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SHARP ESTIMATES OF THE POTENTIAL KERNEL
FOR THE HARMONIC OSCILLATOR WITH

APPLICATIONS

ADAM NOWAK and KRZYSZTOF STEMPAK

Abstract. We prove qualitatively sharp estimates of the potential kernel for

the harmonic oscillator. These bounds are then used to show that the Lp −Lq

estimates of the associated potential operator obtained recently by Bongioanni

and Torrea are in fact sharp.

§1. Introduction

The study of the potential theory for the d-dimensional harmonic oscil-

lator

H=−Δ+ ‖x‖2

has recently been initiated by Bongioanni and Torrea [2]. The multidimen-

sional Hermite functions hk are eigenfunctions of H, and we have Hhk =

(2|k|+ d)hk. The operator H has a natural self-adjoint extension, here still

denoted by H, whose spectral decomposition is given by hk.

The integral kernel Gt(x, y) of the Hermite semigroup {exp(−tH) : t > 0}
is known explicitly to be

Gt(x, y) =
∞∑
n=0

e−(2n+d)t
∑
|k|=n

hk(x)hk(y)

=
(
2π sinh(2t)

)−d/2
exp

(
−1

4

[
tanh(t)‖x+ y‖2 + coth(t)‖x− y‖2

])
.

(See [6] for this symmetric variant of the formula.)
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2 A. NOWAK AND K. STEMPAK

Given σ > 0, consider the negative power H−σ, which is a contraction on

L2(Rd). It is easily seen that H−σ coincides in L2(Rd) with the potential

operator

(1) Iσf(x) =

∫
Rd

Kσ(x, y)f(y)dy,

where the potential kernel is given by

(2) Kσ(x, y) =
1

Γ(σ)

∫ ∞

0
Gt(x, y)t

σ−1 dt.

Note that all the spaces Lp(Rd), 1 ≤ p ≤∞, are contained in the natural

domain of Iσ consisting of those functions f for which the integral in (1)

converges x almost everywhere (see [4, Section 2]).

The main result of this paper, Theorem 2.4, provides qualitatively sharp

estimates of the potential kernel (2). As an application of this result, we

prove sharpness of the Lp − Lq estimates for the potential operator (1)

obtained recently by Bongioanni and Torrea [2, Theorem 8] (see Theorem 3.1

below).

Recall that an operator T defined on Lp(Rd) for some 1 ≤ p ≤∞, with

values in the space of measurable functions on R
d, is said to be of weak type

(p, q), 1≤ q <∞, provided that

(3)
∣∣{x ∈R

d :
∣∣Tf(x)∣∣> λ

}∣∣≤C
(
‖f‖p/λ

)q
,

with C > 0 independent of f ∈ Lp(Rd) and λ > 0. The restricted weak type

(p, q) of T means that (3) holds for f = χE , where E is any measurable

subset of R
d of finite measure. By definition, weak type (p,∞) coincides

with strong type (p,∞); that is, the estimate ‖Tf‖∞ ≤C‖f‖p, f ∈ Lp(Rd).

In terms of Lorentz spaces, the weak type (p, q) is equivalent to the bound-

edness from Lp(Rd) to Lq,∞(Rd), and the restricted weak type (p, q) is char-

acterized by the boundedness from Lp,1(Rd) to Lq,∞(Rd) (see [1, Chapter 4,

Section 4]). Strong type (p, q) means, of course, the Lp-Lq boundedness.

The notation X � Y will be used to indicate that X ≤CY with a positive

constant C independent of significant quantities; we will write X � Y when

simultaneously X � Y and Y � X . We will also use the notation X ��
Y exp(−cZ) to indicate that there exist positive constants C,c1 and c2,

independent of significant quantities, such that

C−1Y exp(−c1Z)≤X ≤CY exp(−c2Z).

