
2

Algebraic graph theory

The elementary basics of the matrix theory for graphs  () is outlined. The

books by Cvetkovíc et al. (1995) and Biggs (1996) are standard works on algebraic

graph theory.

2.1 Graph related matrices

1. Adjacency matrix . The adjacency matrix  of a graph  with  nodes is

an  × matrix with elements  = 1 only if the pair of nodes ( ) is connected

by a link  of , otherwise  = 0. If the graph is undirected, the existence of

the link  implies that  =  and the adjacency matrix  =  is a symmetric,

zero-one matrix. It is assumed further in this book that the graph  does not

contain self-loops ( = 0) nor multiple links between two nodes. Graphs without

self-loops and without multiple links between two nodes are called simple.

The complement  of the graph  consists of the same set of nodes but with

a link  between ( ) if there is no link  = ( ) in  and vice versa. Thus,

()

=  and the adjacency matrix  of the complement  is  =  −  −,

where  is the all-one matrix (() = 1) and  is the identity matrix. The links in

1

42

6 5

3

Fig. 2.1. A directed graph with  = 6 and  = 9. The links are lexicographically ordered,
1 = 1→ 2 2 = 1→ 3 3 = 1←− 6 4 = 2→ 3 etc.

a graph can be numbered in some way, for example, lexicographically as illustrated

in Fig. 2.1. Due to different node labeling, the same graph structure can possess

many different adjacency matrices (see Section 2.5 below).

15
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16 Algebraic graph theory

2. Incidence matrix . Information about the direction of the links is specified by

the incidence matrix , an  ×  matrix with elements

 =

⎧⎨⎩
1

−1
0

if link  =  −→ 

if link  = ←− 

otherwise

If  is the -th  × 1 basic vector of the  -dimensional space with () = 1 if

 =  and otherwise () = 0, then the -th column vector of , associated to link

 =  −→ , equals −  . Each column in  has only two non-zero elements. The
adjacency matrix and incidence matrix of the graph in Fig. 2.1 are

=


0 1 1 0 0 1
1 0 1 0 1 1
1 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 1 0 0 1 0

  =


1 1 −1 0 0 0 0 0 0
−1 0 0 1 −1 1 0 0 0
0 −1 0 −1 0 0 1 0 0
0 0 0 0 0 0 −1 −1 0
0 0 0 0 1 0 0 1 −1
0 0 1 0 0 −1 0 0 1


An important property of the incidence matrix  is that the sum of each column

equals zero,

 = 0 (2.1)

where  = (1 1     1) is the all-one vector, also written as an  × 1 matrix  =£
1 1 · · · 1

¤
.

An undirected graph can be represented by an  × (2) incidence matrix ,

where each link ( ) is counted twice, once for the direction  →  and once for

the direction  → . In that case, the degree of each node is just doubled. A link

 = ( ) between node  and  in an undirected graph is also denoted as  =  ∼ 

or  = ¿ . Instead of using the incidence matrix, the unsigned incidence matrix

, defined in art. 25, is more appropriate for an undirected graph.

3. Degree of a node. By the definition of the adjacency matrix , the row sum 

of  equals the degree  of node ,

 =

X
=1

 (2.2)

A neighbor  of a node  is a node in the graph  connected by a link to node

, thus obeying  = 1. The degree  is the number of neighbors of node  and

0 ≤  ≤  − 1. However, only  − 1 degree values are possible in a simple graph,
because the existence of  = 0 for some node  excludes the existence of a degree

equal to  − 1 and vice versa. Consequently, in any graph  with  nodes, there

are at least two nodes with the same degree.

Since
P

=1

P
=1  = 2, where  is the number of links in the graph , the

basic law for the degree follows as

X
=1

 = 2 (2.3)
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2.1 Graph related matrices 17

Probabilistically, when considering an arbitrary nodal degree1 , the basic law for

the degree becomes

 [] =
2



meaning that the average degree or expectation of  in a graph  is twice the ratio

of the number  of links over the number  of nodes. Especially in large real-world

networks, a probabilistic approach is adequate as illustrated in Chapter 8.

The basic law of the degree (2.3) implies that any graph  possesses an even

(possibly zero) number of nodes with odd degree. Indeed, the sum in (2.3) can be

split over nodes with even and odd degree so that

X
=1


()
 = 2−

X
=1


()


where 
()
 is an odd integer if the degree of node  is odd, otherwise 

()
 = 0

(and similarly for the even degree 
()
 ). The right-hand side is always even, which

implies that each simple graph must contain an even number of odd degree nodes.

Let us define the degree vector  =
£
1 2 · · · 

¤
, then both (2.2) and

(2.3) have a compact vector presentation as

 =  (2.4)

and

 =  =  = 2 (2.5)

For a directed graph, the in-degree in and out-degree 
out
 of node  are defined

as the number of links entering and leaving, respectively, node . From the incidence

matrix , the number of “1” elements in row  equals out , while the number of

“−1” elements in row  equals in . From an asymmetric adjacency matrix  (where

 = 1 only if there is link from node  −→ , otherwise  = 0), we find that

 = out and  =
¡
in
¢

If  is symmetric, then  =  = ()

and out = in = .

4. Laplacian matrix . The relation between adjacency and incidence matrix is

given by the admittance matrix or Laplacian ,

 =  = ∆− (2.6)

where ∆ = diag(1 2      ) is the degree matrix. Indeed, if  6=  and recalling

that each column in the incidence matrix  has precisely two non-zero elements,

 =
¡


¢

=

X
=1

 =

½ −1
0

if ( ) are linked

if ( ) are not linked

1 The random variable  of the degree in a graph  is equal to one of the possible realizations
or outcomes 1 2      of the degrees in .
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18 Algebraic graph theory

from which the “link decomposition” of the Laplacian, derived in (4.5), follows as

 =
X

()∈L
( − ) ( − )



If  = , then
P

=1 
2
 =  in (2.6) is the number of links that have node  in

common. If self-loops are allowed in a graph, then the right-hand side of definition

(2.6) shows that self-loops do not influence the Laplacian .

The basic property  = 0 in (2.1) of the incidence matrix  leads in (2.6) to

 = 0

Consequently, each row sum
P

=1  = 0, which shows that  is singular, implying

that det = 0.

Since  is symmetric, so is  and . Hence, although the incidence matrix 

specifies the direction of links in the graph, (2.6) loses information about directions

and  in (2.6) only reflects the existence of links between a pair of nodes, corre-

sponding to an undirected graph. Consequently, if  is asymmetric and specifies,

just like , the direction of links in a directed graph, then (2.6) does not hold.

Moreover, the asymmetric matrix ∆− does not define an asymmetric Laplacian,

because the row sum of ∆−  is not everywhere zero. By replacing the degree in

∆ by the in-degree or out-degree, either the column sum or the row sum of ∆−

is zero, so that we may define two different asymmetric “Laplacian” matrices. The

arguments illustrate that, generally, directed graphs possess less elegant properties2

than undirected graphs and give rise to a more complicated analysis.

The Laplace matrix  can be viewed as a discrete operator acting on a vector.

The relation with its continuous counterpart, the Laplacian differential operator, is

explained by Merris (1994) for a lattice graph.

5. Matrices of weighted graphs. Weighted graphs often appear in practice, where

a link between node  and node  in the graph  is specified by one or more real

numbers that reflect e.g. a delay, a monetary cost when using the link, the energy

needed when traveling over that link, a performance loss, a geographic distance,

a quality of service metric in telecommunication networks, like packet loss, jitter,

etc.. We call any such real number, that specifies a link characteristic, a weight 

of the link between node  and  and the  × weighted matrix  represents the

weights between all pairs ( ) of adjacent nodes. In most cases, analyses are limited

2 Perhaps the major disadvantage of directed graphs is that the eigenvalues are not necessarily
real (since art. 247 does not apply). Even worse, the asymmetric adjacency matrix  may not
be diagonalizable and may possess a Jordan canonical form (art. 239).
From a physical point of view, flows in networks (art. 14) can propagate in either direction,
depending on the driving force or potential difference; the incidence matrix  specifies the
direction of the flow in the link, while the adjacency matrix  =  determines the existence
of a link. If the adjaceny matrix is asymmetric, then some links only allow propagation of flows
in one direction and forbid the flow in the other direction. Physically, such an asymmetric
situation requires non-linear elements (such as diodes in an electrical network or water tubes
with directional shutters), which seriously complicate “linear” theory. Nevertheless, asymmetry
naturally occurs in www-links, social relations and the Markov graph of a Markov process.
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2.1 Graph related matrices 19

to one link weight, but multiple-parameter routing explained in Van Mieghem and

Kuipers (2004) is an example where each entry in the matrix  is a vector, rather

than a single real number. The link weight structure, the set of all link weights of

graph , is usually specified by a process or a function on the network, so that link

weight  may depend upon link weight . Since a process on a graph typically

introduces directions,  is generally not a symmetric matrix.

We will denote graph matrices of a weighted graph by a tilde to distinguish them

from graph matrices of the unweighted graph. For example, the element e of the
weighted adjacency matrix e represents the weight  of a link between node 

and  and e = 0 for all 1 ≤  ≤  . Using the Hadamard3 product ◦, the weighted
adjacency matrix e equals e = ◦, where e =  and  is an element of

the adjacency matrix . Hence, the unweighted case can be regarded as a special

case where the weighted matrix  =  is the all-one matrix.

A particular class of weighted graphs are undirected weighted graphs, where the

corresponding weighted adjacency matrix is symmetric, e = e . The weighted

degree of node  is e =P
=1 e , while the degree vector is e = e. Similarly, the

corresponding weighted Laplacian can be defined as e = diag
³e´ − e = e∆ − e,

thus e = −e if  6= , else, e = −P
=1;6= e and e = e .

6. Walk, path and cycle. A walk of length  from node  to node  is a succession

of  links (arcs) or  hops of the form (0 → 1)(1 → 2) · · · (−1 → ), where

node label 0 =  and  = . A closed walk of length  is a walk that starts in

node 0 =  and returns, after  hops, to that same node  = . A path is a walk

in which all nodes are different, i.e.  6=  for all 0 ≤  6=  ≤ . A cycle of

length  is a closed walk with different intermediate nodes, i.e.  6=  for all

0 ≤  6=   . For an undirected walk, path or cycle, we replace the directed link

 →  by the undirected link  ∼  . An Eulerian walk (circuit) is a closed walk

containing each link of the graph  once, while a Hamiltonian cycle contains each

node of  exactly once.

