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Abstract. Let {5T: TEU} denote a flow built under a Holder-continuous function /
over the base (£, n) where 2 is a topological Markov chain and n some (</»-mining)
Gibbs measure. For a certain class of functions / with finite 2 + 8-moments it is
shown that there exists a Brownian motion B(t) with respect to /x and cr2>0 such
that fi-a.e.

sup fSTdT-B(a2t) for some 0< A < 5/588.
Osu<l(x)

One can also approximate in the same way by a Brownian motion B*(t) with respect
to the probability (J / d/u.)"1 / d/x. From this, the central limit theorem, the weak
invariance principle, the law of the iterated logarithm and related probabilistic
results follow immediately. In particular, the result of Ratner ([6]) is extended.

1. Introduction
Let 2 be a topologically mixing Markov chain with shift transformation T. Let
4>: 2 -» R be a function of bounded variation satisfying vark <&<fcak (fcsl; b >0,
0 < a < l ) where

varfc $:= sup {|4>(x) —<&(j)|: x, =>>,• for all |i| s k}.

Let ft denote the Gibbs measure given by 4>. Then /A is the unique shift invariant
probability measure satisfying

V, = x, for all i = 0 , . . . , m - 1}

for some constants P and c, > 0 and c2> 0 (see [2], [8], [10]). We shall consider the
flow {S,: teU} built under a function / with base transformation (2, T, /*). In order
to provide an adequate setting for the formulation of the theorem below we embed
£ in 2, := 2x[0, 1], the product o--field, probability measure /xXA and the transfor-
mation T, denned by Tx(x, w) = (Tx, a>) (x e X, 0< w < 1). Then the flow built under
the function / is embedded in the flow built under the function /,(x, w) =
l(x) (xei,0<w< 1) and base transformation T,. Whenever we consider the flow
{S,: teR} together with a Brownian motion it is assumed that {S,} is embedded in
the larger space. This is necessary in order to ensure the existence of a function
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independent of the process f° S, under consideration. From now on, however, we
drop the index 1 to simplify the notation and because the embedding procedure is
only a minor technicality. We assume that / is Holder-continuous with some exponent
p > 0 and that / is bounded away from 0. Denote by

the space on which {S,} is denned and by v the probability measure on X given by

dv = I Id/x) dsxd/x.

THEOREM. Let f be a measurable function defined on X with

Ef:= f fdv = 0
J x

and

E\f\2+S:= \ \j]2+sdv <co
J x

for some 0 < 5 < 1. Suppose that

where (y)"n denotes the a-field generated by the atoms of the form {(x, s):xeA,
0< s < l(x)} and where A is a centred cylinder of length 2n + l. Then

c r 2 : = l i m r ' £ ( | f(ST(w))dr) (1)

exists. Moreover, ifo-2>0 then there exists a standard Brownian motion {B(t,x):
( > 0 , x e 2 } , defined on (2, /A) such that

sup I f(ST(x, u
Jo

))dr-B(a2t,x) (2)
Osu</(x)

for fx-almost all x and some 0< A < 5/588. Moreover, (2) remains valid if we replace
the Brownian motion B by a standard Brownian motion {B*(t, x): ( > 0 , x e S } defined
on ( 2 , M * ) where dn*(x)^(l ldn)-lI(x) dft(x).

Remark. Here and throughout this paper we use the Vinogradov symbol « instead
of Landau's 'O' notation. Thus, g« h means g = O(h).

This theorem implies the usual corollaries such as the central limit theorem, the
law of the iterated logarithm, upper and lower class results for the law of the iterated
logarithm, the functional versions of the central limit theorem and the law of the
iterated logarithm, etc. We shall now list three of these results, which hold under
the hypothesis of the theorem.

COROLLARY 1 (The central limit theorem). We have for all zeU:

limJlw— I f(Srw)dr^z})=^= \
,*co VI- o-Jt Jo )/ V2TTJ_
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COROLLARY 2 (The law of the iterated logarithm). We have for v-almost all w:

lim sup (2a-2/ log log t)~* f(Srw) dr=\.
f-»oo Jo

COROLLARY 3 (The weak invariance principle). Let

f
\

Jo

Then {£„: n > 1} converges weakly in C([0, 1]) to the standard Wiener measure.

All results of this type can easily be reduced to well-known theorems on functions
of mixing sequences of random variables. This is also the method we shall use in
§ 3 to prove the theorem. For instance, relation (11) of [6] combined with the classical
results of Ibragimov [4] and Billingsley [1, theorem 20.2 and pp. 194/195] and a
standard result (see e.g. [7, p. 390]) immediately yields corollary 1 under the
assumption S > 0, thus extending [6] in various directions.