Further, in a number of places, we will use natural and self-explanatory

generalizations of the “��” relation, for instance, in connection with certain
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SHARP ESTIMATES OF THE POTENTIAL KERNEL 3

integrals involving exponential factors. In such cases, the exact meaning

will be clear from the context. By convention, “��” is understood as “�”

whenever no exponential factors are involved.

We write log+ for the positive part of the logarithm, and we write ∨,∧
for the operations of taking maximum and minimum, respectively.

§2. Estimates of the potential kernel

We begin with two technical results describing the behavior of the inte-

grals

IA(T ) =

∫ ∞

T
tA exp(−t)dt, T > 0,

JA(T,S) =

∫ S

T
tA exp(−t)dt, 0< T < S <∞.

Notice that IA(T ) dominates JA(T,S). The following lemma is a refinement

of [4, Lemma 2.1] (see also [5, Lemma 1.1]).

Lemma 2.1. Let A ∈R and γ > 0 be fixed. Then

(4) IA(γT )� TA exp(−γT ), T ≥ 1,

and for 0< T < 1,

IA(γT )�

⎧⎪⎨⎪⎩
TA+1, A <−1,

log(2/T ), A=−1,

1, A >−1.

Proof. We assume that γ = 1. From the proof it will be clear that the

estimates are true for any γ > 0. The case 0 < T < 1 was treated in the

proof of [4, Lemma 2.1], so we consider T ≥ 1 and focus on showing (4).

The lower bound in (4) is straightforward; we have

IA(T )>

∫ 2T

T
tAe−t dt

� TA

∫ 2T

T
e−t dt= TA(e−T − e−2T )� TAe−T , T ≥ 1.

It remains to prove the upper bound,

(5)

∫ ∞

T
tAe−t dt� TAe−T , T ≥ 1,
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4 A. NOWAK AND K. STEMPAK

and here we assume that A> 0, since for A≤ 0 we have tA ≤ TA, t > T ≥ 1,

and the conclusion is trivial. Choosing TA such that for T ≥ TA one has∫ ∞

2T
tAe−t dt≤ 1

2

∫ ∞

T
tAe−t dt,

we can write∫ ∞

T
tAe−t dt≤

∫ 2T

T
tAe−t dt+

∫ ∞

2T
tAe−t dt

≤CTAe−T +
1

2

∫ ∞

T
tAe−t dt, T ≥ TA.

This implies (5) for T ≥ TA and, consequently, for all T ≥ 1.

Lemma 2.2. Let A ∈ R and γ > 0 be fixed. Then for 0< T < S ≤ 2T we

have

(6) TA(S − T ) exp(−2γT )� JA(γT,γS)� TA(S − T ) exp(−γT ),

while for S > 2T > 0 we have JA(γT,γS)� IA(γT ) when S ≥ 2, and

JA(γT,γS)�

⎧⎪⎨⎪⎩
TA+1, A <−1,

log(S/T ), A=−1,

SA+1, A >−1,

when 0<S < 2.

Proof. As in the proof of Lemma 2.1, it is enough to deal with the

case γ = 1. The bounds for T < S ≤ 2T follow since then
∫ S
T tAe−t dt �

TA
∫ S
T e−t dt and

(S − T )e−2T ≤
∫ S

T
e−t dt≤ (S − T )e−T .

Assume now that S > 2T . Clearly, JA(T,S)< IA(T ). On the other hand,

if T ≥ 1, then

JA(T,S)>

∫ 2T

T
tAe−t dt� TA

∫ 2T

T
e−t dt� TAe−T � IA(T ),

the last estimate being a consequence of (4). When 0 < T < 1, we distin-

guish two subcases. If S ≥ 2, then again, JA(T,S) �
∫ 2
T tA dt � IA(T ). If

2T < S < 2, then JA(T,S) �
∫ S
T tA dt, and evaluating the last integral, we

arrive at the claimed bounds for JA(T,S).
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SHARP ESTIMATES OF THE POTENTIAL KERNEL 5

We note that (4) and (6) may be written slightly less precisely as

IA(γT )�� exp(−cT ), T ≥ 1,

JA(γT,γS)�� TA(S − T ) exp(−cT ), 0< T < S ≤ 2T,

respectively. This fact will be used again without further mention.

