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Abstract
Let f be an 𝐿2-normalized holomorphic newform of weight k on Γ0 (𝑁)\H with N squarefree or, more generally,
on any hyperbolic surface Γ\H attached to an Eichler order of squarefree level in an indefinite quaternion algebra
over Q. Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate

‖�(·)
𝑘
2 𝑓 ‖∞ �𝜀 (𝑘𝑉)

1
4+𝜀

with absolute implied constant. For a cuspidal Maaß newform 𝜑 of eigenvalue 𝜆 on such a surface, we prove that

‖𝜑‖∞ �𝜆,𝜀 𝑉
1
4+𝜀 .

We establish analogous estimates in the setting of definite quaternion algebras.

Contents

1 Introduction 3
1.1 Selected applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The fourth moment and further applications . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The added complexity of the level aspect . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Statement of results 8
2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The split case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Results on forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Counting problems: setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Lattices locally dual to R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Reduced trace and norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Coordinates tailored to 𝐾∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Archimedean regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Counting problems: results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2024.9 Published online by Cambridge University Press

doi:10.1017/fmp.2024.9
https://orcid.org/0000-0003-2550-9770
https://orcid.org/0000-0001-8391-8949
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2024.9&domain=pdf
https://doi.org/10.1017/fmp.2024.9


2 I. Khayutin, P. D. Nelson and R. S. Steiner

3 Division and reduction of the proof 12
3.1 Traversing the genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Estimating fourth moments via lattice sums . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Reduction to ternary lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Proof of Corollary 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Arithmetic quotients as real manifolds 18
4.1 Measure normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Siegel domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Cusps and Atkin–Lehner operators . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Theta kernels and their 𝐿2-norms 20
5.1 Theta kernels and lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 Jacquet–Langlands lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Explicit theta lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 𝐿2-norms of theta kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.1 Proofs of Propositions 3.2 through 3.5 . . . . . . . . . . . . . . . . . . . . . 22

6 Preliminaries on the geometry of numbers 27
6.1 Bounds on successive minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Lattice counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Local preliminaries on orders 29
7.1 Quadratic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Quaternionic preliminaries: general case . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Quaternionic preliminaries: unramified case . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Bounds for commutators of elements of 𝑅0 . . . . . . . . . . . . . . . . . . . . . . . 30

8 Invariants of rational quadratic forms 31
8.1 Non-Archimedean invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Archimedean invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4 Adelic invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.5 Statement of result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Type I estimates 34
10 Type II estimates 35

10.1 Bounds for representation numbers of binary quadratic forms . . . . . . . . . . . . . 35
10.2 Local quaternionic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.2.1 Non-Archimedean preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2.2 Archimedean preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.3 The nonsplit case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.4 Extension to the split case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.5 Proof of Theorem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A The theta lift 40
A.1 Restriction of automorphic representations 40
A.2 The theta transfer 42
A.3 Explicit theta kernels 47
References 51

https://doi.org/10.1017/fmp.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.9


Forum of Mathematics, Pi 3

1. Introduction

Let Γ\H be a finite volume hyperbolic surface. A basic problem in quantum chaos is to understand the
limiting behavior of 𝐿2-normalized Laplace eigenfunctions 𝜑 on Γ\H. This behavior can be quantified
through weak limits of 𝐿2-masses (‘quantum ergodicity’), bounds for 𝐿 𝑝-norms and so forth. We
consider in this paper the sup-norm problem, which consists of bounding the supremum or 𝐿∞-norm
of an 𝐿2-normalized eigenfunction 𝜑 with respect to the eigenvalue 𝜆𝜑 and/or the geometry of the
underlying manifold Γ\H. A general bound in this direction, due to Bérard [Bér77], asserts that

‖𝜑‖∞ �Γ (1 + |𝜆𝜑 |)
1
4 /log(2 + |𝜆𝜑 |). (1.1)

Here and henceforth, 𝐴 � 𝐵 means that there is a constant C such that |𝐴| ≤ 𝐶𝐵; we allow C to depend
on any subscripts of � and write 𝜀 for an arbitrary, but sufficiently small, positive constant, which may
change from line to line.

