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Abstract

Motivated by the search for a body of mathematical theory to support the semantics of

computational effects, we first recall the relationship between Lawvere theories and monads

on Set. We generalise that relationship from Set to an arbitrary locally presentable category

such as Poset and ωCpo or functor categories such as [Inj, Set] and [Inj, ωCpo]. That involves

allowing the arities of Lawvere theories to be extended to being size-restricted objects of the

locally presentable category. We develop a body of theory at this level of generality, in

particular explaining how the relationship between generalised Lawvere theories and monads

extends Gabriel–Ulmer duality.

1 Introduction

Over the 20 years since Eugenio Moggi wrote the seminal papers (Moggi 1989,

1991), the notion of monad has become a valuable tool in the study of functional-

programming languages, both for call-by-value languages like ML and for call-by-

name or call-by-need languages like Haskell (Benton et al. 2002), specifically in

regard to the modelling of computational effects. Over the past 10 years, substantial

progress has been made, especially in regard to the theoretical study of combining

effects, by observing that almost all monads of computational interest on Set arise

naturally from countable Lawvere theories (Plotkin & Power 2002; Hyland et al.

2006, 2007; Hyland & Power 2006), with the combinations of effects determined prin-

cipally by the sum or tensor, sometimes the distributive tensor, of the corresponding

Lawvere theories. We recall the definition and leading examples in Section 2.

Lawvere theories are a category-theoretic formulation of universal algebra for

which the notion of operation is primitive (Lawvere 1963). The definition of Lawvere

theory axiomatises the notion of the clone of an equational theory. Unlike equational

theories, Lawvere theories are presentation independent; i.e. the category of models

determines a Lawvere theory uniquely up to coherent isomorphism. Every Lawvere

theory generates a monad on Set, generating precisely the finitary monads on
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Set. The relationship between Lawvere theories, equational theories and finitary

monads on Set is one of the deepest relationships in category theory (Hyland &

Power 2007).

But Set is not the base category of primary interest for computation: the category

ωCpo is more interesting, as it incorporates an account of recursion. The definition

of monad extends routinely from base category Set to an arbitrary base category

and hence to ωCpo, but the definition of Lawvere theory does not. To some extent,

that can be resolved by appeal to the notion of an enriched Lawvere theory (Power

2000), as was used in Hyland et al. (2006, 2007) and Hyland & Power (2006). But

enrichment is less appropriate when one wants to replace Set by categories such as

the functor categories [C, Set] or [C,ωCpo], for instance in order to model local

effects, notably local state, as investigated in O’Hearn & Tennet (1997), Plotkin

& Power (2002) and Power (2006). So we seek a generalisation of the definition

of Lawvere theory that applies to categories such as those cited above, with the

relationship with monads respected by the generalisation.

A start on that question was made in the mathematical paper by Nishizawa &

Power (2009), and in this paper, we develop it further and explain it in a computa-

tional setting. For ease of exposition, we shall ignore enrichment beyond saying that

everything we write enriches without fuss, using the techniques of Kelly (1982a)

and Nishizawa & Power (2009), explained in the setting of computational effects

in Hyland et al. (2006). We provide references throughout the paper to background

material expressed in the enriched setting.

The mathematical foundation of the paper is Gabriel–Ulmer duality. The axiom

we require of a base category is that it is locally finitely presentable or, slightly more

generally, locally countably presentable. Gabriel–Ulmer duality asserts that every

locally finitely presentable category A is equivalent to the category FL(Aop
f , Set) of

finite-limit-preserving functors from A
op
f to Set, where Af is determined by what are

called the finitely presentable objects of A: these generalise the notion of finite set.

The situation for countability is similar. We outline the main ideas of Gabriel–Ulmer

duality in Section 3.

Based upon Gabriel–Ulmer duality, in Section 4, we recall the definition of

Lawvere A-theory for a locally finitely presentable category A from Nishizawa &

Power (2009) and give a new definition of model, which we prove equivalent to that

of Nishizawa & Power (2009): the latter is more directly applicable to examples, but

the former allows for a more elegant explanation of the relationship with monads

as supported by Gabriel–Ulmer duality. We explain the relationship between our

definitions and the building blocks of Gabriel–Ulmer duality in Section 5. The central

result of the paper, in Section 6, is Corollary 23, which expresses the equivalence

between Lawvere A-theories and finitary monads on A as a lifting of Gabriel–Ulmer

duality over A.

We extend Gabriel–Ulmer duality to examine change of base in Section 7:

one seeks not only a characterisation of the monads with countable rank on a

category such as ωCpo but also a relationship between such monads on ωCpo,

equivalently countable Lawvere ωCpo-theories, and monads with countable rank on

Set, equivalently ordinary countable Lawvere theories.
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2 Ordinary Lawvere theories

In this section, we recall the notion of Lawvere theory, first defined in Lawvere’s

thesis (1963), its relationship with monads on Set and its relevance to functional

programming with computational effects. The examples are taken from Hyland et al.

(2006), which in turn was motivated by the desire to refine and develop Moggi’s

modelling of computational effects by monads in Moggi (1989, 1991).

Definition 1

A Lawvere theory consists of a small category L with finite products together with

a strict finite-product-preserving identity-on-objects functor I : Natop −→ L, where

Nat is the category of all natural numbers and maps between them (Barr & Wells

1985, 1990). A model of a Lawvere theory L in a category C with finite products is

a finite-product-preserving functor from L to C .

