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BRANCHING MEASURES OF INFORMATION 
ON STRINGS 

BY 

BRUCE R. EBANKS(1) 

In classical information theory, the amount of information provided by an 
experiment is measured by a function of the probability distribution of the 
outcomes of the experiment. In this paper, information measures are functions 
of sequences of elements of a monoid (S, °) with identity e. It is assumed that 
the measures {y^ : Sn —» U} of information are branching. For several classes of 
monoids, it is found that /û  has a representation in the form 

n n —1 

| X n ( s 1 , S 2 , . . . , S n ) = Z / n , i ( S i ) + Z ^ n ( S i , S i + 1 o - • • o S n ) ? 

i=l i = l 

where i/fn is anti-symmetric and bi-additive. 

1. Introduction. The purpose of this paper is to consider the problem of 
measuring the amount of information provided by a string (sequence) of 
symbols from some universal set S. It is assumed that these symbols can be 
combined under some binary associative operation ° which makes (S, °) a 
monoid (i.e., a semigroup with unity) with unity e. For example, we can think 
of the output of a keyboard which occasionally fails to space properly, causing 
a symbol to be superposed on another. The set of symbols and their finite 
combinations under the operation of superposition then constitutes a monoid 
in which the identity is the blank space. 

The (real-valued) measure JUL of information is in reality a set {jxn : S
n —» U} of 

measures of the information contents of strings of various lengths. We arbitrar
ily fix n s? 3 and seek the form of J V , the information measure of strings of 
length n. The essential property is that of branching, which is defined as 
follows. 

We assume that the measure under fxn of a string (sl9 s 2 , . . . , sn)eSn differs 
from the measure of a distorted string, in which st and si+1 are "mixed", by an 
amount which depends only on si9 si+1, and their position in the string. 
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Precisely, JULU is branching if there exist maps Ani : S 2 ^ [ R such that 

( 1 . 1 ) j L t n ( s 1 , S 2 , . . . , S n ) = jULri(s1, S 2 J • • . , S i - i , S i ° S i + 1 , e , S i + 2 , . . . , S n ) 

+ Anïi(s i9s i+1), 

for all i = 1, 2 , . . . , n — 1 and all (sl5 s2 , . . . , sn) e Sn. This is analogous to the 
branching property in classical information theory, described, for example in 
Aczél and Darôczy [11]. 

The following examples illustrate a few settings in which the model intro
duced may be applied. 

EXAMPLE 1. The example mentioned in the first paragraph. 

EXAMPLE 2. Let S be an algebra of subsets of some universal set (7, and let ° 
denote the operation of set intersection (or union). A string of symbols 
(subsets) from S might represent outcomes of a sequence of experiments on U, 
and the combination of two symbols under ° would correspond to the mixing 
of outcomes of a pair of experiments. 

EXAMPLE 3. Let S be a range of intensities (of sound, light, pressure, etc.) 
which is closed under the operation ° of composition of intensities. For 
instance, one might be interested in measuring some aspect of the sound of a 
symphony, based on the collection of intensities of the various instruments. 
The branching property would govern the comparison of different instrumenta
tions. 

We shall consider the branching property over several classes of semigroups 
which include, among others, the special ones described in the preceding 
examples. 

2. Functional equations; existence of branching measures. One can use (1.1) 

several times to get 

juin(si,. . . , ^_2, Si^os.os^^ ey e, s i+2 , . . . , sn) + Ari)i_1(si_1, s ^ ^ H A ^ f e , si+l) 

= ^n(su. . 

= M*(si, . . 

= ^n(su. . 

= Hn(sU. . 

= ^n(su. 

, . , Si_ l5 St°Si + l , 6, Si+2, . . . , Sn) + An,i(Si, Si + 1) 

• . , O 

. . , sf_2, Si^osf, e, si+u . . . , sn) + An,i_1(si_1, st 

• • •> Sj—2? S j _ j ° S i , Sj + 1 , C, Si+2, • • . , Sn)~T Hni(e, S 

• • •> S i - 2 ? Si-\°Si ° S i + l5 ^5 €"> Si+2? • • • •> Sn) 

+ AfU_1(si_1°si, si+l) + AnJ(e, Si+O + A^.^Si - i , st) 

Comparing the two extremes of this line of equations, we have 

(2.1) An,l_1(x,yoZ) + An,l(y,z) = An,l_1(xoy,z) + An ,(e,z) + An,i_1(x,y), 

for all (x, y, z ) e S 3 , i = 2 , 3 , . . . , n-1. With x = e, (2.1) yields 

An,i(y,z) = -Anf i_1(e,yoz) + Anii_1(y,z) + An>£(e,z) + An,i_1(e,y) 
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for i = 2, 3 , . . . , n — 1, and, in particular, 

An,n_2(y, z) = b^n-iiy, z) + An,n_2(e, yoZ)-An ,n_1(e, z)-An,n_2(e, y). 

