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Abstract

An n-hedral tiling of Rd is a tiling with each tile congruent to one of the n distinct sets. In this paper, we
use the iterated function systems (IFS) to generate n-hedral tilings of W. Each tile in the tiling is similar
to the attractor of the IFS. These tiles are fractals and their boundaries have the Hausdorff dimension less
than d. Our results generalize a result of Bandt.
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1. Introduction

Denote all positive integers by N. Let & ={T,• : i e M} be a family of closed sets in
Rd. If U1£N ^ = "^ a n ^ the interiors of the sets 7] are pairwise disjoint, then !? is
called a tiling of Rd and 7] are called the tiles of 2f. If every tile in & is congruent
to one fixed T, then T is called the prototile of & and & is a monohedral tiling. In
general, if there are n distinct tiles Th,... ,7). such that every tile in & is congruent
to one of them, then ST is called an n-hedral tiling and 7 ] , , . . . , Tin are n prototiles
of &. We also say that {7]-,,... , Tin} admits the tiling £7'. For more concepts about
tilings, see Griinbaum and Shephard [8].

We use Md(E) to denote all the d x d matrices whose entries are in the space E. A
matrix B e Md(R) is expanding if all of its eigenvalues satisfy |A.,| > 1. A lattice in Kd

can be defined as the set L := {(nu ..., nd)(v{,..., \d)': n, e 2, 1 < / < d), where
v , , . . . , \d are d linearly independent vectors in W and (•)' denotes the transposition.
Throughout this paper, we will use SS = [v{,... , vd] as the base for Kd. For a set
K c Kd, its Lebesgue measure is denoted by fj,(K). The interior is K°, and the
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boundary is dK = K\K°. Let B € Md(R) be expanding with |detfl| = N. Let
@ ={di , . . . , dN] c W. Then there exists a unique non-empty compact set K such
that K = \j"=l B"1 (A" + d,). In fact, K is the attractor of the iterated function system
(IFS) {/, : /((x) = fi-'Cx + d,.)}^!. If fi(K) > 0, then K is a self-affine tile. It
is well known that ii(K) > 0 is equivalent to K° ^ 0, and such K can tile Rd by
translation ([11,13]). In case that B e Md(l) and & c L, Bandt [1] gave a sufficient
condition for A"0 ^ 0:

(1.1) L =
.=1

Notice that the conditions B e Md(Z) and & C L are necessary for (1.1) to hold. If
rotations and reflections of a tile in the tiling are considered, then more interesting tiles
can be generated. Let B e Md(Z) and W e Mj(2)bea finite group with determinants
±1 . If SW = Wfi, then W is called a symmetry group of B. Bandt [1] proved that if
B is expanding with | det B\ = N, and

N

(1.2) L = I J UJ:1 (d, + B(L)) with iu, € W,

then the attractor AT of {/, : /,(x) = io,B 1(x)+d,}^=1 has non-empty interior. Note
that if K is the attractor of {/, : /,(x) = (u;r1B)-1(x+u;,"1d,)}f=1, then K = BK. A
lot of work has been done about self-affine tiles ([1-3,11,13,19,20]). However, not
much is known about the attractor of the IFS involving different matrices.

Here we prove the following generalization of Bandt's result:

THEOREM 1.1. LetB e Md(J.) be expanding andW C Md(T) be a symmetry group
ofB. Let { A x , . . . ,dN] <Z L . If B, = tu.-B"' with w, e W , r a i € N , i = l , . . . , i V ,
and L = [jf=1 (df + B,(L)), then the attractor K o/{/ ,}^, has non-empty interior,
where fi{x) = B-r\x + &i).

In the above theorem, the case Yl'Li \ ^et Bi\ = 1ls °f particular interest because
the attractor K is then essentially non-overlapping, that is, the intersection of/,(AT)
and fj (AT) has Lebesgue measure zero if i ^ j . We show that in such a case the
Hausdorff dimension of the boundary of K is strictly less than d. Indeed we prove the
following more general result:

THEOREM 1.2. Let {/, : / ;(x) = A,x + a,, A,- e (^^(iR), a, e D^}^, fee a/ami/y
of functions which satisfies the weak contractivity condition. If the attractor K has
non-empty interior and XllLi | det A,-| = 1, then the Hausdorff dimension of dK is
strictly less than d.
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The concept of weak contractivity condition in the above theorem is defined in
Section 2.