Stronger bounds have been established in the arithmetic case that

◦ Γ\H is an arithmetic manifold, such as the modular surface SL2(Z)\H or a congruence cover, and
◦ 𝜑 is a Hecke–Maaß form, that is, an eigenfunction not only of the Laplacian but also of the Hecke

operators.

The pioneering result in that case is due to Iwaniec–Sarnak [IS95], who showed for congruence lattices
Γ that

‖𝜑‖∞ �Γ, 𝜀 (1 + |𝜆𝜑 |)
5
24+𝜖 . (1.2)

The above estimates depend in an unspecified manner upon the underlying manifold. Consider, for
instance, the case that Γ is the Hecke congruence subgroup Γ0(𝑁) = SL2(Z) ∩

(
Z Z
𝑁Z Z

)
so that Γ\H is

an arithmetic manifold of volume 𝑁1+𝑜 (1) . We suppose that N is squarefree. A direct quantification of
the Iwaniec–Sarnak argument (see [BH10, §10]) gives the estimate

‖𝜑‖∞ �𝜀 𝑁
1
2+𝜀 (1 + |𝜆𝜑 |)

5
24+𝜖 , (1.3)

where we normalize 𝜑 to have 𝐿2-norm one with respect to the hyperbolic probability measure, that
is, the multiple of the hyperbolic measure having total volume one. The level aspect case of the sup-
norm problem is to improve the dependence of the bound (1.3) upon N. The first improvement in the
exponent was a major breakthrough of Blomer–Holowinsky [BH10], achieved 13 years after the work
of Iwaniec–Sarnak. For a Hecke–Maaß newform 𝜑 of eigenvalue 𝜆𝜑 , they managed to show

‖𝜑‖∞ �𝜆𝜑 𝑁
1
2−

1
37 (1.4)

(with explicit polynomial dependence upon 𝜆𝜑). Subsequently, Templier [Tem10] and Harcos–Templier
[HT12, HT13] established several improved bounds, culminating in

‖𝜑‖∞ �𝜆𝜑 , 𝜖 𝑁
1
3+𝜖 . (1.5)

The estimate (1.5) is comparable in strength to the Weyl bound for the Riemann zeta function and has
long been regarded as a natural limit for the sup-norm problem in the squarefree level aspect [HT13,
Remarks (i)]. It has been extended to number fields [BHM16, BHMM20, Ass24] and to more general
vectors than newforms [HNS19, Ass21]. For levels that are not squarefree (e.g., powers of a fixed prime),
the flavor of the problem is quite different (see Remark 1.4), and stronger estimates have been achieved
in [Sah17, Mar16, Sah20, Com21, HS20].

In this work, we bring new methodology to bear on the sup-norm problem in the squarefree level
aspect. By obtaining optimal solutions to the technical problems that arise in applying that methodology,
we deduce the following improvement of Equation (1.5).
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Theorem 1.1. Let N be a squarefree natural number. Let 𝜑 be a cuspidal Hecke–Maaß newform for
Γ0 (𝑁) with trivial (central) character. Suppose that 𝜑 is 𝐿2-normalized with respect to the hyperbolic
probability measure on Γ0(𝑁)\H. Then

‖𝜑‖∞ �𝜆𝜑 , 𝜖 𝑁
1
4+𝜖 .

Our main results apply not only to Γ0(𝑁)\H but also to compact arithmetic quotients. In general, such
a manifold is of the shape Γ\H, where Γ is commensurable with a lattice attached to a maximal order in
a quaternion algebra B over a totally real field F, with B split at exactly one Archimedean place. We are
content here to consider the case 𝐹 = Q so that B is an indefinite quaternion algebra, characterized up
to isomorphism by its reduced discriminant 𝑑𝐵. For each natural number N coprime to 𝑑𝐵, we denote
by Γ𝐵0 (𝑁) the group of proper (i.e., norm one) units arising from an Eichler order of level N in B (see
Section 2.1 for details). For example, if 𝐵 = Mat2×2 (Q), then we could take Γ𝐵0 (𝑁) = Γ0 (𝑁). We prove
the following theorem.