These equations enable us to rewrite (2.1) as 

(2.2) AnU(x, yoZ)-An^(e, yoZ) + An,i(y, z) + An^(e, y) = An,(xoy, Z) + A^(x, y), 

for all (x, y, z) G S3 and i = 1, 2 , . . . , n - 1 . Now defining maps F n i : S
2 —» IR by 

(2.3) F^(x, y) : = A ^ x , y ) - An,(e, y), Vx, y G S, 

we find that each Fni (i = 1, 2 , . . . , n — 1) satisfies 

(2.4) FnJ(x, y) + Fn,(x°y, z) = Fru£(x, y°z) + Fn,(y, z) 

for all x, y, z G S. 
In summary, we have 

LEMMA 2.1. If a measure /mn :Sn —>U has the (1.1) branching property over a 
monoid (S, °), then An>i can be represented in the form 

(2.5) An,(x, y) = Fn,i(x, y) + An,(e, y), RVx, y G S , 

i = 1, 2 , . . . , n — 1, where Fn t : S
2 —» M satisfies (2.4) an^ An>i(e,.) is an arbitrary 

map of S into U. 

It is easily verified that the following result provides a large class of solutions 
to equation (2.4) without using (2.3). 

LEMMA 2.2. Let (S, °) be a semigroup, and let Fni : S2 -> IR be defined by 

(2.6) FnJ(x, y):=/n , i(x) + /n J(y)-/n , i(xoy) + i/rnii(x, y), 

for a// x, y G S, where fni : S —» [R and i//n < : S2 —> [R so that 

(2.7) i/V;(x, y) = -i//n,,(y, x), Vx, y G S, 

(2.8) ^ i ( x ° y , z) = ^ ( x , z) + i/^(y, z), Vx, y, z G S. 

Then Fn , satisfies (2.4). 

Since our aim is to show that solutions of (2.4) under various alegebraic and/or 
topological conditions on S always have the form (2.6), let us now examine what 
representation of /utn these solutions yield. 

LEMMA 2.3. Let jutn be a (1.1) branching measure of information over a 
commutative monoid (S, °). If the maps Ani (i = 1, 2 , . . . , n — 1) are of the form 
(2.5) with Fni given by (2.6) for i\fni satisfying (2.7) and (2.8), then jnn can be 
represented in the form 

n 

(2.9) juin (s1 ?s2 , . . . , s n ) = fcn,0(s1°s2o- • -°sn)+ X kn,i(Si) 
i = l 
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for all (sl9 s2, • • •, sn)eSn, withK,i'S -» RsatisfyingKAe) = Oforn^i^l, and 

^n,i=»An(VO. 

Proof. (2.5) and (2.6) imply that for all x, y e S, 

(2.10) AnJ(x, y) = /n, i(x)+/n, i(y) + An,i(e, y)-/n , i(xoy) + ^ i ( x , y) 

If we put x = e in (2.8), we find that 

(2.11) «Me, y) = 05 VyeS . 

Thus (2.10) with x = e yields 

(2.12) /n,iW = 0. 

With these preliminaries established, we return to (2.10) and use it to write 
(2.1) as 

/n)i-i(yo2) + An)i_1(e,yoz) + ^ i_1(x,yoz)+/n , i(y)+/n , i(z)-fn^^ z) 

= /n.i-i(z) + An,i_1(e, z) + i M i ( x ° y , z)+/n,i-i(y) + An,i_1(e, y) + iMi(*> y). 

By (2.8), this can be rewritten as 

(2.13) /n,i_1(yoz) + A n ,_ 1 (e ,yoz)- / n J (yoz) + ^ i ( y ? z ) 

= /n,i-i(y) + An, i_1(e,y)-/n, i(y)+/n, i_1(z) 

+ An,i_1(e, z)-/n,i(2:) + ^n, i-i(y, z). 

Defining functions hn i : S —>[R (i = 1, 2 , . . . , n -2) by 

(2.14) Ki(x)-=fn,i(x) + K.i(e> x ) - U W , V X G S , 

we obtain 

(2.15) hn.i-i(y°*)+<My,z) = h n . ^ ^ 

from (2.13). Equating symmetric and anti-symmetric parts (cf. (2.7) and the 
commutativity of °), we have 

(2.16) M y ° z ) = M y ) + M * ) , V V , Z G S , 

(2.17) ^ ( y , z) = iMi(v> *), Vy, z e S. 