We now apply Lemmas 2.1 and 2.2 to prove qualitatively sharp estimates

of the integral

EA(T,S) =

∫ 1

0
tA exp(−Tt−1 − St)dt, 0< T,S <∞.

The following result provides, in particular, a refinement and generalization

of [3, Lemma 2.4].

Lemma 2.3. Let A ∈R be fixed. Then

EA(T,S)�� exp
(
−c

√
T (T ∨ S)

)
×

⎧⎪⎪⎨⎪⎪⎩
TA+1, A <−1,

1 + log+ 1
T (T∨S) , A=−1,

(S ∨ 1)−A−1, A >−1,

uniformly in T,S > 0.

Proof. We first estimate EA(T,S) in terms of the integrals IA and JA.

For 0<S ≤ 2T , we have

EA(T,S)��
∫ 1

0
tA exp(−cT t−1)dt� TA+1

∫ ∞

cT
u−A−2e−u du

= TA+1I−A−2(cT ),

where the second relation follows by the change of variable t= cT/u. When

S > 2T , we change the variable t= u
√
T/S and we get

EA(T,S) =
(T
S

)(A+1)/2
∫ √

S/T

0
uA exp

(
−
√
TS(u+ u−1)

)
du≡J1 +J2,

where J1 and J2 come from splitting the integration over the intervals (0,1)

and (1,
√
S/T ), respectively. Then
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6 A. NOWAK AND K. STEMPAK

J1 ��
(T
S

)(A+1)/2
∫ 1

0
uA exp(−c

√
TSu−1)du� TA+1

∫ ∞

c
√
TS

z−A−2e−z dz

= TA+1I−A−2(c
√
TS)

and

J2 ��
(T
S

)(A+1)/2
∫ √

S/T

1
uA exp(−c

√
TSu)du� S−A−1

∫ cS

c
√
TS

zAe−z dz

= S−A−1JA(c
√
TS, cS).

Summing up, we have

EA(T,S)�� TA+1I−A−2

(
c
√
T (T ∨ S)

)
+ χ{S>2T}S

−A−1JA(c
√
TS, cS),

uniformly in S,T > 0. In the next step, we describe the behavior of the two

terms here by means of Lemmas 2.1 and 2.2.

From Lemma 2.1 it follows that

TA+1I−A−2

(
c
√
T (T ∨ S)

)
�� TA+1 exp

(
−c

√
T (T ∨ S)

)
, T (T ∨ S)≥ 1

(here, and also in analogous places below, c on the left-hand side should be

understood as a given constant) and that

TA+1I−A−2

(
c
√
T (T ∨ S)

)
�

⎧⎪⎪⎨⎪⎪⎩
TA+1, A <−1,

log( 4
T (T∨S)), A=−1,

( T
T∨S )

(A+1)/2, A >−1.

T (T ∨ S)≤ 1,

The term S−A−1JA(c
√
TS, cS) comes into play when S > 2T , and in this

case we use Lemma 2.2 to write the bounds

S−A−1JA(c
√
TS, cS)� χ{S≥2}Φ1 + χ{S<2}Φ2,

where

Φ1 = S−A−1IA(c
√
TS), Φ2 =

⎧⎪⎨⎪⎩
(T/S)(A+1)/2, A <−1,

log(ST ), A=−1,

1, A >−1.
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By Lemma 2.1,

Φ1 �� S−A−1 exp(−c
√
TS), TS ≥ 1,

Φ1 �

⎧⎪⎨⎪⎩
(T/S)(A+1)/2, A <−1,

log( 4
TS ), A=−1,

S−A−1, A >−1.

TS ≤ 1,

To proceed, it is convenient to consider each of the cases A<−1, A=−1,

and A>−1 separately.