Theorem 1.2. Let Γ = Γ𝐵0 (𝑁) be as above with the level N being squarefree. Let 𝜑 be a cuspidal Hecke–
Maaß newform for Γ with trivial (central) character, 𝐿2-normalized with respect to the hyperbolic
probability measure on Γ\H. Then, with 𝑉 = (𝑑𝐵𝑁)1+𝑜 (1) the covolume of Γ,

‖𝜑‖∞ �𝜆𝜑 , 𝜖 𝑉
1
4+𝜖 . (1.6)

Theorem 1.2 specializes to Theorem 1.1 upon taking 𝐵 = Mat2×2(Q). It improves upon (the 𝐹 = Q
case of) Templier’s result [Tem10], which gave the nontrivial bound 𝑉

1
2−

1
24+𝜀 . We emphasize that the

estimate (1.6) is uniform in the quaternion algebra B, hence gives a strong saving in the ‘discriminant
aspect’; the first nontrivial results in that aspect (for B indefinite, as we have assumed) were established
only very recently by Toma [Tom23], updating an earlier preprint, giving (among other things) the bound
𝑉

1
2−

1
30+𝜀 . Our method applies equally in the setting of definite quaternion algebras, where we improve

the exponent 1
3 of Blomer–Michel [BM11, BM13] down to 1

4 in analogy with Theorem 1.2 (see Section
§2.3 for details).

Remark 1.3. The dependence on the eigenvalue in Equation (1.6) that follows from our proof is of
exponential nature. With some finer Archimedean considerations, it seems likely that one could show
‖𝜑‖∞ �𝜀 𝜆

1
4+𝜀
𝜑 𝑉

1
4+𝜀; indeed, by comparison, we obtain such an estimate for the definite analogue

of Equation (1.6) (see Corollary 2.3). Such a refinement of Equation (1.6) seems to require lengthy
Archimedean calculations that we feel would distract from the primary novelties of this paper concerning
the level aspect.

Remark 1.4. We have noted already that we focus in this paper on the case of squarefree levels. The
opposite case is the depth aspect, where the level is a power 𝑁 = 𝑝𝑛 of a fixed prime p. In that case,
local arguments give the bound ‖𝜑‖∞ �𝑝,𝑑𝐵 , 𝜀 (𝜆𝜑𝑁)1/4+𝜀 [Mar16], which has been improved to
‖𝜑‖∞ �𝜆𝜑 , 𝑝,𝑑𝐵 , 𝜀 𝑁5/24+𝜀 [HS20] via arithmetic amplification and refined local analysis.

Remark 1.5. In a function field setting analogous to that of Theorem 1.1, Sawin [Saw21] has used
geometric techniques to establish (among other things) the sup-norm bound � 𝑁

1
4+𝛼𝑞 , where 𝛼𝑞 > 0

tends to zero as the cardinality q of the underlying finite field tends to ∞. We do not see any obstruction
to adapting the techniques of this paper to the function field setting, where we expect they would give
the improved bound �𝜀 𝑁

1
4+𝜀 .

By combining the arguments of this paper with those of the prequel [KS20] concerning the weight
aspect for holomorphic forms, we obtain the following uniform hybrid bound in the weight and level
aspects.
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Theorem 1.6. Let Γ = Γ𝐵0 (𝑁) be as in Theorem 1.2. Let f be a cuspidal holomorphic newform for Γ with
trivial (central) character and weight 𝑘 ≥ 2. Suppose f is 𝐿2-normalized with respect to the hyperbolic
probability measure on Γ\H. Then

‖�(·)
𝑘
2 𝑓 ‖∞ �𝜖 (𝑘𝑉)

1
4+𝜖 ,

where 𝑉 = (𝑑𝐵𝑁)1+𝑜 (1) denotes the covolume of Γ.