Implicit in Definition 1 is the fact that the objects of L are exactly the natural

numbers. A map of Lawvere theories from I : Natop −→ L to I : Natop −→ L′ is a

functor from L to L′ that respects I . Any such functor is necessarily strictly finite

product preserving and identity-on-objects. With the usual composition of functors,

this yields a category Law.

Note the distinction in the definition between strict preservation, as used in

defining a Lawvere theory, and preservation, as used in defining a model. The latter

means that finite products need only be preserved up to coherent isomorphism

rather than equality. The distinction is essential, as on one hand, the objects of L are

exactly the natural numbers, but on the other, if we demand strict preservation in

the definition of model, we would eliminate almost all examples of interest (Power

1995).

The definition of Lawvere theory provides a category-theoretic formulation of

universal algebra, with the notion of operation taken as primitive: a map in L

from n to m is to be understood as being given by m operations of arity n. Unlike

the notion of equational theory, the concept of Lawvere theory is presentation

independent; i.e. if a pair of Lawvere theories have equivalent categories of models,

the two theories are isomorphic.

The definition of model extends to the definition of the category Mod(L,C) of

models of L in C: maps of models are defined to be natural transformations. Note

that naturality forces maps of models to respect the finite product structure in the

definition of model.

For any Lawvere theory L and any locally finitely presentable category C

(characterised in Section 3), the functor ev1 : Mod(L,C) −→ C has a left adjoint,

given by the free model construction, inducing a monad TL on C . Thus in particular,

every Lawvere theory L determines a monad TL on Set.

There is a converse construction.

Proposition 2

Given any monad T on Set, if one factorises the canonical composite

Nat � Set � Kl(T )
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where Kl(T ) denotes the Kleisli category of T , as an identity-on-objects func-

tor followed by a fully faithful functor, one obtains (the opposite of) a Lawvere

theory

I : Nat −→ L
op
T

Proof

By construction, the functor I is identity-on-objects. Moreover, the canonical functor

Set −→ Kl(T )

strictly preserves colimits and in particular all coproducts. Restricting to Nat and

factorising as above ensures that I strictly preserves all finite coproducts. Applying

(−)op, we are done. �

If one started with a Lawvere theory L, constructed TL and then constructed LTL
,

one would recover L. But the converse is not true: starting with a monad T , one

does not in general recover T for size reasons: one recovers T if and only if T is

finitary, i.e. if and only if T preserves filtered colimits: these are a special form of

colimit, for which a precise understanding is not essential here. Putting this together,

with care for coherence detail, yields the following (Power 2000).

Theorem 3

The constructions of a monad TL on Set from a Lawvere theory L together with

that of a Lawvere theory LT from a monad T on Set extend canonically to an

equivalence of categories:

Law � Mndf

where Mndf is the category of finitary monads on Set. Moreover, for any Lawvere

theory L, the category Mod(L, Set) is coherently equivalent to TL-Alg.

The usual way in which one obtains Lawvere theories is by means of sketches

or, equivalently, equational theories, with the Lawvere theory given freely on the

sketch: Barr & Wells (1990) treat sketches in loving detail and give a range

of examples of both sketches and Lawvere theories. The Lawvere theory is an

axiomatisation of the notion of the clone of an equational theory and equivalently

of a sketch.

Example 4

The Lawvere theory LE for exceptions is the free Lawvere theory generated by

an E-indexed family of nullary operations with no equations. The monad on Set

induced by LE is TE = − + E. More generally, if C is any category with finite

products and all sums, then Mod(LE, C) is equivalent to the category of algebras for

the monad − + E, where E is the E-fold coproduct of copies of 1, i.e.
∐

E 1.

Interactive input/output works similar to exceptions (Hyland et al. 2006); so we

omit details. For the next example, we use the evident generalisation of the notion

of Lawvere theory to countable Lawvere theory as used in Hyland et al. (2006): it

simply allows us to use countable arities.
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Example 5

Let Loc be a finite set of locations, and let V be a countable set of values.

The countable Lawvere theory LGS for side effects, sometimes called global state,

where S = VLoc, is the free countable Lawvere theory generated by the operations

lookup :V −→ Loc and update :1 −→ Loc×V subject to the seven natural equations

listed in Plotkin & Power (2002), four of them specifying interaction equations

for lookup and update and three of them specifying commutation equations. Our

presentation of the operations here is in terms of generic effects, corresponding

to the evident functions of the form Loc −→ (S × V )S and Loc × V −→ SS

respectively (Hyland et al. 2006): to give a generic effect is equivalent, via the

Yoneda embedding, to giving an operation (Plotkin & Power 2003). It is shown

in Plotkin & Power (2002) that LGS induces the side-effects monad. More generally,

if C is any category with countable products and copowers, then, slightly generalising

the result in Plotkin & Power (2002), Mod(LGS , C) is equivalent to the category of

algebras for the monad (S × −)S , where we write (S × −) for the S-fold coproduct
∐

S − and (−)S for the S-fold product
∏

S −.

Example 6

The Lawvere theory LN for (binary) non-determinism is the Lawvere theory freely

generated by a binary operation ∨ : 2 −→ 1 subject to equations for associativity,

commutativity and idempotence, i.e. the Lawvere theory for a semilattice. The

induced monad on Set is the finite non-empty subset monad, F+.

Example 7

The Lawvere theory LP for probabilistic non-determinism is that freely generated by

[0, 1]-many binary operations +r : 2 −→ 1 subject to natural equations generalising

associativity, commutativity and idempotence (Heckmann 1994). The induced monad

on Set is the distributions with finite support monad Df .