If A<−1, then

EA(T,S)�� χ{2>S>2T}
(T
S

)(A+1)/2

+

{
TA+1 exp(−c

√
T (T ∨ S)), T (T ∨ S)≥ 1,

TA+1, T (T ∨ S)< 1,

+ χ{S>2T}χ{S≥2}

{
TA+1 exp(−c

√
TS), TS ≥ 1,

(TS )
(A+1)/2, TS < 1.

Here the first and third terms are insignificant compared with the second

one. In case of the third summand, this is becauseA<−1 and (T/S)(A+1)/2 <

TA+1 for TS < 1. A similar argument is used for the first one. The required

estimates of EA(T,S) follow.

If A=−1, then

E−1(T,S)�� χ{2>S>2T} log
S

T
+

{
exp(−c

√
T (T ∨ S)), T (T ∨ S)≥ 1,

log( 4
T (T∨S)), T (T ∨ S)< 1,

+ χ{S>2T}χ{S≥2}

{
exp(−c

√
TS), TS ≥ 1,

log( 4
TS ), TS < 1.

Similar to the case of A<−1, here also the first and third terms are insignif-

icant compared with the second one. This is clear for the third summand,

and for the first one this is because log(S/T ) < log(4/(TS)) when S < 2.

Thus, the desired bounds of E−1(T,S) also follow.

Finally, we consider the case A>−1, which is less direct than the previous

two. We have
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8 A. NOWAK AND K. STEMPAK

EA(T,S)�� χ{2>S>2T} +

{
TA+1 exp(−c

√
T (T ∨ S)), T (T ∨ S)≥ 1,

( T
T∨S )

(A+1)/2, T (T ∨ S)< 1,

+ χ{S>2T}χ{S≥2}

{
TA+1 exp(−c

√
TS), TS ≥ 1,

S−A−1, TS < 1.

Observe that here the relation �� remains valid if the sum of the first and

the third terms is replaced by the comparable (in the sense of �) expression

χ{S>2T}

{
TA+1 exp(−c

√
TS), TS ≥ 1,

(S ∨ 1)−A−1, TS < 1.

Taking into account that TA+1 exp(−c
√
TS) �� S−A−1 exp(−c

√
TS) for

TS ≥ 1, we conclude that

EA(T,S)��
{
(T ∨ S)−A−1 exp(−c

√
T (T ∨ S)), T (T ∨ S)≥ 1,

( T
T∨S )

(A+1)/2, T (T ∨ S)< 1,

+ χ{S>2T}

{
S−A−1 exp(−c

√
TS), TS ≥ 1,

(S ∨ 1)−A−1, TS < 1.

Now, if T ≥ S and T (T ∨ S) = T 2 < 1, then (T/(T ∨ S))1/2 = 1 � 1/(S ∨
1), while for T < S and T (T ∨ S) = TS < 1, we have (T/(T ∨ S))1/2 =

(T/S)1/2 < 1/(S ∨ 1). Therefore,

EA(T,S)��
{
(T ∨ S)−A−1 exp(−c

√
T (T ∨ S)), T (T ∨ S)≥ 1,

(S ∨ 1)−A−1, T (T ∨ S)< 1.

We claim that this implies that

EA(T,S)�� (S ∨ 1)−A−1 exp
(
−c

√
T (T ∨ S)

)
,

which are precisely the required estimates.

To justify the claim, it is enough to recall that A > −1 and to observe

that if T ≥ S and T (T ∨ S) = T 2 ≥ 1, then

(T ∨ S)−A−1 exp
(
−c

√
T (T ∨ S)

)
= T−A−1 exp(−cT )

� (T ∨ 1)−A−1 exp(−cT )

�� (S ∨ 1)−A−1 exp(−cT ),
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while if T < S and T (T ∨ S) = TS ≥ 1 (this forces S > 1), then

(T ∨ S)−A−1 exp
(
−c

√
T (T ∨ S)

)
= S−A−1 exp(−c

√
TS)

� (S ∨ 1)−A−1 exp(−c
√
TS).