7. A shortest path. We consider only additive link weights such that the weight

of a path P is (P) = P
∈P , i.e., ( ) equals the sum of the weights of the

constituent links of the path P. The shortest path P∗→ from node  to node  is

the path with minimal weight, thus,  (P∗→) ≤  (P→) for all paths P→. The

shortest path weight matrix  has elements  = 
¡P∗→

¢
. If all link weights are

equal to  = 1 as in an unweighted graph, shortest paths are shortest hop paths

and 
¡
 ∗→

¢
=  is the hopcount, i.e. the length in hops or links of the shortest

path between node  and node , also called the distance between nodes  and , or

sometimes, the length of P∗→ . In weighted graphs, the hopcount  is generally

different from the weight  = 
¡P∗¢ of a shortest path.

In man-made infrastructures, two major types of transport exist: either a packet

3 The Hadamard product (Horn and Johnson, 1991) is the entrywise product of two matrices:
( ◦) =  . If  and  are both diagonal matrices, then  =  ◦.
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20 Algebraic graph theory

(e.g. car, parcel, IP-packet, container) or a flow (e.g. electric current, water, gas).

Transport is either flow-based or path-based. Packets follow a single path from

source to destination, whereas a flow spreads over all possible paths. Generally,

packets in a weighted network follow shortest paths. The flow analogon of the

shortest path weight matrix  is the effective resistance matrix Ω in Chapter 5.

There exist many routing algorithms to compute shortest paths in networks.

The most important of these routing algorithms are explained, for example, in

Van Mieghem (2010) and Cormen et al. (1991).

8. Graph matrices and distance matrices. Many other graph-related matrices, in

short graph matrices, can be defined and we mention only a few. The effective

resistance matrix Ω is studied in Chapter 5. The modularity matrix  is defined

and discussed in art. 151. The probability transfer matrix  = ∆−1 of a random
walk on a graph is a stochastic matrix, because all elements of  lie in the interval

[0 1] and each row sum is 1. Graph matrices can be scaled or normalized, e.g.,

normalized Laplacians are ∆−1 or ∆−
1
2∆−

1
2 .

A distance matrix  is a non-negative matrix, where element  specifies a

distance measure between node  and  in a graph. For example, if the distance

measure is equal to the hopcount  , then  = 0. Thus, distance matrices possess

a zero diagonal and contain the distances between each pair ( ) of nodes in a

graph. Any element of a distance matrix obeys the triangle inequality (art. 201):

0 ≤  ≤  + . The spectrum of distance matrices is reviewed by Aouchiche

and Hansen (2014). Both ,  and Ω are distance matrices.

The hopcount matrix  of the directed graph in Fig. 2.1,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 3 2

2 0 1 2 2 1

× × 0 1 × ×
× × × 0 × ×
3 1 2 1 0 2

1 2 2 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
illustrates asymmetry in directed graphs as well as the possibility of the non-

existence, marked by × in the above matrix, of a path between two nodes, although
the graph is connected. For these reasons, we usually confine to undirected, con-

nected graphs. Since  =  in an undirected, connected graph, the correspond-

ing distance matrix  is symmetric, with positive integer off-diagonal elements and

with zero elements on the diagonal.

2.2 The incidence matrix 

The  × incidence matrix  in art. 2 transforms an × 1 vector  of the “link”-
space to an  × 1 vector  of the “nodal” space by  = . Physically, this

transformation is best understood when  is a flow or current vector through links
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2.2 The incidence matrix  21

in a network, while  is the externally injected current in nodes of the graph  as

discussed in art. 14 below. We first concentrate on mathematical properties of the

incidence matrix .

9. Rank of the incidence matrix .

Theorem 1 If the graph  is connected, then rank() =  − 1.
Proof: The basic property  = 0 in (2.1) implies that rank() ≤  − 1.

Suppose that there exists a non-zero vector  6=  for any real number  such

that  = 0. Under that assumption, the vector  and  are independent and

the kernel (or zero space of ) consisting of all vectors  such that  = 0 has

at least rank 2, and consequently rank() ≤  − 2. We will show that  is not
independent, but proportional to . Consider row  in  corresponding to the non-

zero component  . All non-zero elements in the row vector () are links incident

to node . Since each column of  only consists of two elements (with opposite

signs), for each link  incident to node , there is precisely one other row  in  with

a non-zero element in column . In order for the linear relation  = 0 to hold,

we thus conclude that  = , and this observation holds for all nodal indices 

and  because  is connected. This implies that  = , which shows that

the rank of the incidence matrix cannot be lower than  − 1. ¤

An immediate consequence is that rank() =  −  if the graph has  disjoint

but connected components, because then (see also art. 116) there exists a relabeling

of the nodes such that  can be partitioned as

 =

⎡⎢⎢⎢⎢⎣
1     

 2
...

...
. . .

    

⎤⎥⎥⎥⎥⎦
10. The cycle-space and cut-space of a graph . The cycle-space of a graph 

consists of all possible cycles in that graph. A cycle (art. 6) can have two cycle

orientations. This means that the orientation of links in a cycle either coincides with

the cycle orientation or that it is the reverse of the cycle orientation. For example,

the cycle (1− 2) (2− 6) (6− 1) in Fig. 2.1 corresponds to the links (columns in )

1 6 and 3 and all links are oriented in the same direction along the cycle. When

adding columns 1 3 and 6, the sum is zero, which is equivalent to  = 0 with

 = (1 0 1 0 0 1 0 0 0). On the other hand, the triplet (1− 2) (2− 3) (3− 1),
corresponding to the links 1 4 and 2, is not a cycle, because not all links are oriented

in the same direction such that  = (1−1 0 1 0 0 0 0 0) has now negative sign
components.

In general, if  = 0, then the non-zero components of the vector  are links of

a cycle. Indeed, consider the -th row () =  . If node  is not incident with
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22 Algebraic graph theory

links of the cycle, then  = 0. If node  is incident with some links of the cycle,

then it is incident with precisely two links, with opposite sign such that  is again

zero.

Since the rank of  is  − , where  is the number of connected components,

the rank of the kernel (or null space) of  is −+. Hence, the dimension of the

cycle-space of a graph equals the rank of the kernel of , which is − + . The

orthogonal complement of the cycle-space is called the cut-space, with dimension

 − . Thus, the cut-space is the space consisting of all vectors  for which  =

 6= 0. Since  = 0 by (2.1), the non-negative components of  are the nodes

belonging to one partition and the negative components define the other partition.

These two disjoint sets of nodes thus define a cut in the graph, a set of links whose

removal separates the graph  in two disjoint subgraphs. For example in Fig. 2.1,

 =
£
1 0 −1 −2 1 1

¤
defines a cut that separates nodes 3 and 4 from

the rest. Section 4.4 further investigates the partitioning of a graph.

11. Cycles and cuts in a connected graph . A spanning tree  in the graph  is a

connected subgraph of  that contains all  nodes of . Any tree on  nodes has

 − 1 links, whose set is denoted by T ⊂ L, and a tree does not contain a cycle.
The definition of a spanning tree T of the graph  leads to an interesting prop-

erty: If a link  ∈ L, but  ∈ T , is added to the spanning tree  , then there is a
unique cycle in the graph T ∪ {}. Indeed, let  be a link between node  and .

Since  does not belong to the spanning tree  , the nodes  and  are not directly

connected, but there is a path from node  to node  in spanning tree  , because

 is connected. The addition of  to  results in two different paths from node  to

node . By the definition of a cycle, the graph T ∪ {} contains one cycle  ( ),
which is unique by construction and to which we can associate a vector  obeying

 = 0 by art. 10. The length of that cycle contains at most  links, because the

longest shortest path in the spanning tree has at most  − 1 links.
The companion property is: if a link  ∈ T (clearly,  ∈ L) is removed, then

there is a unique cut  ( ), that contains link  and links  ∈ L, but  ∈ T .
Similarly, we can associate a vector  to the cut  ( ) that obeys  6= 0.
Since there are − + 1 links of  that do not belong to the spanning tree  ,

we can construct − + 1 cycles and the set of cycles { ( )}∈L\T forms an
independent set, because a link  belongs to a cycle  ( ), but not to another

cycle  ( ) for  6= . Moreover, − + 1 is the dimension of the cycle-space

of  (art. 10) and the set of vectors , obeying  = 0, for  ∈ L\T represents a
basis for the cycle-subspace of . Analogously, the set of cuts { ( )}∈T with
associated set of vectors , obeying  6= 0, for  ∈ T represents a basis for the

cut-subspace of .

12. Spanning trees and the incidence matrix . Consider the incidence matrix 

of a graph  and remove an arbitrary row in , corresponding to a node . Let

 be one of the
¡


−1

¢
square ( − 1) × ( − 1) submatrices of  without row

 and let  denote the subgraph of  on  − 1 nodes formed by the links in
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the columns of . Since there are  − 1 columns in , the subgraph  has

precisely  − 1 links, where some links may start or end at node , outside the
node set of . We will now investigate det.

(a) Suppose first that there is no node with degree 1 in , except possibly for ,

in which case  is not a tree spanning  − 1 nodes. Since the number of links is
 () =  − 1, the basic law of the degree (2.3) shows that there must be a zero
degree node in . If the zero degree node is not , then  has a zero row and

det = 0. If  is the zero degree node, then each column of  contains a 1 and

−1. Thus, each row sum of  is zero and det = 0.

(b) In the other case,  has a node  with degree 1. Then, the -th row in 

only has one non-zero element, either 1 or −1. After expanding det by this

-th row, we obtain a new ( − 2) × ( − 2) determinant ; corresponding to

the graph :, formed by the links in the columns of ;. For det;, we can

repeat the analysis: either : is not a tree spanning the  − 2 nodes of  except

for nodes  and , in which case det; = 0 or det; = ±det;;.