For a non-example, consider the monad (−)⊥ on Poset or ωCpo for the addition

of a least element. The monad (−)⊥ does not arise from an ordinary Lawvere theory,

as one cannot express as an equation the assertion that for all x, one has ⊥� x. So

one needs to go beyond ordinary Lawvere theories in order to include such monads

on categories such as Poset or ωCpo. In Hyland et al. (2006), enriched Lawvere

theories were used, with enrichment in Poset or ωCpo. In this paper, we propose a

different generalisation that works similarly well for (−)⊥ and better than enriched

Lawvere theories for base categories such as functor categories [C, Set] or [C,ωCpo]

as used to model local state (O’Hearn & Tennent 1997; Plotkin & Power 2002;

Power 2006).

3 Gabriel–Ulmer duality

The definition of a Lawvere theory, Definition 1, involves the category Nat of natural

numbers, with natural numbers forming the possible arities of an operation. So, if

we are to axiomatise the definition, we need to be able to speak meaningfully of the

finite objects of a category A, as the finite objects of A are the possible arities for an
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A-based Lawvere theory. That problem was definitively resolved several decades ago

by the notion of a locally finitely presentable category and the theory of Gabriel–

Ulmer duality (Kelly 1982b; Adámek & Rosický 1994): the appropriate objects are

called the finitely presentable objects of A.

The definition of a locally finitely presentable category is quite complex (Adámek

& Rosický 1994). But the central result of Gabriel–Ulmer duality characterises the

notion in simple terms as follows (Kelly 1982b; Adámek & Rosický 1994): Let FL

denote the 2-category of all small categories with finite limits, finite-limit-preserving

functors and all natural transformations. Given a category C with finite limits, let

FL(C, Set) denote the full subcategory of the functor category [C, Set] determined

by those functors that preserve finite limits. And let LocPresf denote the 2-category

of locally finitely presentable categories, filtered colimit preserving functors that have

left adjoints and natural transformations.

Theorem 8 (Gabriel–Ulmer duality)

The construction that sends a small category C with finite limits to the category

FL(C, Set) extends canonically to a bi-equivalence of 2-categories:

FL ∼ LocPresopf

So the study of locally finitely presentable categories is equivalent to the study of

categories of the form FL(C, Set), where C is a small category with finite limits.

Examples of locally finitely presentable categories in the computer science liter-

ature include Set, Setk , Poset, Cat and all functor categories [C,A] for which C

is a small category and A is a locally finitely presentable category (Barr & Wells

1990; Robinson 2002). Gabriel–Ulmer duality extends routinely from finiteness to

countability, allowing examples to include ωCpo and functor categories of the form

[C,ωCpo] and hence the categories of primary interest for recursion and local

effects. Papers such as Hyland et al. (2006) were written primarily in terms of count-

ability, whereas the relevant mathematical literature is usually phrased in terms of

finiteness.

The converse construction for Theorem 8 sends a locally finitely presentable

category A to a skeleton of the opposite of the full subcategory of finitely presentable

objects of A. We shall duly write Af for a skeleton of the full subcategory of A given

by the finitely presentable objects of A, and let ι : Af −→ A denote the inclusion

functor. For example, the finitely presentable objects of Set are the finite sets, and

so Setf is Nat. The finitely presentable objects of Poset are the finite posets, and so

Posetf contains one isomorphic copy of each finite poset, with maps given by all

maps of posets. Extending to the countable setting, the countably presentable objects

of ωCpo include all countable ω-cpo’s and also uncountable ω-cpo’s that have a

countable presentation. For more details on the computing literature, see Robinson

(2002). In practice, one almost only ever needs to know some of the countably

presentable objects of a locally countably presentable category, e.g. knowing that

the countable ω-cpo’s are among the countably presentable ones. A central fact

about Af is as follows.

https://doi.org/10.1017/S0956796809007254 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007254


Gabriel–Ulmer duality and Lawvere theories enriched over a general base 271

Proposition 9

For any locally finitely presentable category A, the category Af has all finite colimits,

and they are preserved by the inclusion ι : Af −→ A.

We denote the composite functor

A
Y� [Aop, Set]

[ιop, Set]� [Aop
f , Set]

by ι̃, where Y is the Yoneda embedding. For example, Setf is Nat, and the functor

ι̃ sends a set X to the functor Set(ι−, X), i.e. to X(−).

Since ι preserves all finite colimits, and representable functors preserve limits,

ι̃ factors through FL(Aop
f , Set). So we sometimes consider ι̃ as a functor from A

to FL(Aop
f , Set). Unwinding the converse construction for Theorem 8, one has the

following.

Theorem 10

For any locally finitely presentable category A, the functor ι̃ induces an equivalence

of categories:

A � FL(Aop
f , Set)

We shall return to Theorem 10 when we discuss models.

4 Lawvere A-theories

In generalising Definition 1, a tentative definition of an A-based Lawvere theory

might be a small category L with finite products together with a strict finite-product-

preserving identity-on-objects functor I : A
op
f −→ L. But such a definition would

not be delicate enough to allow us to generalise the relationship between Lawvere

theories and monads as the following example illustrates.

Example 11

Let A = Poset. The category Posetf is (equivalent to) the full subcategory of Poset

determined by the finite posets. Given a monad T on Poset, the canonical composite

Posetf −→ Poset −→ Kl(T )

preserves all finite colimits, and so the restriction

I : Posetf −→ L
op
T

strictly preserves all finite colimits. But that is a strictly stronger condition than

that of strict preservation of finite coproducts. For example consider the following

push-out in Posetf:

1 � 2

2
�

� 3
�
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where 2 denotes the poset with two elements, with one less than the other,

i.e. Sierpinski space; 3 is similar but with three elements and with the evident

maps between the various posets. Preservation of this push-out is not implied by

preservation of finite coproducts, but if we are to axiomatise the relationship between

Lawvere theories and monads so that it extends to Poset, this push-out must be

preserved in the definition of a Poset-based Lawvere theory, as every Poset-based

Lawvere theory must arise from a monad on Poset.