The proof is finished.

We are now in a position to prove qualitatively sharp estimates of the

potential kernel.

Theorem 2.4. For σ > 0, we have

Kσ(x, y)�� exp
(
−c‖x− y‖

(
‖x‖+ ‖y‖

))
×

⎧⎪⎪⎨⎪⎪⎩
‖x− y‖2σ−d, σ < d/2,

1 + log+ 1
‖x−y‖(‖x‖+‖y‖) , σ = d/2,

(1 + ‖x+ y‖)d−2σ, σ > d/2,

uniformly in x, y ∈R
d.

Proof. We decompose

Γ(σ)Kσ(x, y) =

∫ 1

0
Gt(x, y)t

σ−1 dt+

∫ ∞

1
Gt(x, y)t

σ−1 dt

≡J σ
0 (x, y) +J σ

∞(x, y).

For 0< t < 1, we have tanh t� t, coth t� t−1, sinh2t� t, and therefore,

J σ
0 (x, y)��Eσ−d/2−1

(
c‖x− y‖2, c‖x+ y‖2

)
.

This combined with Lemma 2.3 shows that the estimates from the statement

hold with Kσ(x, y) replaced by J σ
0 (x, y). Further, taking into account that

tanh t� 1� coth t for t > 1, we see that

J σ
∞(x, y)�� exp

(
−c

(
‖x‖2 + ‖y‖2

))
.

Thus, J σ
0 (x, y) dominates J σ

∞(x, y) in the above decomposition, in the sense

that

J σ
∞(x, y)�Eσ−d/2−1

(
c‖x− y‖2, c‖x+ y‖2

)
for a sufficiently small constant c > 0. The conclusion follows.
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10 A. NOWAK AND K. STEMPAK

§3. Sharpness of the Lp-Lq boundedness of the potential operator

Given 0< σ < d/2, define the region

R=
{(1

p
,
1

q

)
: 0≤ 1

p
≤ 1 and 0∨

(1
p
− 2σ

d

)
≤ 1

q
≤ 1∧

(1
p
+

2σ

d

)}
\
({(1

p
,
1

q

)
: 0≤ 1

p
≤ 1− 2σ

d
and

1

q
=

1

p
+

2σ

d

}
∪
{(2σ

d
,0
)
,
(
1,1− 2σ

d

)})
contained in the unit (1/p,1/q)-square [0,1]2 (see Figure 1).

The following result enhances [2, Theorem 8] (see also [4, Theorem 2.3]).

Theorem 3.1. Let d ≥ 1, let 0 < σ < d/2, and let 1 ≤ p, q ≤ ∞. Then

Iσ : Lp(Rd) → Lq(Rd) boundedly if and only if (1/p,1/q) lies in the

region R.

On the other hand, Iσ is not even of restricted weak type (p, q) when

(1/p,1/q) is not in the closure of R. Moreover, Iσ is of weak type (p, q)

Figure 1: Mapping properties of Iσ for 0< σ < d/2

(r.w.t. = restricted weak type).
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for (1/p,1/q) = (0,2σ/d) and (1/p,1/q) = (1,1 − 2σ/d). For (1/p,1/q) =

(2σ/d,0), the restricted weak type is true, whereas the weak type fails.

Before giving the proof, we present a short argument showing [2, (21)

and (41)], the result we will apply in a moment.

Lemma 3.2. Given σ > 0,∥∥Kσ(x, ·)
∥∥
1
�
(
1∨ ‖x‖

)−2σ
, x ∈R

d.

