c ∈ I and
x−jrxj ∈ A, cx−jrxjx−ibxi = x−(i+j)αi+j(c)αi(r)αj(b)xi+j. On the other hand cRb = 0
so αi+j(c)Rαj(b) = 0. So αi+j(c)αi(r)αj(b) = 0, and hence x−ibxi ∈ rA(IA) = eA. So
x−ibxi = x−iaxix−ibxi, and hence b = ab, and the result follows. �

THEOREM 3.14. Let R be an α-weakly rigid ring and α an automorphism of R. If R
is quasi-Baer, then R[x, x−1; α] is quasi-Baer.

Proof. Since α is an automorphism of R, each element of R[x, x−1; α] is of the
form

∑n
i=m rixi, where ri ∈ R and m, n ∈ �, so the proof is similar to that of Theo-

rem 3.4. �
THEOREM 3.15. Let R be an α-weakly rigid ring. If R is a quasi-Baer ring, then

R[x, x−1; α] is a quasi-Baer ring.

Proof. Since R is α-weakly rigid quasi-Baer, A is quasi-Baer. Since α is an
automorphism of A and R[x, x−1; α] � A[x, x−1; α], so the result follows by Theo-
rem 3.14. �

LEMMA 3.16. Let R be an α-weakly rigid ring and α an automorphism of R. Let
L = {�R(RU) | U ⊆ R}, M = {�S(SU) | U ⊆ S = R[x, x−1; α]} and � : L → M, given
by �(I) = I [x, x−1; α] and � : M → L, given by �(J) = J ∩ R; then �o� = idL.

Proof. The proof is similar to that of Lemma 3.5. �
THEOREM 3.17. Let R be an α-weakly rigid ring and α an automorphism of R. If

R[x, x−1; α] is quasi-Baer, then R is quasi-Baer.

Proof. The proof is similar to that of Theorem 3.6. �
PROPOSITION 3.18. If R is an α-weakly rigid ring, then A(R, α) is an α-weakly rigid

ring.
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Proof. The proof is easy. �

THEOREM 3.19. Let R be an α-weakly rigid ring. If R[x, x−1; α] is quasi-Baer, then
R is quasi-Baer.

Proof. Since R is α-weakly rigid, A is α-weakly rigid by proposition 3.18. Since
α is an automorphism of A and R[x, x−1; α] � A[x, x−1; α], by Theorem 3.18, A is
quasi-Baer, and the result follows by Proposition 3.13. �

COROLLARY 3.20. Let R be an α-weakly rigid ring. Then R is quasi-Baer if and only
if R[x, x−1; α] is quasi-Baer.

THEOREM 3.21. Let R be an α-weakly rigid ring and α an automorphism of R. If R
is a left p.q.-Baer ring, then R[x, x−1; α] is a left p.q.-Baer ring.

Proof. Let f ∈ S = R[x, x−1; α]. Since α is an automorphism, f = x−ma−m +
x−m+1a−m+1 + · · · + a0 + a1x + · · · + anxn. Set J = Ra−m + Ra−m+1 + · · · +
Ra0 + · · · + Ran, which is a left ideal of R, so �R(J) = Re, by [6, Proposition
1.7]. By a similar method as in the proof of Theorem 3.4, we can show that
�S(S f ) = Se, and the result follows. �

PROPOSITION 3.22. Let R be an α-weakly rigid ring. Then R is a left p.q.-Baer ring
if and only if A(R, α) is a left p.q.-Baer ring.

Proof. The proof is similar to that of Proposition 3.13. �

THEOREM 3.23. Let R be an α-weakly rigid ring with an automorphism α. If
R[x, x−1; α] is a left p.q.-Baer ring, then R is left p.q.-Baer.

Proof. Using Lemma 3.16, the proof is similar to that of Theorem 3.6. �

THEOREM 3.24. Let R be an α-weakly rigid ring. Then R is a left p.q.-Baer ring if
and only if R[x, x−1; α] is a left p.q.-Baer ring.

Proof. Since R[x, x−1; α] � A[x, x−1; α] and α is an automorphism of A, the result
follows using Theorems 3.21 and 3.23 and Proposition 3.22. �

The following (see [12, Example 3.6]) is an example of a ring R such that R[x, x−1; α]
is quasi-Baer, but R is not p.q.-Baer, so the condition α-weakly rigid in Corollary 3.20
and Theorem 3.24 is not superfluous.

EXAMPLE 3.25. Let R and α be those given in Example 3.8. Then by [12, Example
3.6], R[x, x−1; α] is quasi-Baer, but R is not p.q.-Baer.

COROLLARY 3.26. Let R be an (α, δ)-weakly rigid ring, α an endomorphism and δ an
α-derivation of R. Then the following are equivalent:

(i) R is a left p.q.-Baer ring;
(ii) A(R, α) is a left p.q.-Baer ring;

(iii) R[x; α, δ] is a left p.q.-Baer ring;
(iv) R[x, x−1; α] is a left p.q.-Baer ring.
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COROLLARY 3.27 [7, Theorem 3.1]. The following are equivalent:
(1) R is a left p.q.-Baer ring;
(2) R[x] is a left p.q.-Baer ring;
(3) R[x, x−1] is a left p.q.-Baer ring.