Though the self-affine tile generated by the IFS involving one matrix admits a
monohedral tiling of Krf, if we allow different expanding matrices in IFS, then in
general the attractor cannot tile Rd as a single prototile. In Section 6, we prove that
for the IFS {/, : /,(x) = A,x + a,, A, e Md(R), a, e R1*}^,, if the attractor K has
non-empty interior and JZlLi | det A,| = 1, then Rd can be tiled by affine copies of K
of approximately the same size, where an affine copy of AT is an image of K under an
affine transformation. For the special case in Theorem 1.1 with ^,f=l | det J3,| = 1,
we show that the attractor K gives rise to an n-hedral tiling of Rd for some positive
integer n.

Some other methods can also generate tilings by tiles of the same shape but different
sizes. See [6,8,10,12,15].

We prove Theorem 1.1 and Theorem 1.2 in Section 3. In Section 4, we consider
the open set condition related to the function systems in Theorem 1.1. In Section 5,
we give some examples to show how to generate fractal tiles from Theorem 1.1.

2. Notations and preliminaries

Let K C W. The Hausdorff dimension and the r-dimensional Hausdorff measure
of AT are denoted by dimH(AT) and Jif'(K) respectively [7]. We use || • || to denote
the Euclidean norm on Rd. The norm of a matrix B e Mrf(IR) is

A function/ : Rd -* W is a contraction if ||/(x) - / ( y ) | | < r | | x -y | | for all
x, y eRd, where r < 1 is a constant. If equality holds, then / is called a similarity
and r is called the contracting ratio of / . An iterated Junction system is a family of
contractions {/,-J^p see [4]. We use § ={1, 2 , . . . , N] to denote the set of indices of
the functions. Define

S" = S x • • • x S and S* = ( J § " .
n

An element s of §" can be written as s =st • • -sn, where s, e S, 1 < i < n. Define
/ s = fSi o fS2 o • • • o fSn. It is well known, [9], that for any IFS {/,}*Lp there is a
unique non-empty compact set K such that K = \JN

i=lfi(K). The set K is called the
attractor of {/,}^i- 1° fact> let ^ be the space of all non-empty compact sets of Rd

with the Hausdorff metric. Define F : £2 —>• Q as follows:

F(G):=U/'<G) force"-
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Then F is a contraction on Q and K is the fixed point of F. Moreover, the contractivity
condition of/, can be relaxed. A family of functions {/, : i e §} is said to satisfy
the weak contractivity condition if there isn e N such that / s are contractions for all
s € §". In such case, the function F", and hence F, has a fixed point. We also call
such a system an IFS.

THEOREM 2.1 ([1]). If {fi)^-i satisfies the weak contractivity condition, then for
any compact Qo ^ 0, the sequence Qk = F(<2*-i), k = 1,2, . . . , converges in
Hausdorff metric to the unique non-empty compact K with K = (J1=1 fi(K).

3. Proofs of Theorem 1.1 and Theorem 1.2

We first prove the following:

LEMMA 3.1. Let {/,}^, be as in Theorem 1.1. Then {f,}"=i satisfies the weak
contractivity condition.

PROOF. Let § = { 1 , 2 , . . . , N}. Then ||/s(x) - / s ( y ) | | < \\B~l • • • fl-'llllx - y||
for any s € §". Since SW = Wfi, it is easy to get that B~x • • • B"1 = wB~M for
some w e W, where M = £ " = 1 msr So \\B~1--- B~l\\ < (max^Jnu;!!) • | |B- M | | .
By the spectral radius formula [16, Theorem 10.13], we have limM_oo ||fi"M||1 /M =
l̂ -minl"1 < 1. where k^n is the eigenvalue of B with the smallest module. Hence if n
is sufficiently large, (maxKGW ||u>||)- | | £~ w | | < 1, and / s are contractions for all s e§" .
So {fi]f=1 satisfies the weak contractivity condition. •

Now we use the basic idea in [1] to prove Theorem 1.1.

PROOF OF THEOREM 1.1. From Lemma 3.1, we know that there exists « e N such
that / s are contractions for all s € §". Let Xo be the fixed point of /,". It is
easy to show that Xo is also the fixed point of f\. Now let Qo = {xo} and define
Qk = F(Qk-l),k= 1 ,2 , . . . .Then

Qk = {B~ldSl + • • • + B~l • • • B~ldSk + B " 1 • • • S^ 'xo : s =Sl • • • sk e § * } .