Proof. Using the identity

exp(−tH)1(x) =

∫
Rd

Gt(x, y)dy

= (cosh2t)−d/2 exp
(
−1

2
tanh(2t)‖x‖2

)
, x ∈R

d

(see [6, Proposition 3.3]), we may write∫
Rd

Kσ(x, y)dy =
1

Γ(σ)

∫ ∞

0

∫
Rd

Gt(x, y)dy t
σ−1 dt

=
1

Γ(σ)

∫ ∞

0
(cosh2t)−d/2 exp

(
−1

2
tanh(2t)‖x‖2

)
tσ−1 dt.

Here we split the integration to the intervals (0,1) and (1,∞) and we denote

the resulting integrals by J0 and J∞, respectively. Then, uniformly in x ∈
R
d,

J0 ��
∫ 1

0
exp

(
−ct‖x‖2

)
tσ−1 dt= ‖x‖−2σ

∫ ‖x‖2

0
e−ctsσ−1 dt

� ‖x‖−2σ
(
‖x‖2σ ∧ 1

)
and

J∞ ��
∫ ∞

1
e−td exp

(
−c‖x‖2

)
tσ−1 dt=Cd,σ exp

(
−c‖x‖2

)
.

The conclusion follows.

Proof of Theorem 3.1. We first focus on strong-type inequalities. Then,

in view of [2, Theorem 8], what remains to prove are the following two

items.

(a) Iσ is not Lp−Lq bounded for 2σ/d < 1/p < 1 and 0< 1/q < 1/p−2σ/d.
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12 A. NOWAK AND K. STEMPAK

(b) Iσ is not Lp − Lq bounded for 0 < 1/p < 1− 2σ/d and 1/p+ 2σ/d ≤
1/q < 1.

To justify (a), we fix p and q satisfying the assumed conditions, and we

define

f(y) = χ{‖y‖<1}‖y‖−2σ−d/q.

This function is in Lp(Rd) since −(2σ + d/q)p + d > 0. However, Iσf /∈
Lq(Rd). Indeed, considering x such that ‖x‖< 1 and using the lower bound

from Theorem 2.4, we get

Iσf(x)�
∫
‖y‖<‖x‖/2

‖x− y‖2σ−d‖y‖−2σ−d/q dy

� ‖x‖2σ−d

∫
‖y‖<‖x‖/2

‖y‖−2σ−d/q dy =C‖x‖−d/q,

and the function x �→ χ{‖x‖<1}‖x‖−d/q does not belong to Lq(Rd).

Proving (b), we may assume that (1/p,1/q) lies on the critical segment

1/q = 1/p+ 2σ/d, 0< 1/p < 1− 2σ/d. The case when 1/q > 1/p+ 2σ/d is

contained below, in the negative result concerning the restricted weak-type

estimate. Define

f(y) = χ{‖y‖>e}‖y‖−d/p
(
log ‖y‖

)−1/p−2σ/d
.

We have ∫
Rd

∣∣f(y)∣∣p dy =Cd

∫ ∞

e
r−1(log r)−1−2σp/d dr <∞,

so f ∈ Lp(Rd). We claim that Iσf /∈ Lq(Rd). Assuming that ‖x‖> 2e and

using the lower bound from Theorem 2.4, we write

Iσf(x)�
∫
‖x‖/2<‖y‖<‖x‖

‖x− y‖2σ−d

× exp
(
−c‖x− y‖

(
‖x‖+ ‖y‖

))
‖y‖−d/p

(
log ‖y‖

)−1/p−2σ/d
dy

� ‖x‖−d/p
(
log ‖x‖

)−1/p−2σ/d

×
∫
‖x‖/2<‖y‖<‖x‖

‖x− y‖2σ−d exp
(
−2c‖x− y‖‖x‖

)
dy.
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As we will see in a moment, the last integral is comparable with ‖x‖−2σ.

Thus,

Iσf(x)� ‖x‖−d/p−2σ
(
log ‖x‖

)−1/p−2σ/d

= ‖x‖−d/q
(
log ‖x‖

)−1/q
, ‖x‖> 2e,

and the claim follows.