THEOREM 3.28. Let R be a α-weakly rigid ring. If R is quasi-Baer, then R[[x; α]] is
quasi-Baer.

Proof. Let I be an ideal of S = R[[x; α]]. Let J = {a ∈ R | there exists axm +
am+1xm+1 + · · · ∈ I, for some non-negative integer m and ai ∈ R}. Then J is a left ideal
of R. So �R(J) = Re for some right semi-central idempotent e of R. We show that
�S(I) = Se. If f = ∑∞

i=m aixi ∈ I , then am ∈ J, so eam = 0. Hence ef = eam+1xm+1 +
eam+2xm+2 + · · · . Since eam+1 ∈ J, we have eam+1 = eeam+1 = 0. By this way we get
ef = 0 so Se ⊆ �S(I). Now assume g = ∑∞

j=n bjxj ∈ �S(I), so for each f = ∑∞
i=m aixi ∈

I and r ∈ R, grf = 0. So bnα
n(ram) = 0 for each r ∈ R, and hence bnα

n(Ram) = 0. So
bnRam = 0; hence bn ∈ �R(J), so bn = bne. Thus grf = bnxnrf + ∑∞

j=n+1 bjxjrf = 0.
Since e is right semi-central, eR = eRe so eR(1 − e) = 0. Since R is α-weakly rigid,
eαn(R(1 − e)) = 0 for each positive integer n. So e = eαn(e), and hence bnxnrf =
bnexnrf = bneαn(e)xnrf = bnexnerf. But we have erf = 0, so bnxnrf = 0, and hence∑∞

j=n+1 bjxjrf = 0. By the same way we can see that bn+1 = bn+1e and by induction for
each i that bi = bie, so g = ∑∞

j=n bjexj. On the other hand, for each j, e = eαj(e), so
g = ∑∞

j=n bjexje = ∑∞
j=n bjxje = ge. So the result follows. �

LEMMA 3.29. Let R be an α-weakly rigid ring. Let L = {�R(RU) | U ⊆ R}, M =
{�S(SU) | U ⊆ S = R[[x; α]]} and � : L → M, given by �(I) = I [[x; α]], and � : M →
L, given by �(J) = J ∩ R; then �o� = idL.

Proof. The proof is similar to that of Lemma 3.5. �
THEOREM 3.30. Let R be an α-weakly rigid ring. If R[[x; α]] is quasi-Baer, then R is

quasi-Baer.

Proof. The proof is similar to that of Theorem 3.6. �
COROLLARY 3.31. Let R be an (α, δ)-weakly rigid ring, α an endomorphism and δ an

α-derivation of R. Then the following are equivalent:
(i) R is a quasi-Baer ring;

(ii) A(R, α) is a quasi-Baer ring;
(iii) R[x; α, δ] is a quasi-Baer ring;
(iv) R[x, x−1; α] is a quasi-Baer ring;
(v) R[[x; α]] is a quasi-Baer ring.

THEOREM 3.32. Let R be an α-weakly rigid ring, with α an automorphism of R. If R
is quasi-Baer, then R[[x, x−1; α]] is quasi-Baer.

Proof. Since α is an automorphism of R, the elements of R[[x, x−1; α]] can be
written in the form a−mx−m + · · · + a0 + a1x + · · ·, where m is a positive integer and
ai ∈ R for each i. So the proof is similar to that of 3.28. �

LEMMA 3.33. Let R be an α-weakly rigid ring and α an automorphism of R. Let L =
{�R(RU) | U ⊆ R}, M = {�S(SU) | U ⊆ S = R[[x, x−1; α]]} and � : L → M, given by
�(I) = I [[x, x−1; α]], and � : M → L, given by �(J) = J ∩ R; then �o� = idL.

Proof. The proof is similar to that of Lemma 3.5. �
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THEOREM 3.34. Let R be an α-weakly rigid ring and α an automorphism of R. If
R[[x, x−1; α]] is quasi-Baer, then R is quasi-Baer.

Proof. The proof is similar to that of Theorem 3.6. �
COROLLARY 3.35. Let R be an α-weakly rigid ring and α an automorphism of R.

Then R is quasi-Baer if and only if R[[x, x−1; α]] is quasi-Baer.

COROLLARY 3.36. [5, Theorem 1.8] The following are equivalent.
(i) R is a quasi-Baer ring;

(ii) R[x] is a quasi-Baer ring;
(iii) R[[x]] is a quasi-Baer ring;
(iv) R[x, x−1] is a quasi-Baer ring;
(v) R[[x, x−1]] is a quasi-Baer ring.

Notice that, Birkenmeier et al.’s proof of [5, Lemma 1.7] to show that either
R[x; x−1] or R[[x; x−1]] is quasi-Baer implies R is quasi-Baer involves a long and quite
technical calculation.
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