1.1. Selected applications

A straightforward application of these improved sup-norms is to 𝐿𝑝-norms for 2 ≤ 𝑝 ≤ ∞ by means
of interpolation. We state here only the split holomorphic case, as in this case, strong 𝐿4-bounds were
given by Buttcane–Khan [BK15] with subconvexity input from [You17].
Corollary 1.7. Let q denote an odd prime and f a cuspidal holomorphic newform for Γ0(𝑞) with trivial
(central) character and weight k. Suppose f is 𝐿2-normalized with respect to the hyperbolic probability
measure on Γ0(𝑞)\H. Then, for 2 ≤ 𝑝 ≤ ∞ and any 𝜂 > 0, we have

‖�(·)
𝑘
2 𝑓 ‖𝑝 �𝑘,𝜂

{
𝑞

1
6−

1
3𝑝 +𝜂 , 2 ≤ 𝑝 ≤ 4,

𝑞
1
4−

2
3𝑝 +𝜂 , 4 ≤ 𝑝 ≤ ∞,

for k sufficiently large in terms of 𝜂.
Further applications of sup-norm bounds include shifted convolution problems and subconvexity

results for L-functions; see, for example, [Har03, HM06, HC19, HS20, Nor21]. Often, such applications
would be obtained from a uniform version of Wilton’s estimate. By applying the arguments of [HM06,
§2.7] with our improved sup-norm bound, we derive the following corollary.
Corollary 1.8. Let 𝜆(𝑚), 𝑚 ∈ N, denote the Hecke eigenvalues, normalized so that the Ramanujan
conjecture reads |𝜆(𝑚) | �𝜀 𝑚𝜀 , of either a cuspidal Hecke–Maaß newform or a cuspidal holomorphic
newform of weight k on Γ0(𝑁) with trivial (central) character, where N is squarefree. Then, for any
𝛼 ∈ R, one has ∑

𝑚≤𝑀
𝜆(𝑚)𝑒(𝑚𝛼) �𝜖 𝑀

1
2+𝜖 ·

{
𝑁

1
4+𝜖 , in the Maaß case,

𝑁
1
4+𝜖 𝑘

1
2+𝜖 , in the holomorphic case,

where the implied constant in the Maaß case further depends on the eigenvalue of the form.
As a consequence, we may, for example, improve the main theorem in [HC19].

Corollary 1.9. Let 𝜑 either be a cuspidal Hecke–Maaß newform or a cuspidal holomorphic newform
on Γ0(𝑞), with q prime. Let 𝜒 be a primitive Dirichlet character of modulus m with (𝑚, 𝑞) = 1. Suppose
that 𝑞 = 𝑚𝜂 with 0 < 𝜂 < 2. Then, we have

𝐿(𝜑 ⊗ 𝜒, 1
2 ) �𝜖 C 1

4+𝜖
(
C−

𝜂
4(2+𝜂) + C−

2−𝜂−4𝜗
8(2+𝜂)

)
,

where the implied constant depends on the eigenvalue respectively weight of 𝜑, C = 𝑞𝑚2 is the conductor
of the L-function and 𝜗 is the current best bound towards the generalized Ramanujan conjecture if 𝜑 is
a Maaß form and 0 if 𝜑 is holomorphic.

1.2. The fourth moment and further applications

The method underlying most previous works on this problem, including the work of Harcos–Templier
giving the bound �𝜖 𝑁1/3+𝜖 , is based on the amplification method introduced in the original paper
of Iwaniec–Sarnak. Recently, Steiner [Ste20] and Khayutin–Steiner [KS20] introduced a new method
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based on analysis of fourth moments over families. The key observation of these papers was that such a
fourth moment naturally arises as the 𝐿2-norm of a theta kernel. Alternatively, Blomer et al. [BHMM22]
have demonstrated that one may use Voronoï summation for Rankin–Selberg convolutions in place of a
theta kernel. Prior to the application to fourth moments, theta kernels have played similar roles in the
study of quantum variance [Nel16, Nel17, Nel19, Nel20], numerical computations [Nel15] and in the
proof of Waldspurger’s formula [Wal85]. In each of these earlier works, theta kernels apparently served
as a substitute for parabolic Fourier expansions, giving a tool for establishing analogues on compact
quotients (where such expansions are not available) of results known already for noncompact quotients.
The present work differs in that our main result is new even for the noncompact quotients Γ0 (𝑁)\H.

In this paper, we follow generally the theta kernel strategy of the prequel [KS20] and prove a fourth
moment bound from which one may deduce the Theorems 1.1, 1.2 and 1.6 after some additional
analysis near any cusps. In what follows, we let Γ = Γ𝐵0 (𝑁) be a lattice as in Theorem 1.2 and denote
by 𝑉 = (𝑑𝐵𝑁)1+𝑜 (1) the volume of Γ\H.