Iterating this process shows that the determinant of any square submatrix  of

 is either 0, when the corresponding graph formed by the links, corresponding to

the columns in  is not a spanning tree, or ±1, when that corresponding graph is
a spanning tree. Thus, we have shown:

Theorem 2 (Poincaré) The determinant of any square submatrix of the incidence

matrix  is either 0, 1, or −1.
If the determinant of any square submatrix of a matrix is 0, 1, or −1, then that

matrix is said to be totally unimodular. Hence, the incidence matrix  is totally

unimodular.

13. The matrix C representing cycles in . Art. 11 suggests to write the incidence

matrix  of the graph  as

 =

∙
 \



¸
(2.7)

where the ( − 1)× ( − 1) square matrix  has as columns the (partial
4) links

of the spanning tree  of , the ( − 1) × (− + 1) matrix \ contains

the remaining links of  not belonging to  and the 1 ×  vector  is linearly

dependent on the  − 1 first rows of , because rank() =  − 1 by Theorem 1.

The × (− + 1) cycle matrix , in which a column represents a cycle of , is

defined by

 =

∙


−+1

¸
where the ( − 1) × (− + 1) matrix  contains elements of the vectors ,

obeying  = 0, for  ∈ L\T . The basic property  = 0 of a cycle  translates to
4 The row  , corresponding to node  , is not included in  and links to or from node  in
the columns of  only contain a 1 or −1.
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the matrix equation  = 0, from which  +\ = 0. Art. 12 demonstrates
that det = ±1, implying that the inverse of  exists, thus

 = −−1 \ (2.8)

Analogously for the cut-subspace of , the  × ( − 1) matrix  whose columns

contain the  − 1 vectors , obeying  6= 0, for  ∈ T ,

 =

∙
−1


¸
Since each column of  belongs to the orthogonal complement of the cycle-subspace

of , it holds that  = 0, from which 
 +  = 0 and, with (2.8),

 = −
 =

¡
−1 \

¢
(2.9)

In summary, the basic cycle matrix  in (2.8) and the basic cut matrix  in

(2.9) can be expressed in terms of the incidence matrix  for each spanning tree 

in . The idea to concentrate on a spanning tree  of  originates from Kirchhoff

(1847), who found the solution of the current-voltage relations in a resistor network

in terms of  .

14. Electrical resistor network. The importance of the incidence matrix  and

the Laplacian matrix  of a graph  is nicely illustrated by the current-voltage

relations in a resistor network. The flows of currents in a network, steered by forces

created by potential differences between nodes, is an example of a linear process,

where the dynamic process is proportional to the network’s graph. Other examples

of processes, that are “linear” in the graph, are water (or fluid or gas) networks,

where water flows through pipes and the potential of a node corresponds with its

height, heat diffusion in a network, where the nodal potential is its temperature,

and mechanical networks where springs connect nodes and nodal displacements are

related to potentials.

The  × 1 flow vector  possesses a component  =  = −, which denotes
the electrical current flowing through the link  =  ∼  from node  to node .

Kirchhoff’s current law

 =  (2.10)

is a conservation law. The -th row in (2.10),  = () =
P

=1, states

that, at each node  in the network , the current  leaving ( ≤ 0) or entering
( ≥ 0) must equal the sum of currents over links incident to . If current  ≥ 0
is injected at node , the flow conservation at node  is also written as

 =
X

∈ neighbors()
 =

X
=1

 (2.11)

Thus, if no current ( = 0) is injected nor leaving the node , then the net current

flow, the sum of the flows over links incident at node , is zero. If  = 0, then
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art. 10 shows that the non-zero components of  form a cycle. Left-multiplying

both sides of  =  in Kirchhoff’s current law (2.10) by  and using (2.1) yields

 = 0, which means that the net flow, influx plus outflow, in the network is zero.

Thus,  =  reflects a conservation law : the demand  offered at node  in the

network is balanced by the sum of currents or flows at node  and the net demand

of influx and outflow to the network is zero.

Each link  =  ∼  between node  and node  contains a resistor with resistance

 =  . A flow  is said to be physical if there is an associated potential function

 on the nodes of the network such that

 −  =  (2.12)

In electrical networks, the potential function is called the “voltage”, whereas in

hydraulic networks, it is called the “pressure”. The relation (2.12), known as the

law of Ohm, reflects that the potential difference  −  generates a force that

drives the current  from node  to node  (if  −   0, else in the opposite

direction) and that the potential difference is proportional to the current  . The

proportionality constant equals the resistance5   0 between node  and . For

other electrical network elements such as capacitors and inductances, the relations

between potential and current are more complicated than Ohm’s law (2.12) and

can be derived from the laws of Maxwell (see e.g. Feynman et al. (1963)). We

rewrite Ohm’s law (2.12) in terms of the current  =
1

( − ) flowing through

the link  = ( ), which becomes in matrix form

×1 = diag

µ
1



¶
×

¡

¢
× ×1 (2.13)

where the ×1 vector  contains as elements the voltage  at each node  in  and
diag

³
1


´
has diagonal elements

³
1
1
     1


     1



´
where  =  is the resistance

of link  = ( ). Substituting Ohm’s law (2.13) into Kirchhoff’s conservation law

(2.10) yields

 = diag

µ
1



¶
 

Similar to the unweighted Laplacian decomposition  =  in (2.6), we define

the  × weighted, symmetric Laplacian matrix6

e = diag

µ
1



¶
 (2.14)

5 If  = 0, then the potential  of node  and  of node  are the same by Ohm’s law (2.12).
From an electrical point of view, both nodes cannot be differentiated and we can merge node
 and  in the graph to one node. Therefore, we further assume that   0 in the graph .

6 Since   0, we can write  = diag


1



 = diag


1√



diag


1√



and may

consider the  ×  matrix  = diag


1√



as a “weighted incidence” matrix and the unit

of the element  is
1√
Ohm

. The law of Ohm in (2.13) transforms to  = diag


1√


  , so

that  apparently lacks a physical interpretation.
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26 Algebraic graph theory

The weighted Laplacian e also generalizes the definition (2.6) of the Laplacian

 = ∆− to e = e∆− e, where the × weighted, symmetric adjacency matrix e
with elements e = 


possesses a corresponding weighted degree diagonal matrixe∆ = diag

³e1 e2     e´ with e = ³ e´

introduced in art. 8. Alternatively,

substitution of Ohm’s law  =
1

( − ) into the nodal conservation law (2.11)

for node  yields

 =

X
=1




( − ) = 

X
=1




−

X
=1




 = 

X
=1

e − X
=1

e
which is, in matrix form,  =

³ e∆− e´  = e, where the weighted degree ise =P
=1 e . While link  =  ∼  contains a resistor with resistance  = , the

link weight is  =  =
1

.

In summary, we arrive at the fundamental relation between the  × 1 injected
current flow vector  into nodes of the network and the  × 1 voltage vector  at
the nodes

 = e (2.15)

Clearly, if all resistances equal  = 1 Ohm, then the unweighted case with the

standard matrices  and  is retrieved. Most properties transfer to the weighted

graph related matrices: the weighted Laplacian e = diag
³
1


´
 = e e is pos-

itive semidefinite (as follows from art. 101) and the conservation of total injected

flows  =  e = 0, due to the basic property (2.1) of the incidence matrix .

The power, the energy per unit time (in watts), dissipated in a resistor network is

the sum of power dissipated in each resistor, which equals P = . The funda-

mental relation (2.15) leads to the quadratic form P =  e =P∈L
³

+
−

−√


´2
,

which will allow us in art. 103 to relate the power P to eigenvalues of the weighted
Laplacian e.
15. Harmonic functions. The continuous description of  = e in (2.15) is the
Poisson equation∇2 () = −()

0
, where the potential  () is a continuous function

of the position  = (1 2     ) of a point in an-dimensional space, the Laplace

operator is ∇2 = 2

21
+ 2

22
+· · ·+ 2

2
, the charge density  () specifies the location

of electrical charges and the permittivity constant 0 balances the physical units at

the left- and right-hand side. The Poisson equation is related to Gauss’s divergence

law of the electrical field, that appears as the first Maxwell equation (see, e.g.,

Feynman et al. (1963), Morse and Feshbach (1978)). If the potential  () is defined

at some boundary or surface  that encloses a volume without charges inside, then

∇2 () = 0 for  ∈  and the solution  () of the Laplace differential equation is

called a harmonic function. Harmonic functions possess many nice properties and

are the fundamental corner stone, via the Riemann-Cauchy equations, of analytic

functions in the complex plane (Titchmarsh, 1964). In the discrete setting, the
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2.2 The incidence matrix  27

Laplace operator ∇2 in a continuous space is replaced by a Laplacian matrix e
on a graph and this powerful association results in more properties of and deeper

insight in the Laplacian than the adjacency matrix.

If the current  is injected in some nodes S ⊂ N , equivalent with the boundary ,
while  = 0 if  ∈ S, then

³ e´

= 0 and  =

1
P

=1 e is a weighted average
of the potential of its direct neighbors. The voltage vector  in  = e is called
a harmonic at node  if

³ e´

= 0. Similar to the continuous setting, known

as Dirichlet’s boundary problem, Doyle and Snell (1984) prove that a harmonic

function  (), defined on the nodes  ∈ N of the graph, achieves its maximum and

minimum value at the boundary S. This important property of harmonic functions
follows physically from the voltages as potentials in electrical networks (see also

Section 5.3.2).

If  = 0, then (2.15) indicates that e = 0, which is an eigenvalue equation.

If the graph  is connected (see art. 116), the (weighted) Laplacian has one zero

eigenvalue belonging to eigenvector proportional to the all-one vector , so that

the potential or voltage vector  = , for a non-zero real . The law of Ohm

(2.13) and the basic property (2.1) of the incidence matrix  then show that  = 0,

thus all currents are zero. Another consequence of the basic property (2.1) of the

incidence matrix  is that det e = 0 and that the general relation (2.15) cannot

be directly inverted as  = e−1. In Section 4.2, the inversion problem is analyzed

and a general method based on the pseudoinverse e† of the Laplacian matrix e is

presented.