Guided by this example and relying upon Proposition 9, we make the following

definition. The definition of Lawvere A-theory we give here is identical to that given

in Nishizawa & Power (2009), but the definition of model we give here does not, a

priori, agree with that given in Nishizawa & Power (2009): later, we shall prove that

the two definitions of model agree up to coherent isomorphism.

Definition 12

Given a locally finitely presentable category A, a Lawvere A-theory is a small category

L together with a strict finite-limit-preserving identity-on-objects functor I: Aop
f → L.

A model of a Lawvere A-theory I : Aop
f −→ L is a functor M : L −→ Set for which

the composite MI preserves finite limits.

The restriction of models to be Set-valued functors in Definition 12 while models

were taken in any category C with finite products in Definition 1 is essentially a

convenience for exposition. We discuss the general situation at the end of the paper.

A map of Lawvere A-theories from L to L′ is an identity-on-objects functor

from L to L′ that commutes with the functors from A
op
f . Together with the usual

composition of functors, Lawvere A-theories and their maps yield a category we

denote by LawA.

The definition of model routinely extends to the definition of the category Mod(L)

of models of L, and Theorem 10 induces a canonical functor

UL : Mod(L) −→ A

Compare Definition 1 with Definition 12: the definition of ordinary Lawvere

theory required that L have finite products and that the functor from Natop to L

strictly preserve finite products, whereas here, we have asked for strict preservation

of finite limits but have made no further assumption of existence of any kind of

limits in L. So the following result is not entirely routine.

Proposition 13 (Nishizawa & Power 2009 )

An ordinary Lawvere theory is a Lawvere Set-theory and conversely.

Proof

Let L be an ordinary Lawvere theory. It corresponds to a finitary monad T on

Set, and L is isomorphic to the restriction of Kl(T )op to the natural numbers,

with the functor I : Natop → L given by the restriction of the canonical functor

Set −→ Kl(T ). So I: Natop → L strictly preserves all finite limits of Nat, as the

corresponding finite colimits are preserved both by the inclusion into Set and by

the canonical functor into Kl(T ). So every ordinary Lawvere theory is a Lawvere

https://doi.org/10.1017/S0956796809007254 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007254


Gabriel–Ulmer duality and Lawvere theories enriched over a general base 273

Set-theory. The converse is easier: L has precisely the objects of Aop
f , with I strictly

preserving all finite limits; so L has all finite products, and they are preserved by I ,

although L need not have pullbacks for example. �

Proposition 14

The definitions of a model of an ordinary Lawvere theory and of a Lawvere

Set-theory agree.

Proof

Set
op
f is both the free category with finite products on 1 and the free category with

finite limits on 1 (Kelly 1982b; Adámek & Rosický 1994). So all finite-product-

preserving functors out of Set
op
f preserve all finite limits. The result now follows

routinely from Definition 12. �

A definition of model of a Lawvere A-theory appeared in Nishizawa & Power

(2009), but it was quite complex, not flowing directly from the definition of Lawvere

A-theory. We now show that our definition agrees with it up to coherent isomorphism.

Proposition 15

Given a Lawvere A-theory I : A
op
f −→ L, the category Mod(L) is given, up to

coherent equivalence, by the pullback in the category Cat of locally small categories:

P
PL� [L, Set]

A

UL
�

ι̃
� [Aop

f , Set]

[I, Set]
�

Proof

By Theorem 10, since A is locally finitely presentable, it is equivalent to FL(Aop
f , Set)

coherently with respect to the inclusion i. Moreover, the functor [I, Set] admits the

lifting of isomorphisms; i.e. for any functor M : L −→ Set together with a natural

isomorphism of the form MI ∼= M ′ : Aop
f −→ Set, the domain of M ′ and the natural

isomorphism extend from A
op
f to L. So, to give an object of the pullback P is

equivalent to giving a functor M : L −→ Set such that the composite of M with

I : Aop −→ L lies in A � FL(Aop
f , Set), i.e. such that MI preserves finite limits. But

that is equivalent to giving a model of L. And that extends routinely to maps of

models. �

By Proposition 15, up to coherent isomorphism, a model of L consists of an object

X of A together with data and axioms arising from those maps in L that are not

already in A
op
f . In practice, one usually uses this characterisation of the definition

of model, but for abstract theory, the definition as stated here, i.e. Definition 12, is

typically more helpful.

Example 16

Let A = Poset. So Af is (up to equivalence) the full subcategory of Poset determined

by the finite posets. Let 0 denote the empty poset, 1 denote the one element poset

and 2 denote Sierpinski space.
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Consider the Lawvere Poset-theory L⊥ freely generated by two maps

0 � 1 1 � 2

subject to commutativity of the following two diagrams:

1 � 2 1 � 2

0
�

� 1

0

�
1

1

�

id
�

where the horizontal maps are the generating maps of L⊥; the left-hand vertical

map is the map in Poset
op
f determined by the unique map in Posetf from 0 to 1;

and the other two vertical maps are determined by the two maps in Posetf from 1

to 2 that choose the first and second element of 2, labelled 0 and 1 respectively.