And Qo C Q\ C • • • is an increasing sequence. So K = | J , e N Qh Since L =
U!l i ( d i + #<(£))' f ° r any z ^L a n d any A: 6 N, there are s e§* and {zu... ,zk] c L
s u c h t h a t z = d, , + fiSlz, = <L., + BSldS2 + BSlBS2z2 = • • • = d,t + BSldS2 + ••• +
BSI • • • S , t _ ,d s , + B S l - - - BSkzk. H e n c e

z + xo = BS1 • • • BSt(zk + B ~ l d s t + ... + B ' 1 - - - B~ldSl + B ~ l • • • B ~ \ )

e B S l - - - B S t ( z k + K ) .
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We have BSl • • • BSk = Bqw for some w € W, where q = £*=1 mSl. Let m —
maxi<,sAf m,. For n e N, pick * such that n < q < n + m. Let p = q — n. Then
p 6 {1 , . . . , m) is an integer. We have

It follows that
m

B~n(L + xo) C | J U B"W(L + K)-

Since K is compact, K is contained in a ball t/fl = {x e Rd : ||x|| < a}. Let D be the
maximum of the diameters of BpwK (1 < p < m, w G W). Let

G = { z e t : \\Bpw{z)\\ <(D + a) for some 1 < p < m and some w G W}.

Then G is finite and if z G L\G, then Bpw{z + K) n f/a = 0 for all 1 < p < m and
all u; G W. So

m

B""(L + Xo) D Ua C ( J ( J fi"iy(G + AT),

which holds for all « G N. We claim that lJngN B~"(L + Xo) is dense in Rd. Let
S > 0 be such that all x G Kd has distance less than S from the lattice L. Let u e Rd.
For any k G N, there is vk G L such that ||vt-B*u|| < S. So ||B~*(vt 4- Xo) - u|| =
l|B"*(vt + Xo - fl*u)|| < ||B"*|| (5 + Hxoll) ->• 0 when k -> oo. This proves the
claim. Now it follows that

Q | J B"u;(G + K) = \J \J BPW(G + K) ^
p = l weW p=\ i»eW neN

So by Baire category theorem, K has non-empty interior. •

Next we prove Theorem 1.2.

PROOF OF THEOREM 1.2. Let {/j : / |(x) = A.-x+a), A"; G MlrfCR)}^ be a family
of contractions with attractor K. In [14], it was proved that if K has non-empty
interior and £ j l i | det A,| = 1, then dimw(3^) < d. Now let § ={1, 2 , . . . , N}.
Since {fi}"=1 satisfies the weak contractivity condition, there exists n e N such
that {/s : s €§"} is a family of contractions on Rd. We have K = \JieSfi(K) =
Uses- /s(^)- Regarding fs as / / , we get the theorem immediately. •

From Lemma 3.1 and Theorem 1.2, the following result follows directly.

COROLLARY 3.2. In Theorem 1.1, ifj^=l I detfi,!"1 = 1, then dimH(dK) < d.
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4. IFS and open set condition

An IFS {fi}?=i is said to satisfy the open set condition (OSC) if there exists a
bounded open set V such that V D \JMM V) and/,( V) nfj(V) = 0 for i ^ _/ [9].
We call V an OSC set of {/,}?=1. Obviously if {/,}f=l satisfies OSC with the OSC set
V, then removing some of/,, the IFS of the remaining functions still satisfies OSC
with the same OSC set V. If/, are all similarities with contracting ratios r,-, then it is
well known [17] that OSC is equivalent to 0 < Jif'(K) < oo, where t is the similarity
dimension of [fi}?=l defined as the unique number satisfying Yl"=i r\ — *• F°r s u c n

K, Jg"(fi{K) nfj (K)) = 0, or more precisely, dimH(fi(K) n / , (K)) < t for i ^ j
[14]. Sofj(K) (1 < i < N) are essentially disjoint.

Let B e Mrf(2). A set {di,. . . , dN] C L is called a residue system for B if

L = Ur=i(d- + fl(L)>and (d- + fi(L))n (<l + fi(z-)) = 0 for J" ^ ; •

LEMMA 4.1. Z r̂ Bt € Md(2) foe non-singular, I < i < N, and {di,... ,dN] C L.
Then any two of the following three conditions imply the other.