16. Electrical resistor network revisited. Kirchhoff (1847) considered a variant of

the setting in art. 14, where the external current vector  is replaced by an external

voltage difference vector ext over links of . The law of Ohm in (2.13) becomes

 = diag()  + ext , where the link potential difference vector is  =  .

If  = 0, then art. 10 shows that the non-zero components of  form a cycle.

Kirchhoff (1847) demonstrated7 that   = 0: the sum of the voltage differences

over a cycle is zero, which is Kirchhoff’s voltage law.

Considering a spanning tree  as explained in art. 10 and 13, we write the link

current vector  and potential difference vector  as

 =

∙

\

¸
and  =

∙

\

¸
Since there are no external currents, i.e.  = 0 and  = 0, the link current vector

 with (2.7) obeys∙
 \



¸ ∙

\

¸
=   +\ \ = 0

7 More generally, if the magnetic field is time-invariant (see, e.g., Feynman et al. (1963)), the

Maxwell equation ∇ × −→ = 0, where
−→
 is the electric field vector, and Stokes’ theorem then

state that
 −→

−→
 = 0, implying that any closed contour over the electric field is zero.
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and, invoking (2.8),

 = −−1 \ \ =  \

Thus,

 =

∙

\

¸
=

∙


−+1

¸
\ = \

illustrating that the whole current vector only depends on those current vector

components, associated with links that are not in the spanning tree  . Similar,

  = 0 leads to diag()  = − ext. Substituting  = \ then yields¡
diag ()

¢
\ = − ()ext

Finally, the (− + 1)× (− + 1) matrix diag() has rank − + 1

and is invertible,

\ = −
¡
diag ()

¢−1
 ext

which is Kirchhoff’s solution. In fact, Kirchhoff (1847) evaluates the solution further

in terms of all spanning trees, reviewed without proof by Schnakenberg (1976).

Section 5.6 expresses the effective resistance in terms of spanning trees.

2.3 Connectivity, walks and paths

17. Connectivity of a graph. A graph  is connected if there exists a walk (art. 6)

between each pair of nodes in .

Theorem 3 If a graph  is disconnected, then its complement  is connected.

Proof: Since a graph  is disconnected,  possesses at least two connected

components 1 and 2. There are two situations: (a) If node  ∈ 1 and node

 ∈ 2, then no link in  connects them. By the definition of the complement

of a graph (art. 1), there will be a link  ∼  in . (b) If node  and  are

in the same connected component in , then consider any node  in a different

connected component. The argument in situation (a) shows that the link  ∼ 

and the link  ∼  exist in . Consequently,  and  are connected by the path

 =  ∼  ∼ . Combining the two possible situations demonstrates that any two

nodes are reachable in , implying that the graph  is connected. ¤

The converse of Theorem 3, “If  is connected, then its complement  is discon-

nected” is not always true. For example, if  is a tree (except for the star 1−1),
then  is connected. Section 4.1.1 gives additional properties of a graph’s connec-

tivity.

18. The number of -hops walks. Art. 6 has defined a walk. Due to its importance,

Lemma 1 is proved in two ways.
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Lemma 1 The number of walks of length  from node  to node  is equal to the

element
¡

¢

.

Proof by induction: For  = 1, the number of walks of length 1 between

node  and node  equals the number of direct links between  and , which is by

definition the element  in the adjacency matrix . Suppose the lemma holds

for  − 1. A walk of length  consists of a walk of length  − 1 from  to some

node  which is adjacent to . By the induction hypothesis, the number of walks

of length − 1 from  to  is
¡
−1¢


and the number of walks with length 1 from

 to  equals  . The total number of walks from  to  with length  then equalsP
=1

¡
−1¢


 =

¡

¢

(by the rules of matrix multiplication). ¤

Proof by direct computation: After  iterations in  of the matrix multipli-

cation rule
¡


¢

=
P

−1=1

¡
−1¢

−1
−1 for any matrix  , we obtain

¡


¢

=

X
−1=1

X
−2=1

· · ·
X

−=1

¡
−¢

−
−−(−1)   −2−1−1

When  =  − 1, then ¡−¢
−

= 1 and it holds for any matrix  that

¡


¢

=

X
1=1

X
2=1

· · ·
X

−1=1

112 · · ·−2−1−1

and applied to the adjacency matrix ,

¡

¢

=

X
1=1

X
2=1

· · ·
X

−1=1

112 · · · −2−1−1 (2.16)

With the convention 0 =  and  = , (2.16) can be written as

¡

¢

=

X
1=1

X
2=1

· · ·
X

−1=1

−1Y
=0

+1 (2.17)

where the indicator function
Q−1

=0 +1 = 112 · · · −2−1−1 is one if
and only if all links in the walk ( = 0 → 1)(2 → 3) · · · (−1 →  = ) exist

(i.e. +1 = 1 for all values of  in [0  − 1]), otherwise it is zero. The ( − 1)-
fold multiple summation in the explicit expressions (2.16) and (2.17) ranges over

all possible, directed walks ( = 0 → 1)(2 → 3) · · · (−1 →  = ) with 

hops (art. 6) between node  and  and enumerates, out of all possible walks, the

existing walks in the graph, reflected by
Q−1

=0 +1 = 1. ¤

The maximum possible number of walks with  hops between two nodes in a

graph with  nodes is attained in the complete graph  , whose adjacency matrix

is 
=  − , and equals ( − )


 . Invoking Newton’s binomium, which is
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allowed because  and  commute, we have

( − )

=

X
=0

µ




¶
 (−)−

Since  = −1 for  0, then ( − )

=(−1) +P

=1

¡



¢
−1(−1)− .

The binomium gives ( − )

= (−1) + 1



³
( − 1) − (−1)

´
 , from which the

maximum possible number of walks with  hops between node  and node  in any

graph follows as

( − )

 =

⎧⎨⎩
1


³
( − 1) − (−1)

´
for  6= 

1


³
( − 1) − (−1)

´
+ (−1) for  = 

(2.18)

19. Lower bounds for
¡

¢

. For any integer 0 ≤  ≤ , the matrix multiplication

form ¡

¢

=

X
=1

¡
−¢


() (2.19)

reduces, for  = 1 and taking into account the absence of self-loops, i.e.  = 0, to

¡

¢

=

X
=1; 6=

¡
−1¢




illustrating for each node  that
¡

¢

does not depend on

¡
−1¢


. For  = 2,

symmetry in the adjacency matrix,  =  , yields

¡
2
¢

=

X
=1

 =

X
=1

2 =

X
=1

 =  (2.20)

The off-diagonal element
¡
2
¢

=
P

=1  counts the number of nodes  that

have a link to both node  and ; i.e. the number of joint neighbors of node 

and node , so that 0 ≤ ¡2¢

≤ min ( ). Hence,

¡
2
¢

obeys both (A.185)

and (A.186) in art. 279, because of the basic inequality between the arithmetic and

geometric mean of two non-negative real numbers  and : min ( ) ≤ √ ≤ +
2
.

For  = 2 and   2 in (2.19), we find¡

¢

=
¡
−2¢



¡
2
¢

+
¡
−2¢


 +

P
=1; 6={}

¡
−2¢



¡
2
¢


for  6= ¡

¢

=
¡
−2¢


 +

P
=1; 6=

¡
−2¢



¡
2
¢


for  = 

The last equation leads to the recursion inequality
¡

¢

≥ ¡

−2¢

 for

 ≥ 2, that, after iteration, results for even  = 2 into¡
2

¢

≥  (2.21)
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but, for odd  = 2 + 1, we can only deduce
¡
2+1

¢

≥ 0 and equality can

occur, e.g. in the path graph, studied in Section 6.4. Similarly, the first equation

for  6=  when  = 2 leads, for  ≥ 2, to the recursion inequality¡

¢

≥ ¡−2¢



¡
2
¢

+ 

¡
−2¢



After  iterations, we have¡

¢

≥ ¡2¢



(
X

=0

³
−2(+1)

´





)
+ 

+1


³
−2(+1)

´


For odd  = 2+ 1 and  = − 1, we can conclude from the lower bound

¡
2+1

¢

≥ ¡2¢



(
−1X
=0

³
2(−(+1)+1)

´





)
+  

that ¡
2+1

¢

≥  

Even  = 2 and  =  − 1 give us ¡2¢

≥ ¡2¢



P−1
=0 




¡
2(−1−)

¢

.

Invoking the lower bound (2.21) yields

¡
2

¢

≥ ¡2¢



−1X
=0





−1−
 =

¡
2
¢


 − 

 − 

In conclusion, the properties in the number
¡

¢

of walks from node  to node

 with odd and even length  differ quite significantly, as will be supported by the

spectral investigations in art. 58. The reason is that 2 is a positive semidefinite

matrix (art. 278), while 2+1 is not.

20. The number of -hops paths. The number of paths with  hops between node

 and node  follows from (2.16) by excluding possible same nodes in the walk,

( ;) =
X

1 6={}

X
2 6={1}

· · ·
X

−1 6={1−2}
112 · · · −1

valid for   1 and   2, while the number of paths with  = 1 hop between the

node pair ( ) is 1 ( ;) =  . Symmetry of the adjacency matrix  implies

that  ( ;) =  ( ;). The definition of a path restricts the first index

1 to  − 2 possible values, the second 2 to  − 3, etc., such that the maximum
number of -hop paths, which is attained in the complete graph  , where  = 1

for each link ( ), equals

−1Y
=1

( − 1− ) =
( − 2)!

( −  − 1)!
whereas the total possible number of walks with  hops is given in (2.18). If we

allow self-loops ( 6= 0), then (2.16) with
Q−1

=0 +1 = 1 leads to the total

possible number of walks with  hops equal to −1.
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The total number  of paths between two nodes in the complete graph is

 =

−1X
=1

( − 2)!
( −  − 1)! = ( − 2)!

−2X
=0

1

!
= ( − 2)!−

where the remainder

 = ( − 2)!
∞X

=−1

1

!
=

∞X
=0

( − 2)!
( − 1 + )!

=
1

 − 1 +
1

( − 1) +
1

( − 1)( + 1)
+ · · ·



∞X
=1

µ
1

 − 1
¶
=

1

 − 2

implying that for  ≥ 3, the remainder   1. But  is an integer. Hence, the

total number of paths in  is exactly equal to

 = [( − 2)!] (2.22)

where  = 2.718 281 and [] denotes the largest integer smaller than or equal to .