If we define ifrn:S
2^ R, *!„,„_! : S -* R, and / n n : S -» R by 

(2.18) i/,n(x, y) : = <M*> y), Vx, y G S, 

(2.19) hn.n^xJ — O, VxeS , 

(2.20) /n,n(x) : - /n,n_!(x) + A ^ t e x), Vx G S, 

then (2.14), (2.17), (2.18), (2.19), and (2.20) transform (2.10) into 

(2.21) An,;(x, y) = /n, i(x)+/n, i+1(y) + hn,£(y)-/n, i(xoy) + ^ ( x , y) 

for all x, y G S and i = 1, 2 , . . . , n - 1 . 
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Now we are ready to evaluate the measure of a string. Indeed, by (1.1), 
(2.21), and (2.16), we have 

= M*(Sl> «2, • • • > «n-2, Sn-l°Sn, «) + /n ,n - lUv- l ) + /*,»($*) 

+ V n - l ( S n ) - / n , n - l ( S n - l ° S n ) + ^n(Sn-l?Sn) 

n 

= fAn(Sl°S2°> • • . °Sn , e, 6, . . . , 6 ) + X fnASi) 
i = l 

n i - 1 

+ Z Z KASi)~fnASl°S2 • " * °Sn) 
i = 2 j = l 

n - 1 

+ Z ^nU, Si+l°Si+2 * • * °Sn)? 
i = l 

for all (sx, s 2 , . . . ,sn)eSn. Defining k^ iS-^ IR ( l ^ i ^ n ) by fcn0(x): = 
/^(x, e, e , . . . , e)- /n , i (x) , U x ) : = / n ) 1 ( x ) , 

(2.22) fcn)iW:=/n,iW+ Z ^ W , K i ^ , 

for all xeS, we have (2.9). Moreover, (2.16) with y = z = e gives hni(e) = 0. 
This, together with (2.22) and (2.12), yields fcni(e) = 0 for l < i < n . 

Finally, by (2.18), i//n satisfies (2.7) and (2.8). This completes the proof of 
Lemma 2.3. 

Since we now know the form of / ^ when (2.4) has a solution of the form 
(2.6), we shall concentrate on solving (2.4) on various classes of semigroups. 
The subscripts of solutions Fni of (2.4) will be suppressed where this leads to 
no ambiguity. 

3. Solution when (S, °) is idempotent and commutative. 

THEOREM 3.1. Let (S, °) be a commutative idempotent semigroup, and let 
F : S2 -» M. Then F satisfies (2.4) only if there is a map f : S —> U such that 

(3.1) F(x, y) = / (x )+ / (y ) - / (xoy) , Vx, y G S. 

[N.B. (3.1) is just (2.6) with ¥ = 0.] 

Proof. Putting x = y in (2.4), we get 

F(y, y) + F(y, z) = F(y, y <>z) + F(y, z) 

by virtue of the idempotence of (S, °). Hence, 

(3.2) F(y, y °z) = F(y, y), Vy, z e S. 
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Using, in order, (2.4) with z = x ° y , commutativity of °, idempotence of °, 
commutativity again, and finally (3.2), we obtain 

F(x, y) + F(x°y, x°y) = F(x, y°x°y) + F(y, x°y) 

= F(x, y°y°x) + F(y, y°x) 

= F(x, y ° x) + F(y, y ° x) 

= F(x, x°y) + F(y, y ox) 

= F(x,x) + F(y,y) 

for all x, y G S. With f:S-*R defined by f(x): - F ( x , x), for all x e S, this leads 
to (3.1), which was to be proved. 

With respect to the problem of measuring information, we have the 

THEOREM 3.2. Let jnn be a branching measure over an idempotent, abelian 
monoid (S, °). Then jLtn is represented by 

n 

(3.3) iJLn(sus2,. . . ,sn) = fcn,o(si°s2° * * * °sn) + Z KAsi)> 
i = \ 

for all (s1? s2 , . . . , sn) G Sn, with kni : S —> M satisfying 

(3.4) fcnïi(c) = 0, i = l , 2 , . . . , n . 

Proof. By Lemma 2.1, the Ani 's are of the form (2.5) with Fni's satisfying 
(2.4). Then Theorem 3.1 yields the representation (3.1) for each Fni. Now the 
hypotheses of Lemma 2.3 are fulfilled (where all ^n4 are identically zero), so 
jxn is given by (2.9). Finally, " ^ = 0 for i = 1, 2 , . . . , n - 1 yields ^ n = 0 , 
reducing (2.9) to the form (3.3). (3.4) also follows from Lemma 2.3, establish
ing the theorem. 

As one interpretation of Theorem 3.2, we can think of Example 1 with S the 
set generated by {0, 1, 2 , . . . , 9} under the operation ° of superposition, to
gether with the blank space (which serves as the identity). If we define 
kn,i • S —» M (with a given, fixed n) by 

fx • 10n^, V X G { 0 , 1,2, . . . , 9 } , 0 < ï < n , 
kni(x): = \ 

10, if x e S \ { 0 , l , . . . , 9 } , or i = 0 . 

then iJLn(dud2,...,dn) = dl • 10 n - 1 + d2- 1 0 n 2 + - •• + <*„• 10° = the real 
number represented by juxtaposition d1d2 * • • dn of the digits du d2,. . . , dn. If 
some of the 4 's are blank spaces or superpositions of digits, rather than simply 
digits, then zeros appear in their places in the representation. 