By Proposition 15, a model of any Lawvere Poset-theory L consists of a poset P

and a functor M : L −→ Set such that the composite functor MI : Posetopf −→ Set

is Poset(ι−, P ). So M must send 0 to the one element set 1; it must send 1 to the set

of elements of P ; and it must send 2 to the carrier of the poset P� of pairs (x, y) of

elements of P for which x � y, ordered pointwise.

So, in particular, a model of L⊥ consists of a poset P with maps of posets

1 � P P � P�

subject to commutativity of the following two diagrams:

P � P� P � P�

1

t

�
� P

π0

�
P

π1

�

id
�

where the horizontal maps are determined by the generating maps of L⊥, and the

other maps are determined by the structure of the category Poset.

The commutativity of the two diagrams implies that the map

P −→ P�

is fully determined by the other data: it must send x to the pair (⊥, x), where ⊥ is

the image of the map 1 −→ P . So, for every element x of P , the two commutativities

imply that ⊥� x.

Thus a model of L⊥ consists of a poset P with a least element ⊥. It will follow

that L⊥ generates the monad T⊥ on Poset for partiality.

Example 16 is, by construction, an example of a Lawvere Poset-theory. The

various examples of ordinary Lawvere theories of Section 2 systematically extend to

become Lawvere Poset-theories too. One can see that this is true by considering the

monads on Poset generated by the various examples; then directly by observing or

using the equivalence between finitary Lawvere Poset-theories and finitary monads
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on Poset we shall soon describe that every finite set is a finite poset, and so one

can regard the generating operations and equations of each example of an ordinary

Lawvere theory as generating operations and equations of a Lawvere Poset-theory.

Example 17

Let A = [Inj, Set]. Then A is a locally finitely presentable category (see Kelly 1982a),

used as the base category for modelling local state by O’Hearn & Tennent (1997) and

then by Plotkin & Power (Plotkin & Power 2002; Power 2006). The study of state

inherently involves countability, as one’s set V of values is typically countable. So in

modelling local state, we need to generalise from local finite presentability to local

countable presentability. But A, being locally finitely presentable, is necessarily locally

countably presentable, and our general analysis extends routinely to countability.

The category Ac, which we define to be a skeleton of the full subcategory of A given

by the countably presentable objects of A, is given, for the case of A = [Inj, Set],

by the closure under countable colimits of the full subcategory of [Inj, Set] given

by the representable functors. That may be calculated to be the full subcategory of

[Inj, Set] given by [Inj, Setc], i.e. those functors from Inj to Set whose values are

countable sets.

In particular, for any countable set V , the constant functor at V , which, by mild

overloading of notation, we denote by V , is countably presentable and so lies in

Ac. The functor L = Inj(1,−) : Inj −→ Set, being representable, also lies in Ac, as

does the product L × V . It follows from the general theory of Kelly (1982a) that

the definition in Plotkin & Power (2002) of a category denoted in that paper as

LS([I, Set]) systematically yields a presentation of a Lawvere [Inj, Set]-theory LLS

such that the category Mod(LLS ) is the category of algebras for the monad TLS for

local state on [Inj, Set].

It is not clear yet how best one can describe a denotational semantics for local

state: a monad for local state has existed for some time; one of the main motivations

of Plotkin & Power (2002) was the observation that if one starts with operations

and equations, local state can be seen semantically to extend global state; in Power

(2006), that was taken further by the introduction of a notion of indexed Lawvere

theory; and the work in this paper suggests a still further perspective, dispensing

with the double enrichment of Plotkin & Power (2002) and without the explicit

indexing of Power (2006).

We have not yet developed an account of the various ways to combine Lawvere

A-theories, but the sum of theories certainly exists, as LawA is cocomplete, allowing

the theory of Hyland et al. (2006) to extend routinely (see Lüth and Ghani, 2002

for an explanation of the value of the sum in functional programming). Extending

the tensor, analysed in Hyland et al. (2006), and the distributive tensor, analysed

in Hyland & Power (2006), will be more complex.

5 Preservation of finite limits

There is a delicate relationship between Definition 12 and the notions of existence

and preservation of finite limits. Suppose C is a small category with finite limits, D is
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a small category, and H : C −→ D preserves finite limits but with D not necessarily

having all finite limits. One can speak of the free completion FH (D) of D under

finite limits that respects the finite limits of C (Kelly 1982b). By definition, the

category FH (D) has finite limits, and there is a canonical functor J : D −→ FH (D)

for which the composite JH : C −→ FH (D) preserves finite limits, and it is the

universal construct; i.e for any small category E with finite limits and any functor

K : D −→ E for which the composite KH preserves finite limits, there is a finite-

limit-preserving functor Q : FH (D) −→ E making the triangle

D
J� FH (D)

E

Q

�

K

�

commute, unique up to coherent isomorphism.

It follows from Definition 12 that for any Lawvere A-theory I : Aop
f −→ L, one

can characterise Mod(L) by observing that composition with J : L −→ FI (L) yields

an equivalence of categories between Mod(L) and FL(FI (L), Set)).

But FL is one side of Gabriel–Ulmer duality, and with a little effort, we can

extend the above observation into a relationship between the category LawA of all

Lawvere A-theories and the 2-category FL and then use Gabriel–Ulmer duality to

explain the relationship between models of Lawvere A-theories and finitary monads

on A.

The details require 2-categorical care. Objects of a category are often isomorphic

to each other without being equal to each other, and so functors between categories

are often naturally isomorphic to each other without being equal to each other. So

when one considers a 2-category such as FL, one usually needs systematically to relax

equalities to become isomorphisms, isomorphisms to become equivalences, functors

to become pseudo-functors and so on; see Power (1995) for further discussion of

this in a computational setting.