Since any graph is a subgraph of the complete graph, the maximum total number

of paths between two nodes in any graph is upper bounded by [( − 2)!].
21. Hopcount  in a connected graph. A graph  is connected if there exists

a walk between each pair of nodes in . Lemma 1 shows that connectivity is

equivalent to the existence of some integer   0 for which
¡

¢

6= 0 for each

nodal pair ( ). The lowest integer  =  , where  6= , for which
¡

¢

6= 0,

but () = 0, for all 0 ≤   , equals the number of hops in the shortest

walk — which is then a path — from node  to node . Thus, for  6= , the vec-

tor
³
 

¡
2
¢

    

¡
−1¢



¡

¢


´
with  =  components equals

¡

¢

,

where  is the -th basic vector of the -th dimensional space. If  = , then we

define the hopcount of the shortest path to be  = 0. Hence, the element  in

the distance matrix , defined in art. 8, equals  = 1{min:() 6=0 } for  6= 

and  = 0. The hopcount  of the shortest path P∗ between node  and node 
is a unique integer, although there can be multiple shortest paths between node 

and node , so that
¡


¢

≥ 1.

Each off-diagonal ( 6= ) element in the hopcount matrix  obeys

 = min
1≤≤

µ
1


+ 

¶
(2.23)

Indeed, if node  is a direct neighbor of node , then  = 1 and the hopcount of the

remaining path from node  to node  equals  . The minimum-hop (or shortest)

path travels over that neighbor  of node  with the minimum remaining hops to

the destination node . If  =  and  = 1, then we find, with  = 0, hopcount

1 for the direct neighbor path. If  is not a neighbor of , then 1


= ∞, which
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removes the index  =  entry 1

+  from the minimal set

n
1

+ 

o
1≤≤

in (2.23). Since  is connected, thus excluding isolated nodes, there is at least one

element  = 1 in that minimal set. The non-linear recursion (2.23) can also be

written as

 = 1 + min
∈ neighbors()



22. Diameter of a graph. The diameter of the graph, denoted by  and sometimes

by  or  (), is the number of hops in the longest shortest path in  and equals

 = max1≤≤ ;1≤≤  . In a connected graph, the diameter is upper bounded

by  ≤  − 1, the hopcount  − 1 of the longest possible shortest path in any
connected graph on  nodes. The maximal diameter  =  − 1 occurs in a path
on  nodes. The diameter of a connected graph  is lower bounded by  ≥ 1

and the minimal diameter  = 1 only occurs in the complete graph  . If  is

disconnected, the diameter is not defined, but sometimes put as    or →∞
or, even  = 0; in principle, any integer outside the interval [1  − 1] can serve as
an indication of the non-existence of the diameter. We remark that  −  is not

necessarily a non-negative matrix, because
¡
+1

¢

can be zero8, even though¡


¢

≥ 1.

Lemma 2 Let   0 for any  ≥ 0 and  be the adjacency matrix of a connected

graph , then all elements of the matrix
P

=0 
 are positive for  ≥ . If

  , the non-negative matrix
P

=0 
 contains at least one zero element.

Proof: The definition of the diameter implies that, for each node pair ( ) in

a connected graph , there exists a path with hopcount at most equal to . This

means that
¡

¢

is non-zero for at least one integer  ∈ [0 ]. In addition, there

exists a pair ( ), separated by the longest shortest path in , for which
¡

¢

= 0

for all   . Since each coefficient   0, it follows that
P

=0 
¡

¢

 0 for

each node pair ( ), but
P

=0 
 with   contains at least one zero element,

namely
P

=0 
¡

¢

= 0. ¤

When  = −
¡



¢
with   0, then

P
=0 

 =
P

=0

¡



¢
− =

( +)

, which leads to the known result that the diameter  is the smallest

integer for which the matrix ( +)

has positive elements. Since

¡

¢

are inte-

gers, it also follows that ( +)
 −  is a non-negative matrix (see Section 10.6).

We infer from Lemma 2 that, for each node pair ( ), at least one of the matrices

in the sequence {}0≤≤ =
©
2     

ª
contains a non-zero ( ) element,

8 For example, in a path graph, studied in Section 6.4, with  = 3 and adjacency matrix

 =

 0 1 0
1 0 1
0 1 0

 , there is not a walk with length 2 (nor any even number) between node 1
and node 2 (i.e.


2


12
= 0 for   1), while there is a walk of odd length, thus


2+1


12

 0

for   0. The diameter  = 2, but 2 −  contains negative elements.
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while there is at least one node pair ( ), corresponding to the longest shortest

path in  with  hops, whose entries in the sequence {}0≤ are zero. The

next Lemma generalizes this observation.

Lemma 3 For any diagonal matrix  and for each node pair ( ), at least one of

the matrices in the sequence {(+)
}0≤≤ contains a non-zero ( ) element.

Proof: Let  and 0 denote the graph represented by the adjacency matrix
 without self-loops ( = 0 for any node ) and the same graph with weighted

self-loops (equal to  for node ), respectively. As explained in art. 21, the

smallest integer  =  , where  6= , for which
¡

¢

6= 0, but () = 0, for

all 0 ≤   , is the hopcount of the shortest path in  from node  to node .

The expression (2.16) indicates that
¡


¢

6= 0 does not depend on any diagonal

element of , because a path is a walk with all nodes different. This means that³
(+)


´

=
¡


¢

6= 0. In addition, for    , there is no path in 

from  to  with  hops. Since a diagonal element, associated to a self-loop in 0,
cannot help to reach node  from  if there is no path from  to  in the graph  and

thus also not in 0, there also holds that ((+)

) = (

) = 0 for   .

These facts demonstrate Lemma 3. Only when    , then (+)

 can differ

from () . ¤

An interesting consequence of Lemma 3 is that, also for the Laplacian  = ∆−,
one of the matrices in the sequence {}0≤≤ contains a non-zero ( ) element.
Finally, combining Lemma 2 and 3 leads to the statement that there exists a matrix

polynomial  (+) of degree  ∈ [0 ], whose ( )-th element is non-zero.
23. h-hops adjacency matrix. Analogous to Estrada (2012), who defines a path-

Laplacian, we define the -hops graph  on  nodes as the graph that contains

a link between  and  if their distance in an original graph  is  hops. The

corresponding -hops adjacency matrix  has elements

() = 1{=} (2.24)

We define 0 =  and, clearly, 1 = . Art. 21 shows that a walk with  =

min

n¡

¢

6= 0

o
is also the shortest path between  and  and that, for  6= ,

() = 1{{∀∈[1):()=0}∩ {()0}} (2.25)

while the diagonal elements () in (2.24) are zero for   0. Art. 22 il-

lustrates that the composed event
n
∀ ∈ [1 ) : () = 0

o
is also equal to the

event
nP−1

=1 (
) = 0

o
, because all elements in  are non-negative. For the

same reason, the last event is also equal to the event
nP−1

=1  (
) = 0

o
, where

  0 for each index . Hence, the number of conditions to be checked in (2.25)
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is reduced to two in

() = 1{{−1
=1 (

)=0}∩ {()0}} = 1{−1
=1 (

)=0}1 {()0}
(2.26)

Finally, we can choose  =
¡



¢
so that

P
=1  (

) =
³
(+ )


´

for  6= 

and (2.26) simplifies to

() = 1((+)−1)

=0
1 {()0}

Lemma 2 states that
P

=0  (
)  0 for all  ≥  and, consequently, (2.26)

implies that  =  for all    as well as

−1X
=0

 =

X
=0

 = 

The relation with the distance matrix  in art. 8 and art. 21 is

 =

X
=1

 

The number of links 1
2
  in the graph  equals the number of node pairs

connected by an -hop shortest path.

The sequence of -hops adjacency matrices {}1≤≤ = {12    } de-
fines a multi-layer network where, in each -plane, the graph  is depicted and

along the -axis, the number  of hops is varied. Such multi-layer network may

visualize how the links () around node  to any other node  in  vary with

hop  and it allows to construct the levelset (Van Mieghem, 2014, Sec. 16.2.2), the

set containing the number of nodes () at each level  in a shortest path tree

rooted at node  of  and depicted in Fig. 6.4.

24. Effects of link removals on the diameter. Schoone et al. (1987) have derived

bounds for the maximum diameter of a still connected graph , obtained from

an original graph  with diameter  after the removal of  links. For undirected

graphs , Schoone et al. (1987) prove an upper bound for the diameter in  of

( + 1) and a lower bound of ( + 1) − , for even , and of ( + 1) − 2 + 2,
for odd  ≥ 3. For the special cases of  = 2 and  = 3, the exact bounds are

 (2) ≤ 3−1 and  (3) ≤ 4−2, respectively. In addition, Schoone et al. (1987)
prove that the problem of finding  by removing  links in  so that  () is at

least  as well as the related problem of finding the graph  by adding  links to

 so that  () ≤  is NP-complete.

2.4 The line graph

25. The line graph  () of the graph  () has as set of nodes the links of 

and two nodes in the line graph  () are adjacent if and only if they have, as links
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36 Algebraic graph theory

in , one node of  in common. Given the graph , the definition thus specifies the

line graph operator  (). The line graph  () of  is sometimes called the “dual”

or “interchanged” or “derived” graph of . For example, the line graph of the star

1 is the complete graph  and the line graph of the example graph in Fig. 2.1

is drawn in Fig. 2.2. When  is connected, then also  () is connected as follows

from the definition9 of the line graph  ().

1

4

2

6 5

3
7

8
9 1

4

2

6 5

3
7

8
9

Fig. 2.2. The line graph of the undirected variant of the graph drawn in Fig. 2.1.

We denote by  the absolute value of the incidence matrix , i.e.,  = | |. In
other words,  = 1 if node  and link  are incident, otherwise  = 0. Hence, the

unsigned incidence matrix  ignores the direction of links in the graph, in contrast

to the incidence matrix . Analogously to the definition of the Laplacian in art. 4,

we may verify that the  ×  adjacency matrix  of the graph  is written in

terms of the unsigned  ×  node-link incidence matrix  as

 =  −∆ (2.27)

The × adjacency matrix of the line graph  () is similarly written in terms of

 as

() = − 2 (2.28)

The matrix  is generally a (−1 0 1)-matrix. Taking the absolute value of its
entries equals , whereas the Laplacian matrix  = 2∆− =  .