4. Solution when (S, °) is a thread or has a zero. 

THEOREM 4.1. Let (S, °) be a semigroup with a zero 0, and let F:S2 ->M be a 
solution of (2.4). Then there exists a map f:S—>U for which F has the form 
(3.1). 
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Proof. Putting z = 0 in (2.4), we get 

F(x, y ) + F(x o y, 0) = F(x, 0) + F(y, 0) 

for all x, y e S. With f(t) : = F(t, 0) for all t G S, this is (3.1), and we are finished. 
A result related to Theorem 4.1 concerns semigroups known as threads. Let 

(S, °) be a totally ordered semigroup which is connected and has continuous 
multiplication with respect to the order topology. If, in addition, S has a 
greatest and least element with respect to the order, and if these endpoints are 
idempotent, then (S, °) is called a thread. As an example, think of the real 
interval [0,1] with the usual multiplication. (There are many other non-
isomorphic examples of threads.) For threads in general, we have 

THEOREM 4.2. Let (S, °) be a thread, and let F:S2-*R satisfy (2.4). Then 
there is a map f:S—>U representing F through (3.1). 

Proof. Since S is connected and has endpoints, S is compact. Numakura [7] 
and Wallace [10] have shown, independently, that S contains a kernel K (i.e., a 
minimal closed ideal), and that K is connected. Hence K is a subinterval 
[a, |3] ^ S. K is a single point if and only if a = 0 = a zero for (S, °). If this is the 
case, we apply Theorem 4.1 to complete the proof. 

Now suppose a < |3. Faucett [2] has shown that multiplication in K is either 
left-trivial, i.e., 

(4.1) AO|UL = JUL, A, JLLGX, 

or right-trivial (A ° JLL = A, for all A, JUL G K). Without loss of generality, let us take 
(4.1) to be the case. With x,y,zeK in (2.4), using (4.1), we get 

(4.2) F(x, y) = F(x, z), x, y, z e K. 

With x, z G K and y G S in (2.4), taking (4.2) into account, we have 

F(x, y) + F(x°y, w) = F(x, w) + F(y, z), 

where w is an arbitrary element of K. Thus, F(y, z) does not depend o n z G K 
Define f:S->U by 

(4.3) f ( t ) : = F f t w ) , VteS , weK. 

Finally, restrict z to K while x, y G S in (2.4) to get, by (4.3), 

F(x,y) + /(xoy) = /(x) + /(y), Vx,yGS, 

since y ° z e K 

5. Solution on groups and threads in the wider sense. The solution of (2.4) 
(with one additional assumption) when (S, °) is an ordered commutative group 
was obtained by lessen, Karpf, and Thorup [4] and in quite a different context. 
In fact, lessen [3] used their result in a simplified proof of Sydler's theorem on 
polyhedra. We quote part of their results here. 

4 
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THEOREM 5.1. Let (A,©) be an ordered commutative group, let (X, +) be a 
divisible commutative group, and define A+ :={aeA | a > 0}. Then the class of 
functions F:A\-^X (or F:A2-*X) determined by means of a function 
f : A + -» X (or / : A -» X) through 

(5.1) F(a,b) = f(a) + f(b)-f(a®b) 

is identical with the class of functions F:A\-^>X (or F:A2-> X) satisfying the 
equations 

(5.2) F(a, b) + F(a © 6, c) = F(a, b © c) + F(6, c), 

(5.3) F(a,b) = F(b,a). 

We shall use the following strengthening of their result, in which the (5.3) 
symmetry is discarded. 

COROLLARY 5.2. Under the hypotheses of Theorem 5.1, suppose a function 
F.A^—^X (F:A2^X) satisfies equation (5.2). Then (and only then, by 
Lemma 2.2) F is determined through 

(5.4) F(a, b)=f(a) + f(b)-f(a®b) + V(a, b), 

by means of a function f:A+^X (/:A—>X) and a function ^ : A + ~ > X 
OP : A 2 —> X) satisfying the equations 

(5.5) ¥(a, ft) = -¥(&, a), Va, b e A+(A), 

(5.6) ¥ ( a © b, c) = W(a, c) + ¥(b, c), Va, 6, c G A+(A). 

Proof. Consider the decomposition F=Fs+
y$r of F into its canonical sym

metric and anti-symmetric parts, 

(5.7) Fs(a, b) = £F(a, b) + F(b, a)\^(a, b) = |[F(a, b)-F(b, a)]. 

Now Fs satisfies (5.2), (5.3), hence it has the representation (5.1) for some map 
f:A+-^X ( / : A - > X ) . This, in turn, gives the form (5.4) for F, where ^ 
satisfies (5.5) because of (5.7). It only remains to show that ^ satisfies (5.6), 
which is accomplished by use of (5.2) three times, as follows. 

2V(x © y, z) = F(x © y, z)-F(z, x@y) 

= [F(x, y © z) + F(y, z)-F(x, y ) ] - [F(z © x, y) + F(z, x)-F(x, y)] 

- F(x, z © y)-F(x © z, y) + F(y, z)-F(z, x) 

= F ( x © z , y ) + F ( x , z ) - F ( z , y ) - F ( x © z , y ) + F ( y , z ) - F ( z , x ) 

= [F(x, z)-F(z, x)] + [F(y, z)-F(z, y)] 

= 2^(x, z) + 2^(y, z), Vx, y, z G A+(A). 