2. A moment estimate
Let {£„, n eZ} be a sequence of random variables. For a < b let &b

a be the o--field
generated by £,, t;a+l, . . . , & . The sequence {£„, n e Z} is called <p-mixing if there
exists a sequence of real numbers <p(n)-»0 such that

\P(A nB)- P(A)P(B)\ < P(A)<p{n)

for all A e ^oo , B e &^+n and all k e Z, n > 1. Next, let g be a measurable mapping
from the space of doubly infinite sequences ( . . . , a_,, a0, a,,...) of real numbers
into the real line. For f = ( . . . , f-i, &> fi» •••) a n d f ° r the shift T put

and

r/ m n = E{jin\3F"ntZ), m , n > l . ( 4 )

LEMMA 1. Let {£„; n e Z} be a stationary <p-mixing sequence of random variables with

X<p'(n)<°° (5)

and let rjn and t)mn be defined by (3) and (A). Assume for g and {£„; n e Z } that
Erf, = 0 and that for some 0 < 8 < 1, £ | T 7 , | 2 + S < O O and

\\Vi-Vmi\\2+s«m~2 asm-* oo. (6)

Then
2+8

« n l + ( s / 2 )

where the constant implied by « depends only on 8,{cp{n), n > 1}, £|77!|2+s and the
constant implied by « in (6).

Remark. It is easy to see that lemma 1 remains valid for 5 = 0. Indeed by [1, p. 185],
Holder's inequality and (6) - actually the proof of (8) below will also do -

\Er)lr)k+l\«<pKik)+k'2.
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Thus by stationarity and (5)

I VJ) = I Er,]+2 I (n-j)EVlVj+l«n.

The proof of lemma 1 is a minor modification of the proof of lemma 7.4 of [3, pp.
225-227]. For some reader's convenience we present the proof in some detail. Let

fc:=3[n5] (7)
and

n n+k 2n+k n 2 + s

*n := I Vj, *n '•= I Vj, Sn '•= _ I Vj, cn := E £ Vj

We first show that

where u+v = 2 + S and u = 1,2, S or 1 + 8. To prove (8) we put m '•= }& and introduce
the sums

2n+k

• W = Z Vmj and smn := X ^my
j<» j = n+k+\

Then

+£|5m nnsn-5m nr+£|5m nnsm nr
= I+II + III+IV, say.

By Holder's inequality, Minkowski's inequality, stationarity and (6)

Hence by Minkowski's inequality, stationarity and since v < 2

Likewise
III = o(cn).

For the estimate of IV we use Ibragimov's lemma [4, lemma 1.1]: Let £ and 17 be
measurable &\ and &t+n respectively. If l/p + l/q = 1 and £|f|p <oo and £|T7|" <oo
then

We apply this lemma with p = (2 + S)/u and q = (2 + 5)/ v and obtain by Minkowski's
inequality, Holder's inequality, stationarity, (9), since by (7), k-2m = \n^\, and
since by the above remark lemma 1 holds for 5 = 0,

We add the estimates for I, II, III and IV and obtain (8). Consequently, for some
constant au

E\sn +5n|2+s< E{\sn +sn\\\sn\
s +\sn\

s)}
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This corresponds to [3, (7.8)]. We pick up the proof of [3, lemma 7.4] on p. 226
just before [3, (7.11)] and follow it to its end replacing m by 2 and g(x,) by T/,.

3. Proof of theorem
For the proof of the theorem we apply the following proposition (see [5, p. 81,
remark]).

PROPOSITION 1. Let {£,, n eZ} be a sequence of random variables satisfying a strong
mixing condition

P(n):=sup{\P(AnB)-P(A)P(B)\: Ac &'.<;„ Be &T+n}« n-*68ii+i2/s)).

Let g be a measurable mapping from the space of doubly infinite sequences
( . . . , a_|, a0, ax,...) of real numbers into the real line. Let rjn —
g( . . . , £,_,, £,, £,+„ ...),n = l,2,...,andr,mn = E(Vn\<g"nlZ), where <Sb

a is any collec-
tion of sub cr-fields such that ^* <= 3Fh

a for all a < b. We assume of the function g and
the sequence {$„, neZ} that

EVn=0 n = l,2,... (10)

and that there exist constants 0 < 5 < 2 and c>0 such that

2+s^c, (11)
and

\\Vn-Vmn\\2+s^cm-w» (12)

for all n, m = 1,2,3,.. . . Moreover, suppose that

Vn) =rN + O(Nl-{s/30)) (13)
N /

for some T > 0. Then without changing its distribution we can redefine the sequence
{•qm n > 1} on a richer probability space on which there exists a standard Brownian
motion {B(t), t>0} such that with probability 1