In a graph , where multiple links with the same direction between two nodes

are excluded, we consider

¡


¢

=

X
=1

 =

⎧⎨⎩
1 if both link  and  either start or end in node 

−1 if either link  or  starts or ends in node 

−2 if link  and  have two nodes in common

The latter case, where
¡


¢

= −2, occurs for a bidirectional link between two

nodes. If the links at each node of the graph  either all start or all end, then

9 In a connected graph , each node is reachable from any other node via a path (a sequence of
adjacent links, art. 6). Similarly, in the dual setting corresponding to the line graph, each link
in  is reachable from any other link via a path (a sequence of adjacent nodes or neighbors).
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we observe that
¡


¢

= 1 for all links  and  and, in that case, it holds that

 = . An interesting example of such a graph is the general bipartite

graph, studied in Section 6.8, where the direction of the links is the same for each

node in the setM to each node in the other set N\M.

26. Basic properties of the line graph. The number of nodes in the line graph  ()

equals the number  of links in . The number of links in the line graph  () is

computed from the basic law of the degree (2.5) and (2.28) with the × 1 all-one
vector  as

() =
1

2
() =

1

2
− 

=
1

2
kk22 − 

It follows from the definition of the unsigned incidence matrix  that 1× =

2×1 or

 = 2 (2.29)

which is the companion of (2.1), and that

 =  (2.30)

because the row sum of
P

=1 = , the number of links in  incident to node

. Hence, we find that the number of links in the line graph  () equals

() =
1

2
−  =

1

2

X
=1

2 −  (2.31)

Alternatively, each node  in  with degree  generates in the line graph  ()

precisely  nodes that are all connected to each other as a clique, corresponding

to
¡

2

¢
links. The number of links in  () is thus also

() =

X
=1

µ


2

¶
Art. 4 indicates that the average degree of a node in the line graph  () is


£
()

¤
=
2()

()

=
1



X
=1

2 − 2

The degree vector of the line graph  () follows from (2.4) as

() = ()×1 = − 2
= − 2

Each column of  (as in the incidence matrix ) contains only two non-zero ele-

ments and the vector component
¡


¢

= + + − , where + denotes the node
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at the start and − the node at the end of the link . Hence, the maximum (and

similarly minimum) degree of the line graph  () equals

max () = max
1≤≤

(+ + − − 2) ≤ (1) + (2) − 2

where () denotes the -th largest degree in  and (−1) ≥ () for 2 ≤  ≤  .

Example The degree vector of a regular graph with degree  is  = ×1. The
degree vector of the corresponding line graph is () =  − 2 =  − 2
and with (2.29), we find () = 2 ( − 1)×1. The line graph of a regular graph
with degree  is also a regular graph with degree 2 ( − 1). The total number of
links follows from () =

P
=1

¡

2

¢
= 

(−1)
2

or from the basic law of the degree

(2.5), () =
1
2

()

 = ( − 1) = ( − 1) 
2
 .

The sum of all off-diagonal elements in 2 equals

X
=1

X
=1; 6=

¡
2
¢

=

X
=1

X
=1; 6=

X
=1

 =

X
=1

X
=1



X
=1; 6=



=

X
=1

X
=1

 ( − ) =

X
=1

Ã


X
=1

 −
X
=1



!
and, thus

X
=1

X
=1; 6=

¡
2
¢

=

X
=1

 ( − 1) = 2() (2.32)

where the last equality follows from (2.31) and
P

=1

P
=1; 6=

¡
2
¢

equals twice

the total number of two-hop walks with different source and destination nodes. In

other words, the total number of connected triplets of nodes in , which is half of

(2.32), equals the number of links in the line graph  () .

The ×  Laplacian matrix () of the line graph  () is, by definition (2.6),

() = diag
¡
()

¢−()

= diag
¡


¢−

which illustrates that the relation between the Laplacian  of the graph  and the

Laplacian () of its line graph  () is less obvious.

27. Since  is a Gram matrix (art. 280), all eigenvalues of  are non-

negative. Hence, it follows from (2.28) that the eigenvalues of the adjacency matrix

of the line graph  () are not smaller than −2.
The adjacency spectra of the line graph  () and of  are related by Lemma 11

in art. 284 since

det
³¡


¢
× − 

´
= − det

³¡


¢
× − 

´
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Using the definitions (2.28) and (2.27) in art. 25 yields

det
¡
() − (− 2) 

¢
= − det (∆+− )

or

det
¡
() − 

¢
= (+ 2)

−
det (∆+− (+ 2) ) (2.33)

The eigenvalues of the adjacency matrix of the line graph  () are those of the

unsigned Laplacian ∆+ in art. 30 shifted over −2 and an eigenvalue at −2 with
multiplicity − .

If  = , then Lemma 11 indicates that

det
³¡


¢
× − 

´
= − det

³¡


¢
× − 

´
from which

det (− ) = − det
¡
() − (− 2) 

¢
or

det
¡
() − 

¢
= (+ 2)

−
det (− (+ 2) ) (2.34)

In graphs , where  = , the eigenvalues of the adjacency matrix of the

line graph  () are those of the Laplacian  = ∆ −  shifted over −2 and an
eigenvalue at −2 with multiplicity − .

The restriction, that all eigenvalues of an adjacency matrix are not less than −2,
is not sufficient to characterize line graphs (Biggs, 1996, p. 18). The state-of-the-art

knowledge about line graphs is reviewed by Cvetkovíc et al. (2004), who treat the

characterization of line graphs in detail. Referring for proofs to Cvetkovíc et al.

(1995, 2004), we mention here only:

Theorem 4 (Krausz) A graph is a line graph if and only if its set of links can

be partitioned into “non-trivial” cliques, namely (i) two cliques have at most one

node in common and (ii) each node belongs to at most two cliques.

Theorem 5 (Van Rooij and Wilf) A graph is a line graph if and only if (i) it

does not contain the star 13 as an induced subgraph and (ii) the remaining (or

opposite) nodes in any two triangles with a common link must be adjacent and each

of such triangles must be connected to at least one other node in the graph by an

odd number of links.

28. Inverse line graph. Given a line graph  (), it is possible to reconstruct the

original graph  by the inverse line graph operation −1 (), so that −1 ( ()) = 

returns the original graph .

Each link  in  connects two nodes  and  and is transformed in the line graph

 () to a node  that belongs to two cliques b and
b , where a clique, denoted

by b, contains the complete graph  and additional links to other nodes outside
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the complete graph. If a line graph  () can be partitioned into cliques (Krausz’

Theorem 4), then the number of those cliques equals the number  of nodes in 

and each node  in  (), belonging to two cliques  and , corresponds to a link  in

 between two nodes  and . Apart from the line graph  () = 3, that has two

original graphs, the triangle 3 and the star 13 on four nodes, the reconstruction

or inverse line graph −1 () is unique by a theorem of Whitney (1932).

Algorithms to compute the original graph  from the line graph  () are pre-

sented by Lehot (1974) and Roussopoulos (1973). Our inverse line graph algorithm

ILIGRA complements and has advantages over Lehot’s and Roussopoulos’ algo-

rithm, as explained in Liu et al. (2015).

29. Repeated line graph transformations. The Cauchy-Schwarz inequality (A.72),³P
=1 

´2
≤ 

P
=1 

2
 with equality only for regular graphs where  =  for

each node , the basic law of the degree (2.3) and (2.31) indicate that

() ≥ 

µ
2


− 1
¶

(2.35)

The number () of links in the line graph can only be equal to the number

 of links in the original graph if the average degree 2

= 2 and the graph is

regular. Hence, the line graph of a cycle  on  nodes is again the cycle  , i.e.

 ( ) =  .

For  ≥ 1, van Rooij andWilf (1965) have constructed the sequence0 1     

of graphs, where the graph  =  (−1) has  nodes and  links and where the

original graph 0 is possibly the only non-line graph. The -th line graph iterate

    | {z }
 times

(0) is denoted by  =  (0). The line graph of the path  on  nodes

is  ( ) = −1. Hence, the -th iterate  ( ) = − becomes the empty
graph for  =  − 1, while the cycle, obeying  ( ) =  , is invariant under a

line graph transformation.

The basic property (art. 26) of the line graph shows that  = −1 and (2.35)
becomes

+1



≥ 2 

−1
− 1

Let  =
+1


, then +1 ≥ 2 − 1, equivalent to +1 − 1 ≥ 2 ( − 1) and after

 iterations, we obtain

 − 1 ≥ 2 (−1 − 1) ≥ 22 (−2 − 1) ≥    ≥ 2 (− − 1)
If  −  = 0, then, with 0 =



, we find that  =

+1


≥ 2 ¡ 


− 1¢+ 1. With

 = 

− 1, iterating +1 =  downwards yields

 ≥ 

−1Y
=0

¡
1 + 2

¢
= 2

(−1)
2

−1Y
=0

µ
1 +

1

2

¶
(2.36)
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If  is regular, then all  with    are also regular graphs (art. 26), in which

case the equality sign in (2.36) holds. Hence, if 0 is a regular graph with degree ,

then  = 
2
− 1 and equality holds in (2.36) so that  = 

Y−1
=0

¡
1 + 2

¡

2
− 1¢¢.

Since the degree of a node in any graph with   3 is smaller than or equal to

 =  − 1 in the complete graph, we find an upper bound

 ≤ 

−1Y
=0

µ
1 + 2

µ
 − 1
2
− 1
¶¶

In summary, for any graph with  = 

− 1  0,   3 (but excluding the star

13, because  (13) = 3) and at least one nodal degree  ≥ 3, the number 

of nodes in  is increasing in  rapidly10 as 
³
2

(−1)
2

´
.

Xiong (2001) has shown for a connected graph 0 different from a path that

 (0) is Hamiltonian if  ≤ − 1, where  is the diameter (art. 22) of 0, while
Harary and Nash-Williams (1965) prove that, if 0 is Eulerian (art. 6), then 

3 (0)

is Hamiltonian and conversely.