We shall use Corollary 5.2 to solve (2.4) on semigroups which satisfy all the 
properties of a thread except the requirements concerning extremal elements. 
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Such semigroups are called threads in the wider sense, or, simply, w-threads. In 
other words, a w-thread is a connected, ordered (not necessarily compact) 
topological semigroup. The following lemma is an extension of works of Aczél 
[1] and Tamari [9]. 

LEMMA 5.3. A cancellative w-thread is (topologically) isomorphic with a 
subthread of R. 

Throughout this paper, isomorphisms are of the topological type, i.e., 
algebraic isomorphisms that are also homeomorphisms. Based on Corollary 5.2 
and Lemma 5.3 is 

THEOREM 5.4. Let (S, °) be a cancellative w-thread which either has an 
identity or is the result of removing the identity from a cancellative w-thread. If a 
map F:S2—>R satisfies (2.4), then there exist a map f:S-*M and a map 
^:S 2 ->[R, with ^ satisfying (2.7) and (2.8), representing F through 

(2.6) F(x, y) = /(x) + / (y ) - / (xoy) + <P(x, y), Vx, y eS. 

Proof. Let <ï> be an isomorphism of (S, °) onto a subthread (T, +) of (R, +), 
as provided by Lemma 5.3, and define F*:T2-^[R by 

(5.8) F ^ M J — F ^ - 1 ^ ) , * - 1 ^ ) ) , Vf ,ueT. 

Furthermore, because of our assumptions concerning the presence of an 
identity in (S, °), T must be one of the real intervals ]-oo, 0[, ]-<», 0], [0, o°[? 

]0, oo[, or R. Hence, all of the hypotheses of Corollary 5.2 are satisfied, by 
taking (A, 0 ) to be (T, +), (X, +) to be (JR, +), and F to be F*. Therefore, F * 
has the form 

(5.9) F*(t,u) = f*(t) + f*(u)-f*(t + u) + V*(t,u), V t , ueT , 

with V* a solution of (5.5), (5.6). Defining f:S-^U,^:S2-^Uby 

f(x) : = /*(<*>(*)), *(x, V) : = ¥*(*(*) , <D(y)), Vx, y e S, 

we have (2.4) with ¥ satisfying (2.7) and (2.8), by (5.9), (5.8), (5.5), (5.6). This 
finishes the proof. 

6. Solution on near-threads. We begin this section with some results from the 
structure theory of threads and w-threads, upon which we shall draw later in 
the section. The fundamental object is the standard thread (or /-semigroup), a 
thread in which the lower endpoint acts as a zero and the upper as an identity. 
Related to this is the positive thread, which is a w-thread with a zero as its least 
element, an identity, and no largest element. 

Encompassing both of the above kinds of semigroups is the globally idem-
potent thread, which is a w-thread (S, °) with a zero as least element and the 
property S°S = S. Indeed, Storey [8] has shown the following. 
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LEMMA 6.1. A globally idempotent thread must be one of the following: a 
standard thread, a standard thread with identity removed, or a positive thread. 

Moreover, Mostert and Shields [5] have revealed the structure of positive 
threads through 

LEMMA 6.2. In a positive thread, there is a largest idempotent M less than the 
identity, [0, M] is a standard thread, {s \ M<s} is isomorphic with the group of 
positive reals, and s°t = t°s = s if s^M<t. 

Define the unit thread J1 and the nil thread J2 by 

J,: =([0,1] , - ) , J2 : = ( [ i l ] , * ) , 

where • denotes the usual multiplication of real numbers, and * the operation 
defined by s*f : =max(| , s • t). Mostert and Shields [6] proved 

LEMMA 6.3. The set A of idempotents of a standard thread (S, °) is closed, 
and so its complement P in S is a disjoint union of open intervals. The closure of 
each of these intervals is isomorphic to either Jx or J2, and multiplication of 
elements x, y not in the same component of P is x°y = min(x, y). 

Let us call a semigroup obtained by removing the zero from a globally 
idempotent thread a near-thread. We now turn our attention (and Lemmas 
6.1-6.3) to the solution of (2.4) on near-threads. 

We need one more preliminary result. 

LEMMA 6.4. Let b be an idemportent of a w-thread, and let (a, b],[v, c) be 
two components {either closed or half-open) of this w-thread, so that x°y = y° 
x=x if xe(a,b], ye[b,c). Furthermore, suppose that F:(a,c)2^U satisfies 
(2.4) and is partially determined by 

(6.1) F(x, ">-E f2W + f2(y)-f2(xoy) + V2(x, y), V(x, y)e(a, bf, 

for / i : [b, c) -» U, f2 : (a, b] -» U, and V2 : (a, bf -> M satisfying (2.7), (2.8). Then 
there exist a map ^:(a,c)2-^U, satisfying (2.7) and (2.8), and a map 
f:(a,c)-^>U representing F through (2.6) on (a, cf. 