It remains to analyze the last integral, which we denote by J . Changing

the variable y = x− z/‖x‖, we get

J = ‖x‖−2σ

∫
Dx

‖z‖2σ−de−2c‖z‖ dz,

where the set of integration is Dx = {z ∈R
d : ‖x‖2/2< ‖x‖x‖− z‖< ‖x‖2}.

We now observe that Dx contains the ball Bx = {z ∈ R
d : ‖x‖x‖/4− z‖ <

‖x‖2/4}. Indeed, if z ∈Bx, then

‖x‖2
2

<

∣∣∣∣∥∥∥x‖x‖4
− z

∥∥∥− ∥∥∥3
4
x‖x‖

∥∥∥∣∣∣∣
≤
∥∥x‖x‖ − z

∥∥≤
∥∥∥x‖x‖

4
− z

∥∥∥+
∥∥∥3
4
x‖x‖

∥∥∥< ‖x‖2.

Thus, we have

‖x‖−2σ

∫
Bx

‖z‖2σ−de−2c‖z‖ dz ≤J ≤ ‖x‖−2σ

∫
Rd

‖z‖2σ−de−2c‖z‖ dz.

Clearly, the integral over R
d here is finite. The integral over Bx depends

on x only through ‖x‖. Since the balls Bx are increasing in the sense of ⊂
when x is moved away from the origin along a fixed line passing through

the origin, we see that the integral over Bx is an increasing function of

‖x‖, which is positive and finite. We conclude that J � ‖x‖−2σ, ‖x‖> 1, as

desired.

We pass to weak-type and restricted weak-type inequalities. Consider first

the three “corners” of the boundary of R from the statement of Theorem 3.1.

If (1/p,1/q) = (1,1− 2σ/d), then the weak type (1, d/(d− 2σ)) holds by [4,

Theorem 2.3]. Notice that this property can be expressed in terms of Lorentz

spaces by saying that Iσ is bounded from L1(Rd) to Ld/(d−2σ),∞(Rd). Then

(Iσ)∗ (the adjoint operator in the Banach space sense) maps boundedly
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(Ld/(d−2σ),∞(Rd))∗ into (L1(Rd))∗ = L∞(Rd). Further, the associate space of

Ld/(d−2σ),∞(Rd) in the sense of [1, Chapter 1, Definition 2.3] is Ld/(2σ),1(Rd)

(see [1, Chapter 4, Theorem 4.7]), and by [1, Chapter 1, Theorem 2.9] it can

be regarded as a subspace of the dual of Ld/(d−2σ),∞(Rd). Since (Iσ)∗ = Iσ

by symmetry of the kernel, we infer that Iσ is of restricted weak type

d/(2σ),∞. On the other hand, the weak type d/(2σ),∞ coincides, by defi-

nition, with the strong type, so Iσ is not of weak type d/(2σ),∞ in view of

the strong-type results we already know. This clarifies the situations related

to the “corners” (1,1− (2σ/d)) and 2σ/d,0.

Taking into account (1/p,1/q) = (0,2σ/d), we will show that Iσ is of

weak type (∞, d/(2σ)). To do that, it is enough to verify the estimate

(7)
∣∣{x ∈R

d :
∣∣Iσf(x)

∣∣> λ
}∣∣� (‖f‖∞

λ

)d/(2σ)
, λ > 0, f ∈ L∞(Rd).

But this is immediate in view of the bound (see Lemma 3.2)

∥∥Kσ(x, ·)
∥∥
1
≤C‖x‖−2σ, x ∈R

d,

since then it follows that |Iσf(x)| ≤C‖x‖−2σ‖f‖∞ and, consequently,

{
x ∈R

d :
∣∣Iσf(x)

∣∣> λ
}
⊂
{
x ∈R

d : ‖x‖<
(
C
‖f‖∞
λ

)1/(2σ)}
.

This inclusion leads directly to (7).