The formulation of our results requires some quantification of the closeness of a point 𝑧 ∈ Γ\H to
the cusps. If Γ\H is noncompact (i.e., 𝑑𝐵 = 1), then we may assume that Γ = Γ0(𝑁), and we set

𝐻 (𝑧) = max
𝛾∈𝐴0 (𝑁 )

�(𝛾𝑧),

where 𝐴0(𝑁) denotes the lattice of Atkin–Lehner operators for Γ0(𝑁) (see Section §2.2 for another
formulation of the definition of H). If Γ\H is compact, then we set 𝐻 (𝑧) = 0.

Theorem 1.10. Let Γ = Γ𝐵0 (𝑁) be as in Theorem 1.2. Fix Λ > 0, and let (𝜑𝑖)𝑖 be an orthonormal set
of cuspidal Hecke–Maaß newforms with trivial (central) character and Laplace-eigenvalue bounded by
Λ on the hyperbolic surface Γ\H equipped with the hyperbolic probability measure. Then, for any two
points 𝑧, 𝑤 ∈ Γ\H, we have∑

𝑖

(
|𝜑𝑖 (𝑧) |2 − |𝜑𝑖 (𝑤) |2

)2
�𝜖 ,Λ 𝑉1+𝜖

(
1 +𝑉 [𝐻 (𝑧)2 + 𝐻 (𝑤)2]

)
. (1.7)

Similarly, for an orthonormal set ( 𝑓𝑖)𝑖 of cuspidal holomorphic newforms for Γ of weight k and
trivial (central) character with respect to the hyperbolic probability measure on Γ\H, we have∑

𝑖

(
|�(𝑧)

𝑘
2 𝑓𝑖 (𝑧) |2 − |�(𝑤)

𝑘
2 𝑓𝑖 (𝑤) |2

)2

�𝜖 (𝑉𝑘)1+𝜖
(
1 +𝑉

1
2 [𝐻 (𝑧) + 𝐻 (𝑤)] +𝑉𝑘−

1
2 [𝐻 (𝑧)2 + 𝐻 (𝑤)2]

)
for any two points 𝑧, 𝑤 ∈ Γ\H.

In the case that the hyperbolic surface Γ\H is compact, we may integrate z and w over the whole
surface and get an essentially sharp bound on the fourth moment of fourth norms in the level aspect,
thereby extending a result of Blomer [Blo13] to the case of cocompact lattices Γ.

Corollary 1.11. With notation and assumptions as in Theorem 1.10 and assuming further that Γ\H is
compact, we have ∑

𝑖

‖𝜑𝑖 ‖4
4 �𝜖 ,Λ 𝑉1+𝜖 ,

∑
𝑖

‖�(·)
𝑘
2 𝑓𝑖 ‖4

4 �𝜖 (𝑉𝑘)1+𝜖 .

This result may also be recast as a double average of triple L-functions by means of Watson’s formula
[Wat08, Theorem 3].
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The final application of Theorem 1.10 we mention is to the diameter of compact arithmetic hyperbolic
surfaces Γ\H [Ste23]. Here, one may use the sharp bound on the ‘fourth moment’ of exceptional
eigenforms, together with a strong density estimate for the exceptional eigenvalues, to get an optimal
estimate on the almost diameter and an estimate on the diameter of the same strength as if one were to
assume the Selberg eigenvalue conjecture.

1.3. The added complexity of the level aspect

Compared to the weight aspect treated in the prequel, the level aspect requires many new ideas. Here, we
tacitly restrict to the case of squarefree level; the general case would require a more nuanced discussion.
In some sense, the level aspect may be understood as intermediate in difficulty between the holomorphic
and eigenvalue aspects. Indeed, relative to known techniques, the difficulty in the sup-norm problem is
reflected in the essential support of the matrix coefficient of the automorphic form being bounded. In
the weight, (squarefree) level and eigenvalue aspects, the matrix coefficient concentrates on a space of
dimension one, two and three, respectively.