Proof. Define new maps / : (a, c) -> IR, "9: (a, c)2 -> R by 

lf2(x), Vx e (a, b], 

0, V(x,y)e(a,c)2\(a,bY, (6.3) mx,y): = { ' 
W2(x, y), \f(x,y)G(a,bf. 

To verify that f(b) is well defined, we note that ft(b) - F(b, b) - f2(b) + ^ 2 (6 , b). 
But if/2(b, b) = 0, as a consequence of (2.7). 
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It is clear, by (6.1), (6.2), (6.3), that F is represented by (2.6) on (a, bfu 
[b, c)2. We proceed to show that F also has this form on (a, b]x[b, c). (The 
proof is similar for (x, y)G[b, c)x(a, b].) Indeed, with xe(a,b], y = b, zs 
[b, c), (2.4) gives 

(6.4) F(x, z) = F(b, z), Vx G <a, b], z G [b, c). 

Thus, since x °z = x when x e (a, b], z G [b, c), we obtain 

F(x,z) = F(&,z) = /1(6)+/1(z)-/1(feoZ) 

= / i ( z ) 

= f(z) 

= / ( x ) + / ( 2 ) - / ( x o z ) , 

by (6.4), (6.1), and (6.2). This establishes (2.6) for (x, z)G<a, 6]x[b, c>, because 
(6.3) shows that 

¥(x, z) = 0 XG<O,6] , ZG[6 ,C) . 

Finally, it is easy to check that ij/ satisfies (2.7) and (2.8). One uses the fact 
that x, y G (a, b] (resp. [b, c)) implies x°y G (a, b] (resp. [b, c», which is implicit 
in (6.1) since fx is defined only on [b, c) and f2 on (a, b]. 

We are now ready to give the solution of (2.4) on an arbitrary near-thread. 
We have 

THEOREM 6.5. Let (S, °) be a near-thread, and let F:S2—>[R be a solution of 
(2.4). Then F has the form (2.6) for some map f:S->R and a map ty:S2 —»IR 
satisfying (2.7), (2.8). Furthermore, if the set A: ={s G S | s°s = s} is not empty, 
then 

(6.5) *(x ,y) = 0, V(x,y)eS 2 \ ]0 ,A] 2 , 

where À : = Inf A. 

Proof. By definition of a near-thread, we can adjoin a zero 0 to S and 
extend the definition of ° in the obvious way, making (SU{0}, °) a globally 
idempotent thread. Lemma 6.1 implies that S U{0} is either a standard thread 
(possibly with identity removed) or a positive thread. If it is a standard thread 
without identity, we consider S U{0}U{e}, a standard thread. At this point, we 
divide the proof into two cases. 

CASE 1. On the one hand, suppose SU{0} (U{e}) is a standard thread, and 
suppose A, as defined in the statement of the theorem, is empty. Then the set P 
in Lemma 6.3 is S itself, hence the closure S is isomorphic to either J1 or J2. 
But S is a semigroup, which is not the case for J2 with the (zero) point \ 
removed. Therefore, S is isomorphic to JA. Now S is a cancellative w-thread 
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(possibly with identity removed), and Theorem 5.4 gives the representation 
(2.6) for F 

If A 5* 0, let À be as defined in the statement of the theorem. If À > 0, then 
we divide SU{0} into two parts, SA : ={s eS | A < s } and (SU{0})\S',. By 
Lemma 6.3, SÀ is a semigroup with zero (A), and the closure of S\SX is 
isomorphic with either J1 or J2. For the reason given in the preceding 
paragraph, the closure of S\SA must be isomorphic with Jx. Thus F has the 
form (3.1) on SA, by Theorem 4.1, while F has the representation (2.6) on 
S\SX , by Theorem 5.4. Applying Lemma 6.4 with b = A, we have the desired 
representation (2.6) for F on all of S, with ^ satisfying (2.7) and (2.8). In 
addition to this, (6.3) shows that (6.5) holds. 

Still with SU{0} (U{e}) a standard thread, A ^ 0 , suppose A = 0 , and let (A>) 
be a sequence of idempotents in S decreasing to 0. For any n, {s e 5 | An < s} is 
a semigroup with zero (An), so Theorem 3.1 gives 

(6.6) F(x ,y)=/*(x) + /* (y ) - /* (x°y) , Vx,y>A„, 

for some map /*:{s | An < s } ^ R . Furthermore, [An+1, An] is a semigroup with 
zero (An+1), hence 

F(x, y) = /n+1(x) + / n + 1 (y) - / n + 1 (x°y) , Vx, y e[An+1, A j , 

for some map / n + 1 :[An+1, An] —» U. Thus, by Lemma 6.4, there is an extension 
/*+1:{s | An+1<s}-^[R, identical with /* on {s | An < s } and identical with fn+{ 

on [An+1, An], such that F is given by 

F(x ,y)=/y + 1 (x)+/* + 1 (y) - /* + 1 (x°y) , Vx,y>A„+ 1 . 