(i) L = U?=1(d, + B,(D).
(ii) (d, + Bj(L)) n (d; + Bj(L)) = 0forall 1 < i, j <N with i^j.

(iii) ZLi\^Bi\-l = \.

PROOF. Let n e N and C = [0, n - 1] x • • • x [0, n - 1] d times. Then C contains
nd lattice points of L.

(i) and (ii) implies (iii). Among the nd lattice points of C, the number of points
from d, + Bj(L) is nd/\ det Bt\ + o(nd). By (ii) these points are all different. So using
(i), we have YlLi (ra<7l detB,| + o(nd)) = nd. Let n -+ oo. We get immediately
Er=1|detB,|-' = l.

(i) and (iii) implies (ii). Suppose that there exist i ^ j with (d, + Bj(L)) fl (d̂  +
Bj (L)) ^ 0. Then there are d, p, q e L such that d = d; + B,p = d, + B;q. We
have B~l = 1/detB, Bf, where detB, e 2 and Bf &Md{1) is the adjoint of Bh

Let B = BiBf' Bj = (det B,)5,. For any z e L,

d+Bz = d, + Bjp+BjB?' BjZ e d, + B,(L),

and

d + Bz = dj + Bjq + (detfli)#;z G d; + B} (L).

So d + B(L) c (d, + B,(L)) D (d, + S;(L)). It follows that the total number of
distinct points of ( jLi (d* + Bk(L)) in C is at most YlLi ("d/| detB,| + o(nd)) -
(nd/| detfi| + o(nd)) = (l - | det B\~l)nd + o(nd), which is less than nd when n is
large enough. But this contradicts (i).
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(ii) and (iii) implies (i). For each i, let {d,, d,2, • • • , dinj} be a residue system
for Bj. Suppose for the contrary that L ^ (J!=i (di + Bi(L))- Then there exists
d e L\ U^li (di + Bj(L)). So for each 1 < i < N there exists 2 < j t < n, with
d e d.j, + Bj(L). Hence d € f]I^i(diji + Bj(L)). Now using the same arguments as
in the proof of the last part inductively, we see that there is B e Md(Z) such that

N N

d+B(L) c P (dUl + BAQ) c L\ ( J (d, + Bi(L)).

Counting the lattice points in C, we have Y!L\ (n<Vldet B<l + °{nd)) + " d / | d e t ^1 +
o(nd) < nd. Hence Yl"=i I d e t B<l~' < ^ w h i c h contradicts (iii). •

In Theorem 1.1, if Yl'Li IdetS,!"1 = 1, which by Lemma 4.1 is equivalent to
(d, + B,(L)) n (d, + Bj(L)) = 0 for all i ^ j , then it can be shown easily that
/i(fi(K)nfj(K)) = 0 for i ^ j . So /T is an OSC set for {/,}f=1. In case
L ^ U!li(d. + Bi(L)), we have the following:

PROPOSITION4.2. In Theorem 1.1, ifL D Ufei(d- + Bi(L)) and (d, + B,(L)) D
(dy- + Bj (L)) = &for i^j, then {fi}?=l satisfies OSC.

PROOF. Let m = max^ ,^ m,. Let {a1;.. . , ap} be a residue system for B, and
{bi,... , bq] a residue system for Bm. We observe that for any z eL and any b, e
{b,,. . . , b,}, either (z + Bm(L)) n (b, + Bm{L)) = (b, + Bm(L)), or (z + Bm(L)) n
(b; + Bm(L)) = 0. For any w e W, w(L) c L. Since u;"1 e W cMd(Z),
L = IOIO"^!,) C w(L). So L = u>(L). Now pick any 5, = WjBm'. If w, = w, then
d, + Bi(L) = d, + Bmw(L) = bj + Bm(L) for some; 6 {1 , . . . , 4}, where w € W.
If m, < w, then by

We can break down w,Bmi(L) into smaller subspaces. This can be done further
until we get d, + WiB

m>(L) = Ujtifo, + Bm(L)), where {b,y}fi, c {b, , . . . , b,}.
Applying this process to all Bt, we get

N N Mi

U (d, + B,{L)) = [ J U (b,; + Sm(L)).