In particular, a pseudo-slice 2-category is the natural generalisation of the notion

of slice category. Specifically, given a small category C with finite limits, the pseudo-

slice 2-category C//FL has objects given by finite-limit-preserving functors with

domain C , with arrows given by triangles of the form

D

C

�

∼=

D′
��

consisting of a finite-limit-preserving functor from D to D′ and a natural isomorphism

between the two functors from C to D′: in particular, note that the diagram need

not commute, and the isomorphism inside it is part of the data. The 2-cells of the

https://doi.org/10.1017/S0956796809007254 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007254


Gabriel–Ulmer duality and Lawvere theories enriched over a general base 277

pseudo-slice 2-category C//FL are given by natural transformations that respect

the isomorphisms in the respective triangles. Using that definition and systemati-

cally relaxing the notion of functor between categories to pseudo-functor between

2-categories, similar to natural transformations, we have the following.

Theorem 18

The category LawA is a pseudo-coreflective subcategory of the pseudo-slice 2-

category A
op
f //FL

LawA −→ A
op
f //FL

where a Lawvere A-theory I : Aop
f −→ L is sent to the free completion FI (L) of L

under finite limits that respects the finite limits of Aop
f , and the pseudo-coreflection

sends a finite-limit-preserving functor A
op
f −→ C to its (identity-on-objects, fully

faithful) factorisation.

In general, it is not easy to give a concrete characterisation of the free completion

FI (L) of a Lawvere A-theory under finite limits. But we can give a general

description of FI (L), albeit not a concrete one. It follows from Proposition 15

that for any Lawvere A-theory L, the Yoneda embedding restricts to a fully faithful

functor

Y : Lop −→ Mod(L)

It then follows from Gabriel–Ulmer duality that FI (L)op is the full subcategory of

Mod(L) given by closing Lop under finite colimits in Mod(L). Colimits in Mod(L) are

generally awkward to calculate, although filtered colimits are easy (see Theorem 20).

But we do not need a concrete description of FI (L) anyway; we only ever use its

defining universal property.

As an indication of how the paper is to develop from here, compare Theorem 18

with the following.

Theorem 19

The category Mndf(A) of finitary monads on a locally finitely presentable category

A is a pseudo-coreflective subcategory of (LocPresf//A)op

Mndf(A) −→ (LocPresf//A)op

where a finitary monad T is sent to the forgetful functor T -Alg −→ A, and a filtered

colimit preserving functor G : B −→ A with left adjoint F is sent to the monad GF .

6 Theories and monads

We now work towards relating Lawvere A-theories with monads on A, extending the

main result of Nishizawa & Power (2009) by explaining it in the light of Theorems 18

and 19.

Theorem 20

For any Lawvere A-theory I : A
op
f −→ L, the category Mod(L) is locally finitely

presentable, and the functor UL : Mod(L) −→ A is a map of locally finitely

presentable categories.
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Proof

Let FI (L) denote the free completion of L under finite limits that respects the finite

limits of Aop
f (cf. Theorem 18). It follows immediately from the universal property of

FI (L) that Mod(L) is equivalent to FL(FI (L), Set), which, by Theorem 8, is locally

finitely presentable. Moreover, UL is determined by composition with the canonical

composite functor

A
op
f −→ L −→ FI (L)

which preserves finite limits by construction. So, by a further application of

Theorem 8, UL is a map of locally finitely presentable categories. �

Theorem 20 is fundamental, yielding a string of corollaries. The proof implies a

little more than the theorem as stated. Specifically, it yields the following.

Corollary 21

For any Lawvere A-theory I : Aop
f −→ L, the two vertical functors UL and [I, Set]

in the diagram of Proposition 15 have left adjoints, yielding a square that is

commutative up to natural isomorphism as follows:

Mod(L)
PL� [L, Set]

∼=

A

FL

�

ι̃
� [Aop

f , Set]

LanI

�

where LanI denotes the left Kan extension along the functor I (Kelly 1982a).

Corollary 22

For any Lawvere A-theory I : Aop
f −→ L, the functor UL : Mod(L) −→ A is finitarily

monadic.

Proof

By Theorem 20, the functor UL is finitary and has a left adjoint. Let f, g be a

UL-split coequaliser pair in Mod(L). Since [L, Set] is cocomplete, PLf and PLg have

a coequaliser, and the coequaliser can be chosen so that it is strictly preserved by

[I, Set]. Since a split coequaliser of ULf and ULg is also preserved by ι̃, f and g

have a coequaliser in Mod(L), and UL strictly preserves it. So by Beck’s monadicity

theorem (Barr & Wells 1985), UL is monadic. �

Let TL be the finitary monad on A induced by L. The construction of TL from L

extends routinely to a functor

T− : LawA −→ Mndf(A)

We can combine that functor with the pseudo-functors in Theorems 8, 18 and 19 as

follows.
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Corollary 23

The diagram

LawA
T− � Mndf(A)

A
op
f //FL

FI (−)

�
� (LocPresf//A)op

(−)-Alg

�

commutes.

Gabriel–Ulmer duality, Theorem 8, asserts that the bottom line of the diagram is

a bi-equivalence of 2-categories. The central theorem of Nishizawa & Power (2009)

asserts that the top line is an equivalence of categories. The main line of results goes

as follows.

Corollary 24

For any Lawvere A-theory I : Aop
f −→ L, one recovers Iop : Af −→ Lop from FL as

the (identity-on-objects, fully faithful) factorisation of FL ◦ ι.