Now the set of pairs (Sn, /*) forms a bounded chain, where Sn = {s e S \ An < s} 
and f*:Sn -^U represents F through (6.6). By Zorn's Lemma, this chain has a 
maximal element (S*, / ) ; furthermore, S* = S since for any seS, there exists 
an JV such that s > AN. This establishes (2.6) on all of S. 

CASE 2. On the other hand, suppose S U{0} is a positive thread. If the M G S 
defined by Lemma 6.2 is 0, then that lemma states that S is isomorphic with 
the group of positive reals. Now, by Corollary 5.2 or Theorem 5.4, we have the 
representation (2.6). 

Alternatively, and finally, suppose M > 0 . Then Me A, so A ^ 0 . Also, 
[0, M] is a standard thread, by Lemma 6.2. Let A =Inf A again, and proceed 
exactly as in the case A ^ 0 above, when SU{0} (U{e}) was a standard thread. 
We again get (2.6), and Theorem 6.5 is proved. 

7. Summary, consequences, and remarks. To summarize the results thus far, 
let X denote the class of all commutative monoids belonging to one of the 
following classes: idempotent commutative monoids, threads, monoids with 
zero, ordered commutative groups, cancellative w-threads, and near-threads. 
By Lemma 2.3 and the results of sections 3-6, we have proven 
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THEOREM 7.1. Let {jutn} be a (1.1) branching measure of information on a 
monoid (S, °) from class X. Then fxn (n = 3 , 4 , . . . ) has a representation in the 
form (2.9) for all (sl9 s 2 , . . . , sn) e Sn, with maps kni :S->U satisfying kni(e) = 0 
( l < i < n ) and with a map ^ n : S 2 - ^ [ R satisfying (2.7), (2.8). 

Actually, all of our results hold in a slightly more general setting, as 
indicated in the next remark. 

REMARK 7.2. We can interpret (1.1) for ^n:S
n^G and Ani : S 2 - ^ G and 

for any binary operation + on a set G under which (G, +) becomes a divisible 
abelian group. Under this interpretation, Theorem 7.1 and all previous results 
still stand (with appropriate changes of 1R to G). This is explicit in Theorem 5.1 
and implicit in the methods of proof elsewhere. 

Two other properties for measures of information are expansibility and 
symmetry (cf. [11] for classical measures), defined respectively by 

(7.1) Vn+i(si, s 2 , . . . , sn, e) = fxn(sl5 s 2 , . . . , sn), n = 1, 2 , . . . , 

( 7 - 2 ) Mfi(Sl> S2> • • • ? S n ) = ^ ( ^ ( 1 ) 5 S-rr(2)? • • • > S7r(n))> 

for all (sl5 s 2 , . . . , sn) G Sn and permutations TT on (1, 2 , . . . , n). 

COROLLARY 7.3. Let {jutn} be an information measure of the form (2.9) with 
maps kni : S —>IR satisfying 

(7.3) M * ) = 0, l ^ i ^ n , 

and maps ^n : S2-^[R satisfying (2.7), (2.8). 1/ {jLtn} is aiso (7.1) expansible, then 
|ULn has a representation in the form 

n 

(7.4) |ULn(s1 ,s2 , . . . ,sJ = .fo(si0S20- ' * ° s n )+Z /i(Si) 
i = i 

n - l 

+ X ^(St, Si+1oSi+2o • ' -°Sn), 
i = l 

where f ( i ^ l ) satisfies /i(e) = 0, and ifr satisfies (2.7) and (2.8). 

Proof. If n > 3 , then (2.9) enables us to write (7.1) as 
n n —1 

fcn,o(Sl°S2°- * * ° S n ) + £ fen,t(Si)+ Z ^ n ( S i , Si + 1 ° S i + 2 o - • ' ° S n ) 
i = l i = l 

n 

= fcn + l , o ( S l ° S 2 ° - ' * ° S n ) + X kn + l , i (Si) 
i = l 

n - l 

+ Z ^ n + l(Si , Si + 1oSi+2°' ' ' ° S n ) , 
i = l 

where we have used (7.3) and 

(7.5) ijrn(x,e) = 0, VxeS, 
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which follows from (2.11) by (2.18) and (2.7). Hence (K+i^ K+uu • •• > 
K+i,n\ *l*n+i) can be replaced by (fcn,0, fcn,i, • • •, Kn'^J- Now, defining 

(7.6) /*(*): = { 
k3i(x), VxeS , 0 < / < 3 , 

kM(x), VxeS , i > 3 , 

(7.7) </,(*, y): = ife(*,y), Vx ,yeS , 

we obtain (7.4) for all n > 3 . 
Similarly, (7.1) allows us to extend (7.4) to JUL2

 a n d fjti through (7.6) and 
(7.7), which completes the proof. 