30. Unsigned Laplacian. The unsigned or signless Laplacian  = ∆+, studied by

Cvetkovíc et al. (2007), possesses a number of interesting properties. The definition

(2.27) shows that  =  is a positive semidefinite matrix and all its eigenvalues

are non-negative (art. 27). The smallest eigenvalue of  of a connected graph is

only equal to zero if the graph is bipartite. Indeed,  = 0 implies that  = 0,

which is only possible if  = − for every link  =  ∼  in the graph, i.e. only

if  is bipartite (art. 25). Cvetkovíc et al. (2007) show that this zero eigenvalue is

simple in a connected graph and that the multiplicity of the zero eigenvalue of 

in any graph equals the number of bipartite components. The smallest eigenvalue

of the signless Laplacian can be regarded as a measure of the non-bipartiteness of

a graph. Staníc (2015) devotes a chapter on inequalities of the signless Laplacian.

10 The fundamental cornerstone in the theory of Gaussian polynomials, defined as




() =


=1(1− )

=1(1− )
−
=1(1− )

=


=1

(1− −+1)
(1− )

(2.37)

is

( ) =

−1
=0

(+  ) =


=0






() (−1)2  − (2.38)

which bears a striking resemblance to Newton’s binomium (Rademacher, 1973; Goulden and

Jackson, 1983) for  = 1 so that






(1) =






. We define (− ) = 0 in correspondence

to the first factor for = 0 in the product. The so-called -analog (2.38) of Newton’s binomium
is derived via induction from the recursion ( ) = ( + −1 )−1( ) for   0 and
0( ) = 1. When  tends to infinity, (2.38) leads for ||  1 to

∞
=0

(1 +  ) =

∞
=0

(−1)2
=1(1− )

 (2.39)
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2.5 Permutations, partitions and the quotient graph

31. Permutation matrix  . Consider the set N = {1 2     } of nodes of ,
where  is the label of node . The most straightforward way is the labeling  = .

Suppose that the nodes in  are relabeled. This means that there is a permutation,

often denoted by , that rearranges the node identifiers  as  =  (). The

corresponding permutation matrix  has, on row , element  = 1 if  =  (),

and  = 0 otherwise. Thus, in each row there is precisely one non-zero element

equal to 1 and, consequently, it holds that

 = 

For example, the set of nodes {1 2 3 4} is permuted to the set {2 4 1 3} by the
permutation matrix

 =

⎡⎢⎢⎣
0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⎤⎥⎥⎦
If the vector  = (1 2 3 4), then the permuted vector  =  = (2 4 1 3). Next,

 =  =  2 = (4 3 2 1), then  =  =  3 = (3 1 4 2), and, finally,  =

 4 = . Thus,  4 = . The observation  =  holds in general for each  ×

permutation matrix  : each node can be relabeled to one of the {1 2     }
possible labels and the permutation matrix maps each time a label  →  () =

, where, generally,  6=  , else certain elements are not permuted
11. After 

relabelings, we arrive again at the initial labeling and  = . The definition

(A.27) of the determinant shows that det = ±1, because in each row there is

precisely one non-zero element equal to 1.

Another example of a permutation matrix is the unit-shift relabeling transfor-

mation in Section 6.2.1.

32. A permutation matrix  is an orthogonal matrix. Since a permutation matrix

 relabels a vector  to a vector  = , both vectors  and  contain the same

components, but in a different order (provided  6= ), such that their norms

(art. 201) are equal, kk = kk. Using the Euclidean norm kk22 = , the

equality   =  implies that  = , such that  is an orthogonal matrix

(art. 247).

If 1 and 2 are two directed graphs on the same set of nodes, then they

are called isomorphic12 if and only if there is a permutation matrix  such that

1
 = 2

. Since permutation matrices are orthogonal, −1 =  , the spec-

tra of 1 and 2 are identical (art. 247) : the spectrum (set of eigenvalues) is

an invariant of the isomorphism class of a graph. However, the converse “if the

spectrum (set of eigenvalues) is the same, then the graph is isomorphic” is not true

11 The special permutation  =  does not, in fact, relabel nodes.
12 The word “isomorphism” stems from  (isos: same) and  (morphei: form).
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in general. There exist nonisomorphic graphs that have precisely the same set of

eigenvalues and such graphs are called cospectral graphs.

33. A permutation matrix  is a doubly-stochastic matrix. Left-multiplying both

sides of  =  with  and using  =  in art. 32 leads to  = . Since

each element  ∈ [0 1] and the row sum of  equals 1, i.e.  = , we conclude

that  is a stochastic matrix and property  =  makes  a doubly-stochastic

matrix.

34. Automorphism. We investigate the effect of a permutation  of the nodal set

N of a graph on the structure of the adjacency matrix . Suppose that  =  ()

and  =  (), then we have with the definition of  in art. 31,

() =

X
=1

 = 

( ) =

X
=1

 = 

In order for  and  to commute, i.e.  =  , we observe that, between each

node pair (  ) and its permutation ( ()   ()) there must be a link such that

 = 1 = . An automorphism of a graph is a permutation  of the nodal set N
such that ( ) is a link of  if and only if ( ()   ()) is a link of . Hence,

if the permutation  is an automorphism, then  and  commute. In fact, an

automorphism is an isomorphism of the graph  to itself and represents a form of

symmetry that maps the graph onto itself. A classical example is the Peterson graph

in Fig. 2.3: by rotating the five nodes (both inner as outer ring) over 72 degrees,

we obtain again a Peterson graph. All possible such permutations, that preserve all

details of its structure, constitute the automorphism group of a graph , denoted

by Aut(). A graph is called symmetric if there are non-trivial, i.e. excluding

 = , automorphisms (|Aut()|  1), and asymmetric if the trivial permutation

 =  is the only automorphism (|Aut()| = 1). Determining Aut() or testing

whether a graph has a non-trivial automorphism is a “hard” problem, likely NP-

complete, but its hardness class is still unknown, just as the graph isomorphism

problem (art. 38).

The consequences of the commutation  =  for the spectrum of the adja-

cency matrix  are interesting. Suppose that  is an eigenvector of  belonging to

the eigenvalue , then

 =  =  = 

which implies that  is also an eigenvector of  belonging to eigenvalue . If 

and  are linearly independent, then  cannot be a simple eigenvalue. Thus, an

automorphism produces multiple eigenvectors belonging to a same eigenvalue.

35. Enumeration of graphs. The total number of undirected graphs  () with
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 nodes and  links equals

() =

µ¡
2

¢


¶
(2.40)

which is the number of ways that we can distribute the  ones, corresponding to the

 links, in the upper (or lower) triangular part of an  × symmetric adjacency

matrix, containing
¡

2

¢
possible positions. The total number of undirected graphs

with  nodes then follows by summing (2.40) over all possible number of links,

0 ≤  ≤ ¡
2

¢
, as

() = 2
(2 ) (2.41)

The enumeration has implicitly assumed that all nodes are distinguishable. For

example, each node has a certain characteristic property (i.e. a label, a color,

a size, etc.). In many cases, the nodes of a graph are all of the same type and

indistinguishable, which means that, if we relabel two nodes, the resulting graph

is still the same or isomorphic to the former. The number of ways in which we

can relabel the  nodes is  !. However, the number of graphs isomorphic to a

given graph  is  !|Aut()|. Therefore, for any class  of graphs closed under

isomorphism (e.g. all graphs, or all regular graphs), the number of isomorphism

classes is |()| !, where |()| is the average size of the automorphism
group of a graph in . Hence, the total number of undirected, nonisomorphic

graphs is

nonisomorphic () =
2(


2 )

 !
|( ())| (2.42)

where |( ())| is the average number of automorphisms among all graphs on
 nodes and the complicating factor in (2.42).

In some cases, the enumeration of graph properties (such as the number of walks

(art. 59), the number triangles in (3.8) and spanning trees (art. 117)) can be

efficiently computed from the spectrum of the graph, while in other cases, enumer-

ation leads to a challenging combinatorial problem (such as the number of regular

or cospectral graphs (art. 40)). Techniques for enumeration of graph properties,

including a proof of (2.42), are discussed in depth in the book by Harary and Palmer

(1973).

36. Partitions. A generalization of a permutation is a partition that separates

the nodal set N of a graph in disjoint, non-empty subsets of N , whose union is
N . The  ∈ {1 2     } disjoint, non-empty subsets generated by a partition are
sometimes called cells, and denoted by {1 2     }. If  =  , the partition

reduces to a permutation. We also denote a partition by .

Let {1 2     } be a partition of the set N = {1 2     } of nodes and let

https://doi.org/10.1017/9781009366793.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009366793.005
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 be a symmetric matrix, that is partitioned as

 =

⎡⎢⎣ 11 · · · 1
...

...

1 · · · 

⎤⎥⎦
where the block matrix  is the submatrix of  formed by the rows in  and the

columns in  . For example, the partition 1 = {1 3}, 2 = {2 4 6} and 3 = {5}
of the nodes in Fig. 2.1 leads to the partitioned adjacency matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∙
0 1

1 0

¸ ∙
1 0 1

1 1 0

¸ ∙
0

0

¸
⎡⎣ 1 1

0 1

1 0

⎤⎦ ⎡⎣ 0 0 1

0 0 0

1 0 0

⎤⎦ ⎡⎣ 1

1

1

⎤⎦
£
0 0

¤ £
1 1 1

¤
[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which is obtained from the matrix  on p. 16 by relabeling nodes according to

1 =  (1)  2 = (3) 3 =  (2)  4 =  (4)  5 =  (6)  6 =  (5). The characteristic

matrix  of the partition, also called the community matrix , is the  ×  matrix

whose columns are the vectors  labeled in accordance with . Thus, in the

example, the partition 1 = {1 3}, 2 = {2 4 6} and 3 = {5}, translates after
relabeling into 1 = { (1) = 1 (3) = 2}, 2 = { (2) = 3  (4) = 4  (6) = 5}
and 3 = { (5) = 6}, respectively, with corresponding matrix 

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 2 0 0

0 3 0

0 0 1

⎤⎦

where  is the all one vector of dimension . Clearly,  = diag(2 3 1).