Finally, we disprove the restricted weak type in the two triangles (see

Figure 1). In the lower triangle we use an au contraire argument involving

an extension of the Marcinkiewicz interpolation theorem for Lorentz spaces

due to Stein and Weiss (see [1, Chapter 4, Theorem 5.5]). Indeed, if Iσ

were of restricted weak type (p, q) for some p and q such that 1/q < 1/p−
2σ/d, then by interpolation with a strong-type pair satisfying 1/q = 1/p−
2σ/d, p > 1, q < ∞, Iσ would be of strong type (p̃, q̃ ) for some p̃ and q̃

corresponding to a point in the lower triangle, a contradiction with (a)

above.

To treat the upper triangle, we will give an explicit counterexample. Let

for large r

fr(y) = χ{‖y‖<r}.
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Clearly, we have ‖fr‖p � rd/p. Estimating as in the proof of (b) above, we

get

Iσfr(x)�
∫
‖x‖/2<‖y‖<‖x‖

‖x− y‖2σ−d

× exp
(
−c‖x− y‖

(
‖x‖+ ‖y‖

))
χ{‖y‖<r} dy

≥ χ{‖x‖<r}

∫
‖x‖/2<‖y‖<‖x‖

‖x− y‖2σ−d exp
(
−2c‖x− y‖‖x‖

)
dy

� χ{1<‖x‖<r}‖x‖−2σ,

uniformly in large r and x ∈R
d. Consequently,∣∣{x ∈R

d : Iσfr(x)> λ
}∣∣≥ ∣∣{1< ‖x‖< r : ‖x‖< (Cλ)−1/(2σ)

}∣∣
for some C > 0 independent of r and λ > 0. Taking λ= r−2σ, we conclude

that the weak-type (p, q) estimate for Iσ implies that rd � rdq/p+2σq. This

bound, however, fails when 1/q > 1/p+ 2σ/d and r→∞.

The proof is finished.

For completeness, we remark that in the context of Theorem 3.1, the

question of weak/restricted weak type (p, q) inequalities related to the seg-

ment 1/q = 1/p + 2σ/d, 1 ≤ q < 2σ/d, is more subtle and remains open.

Considering the case σ > d/2, the operator Iσ is bounded from Lp(Rd) to

Lq(Rd) for every 1 ≤ p, q ≤∞ (see [4, Theorem 2.3]). The behavior of Iσ

in the limiting case σ = d/2 is described by the theorem below. This result

enhances [4, Theorem 2.3] when σ = d/2.

Theorem 3.3. Let d≥ 1, and let 1≤ p, q ≤∞. Then Id/2 is bounded from

Lp(Rd) to Lq(Rd) except for (p, q) = (∞,1) and (p, q) = (1,∞). Considering

the two singular cases, we have the following.

(i) Id/2 is of weak type (∞,1) but not of strong type (∞,1).

(ii) Id/2 is not of restricted weak type (1,∞).

Proof. The Lp-Lq boundedness is contained in [4, Theorem 2.3]. To show

(i), we observe that the weak type (∞,1) holds true since the proof of (7)

covers also the case σ = d/2. The strong type (∞,1) fails because Id/21 /∈
L1(Rd), as easily seen by means of Lemma 3.2.
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It remains to verify (ii). For 0 < ε < 1/e, let fε(x) = χ{‖x‖<ε}. By the

lower bound of Theorem 2.4, it follows that

Id/2fε(x)�
∫
‖y‖<ε

log
1

‖x− y‖(‖x‖+ ‖y‖) dy, ‖x‖< 1/e,

uniformly in ε < 1/e. Therefore,

‖Id/2fε‖∞ �
∫
‖y‖<ε

− log ‖y‖dy

=Cd

∫ ε

0
−rd−1 log r dr � εd log

1

ε
, 0< ε< 1/e,

and we conclude that

‖Id/2fε‖∞
‖fε‖1

� log
1

ε
, 0< ε< 1/e.

Letting ε→ 0+, we see that Id/2 is not of restricted weak type (1,∞).
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