Tjn-B(Tt)« t* A as t-* <x>

for any A < 5/588.
Let

rnx)

"IF(x)=\ Rx,s)ds, x€S, (14)

and let n(r, x) be the largest integer r such that

I l(T'x)<r. (15)
0<i<r

LEMMA 2. We have for all u and fi-almost all x as well as in L2

f(ST(x,u))dr- X F(7"x )« l .JL
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Proof. Put

II :=

III :=

\'f(ST(x,u))dr-\'f(ST(x,O))dr
Jo Jo

X \'lTX)f{T'x,s)ds- I F(T'x)

dr.

Then the left-hand side in the lemma is bounded by I+II+III. Now 11 = 0 by (14).
To estimate I we observe that

<2 I
Jo

\f(ST(x, n))| dr,

since / is bounded away from 0 and oo. Now

\f(ST+l4(x,0))\2drd^(x)J J
\f(ST(Tix,0))\2drdti(x)«x>

since E\f\2<<x> and the above sum is finite. Hence I is bounded for ̂ -almost all x
and all u. In the same way one can see that III is also bounded. •

Because of lemma 2 the approximation of the integral has been reduced to the
approximation of a random sum of random variables by a Brownian motion.
Proposition 1 specialized to the present situation will yield the approximation of
the sum £I S , F(T'x) by a Brownian motion. But because of lemma 3 below the
passage to the random sum will be easy.

For the proof of lemma 3 as well as for the application of proposition 1 we first
set up the basic probability structure. The underlying probability space is (£, fi).
Let y be the natural generator of the topological Markov chain 2. As has been
observed by Ratner [6, p. 182] the process (T, y) satisfies a mixing condition
somewhat stronger than <p-mixing with an exponential rate of decay. This was
obtained from Sinai's [10] construction of invariant Gibbs measures of transitive
C-flows of class C2. However, much more is true. Using Ruelle's Perron-Frobenius
theorem (cf. [8]), Bowen obtained [2, p. 24] the following weak dependence relation:

for all Ae(y)°_m, Be {y)"n
+k and all TO, fc,n>0. Here K and)3e(0, 1) are constants.

This condition is known in the literature as i/>-mixing and is obviously more restrictive
than (^-mixing, which in turn is more restrictive than strong mixing. Let £, be the
nth coordinate map of 2. Then {£„, neZ} satisfies a strong mixing condition with
exponentially fast mixing rate /3(n).

LEMMA 3. For any e > 0 we have for ^-almost all x:

n(t,x)-t/T«P+e.
Here /":= J Idfj. = £M/.

https://doi.org/10.1017/S0143385700002637 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002637


Approximation by Brownian motion 547

Proof. Define
Pn(x):=l(T"x)-T x e l

Since / is Holder continuous we have for all m > 1

for some constants K and ae(0 , 1). Thus setting

we obtain

Hence by lemma 1, applied with 8 = 0 we have for all M>0, N > 1

E( I pA « N.

We apply the Gaal-Koksma strong law of large numbers (see e.g. [5, theorem Al,
p. 134]) and obtain for each e > 0

X (/(T'x)-J)«n1 +" (16)

for ju.-almost all x. For r> 1 put

Ar••=(*: I (l(T'x))-T) s « J + \ f o r a l l n s r l .

If for some r > 1 we have x e Ar then for all n > r

Thus n(^,,x)<« and n(t2, x)>n. Let r be given and let w and n be such that
nT+n5+£< /< wjT-m^' and m f - m ^ < «r+n^+£ + O(l). Then we obtain by
elementary manipulations

rln(t,x)-i/T«r*+e. •
We put T)n(x):= F(T"x), x eS . We now apply proposition 1 to the sequence
{i7m«>l}. Since

EVo = j F(x) dp{x) = j j f(x, s) dsdfi(x) = /"£/= 0

and likewise

conditions (10) and (11) are satisfied. We now verify (12). We have

£ j F -
where

ri(x) ri(x)
f(x,s)ds-\ E{f\(y)n.nKx,s)ds

Jo Jo

2+«

41"
0

\f(x,s)-E{f\(y)-n}(x,s)\2+sdsd^(x)

<T-E\f-E(f\(y)ln)\2+S«n
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by hypothesis and

II :=

Now

ds

' ( > )l f f'
I -77z\ f(y,s)dsdp(y)-le(x)

e(f)_"n/i(C) Je Jo

- [ (X> I -7^7 [ f(y, r) dv{y, r)lc(x, s) ds
Jo ce(r)", "(L; Jc

/*(C) J c
« . I

where 0< a < 1 is as in the proof of lemma 3. Hence II decreases exponentially
fast since

E^E^{\F\\(y)n-n))
2+ss E^\F\2+S< /-£|/12+6<oo.