Since d, + B,(L) are disjoint, all btj are different. Without loss of generality, we may
assume [J^=l Uyiit^i)} = {bi,.. . , b ,} , where q' < q. Then

1 = 1 i=q'+\
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Fori = N + l,... ,N+q-q', define /,-(x) = fl-m(x + bj). Then {fi}1=\~" satisfies
OSC by Theorem 1.1 and Lemma 4.1. Therefore {/, }f=1 satisfies OSC. •

5. Construction and examples

Theorem 1.1 provides a systematic method to construct fractals consisting of essen-
tially disjoint pieces of different sizes, but each similar to the original. The conditions
in Theorem 1.1 can be satisfied easily by using (1.1) and (1.2). We show here how
to do this through several examples. For simplicity, we assume that the base &S is
orthonormal. In these examples, all / , are similarities and OSC is satisfied. We find
that some attractors look quite nice and intriguing, which we did not see before.

EXAMPLE 5.1. We have Z=2ZU(2Z + 1). Iterating the right hand side partially we
get 2 =22U(2(22U(22 + 1)) + 1) = 22U(4Z + 1) U (42 + 3).So the corresponding
IFS is: / , (*) = x/2, f2(x) = (x + l)/4 and /3(x) = (x + 3)/4. Let K =
U^o [(22' ~ !)/22\ (22l+l - l)/22/+1] U {1}. Then K is compact and it can be verified
that K = \j]=1 fi(K). By the uniqueness of such a set, K is the attractor of \ft))=\-
We see that K consists of three pieces f\{K),f2(K) and fi(K), where f2(K) and
fi(K) have the same size, while fi(K) has a different size. This process of iteration
can be continued to get more complicated tiles.

EXAMPLE 5.2. Let

B = 0 ">')• d - Q - - C o 1 ) " " b = 0 -
Let

Note that w\,w2 e W, where

° Y ( ° W ) : m = ± l , n = ± l )

is a symmetry group of B. The following is well known, (i) Z2 = Bl? U (BI? + d)
gives twindragon; (ii) Z2 = BZ2 U {wxB12 + v) gives Levy dragon; (iii) Z2 =
BI1 U (w2BZ2 + h) gives Heigh way dragon. By (ii) we have

Z2 = B(B12 U (wiBl2 + v)) U (t^BZ2 + v)

= S222 U (BwiBl2 + B\) U {wxBl} + v).
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Note that BwxB = wB2 for some w e W. The corresponding attractor is shown in
Figure 1. Also we have

I2 = Bl2 U (WlB(B22 U (wxB22 + v)) + v)

= Bl2 U ((wiB2!2 + v) U (wiBwiBl2 + WiBv + v)).

The corresponding IFS is: / ,(x) = ^- ' (x) , /2(x) = (u>15
2)~1(x +v) , /3(x) =

(w\Bw\B)~l(x+W\B\ + v). Its attractor is shown in Figure 2. The attractor of
{/i, /3} is shown in Figure 3, whose Hausdorff dimension is In ((3 + V5)/2)/ In 2.

FIGURE 1. FIGURE 2.

We can also 'mix up' these dragons. Here are some of the examples. By (i) and
(ii), we get

I2 = Bl2 U (B(B22 U (wiBl2 + v)) + d)

= Bl2 U (B2!2 + d) U (BwiBI2 + B\ + d).

The attractor is shown in Figure 4. Using (i) and (iii), we get

I2 = B(B12 U (w2B22 + h)) U (Bl2 + d)

= B2T2 U (Bw2Bl2 + Bh) U (Bl2 + d).

Its attractor is in Figure 5. Also we have

I2 = B(B12 U (Bl2 + d)) U (w2Bl2 + h)

= B2!2 U (B2!2 + Bd) U (w2Bl2 + h).
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FIGURE 3. FIGURE 4.

FIGURE 5.
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FIGURE 6. FIGURE 7.

The attractor is in Figure 6. Using (ii) and (iii), we get

I2 = Bl2 U (w2B(BI2 U (WlBl2 + v)) + h)

= BI2 U (w2B
2l2 + h) U (w2BwlBl2 + w2B\ + h).

Its attractor is given in Figure 7. From this, we get that for any a e Z2,

I2 = I2 + a
= (fiZ2 + a) U (u>2B

2Z2 + h + a) U (u^fii^fiZ2 + u;2fiv + h + a).