We now briefly recall the main idea of the theta approach and discuss some of the new challenges
that arise in the level aspect. We focus first on the case of Hecke–Maaß forms on Γ0(𝑁)\H, as in
Theorem 1.1. Take 𝑅 =

(
Z Z
𝑁Z Z

)
so that that the set of proper units of R is precisely Γ0(𝑁). For ℓ | 𝑁 ,

let 𝑅(ℓ) =
(
Z Z/ℓ

𝑁Z/ℓ Z

)
denote the partially dualized lattices of the order R. Let 𝜎𝑧 ∈ SL2 (R) be any

matrix taking i to 𝑧 ∈ H. Let 𝜑 be an arithmetically normalized cuspidal Hecke–Maaß newform. The
theta identity at the heart of the argument then reads

〈𝜃 (𝑧, 𝑤; ·), 𝜑〉 = 1
𝑉
𝜑(𝑧)𝜑(𝑤), (1.8)

where V denotes the covolume of Γ0(𝑁) and the theta function is given by

𝜃 (𝑧, 𝑤; 𝑠) = �(𝑠)
∑

(
𝑎 𝑏
𝑐 𝑑

)
∈𝜎−1

𝑧 𝑅𝜎𝑤

𝑒−𝜋 (𝑎
2+𝑏2+𝑐2+𝑑2)�(𝑠)𝑒2𝜋𝑖 (𝑎𝑑−𝑏𝑐)�(𝑠) . (1.9)

By Bessel’s inequality, the left-hand side of Equation (1.7) is in essence captured by the 𝐿2-norm of
the difference of the theta kernels 𝜃 (𝑧, 𝑧; ·) − 𝜃 (𝑤, 𝑤; ·). From here, one may then proceed as in the
prequel by covering a fundamental domain by Siegel sets and making use of the orthogonality relations
in the unipotent direction. One ends up with a weighted sum over matrices 𝛾1, 𝛾2 ∈ 𝑅(ℓ) satisfying
det(𝛾1) = det(𝛾2) and for which the entries of 𝜎−1

𝑧 𝛾𝑖𝜎𝑧 , 𝑖 = 1, 2, satisfy certain bounds (and similarly for
w). The bounds imposed on these entries depend crucially upon the precise choice of Siegel domains, so
it is important that we make a good choice. Like in the prequel, we split the count according to whether
tr(𝛾1) = tr(𝛾2) or not.

In the case of nonequal trace, the naïve choice of Siegel domains consisting of Γ0(𝑁)\SL2 (Z)-
translates of the standard Siegel domain for SL2 (Z) leads to a rather challenging counting problem. In
order to get a sharp bound on Equation (1.7), one faces the challenge of counting, for each divisor ℓ of
N and each T with ℓ−1/2 � 𝑇 � 1, the sextuples of integers (𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2) satisfying

(𝑐𝑖𝑦𝑁/ℓ)2 + 2(𝑎𝑖 − 𝑐𝑖𝑥𝑁/ℓ)2 + 𝑦−2 (2𝑎𝑖𝑥 + 𝑏/ℓ − 𝑐𝑖𝑥
2𝑁/ℓ)2 ≤ 𝑇2, 𝑖 = 1, 2, (1.10)

𝑏1𝑐1 ≡ 𝑏2𝑐2 (mod ℓ2/𝑁). (1.11)

We would need to know that the number of such sextuples is roughly 𝑂 (ℓ𝑇2) in the range
𝑁−1 � 𝑦 � 𝑁−1/2 and |𝑥 | ≤ 1

2 . We do not know how to establish such a bound directly when, for
instance, ℓ = 𝑁 . On the other hand, when ℓ = 1, the congruence condition is void and, using arguments
of Harcos–Templier, we can prove the required bound with some room to spare, namely, for T up to
𝑁1/2. Our solution to this dichotomy is thus to decrease the size of the Siegel domains associated to

https://doi.org/10.1017/fmp.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.9


8 I. Khayutin, P. D. Nelson and R. S. Steiner

larger ℓ at the expense of increasing those associated to smaller ℓ. This solution may be implemented
most simply by applying an Atkin–Lehner involution to the covering of Γ0 (𝑁)\H by SL2 (Z)-translates
of the standard fundamental domain for SL2(Z). With this maneuver, we reduce to considering the range
𝑇 � 𝑁