COROLLARY 7.4. Let {fxn} be an information measure of the form (2.9) with 
kni satisfying (7.3) and ifjn satisfying (2.7) and (2.8). If {jLtn} is also (7.2) 
symmetric, then yin has a representation in the form 

n 

(7.8) jan(s1? s2, . . . , s n ) = fcn,o(si°S2°- • -°sn)+ X fn(Si) 
1 = 1 

/or /„ : S -* R satisfying fn(e) = 0. 

Proof. Using (2.9) in (7.2) with the permutation which interchanges i with 
i + 1 (1 < i < n — 1), we get 

(7.9) k^i(si) + k^i+1(si+1) + ilfn(si9si+1) = k^i(si+J 

where we have used the fact that i(/n satisfies (2.7) and (2.8). Setting si+i = e in 
(7.9) and using (7.3), (7.5), and (2.11) (with (2.18)), we obtain 

(7.10) M * ) = kn.i+i(*), V S i eS. 

Then (7.9) and (7.10) imply 

tl/n(sh st+1) = i/>n(Si+i, st), V% si+i e S, 

which in turn yields 

(7.11) </rn(M) = 0, Vs, r e S , 

by the (2.7) anti-symmetry. With fn : S —» M defined by 

fn(x): = knA(x), VxeS , 

(7.10) and (7.11) reduce (2.9) to (7.8), which was to be shown. Moreover, 
fn(e) = 0 follows from (7.3), and the proof is finished. 

Combining the two preceding results, we have 

COROLLARY 7.5. Let {^n} satisfy all hypotheses of Corollary 7.3 and the (7.2) 
symmetry. Then /utn can be represented in the form 

n 

^n(s1,S2,...,Sn)=f0(s1^S2O' • ' ° S n ) + X f(Si) 
i = l 

for all (sl9s29... ,sn)eSn (n = 1, 2 , . . . ) , by two maps /0, f: S ->R with /(e) = 0. 
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8. A generalization of (2.4). We show that the equation 

(8.1) L(a,b) + G(aob,c) = H(a,boC) + K(b,c\ Va,b,ceA, 

where A is any set with an identity e under a binary operation °, and L, G, H, 
K map A 2 into an abelian group X (whose operation we denote +), can be 
reduced to (2.4). 

Setting b = e in (8.1), we get 

(8.2) H(a, c) = G(a, c) + f(a) - g(c), 

where /(a) : = L(a, e) and g(c) : = K(e, c). With a = e, (8.1) gives 

(8.3) K(b,c) = G(b,c) + h ( b ) - G ( e , 6 o C ) - / ( e ) + g(boC), 

by defining h(b) : = L(e, 5) and using (8.2). Putting c = e in (8.1) and using (8.2) 
and (8.3), we obtain 

(8.4) L(a,b) = G(a,b) + f(a) + G(b9e) + h(b)-G(e9b)-f(e)-G(aob9e) 

after simplification. 
Now, substituting (8.2), (8.3), and (8.4) back into (8.1) and simplifying, we 

have 

(8.5) G(a,b) + G(b ,e ) -G(e ,b) -G(aofo ,e ) + G(aob,c) 

= G(a9 boC) + G(b, c)-G(e, b° c ) . 

Subtracting G(a, e) + G(e, c) from both sides of (8.5), and defining F:A2->X 
by 

(8.6) F(a, b) : = G(a, ft) - G(a, e) - G(e, 6), Va9beA 

we find that F satisfies (2.4). So we can use this to express G, H, K, L in terms 
of an arbitrary solution of (2.4) and some arbitrary one-place functions. 
Indeed, defining k,€:A^X by 

(8.7) k(a): = G(a9e), €(a): = G(e,a) VaeA, 

we can rewrite (8.6) as 

(8.8) G(a, b) = F(a, b) + k(a) + €(b), Va, be A. 

Furthermore, define m , n , p : A ^ X b y 

m(a): = G(a, e) + /(a), 

(8.9) n(a): = G(a, e) + h(a)-/(e), 

p(a): = G(e, a) - g(a), Va G A. 

By (8.9), (8.6), and (8.2), H has the form 

(8.10) H(a9 c) = F(a, c)+ m(a) + p(c), Va, c G A. 
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And by (8.9), (8.7), (8.6), (8.3), and (8.4), K and L can be represented in the 
respective forms 

(8.11) K(b,c) = F(b,c) + n(b) + €(c)-p(b°c), Vb,ceA, 

(8.12) L(a, b) = F(a, b) + m(a) + nib) - k(a ° b), Va, be A. 

Conversely, substituting (8.8), (8.10), (8.11), (8.12) for G, H, K, L in (8.1), 
and taking into account the fact that F is a solution of (2.4), we immediately 
verify that these functions constitute a solution of (8.1). Thus we have proved 

THEOREM 8.1. Let (A, °) be a set with a binary operation and an identity, 
(X, +) an abelian group, and G, H, K, L maps from Ax A into X. Then G, H, 
K, L satisfy (8.1) if, and only if, there exist functions k, €, m, n, p : A —> X and a 
map F : A 2 -» X satisfying (2.4), such that G, H, K, L are given by (8.8), (8.10), 
(8.11), (8.12), respectively. 
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