In general,  = diag(|1|  |2|      ||), where || equals the number of
elements in the set . Each row of  only contains one non-zero element, which

follows from the definition of a partition: a node can only belong to one cell or

community of the partition and the union of all cells is again the complete set N
of nodes. Thus, the elements of the  × community matrix  after relabeling are

 =

½
1 if node  belongs to the community 

0 otherwise

or compactly,  = 1{−1()∈}. The columns of  are orthogonal and trace
¡


¢
=

 .

37. Quotient matrix. The quotient matrix corresponding to the partition specified
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by {1 2     } is defined as the  ×  matrix

 =
¡


¢−1
 () (2.43)

where
¡


¢−1
= diag

³
1
|1| 

1
|2|     

1
||

´
. The quotient matrix of the matrix 

of the example in art. 36 is

 =

⎡⎣ 1 2 0
4
3

2
3

1

0 3 0

⎤⎦
We can verify that () denotes the average row sum of the block matrix ().

An example of the quotient matrix  of a Laplacian  is given in Section 6.13.

If the row sum of each block matrix  is equal to the same constant, then

the partition  is called equitable or regular. In that case,  = ()  or

 = . Also, a partition  is equitable if, for any  and , the number of

neighbors that a node in  has in the cell  does not depend on the choice of a

node in .

For example, consider a node  in the Petersen graph shown in Fig. 2.3 and

construct the three cell partitions as 1 = {}, 2 is the set of the neighbors of 
and 3 is the set of nodes two hops away from . The number of neighbors of  in

Fig. 2.3. The Petersen graph.

2 is three and zero in 3, while the number of neighbors of a node in 2 with 3
is two such that

 =

⎡⎣ 0 3 0

1 0 2

0 1 2

⎤⎦
A distance partition with respect to node  is the partition of N into the sets of
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nodes in  at distance  from a node . A distance partition is, in general, not

equitable.

If  is an eigenvector of  belonging to the eigenvalue , then  is an eigen-

vector of  belonging to the same eigenvalue . Indeed, left-multiplication of the

eigenvalue equation  =  by  yields

 =  = ()

This property makes equitable partitions powerful.

For example, the adjacency matrix of the complete bipartite graph  (see

Section 6.7) has an equitable partition with  = 2. The corresponding quotient

matrix is  =

∙
0 

 0

¸
whose eigenvalues are ±√, which are the non-zero

eigenvalues of . The quotient matrix of the complete multipartite graph is

derived in Section 6.9. Exact solutions of the epidemic mean-field equations in

Prasse et al. (2021) rely on equitable partitions.

The quotient graph of an equitable partition, denoted by , is the directed

graph with the cells of the partition  as its nodes and with () links going

from cell/node  to node  . Thus, (
) equals the number of links that join a

node in the cell  to the nodes in cell  . In general, the quotient graph contains

multiple links and self-loops. The subgraph induced by each cell in an equitable

partition is necessarily a regular graph because each node in cell  has the same

number of neighbors in cell  .

2.6 Cospectral graphs

Cospectral graphs are nonisomorphic graphs that possess the same set of eigenval-

ues, as earlier defined in art. 32. Since the spectrum of graphs is the main theme

in this book, we cannot avoid devoting some attention to cospectral graphs.

38. Checking whether two graphs have the same adjacency eigenvalues is a poly-

nomial, thus “easy” problem. However, determining whether two cospectral graphs

are isomorphic can be non-polynomial, thus “hard”, but it is currently unknown

(McKay and Piperno, 2014) whether the graph isomorphism problem is NP-hard.

Almost all non-star-like trees are not determined by the spectrum of the ad-

jacency matrix (van Dam and Haemers, 2003). Godsil and Royle (2001) start

by the remark that the spectrum of a graph does not determine the degrees, nor

whether the graph is planar and that there are many graphs that are cospectral,

i.e., although graphs are different (nonisomorphic), their spectrum is the same.

Cvetkovíc et al. (2009) devote a whole chapter on the characterization of graphs

by their spectrum. They list theorems on graphs that are determined by their

spectrum such as regular graphs with degree  = 2 and complete bipartite graphs,

but they also present counter examples. Finally, van Dam and Haemers (2003)

conjecture that sufficiently large graphs are determined by their spectrum, roughly

https://doi.org/10.1017/9781009366793.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009366793.005


48 Algebraic graph theory

speaking because the probability of having cospectral graphs becomes vanishingly

small when the number of nodes  increases. A major tool to construct cospectral

graphs is Godsil-McKay switching.

39. Godsil-McKay switching for cospectral graph construction. Godsil and McKay

(1982) have invented an ingenious way to construct cospectral graphs by using a

certain partitioning  of a graph and by rewiring a specific set of links, which is

called “switching”. They start by proposing the partition  = {1 2      },
where (a) any two nodes in  have the same number of neighors in  , for 1 ≤
  ≤  and  can be the same as ; (b) a node  ∈  has either zero, 2 or 
neighbors in , where the number of nodes in  is  = ||. Any graph  with

 nodes can be partitioned in this way, in particular, if  = {} and  = {}.
Of course, the interest lies in finding non-trivial partitions where   1, for at

least some . The adjacency matrix corresponding to this partition  is denoted as

a block matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎣
11 12 · · · 1 1


12 22 · · · 2 2

...
...

. . .
...

...


1 

2 · · ·  


1


2

· · · 




⎤⎥⎥⎥⎥⎥⎥⎦
where  is the  ×  adjacency matrix of the set of nodes belonging to 

and the adjacency matrix  and  describe the interlinking between the sets

 and  and between the sets  and  , respectively. By construction, the row

sum of each block matrix  is constant, thus  = , where  denotes

the number of neighbors in  that each node in  has. The row sum of  ,

i.e.  = , where  is either 0, 2 or  . Since all block matrices of

 are adjacency matrices and symmetric, the column sums are constant as well.

Next, Godsil and McKay (1982) introduce the × matrix  =
2

× − ,

where the all-one × matrix × = 

. The matrix  features interesting

properties, because  is a Householder reflection (see art. 197). First, using

×× = 

 


 and   =  so that ×× = ×, we find that

 2
 =  (2.44)

Next, for an ×  matrix  with constant row sum  and column sum , it holds

that

 =  (2.45)

Indeed,  = 2




 − = 2





 − from which

 =

µ
2





 −

¶µ
2





 − 

¶
=

µ
2


− 2



¶



 +
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The sum of all elements in  equals  = , from which 

= 


, demonstrating

(2.45). Finally, if the 2×1 vector  contains zero elements and one elements,

then the definition  =
2




 −  directly shows that

2 = 2 −  (2.46)

This last property (2.46) motivates the Godsil-McKay construction of the graph

∗ obtained from  with adjacency matrix  as follows. For all those sets ,

where each node  ∈  is connected to 2 nodes in , these 2 links are

deleted and each node  ∈  is reconnected to the other 2 nodes in the set

. The fascinating relation between  and ∗ is that ∗ and , as well as their

complements ∗ and , have the same adjacency eigenvalues. Hence,  and

∗ are cospectral with cospectral complement. The proof is surprisingly easy, the
adjacency matrix of ∗ satisfies


∗ =  () (2.47)

where the block-diagonal matrix  = diag
¡
1  2      | |

¢
. Property (2.45) illus-

trates that 
∗ is the same as , except for the last block row and block column.

Property (2.46) switches in  all zero entries into one and vice versa. Finally,

left-multiplying both sides of (2.47) by  and invoking property (2.44) shows that

the eigenvalue equation 
∗ =  is equivalent to  ( ) =  ( ). Hence,


∗ and  possess the same eigenvalues with the corresponding eigenvectors 

and  . Since the adjacency matrix of the complement  is also a block matrix

with constant row and column sums and of similar block structure as , the same

arguments also demonstrate that ∗ and  are cospectral.

The Godsil-McKay construction of the cospectral graph ∗ illustrates that the
main difficulty lies in finding a non-trivial Godsil-MacKay partition  with corre-

sponding adjacency matrix . The useful properties of  for cospectral graph

constructions result from the fact that the labeling of nodes in any cell  and

 does not influence a sum as  =
P

=1 , so that only constant row (and

column) sums are required in the Godsil-McKay construction.

40. Although cospectral graphs are not easy to construct, they should not be ig-

nored. The following theorem, due to Brendan McKay, implies that the probability

to draw a regular graph (art. 55) out of the set of all nonisomorphic graphs with

 nodes is substantially lower than randomly choosing a cospectral graph.

Theorem 6 (McKay) For sufficiently large  , the number of cospectral graphs

exceeds the number of regular graphs.

Proof13: The number of pairs of cospectral graphs, conjectured by Godsil and

McKay (1982) and proved by Haemers and Spence (2004, Theorem 3), is at least¡
1
24
−  (1)

¢
3−1, where  = nonisomorphic () in (2.42) is the number of

13 Private communication with Brendan McKay.

https://doi.org/10.1017/9781009366793.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009366793.005


50 Algebraic graph theory

nonisomorphic graphs with  nodes (art. 35). Since pairs of cospectral graphs are

a subset of all cospectral graphs and since most graphs are asymmetric (art. 34), we

find with (2.42), for large  , that the number of cospectral graphs is lower bounded

by cospectral graph ≥ 4 2
(−12 )
 !

, where  is a constant. The total number of regular

graphs was determined, for large  , by McKay and Wormald (1990, Corollary 1),

regular graphs ∼
√
2

2
2

2

()

2

where  , specified in McKay and Wormald (1990, Corollary 1), has a different

value depending on whether  is even, 1mod 4 or 3mod 4. Let the constant  =

max
√
2 so that  ≈ 42 Most regular graphs are shown in Krivelevich et al.

(2001) to be asymmetric. The total number of nonisomorphic regular graphs is, for

large  , at most

nonisomorphic regular graphs ≤ 0
2
2

2

()

2  !

where the constant 0 is slightly larger than . The ratio

nonisomorphic regular graphs

cospectral graph
≤ 0



1

()

2 42−

3
2
+1

= 

Ã
−


2
(ln+ln−3 ln 2)

4

!
rapidly tends to zero with  . ¤
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