Lop I ′
� Mod(L)

Af

Iop
�

ι
� A

FL
�

Proof

For any finite-limit-preserving functor H : C −→ D, Gabriel–Ulmer duality, Theo-

rem 8, asserts that H is the restriction of F : FL(C, Set) −→ FL(D, Set), where F is

the left adjoint to the functor

FL(H, Set) : FL(D, Set) −→ FL(C, Set)

given by composition with H . Considering the special case in which C = A
op
f ,

D = FI (L) and H is the canonical composite, it follows from Corollary 21 that the

diagram commutes if I ′ is taken to be the Yoneda embedding regarded as having

codomain in Mod(L). Fully faithfulness of I ′ follows from fully faithfulness of the

Yoneda embedding. �

So for an arbitrary finitary monad T on A, define (KT , IT , ιT ) by taking the

(identity-on-objects, fully faithful) factorisation of FT ◦ ι:

KT
ιT� Kl(T )

Af

IT
�

ι
� A

FT�

Since ι and FT preserve finite colimits and ιT reflects finite colimits, IT is an

identity-on-objects strict finite-colimit-preserving functor. So we define LT to be

K
op
T .
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Theorem 25 ( Nishizawa & Power 2009 )

For a finitary monad T on A, let FT 
 GT be the canonical adjunction between

the Eilenberg–Moore category T -Alg and A, and let QT send a T -algebra α to

T -Alg(ιT−, α). Then, if we allow QT to be replaced by a canonically isomorphic

functor, the following square yields a pullback:

T -Alg
QT
� [LT , Set]

A

GT

�

ι̃
� [Aop

f , Set]

[IopT , Set]
�

Corollary 26

The construction of TL from an arbitrary Lawvere A-theory L and that of L from an

arbitrary finitary monad T on A extend canonically to an equivalence of categories

LawA � Mndf(A). Moreover, the categories Mod(L) and TL-Alg are coherently

equivalent.

Proof

By Theorem 25, T ∼= TLT
for an arbitrary finitary monad T on A. Conversely,

given an arbitrary Lawvere A-theory L, the Lawvere A-theory LTL
is defined to

be the (identity-on-objects, fully faithful) factorisation of FTL ◦ ι: Af → TL-Alg. By

Corollary 24 and since Mod(L) � TL-Alg, this factorisation agrees with L, and so

LTL
is isomorphic to L. The two constructions routinely extend to an equivalence of

categories. �

7 Change of base

In this section, further developing our axiomatisation and extension of the relation-

ship between ordinary Lawvere theories and monads on Set, we consider the effect

of change of base. Specifically, given locally finitely presentable categories A and

B and a map of locally finitely presentable categories from A to B, i.e. a filtered

colimit-preserving functor U : A −→ B that has a left adjoint F , we study the

relationship between Lawvere A-theories, equivalently finitary monads on A, and

Lawvere B-theories, equivalently finitary monads on B, as induced by U.

Every map F 
 U : A −→ B of locally finitely presentable categories routinely

induces a 2-functor

(LocPresf//A)op
(LocPresf//U)op

� (LocPresf//B)op

This 2-functor has a left biadjoint, which we denote by U∗, given by pseudo-

pullback, which, in the situation of primary interest to us, is equivalent to an

ordinary pullback (Joyal & Street 1993).

Trivially, every finitary monad TA on A induces a finitary monad UTAF on B.

So there must be a corresponding construct for Lawvere theories cohering with the

inclusion pseudo-functors of Theorems 18 and 19. The coherence is subtle. In terms

of monads, it is as follows.
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Theorem 27

Every map F 
 U : A −→ B of locally finitely presentable categories canonically

induces an adjunction

Fmnd 
 Umnd : Mndf(A) −→ Mndf(B)

for which the diagram of left adjoints

Mndf(B)
Fmnd � Mndf(A)

(LocPresf//B)op
�

U∗
� (LocPresf//A)op

�

commutes.

Proof

Umnd sends a finitary monad TA on A to UTAF with the evident monad structure on

it. And Fmnd sends a finitary monad TB on B to the monad induced by considering

the pullback

P � T -Alg

A
�

U
� B

�

in Cat and observing that P is finitarily monadic over A and then taking the induced

monad. Commutativity of the diagram follows by construction of Fmnd (cf. Joyal &

Street 1993). �

Commutativity of the diagram in Theorem 27, subject to a mild 2-categorical

subtlety (Joyal & Street 1993), determines a canonical 2-natural transformation

Mndf(A)
Umnd � Mndf(B)

⇓

(LocPresf//A)op
�

(LocPresf//U)op
� (LocPresf//B)op

�

The component at TA of that 2-natural transformation is the canonical comparison

functor

TA-Alg −→ UTAF-Alg

The above relationships can duly be expressed equally in terms of Lawvere

A-theories and Lawvere B-theories as follows.
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Theorem 28

Every map F 
 U : A −→ B of locally finitely presentable categories canonically

induces an adjunction

FLaw 
 ULaw : LawA −→ LawB

for which the diagram of left adjoints

LawB
FLaw � LawA

(LocPresf//B)op
�

U∗
� (LocPresf//A)op

�

commutes.

Proof

ULaw sends a Lawvere A-theory I : A
op
f −→ LA to the (identity-on-objects, fully

faithful) factorisation of the composite

B
op
f −→ A

op
f −→ LA

And FLaw sends a Lawvere B-theory I : B
op
f −→ LB to the Lawvere A-theory

generated by taking the push-out

B
op
f

F � A
op
f

LB

I

�
� P

J

�

and then taking FJ(P ). Commutativity of the diagram in the statement of the

theorem follows by construction of FLaw . �

Commutativity of the diagram in Theorem 28 determines a canonical 2-natural

transformation

LawA
ULaw � LawB

⇓

(LocPresf//A)op
�

(LocPresf//U)op
� (LocPresf//B)op

�

The component at LA of that natural transformation is determined by composition.