By using different values of a, we may get different attractors. The attractor corre-
sponding to a = (~[) is shown in Figure 8.

Every attractor in these figures, except Figure 3, consists of three pieces of two
different sizes. As in Example 5.1, we can do more iterations.

6. Tiling with more than one prototile

In general, the attractor of the IFS involving different matrices does not admit
a monohedral tiling of Rd. More than one prototile is needed. Consider the IFS
{/, : /.(x) = A,x + a,, A, e M,((R)J.=]. Let AT be the corresponding attractor.
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FIGURE 8.

For the non-overlapping attractors, we should be only concerned with the case that
Y^=i | det A, | = 1, because if ix{K) > 0, then

N

lx(fi(K) nfj (K)) = 0 for i ^ j if and only if ^ | detA,| = 1.

We call a set E an affine copy of K if E = A{K) + b for some A e Md(R) and
b eRd. Let [Kj : i e N} be a family of sets in Rd, we say that AT, are of approximately
the same size if there exist 0 < Cy < c2 < oo such that cx < /u(AT,) < c2 for all i e N.
The following general tiling theorem is easy to prove.

THEOREM 6.1. Let {/, : /,(x) = AjX + a,, A, € Md(R), det A, ^ 0}^, be a
family of functions which satisfy the weak contractivity condition. If the attractor K
has non-empty interior and Xl!li | det A,| = 1, then Kd can be tiled by affine copies
of K of approximately the same size.

PROOF. Since K° ^ 0, we can find some g = fh • • • fim such that its fixed point is
in K°. Then g~" (K) can be broken down into affine copies of K of approximately the
same size. As n goes to infinity, g~n(K) will tile the whole space Rd. D

In this theorem, if At = • • • — AN = A, then every tile has the same shape and size.
The attractor K tiles Rd by translation. If the base of the lattice is orthonormal and
A, = w,-A, where wt e W and W is a symmetry group of A consisting of Euclidean
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isometries, then K also admits a monohedral tiling of U.d. But in this case rotations
and reflections of K are needed in the tiling. For the attractor K in Theorem 1.1 with
H i l i | detBt\ = 1 , every affine copy of K has the form wB~k(K) + b for some
k € N, where b eRd and w belongs to a finite group. Since they are of approximately
the same size, the number of such integers k must be finite. Hence we have proved
the following:

COROLLARY 6.2. Let K be the attractor in Theorem 1.1 and Y!i=i I det B,-|~' = 1.
Then there exists a tiling ofRd with each tile congruent to some WjB~kl(K), where
wt e W, kt G N, and there are only finitely many such &,.

Furthermore, we have

COROLLARY 6.3. Suppose that in Theorem 1.1, the base BS of the lattice L is
orthonormal, X ^ |detB,-|~' = 1, and W consists of Euclidean isometries. Let
« i < m2 < ••• < mN. Then there exists an n-hedral tiling of $Ld by similar copies of K
with n < mN. In particular, if [I, 2 , . . . , mN) = {m : m = m, for some 1 < i < N},
then [B~j (K) : j = 1, 2, • • • , mN] admits an mN-hedral tiling.

PROOF. We have

K =

From the given conditions w(E) is congruent to E for all w € W and E C Kd. By
Corollary 6.2, there exists a tiling & of Rd using finitely many similar copies of K as
the prototiles. Each tile r i n 3? has the form wTB~kT(K)+bT. L e t ^ , , = minTep[kT}
and kmx = maxTs^{kT}. If kT < kmax - mN + 1, then

T = wTB-kT | ( J B-"'wTl(K + Ai)\+ b

In the above expression, kT < kT + mx < ••• < kT + mN < k^a. Hence T is
broken down into smaller tiles. If still kT + m, < km^ — mN + 1 for some i, then
we can continue the process for that tile. Eventually every tile will have the form
wB~k(K) + b, where kmax — mN + 1 < k < £„,». So there are at most mN different
sizes. If ( 1 , 2 , . . . , mN] = {m : m = m, for some 1 < i < A^}, then the mN different
sizes do exist. •
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From this corollary, it is easily seen that all the attractors in the examples in
Section 5, except the one in Figure 3, give rise to a dihedral tiling. Also for any
positive integer n, it is easy to generate a fractal tiling which is n-hedral.
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