Next we verify (13). Since (12) holds we have with m = [jn]

£i7|7Jn = EiJ,(T)n - Vmn)+Er)mn(r)l - Vlm

by (9) and since /3(m)-»0 exponentially fast. Thus

Vi) =nEv
2+2 I (B-i)£i,,i,,+1

/

), say, (17)
where T S O . This proves (13).

We finally show the existence of the limit in (1) showing in fact that a2 = r/T.
By stationarity and the L2 statement in lemma 2 this claim will follow from

£"(--= (,?) , r
F(r /*))2 =°(')-

We first observe that by stationarity, by lemma 1 and [9, theorem B]
2+8

E., max I F(T'x) « 71

(18)

(19)
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We also note that \n(t, x) -1 / T\<\n{t, x)\ +1/T< At for some constant A. Now the
left-hand side of (18) does not exceed I+ 11 where

3 ( S ( ) ) dfi(x),
/ 4 ms«3/4\ism /

by (19) and Holder's inequality, and where

II:= f max( l
J|n(l,x)-(/l|>r3/4 msAl \ism

l£Mmax I F(rx)
2+S\ 2/(2+5)

by (19) and lemma 3. This proves (18). Hence by proposition 1 there exists a standard
Brownian motion (B(t), r>0) such that

I F(rx)-B(rn)«ni-X

for ^-almost all x. Hence for ^-almost all x

I F(rx)-B(rn(t,x))«(n(t,x)t\ (20)

Now by the argument in [5, p. 24]

B(Tn(t,x))-B(o-2t)«ti-x (21)

for /i-almost all x. Since n(t, x)« t the result for the approximation with respect to
fi follows from (20), (21) and lemma 2.

In order to prove the approximation in (2) when B is replaced by a standard
Brownian motion on the probability space (2, /A*), where dfi*(x) = T~'l(x) dfi(x),
first note that all estimates which hold /x-a.e. also hold /A*-a.e. and conversely
because both probabilities are equivalent. Hence lemmas 2 and 3 hold ju.*-a.e. Also
the arguments in (18)—(21) remain valid since for an integrable function g

I gdfi« I gdfj.*« I gdfi.

All that remains to show is that proposition 1 can still be applied.
We first show that the coordinate process {£,, neZ} is still (/̂ -mixing with an

exponentially fast decreasing rate. We shall make use of the following lemma which
is easily proved by approximation by simple functions.

LEMMA 4. If g and 17 are integrable and $ is measurable with respect to si and 77 is
measurable with respect to 9& then

where
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Let AG (y)lm, Be(y)kX7n and assume first that k>-2n. The case k<-In can be
treated similarly. Then by lemma 4

1 J
! f

J B

L
where /?*< 1, since {£„} is i/>-mixing with respect to /*. We will apply proposition
1 to the sequence 77* = FT" -[ FT" dp* («eZ). Observe that (77*) need no longer
be a stationary sequence and that £,-«„ T7*-Z,«n fT

1<:< 1, since by (14)

\ 1 J

and hence Z n a 0 |J FT n ^* |<oo . Conditions (10) and (11) are trivially satisfied. It
remains to verify (12).

Fix n s 1 and let m < 3«/4. Note that there is a q < 1 such that for all C e (y)Z~"

F(Tmy)r

r>F(Tmy)(l(y)-l(z))

1\F(Tmy)\ dfi(y),
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since for y,zeC and 11| < n / 4 , yt = z,. Hence

{Elt,\FTm - £ M . / ( )

= { I [ (/(x)/r)[M*(C)/"r
lCe(y)J" Jc

- \

Jc

«

F(Tmy)(l(y)/T)d»(y)

(/(*)/0

F(Tmx)fi*(C)

1 1/(2+6)

* > } ' " " '
Now let m > 3/i/4. First note that by elementary properties of conditional expecta-
tions, Minkowski's inequality and the conditional Holder inequality

For simplicity we put k-= [n/4]. Using lemma 4 twice we obtain for xe C e (y)mi£:

%*(c)lJ

+ J
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Here we have used twice that {£,} is ^-mixing with respect to /x. Integrating over
x with respect to fi* we obtain by Minkowski's inequality

| \(y)T-k
k))

2+sk
k))

2+sy/(2+S)

« n
Note that the constants implied by « do not depend on m and n. Hence relation
(12) follows. Similarly condition (13) can be verified. This completes the proof of
the theorem.
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