Example 29

The forgetful functor U : Poset −→ Set is a map of locally finitely presentable

categories. Its left adjoint F takes a set X to itself, regarded as a discrete poset. So

the functor Umnd sends a monad T on Poset to the monad on Set that sends a set
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X to the underlying set of TX. For instance, it sends the monad (S × −)S on Poset

for global state to the monad on Set for global state. The behaviour of Fmnd seems

less natural in regard to computational effects, as it is determined by its behaviour

on T -Alg rather than on Kl(T ): the monad Fmnd necessarily exists, but we do not

have any comprehensible concrete description of it in general; given a monad T on

Set, the monad Fmnd(T ) on Poset sends a poset P to the free poset Q equipped with

T -structure on the underlying set UQ of Q.

Example 30

A class of examples of change of base arises when one considers local state. In

this paper, following Plotkin & Power (2002) and Power (2006), we have focused

on [Inj, Set] as an appropriate base category in which to study local state. But

it is not the only base presheaf category to have been used. For instance, the

categories [Nat, Set] and [Iso, Set], where Iso is the category of natural numbers

and permutations, or more complex variants, primarily in the work of O’Hearn &

Tennent (1997), have appeared. Change of base applies to these.

Any functor H : C −→ D between small categories C and D generates a map

[H, Set] : [D, Set] −→ [C, Set]

of locally finitely presentable categories, with the left adjoint to [H, Set] given by

left Kan extension. So, applying Theorems 27 and 28, H induces adjunctions

Fmnd 
 [H, Set]mnd : Mndf([D, Set]) −→ Mndf([C, Set])

and

FLaw 
 [H, Set]Law : Law[D,Set] −→ Law[C,Set]

In particular, for example, H might be the inclusion of Inj into Nat, thus yielding

an adjunction between Mndf([D, Set]) and Mndf([C, Set]) and equivalently between

Law[D,Set] and Law[C,Set].

There is a second, more delicate approach to change of base as follows: We

have analysed the category Mod(L) for a Lawvere A-theory L and shown that it

supports a forgetful functor UL : Mod(L) −→ A. We have further shown that UL is

finitarily monadic, and the construction of UL characterises the finitary monads on

A. But in Section 2, we considered models of an ordinary Lawvere theory in any

base category with finite products, not only in Set. So one wonders whether we can

consider models of a Lawvere A-theory in categories other than A.

In fact, we can do that, but the situation is subtle. Let A be a locally finitely

presentable category, and let I : Aop
f −→ L be a Lawvere A-theory. Consider any

category of the form FL(Aop
f , B), where B has finite limits. We can define the category
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Mod(L, FL(Aop
f , B)) of models of L in FL(Aop

f , B) to be the pullback

Mod(L, FL(Aop
f , B))

PL� [L,B]

FL(Aop
f , B)

UL

�

inc
� [Aop

f , B]

[I, B]

�

generalising the characterisation in Proposition 15 of the category of models of L

in A.

A priori, this may look special, not recovering the idea of a model of an ordinary

Lawvere theory in an arbitrary category with finite products as in Definition 1. But

that is illusory: if A = Set, the category A
op
f is Nat

op
f , which is the free category with

finite limits on 1. So, for any category B with finite limits, FL(Aop
f , B) is equivalent

to B. And so, in the case of A = Set, the generality we assert here means we can

take models of a Lawvere A-theory in any category B with finite limits.

Thus the generality we propose here covers all examples of interest to us. With

care, we can go even further: both in Definition 1 and here, we do not actually need

all finite products or all finite limits in B respectively; we just need some specific

ones. So, with care, it is routine give a further generalisation beyond the assertion

that B has finite limits to include Definition 1 entirely, but the lack of examples

makes it seem complex to the point of distraction to give the details here.

8 Conclusions

The notion of Lawvere theory, as introduced by Lawvere in his PhD thesis (1963),

has become increasingly valuable over recent years in analysing computational

effects, allowing a more refined denotational semantics than that provided by

monads (Hyland et al. 2006, 2007). Classically, the relationship between Lawvere

theories and monads has only been properly understood for base category Set and

more recently for base V -category V (Power 2000). That does not fully cover the

range of situations in which one seeks to model effects, as, in particular, local effects

are typically modelled in presheaf categories such as [Inj, Set], with enrichment in

[Inj, Set] looking out of place (O’Hearn & Tennent 1997; Plotkin & Power 2002;

Power 2006).

So, in this paper, extending mathematical ideas from Nishizawa & Power (2009),

we have addressed the situation, developing a notion of Lawvere A-theory, where

one does not insist upon enrichment of the base category A in itself. Giving a

mathematically unified account of the situation led us to explicate Gabriel–Ulmer

duality, as it yields an account of change of base by considering pseudo-slice

2-categories.

This is one of a number of recent extensions of the notion of Lawvere theory,

others being given by discrete Lawvere theories (Hyland & Power 2006) and indexed

Lawvere theories (Power 2006). Each of these extensions has been devised with

particular applications in mind, all of them relevant to computational effects. It is
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not clear yet precisely what combined extension of the notion of Lawvere theory

might be optimal. So that remains an open question, partly because the various

mathematical developments have given rise to new computational questions, such

as the classification of effects into constructors, deconstructors and logical effects

mooted in Hyland et al. (2006).
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