1
2 ℓ−1. We are then able to prove the required bound by forgoing the congruence condition, reduc-

ing the problem to counting triples of integers (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) satisfying Equation (1.10), which we carry out
using geometry of numbers techniques. We refer subsequently to this type of counting problem, where
we count traceless matrices 𝛾 ∈ 𝑅(ℓ)0 with a bound on the entries of 𝜎−1

𝑧 𝛾𝜎𝑧 , as ‘Type I’.
In the case of equal trace, we need to count sextuples of integers (𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2) satisfying

Equation (1.10) and

𝑎2
1 + 𝑏1𝑐1

𝑁
ℓ2 = 𝑎2

2 + 𝑏2𝑐2
𝑁
ℓ2 . (1.12)

We need to bound this count by 𝑂 (ℓ𝑇) in the same ranges as before. We refer to this type of counting
problem as ‘Type II’. The key observation is that (𝑎1, 𝑏1, 𝑐1) turns out to determine (𝑎2, 𝑏2, 𝑐2) up to a
small number of possibilities. This allows us to reduce Type II estimates to Type I estimates.

The above arguments suffice for noncompact quotients, that is, for the proof of Theorem 1.1. They
rely on the use of matrix coordinates

(
𝑎 𝑏
𝑐 𝑑

)
with respect to which the lattices Γ0(𝑁) are described by the

simple congruence condition 𝑐 ≡ 0 (𝑁). We were unable to find an analogously straightforward way to
separate the variables in the compact setting (e.g., using fixed quadratic subalgebras of B). In the case
that B is definite, the Type I counts were treated in a coordinate-free way by Blomer–Michel [BM11,
BM13], who controlled the successive minima of the ternary quadratic lattice underlying Γ𝐵0 (𝑁) in
terms of only the content, level and discriminant of that lattice. We extend their arguments to the
case that B is indefinite by defining analogous Archimedean quantities that control the disparity of the
reduced norm and a majorant, such as the square of the Frobenius norm of 𝜎−1

𝑧 𝛾𝜎𝑧 for 𝛾 ∈ 𝑅(ℓ)0.
Following the same strategy as in the noncompact case, it remains then only to reduce Type II

estimates to Type I estimates. This reduction is perhaps the most subtle part of our counting arguments.
It requires us to establish the analogue in the compact setting of the key observation noted following
Equation (1.12). For example, in case that B is definite, writing R for an Eichler order of level N, we
need to show that for each 𝑛 � 𝑉 , the number of elements 𝛾 ∈ 𝑅 with trace 0 and norm n is essentially
𝑂 (1), uniformly in N and B. We eventually managed to do so through a delicate argument involving
commutators and representations of binary quadratic forms.

1.4. Organization of the paper

The complete statements of our results may be found in Section §2. In Section §3, we reduce the proofs
to those of two auxiliary collections of results:
◦ those concerning matrix counting, and
◦ those reducing the required estimates for theta functions to matrix counting.
The latter, including the appropriate splicing of a fundamental domain into Siegel sets, may be found in
Section §4. In Section §5, we summarize the required properties of the theta functions. The proofs of
said properties are deferred to Appendix A.

Sections §7 and §8 are dedicated to the anisotropic extension of the lattice counting argument of
Blomer–Michel, which we subsequently apply to the Type I counting problem in Section §9.

The final section, §10, treats the crucial Type II counting problem.

2. Statement of results

2.1. Setup

Let B be a quaternion algebra over Q. We denote by 𝑑𝐵 its reduced discriminant, or equivalently, the
product of the primes at which B ramifies. We write G for the linear algebraic group over Q given by
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𝐺 (𝐿) = 𝐿×\(𝐵 ⊗ 𝐿)× for any Q-algebra L. Then G is an inner form of PGL2, and all rational forms
of PGL2 arise in this way. Denote by [𝐺] the adelic quotient 𝐺 (Q)\𝐺 (A). We fix the probability Haar
measure on [𝐺]. Let 𝐾∞ be a compact maximal torus of 𝐺 (R). We assume that 𝐾∞ comes equipped
with a choice of isomorphism 𝜅 : R/𝜋Z ∼−→ 𝐾∞. In the split case 𝐵 = Mat2×2(Q), we identify 𝐺 = PGL2

and set 𝜅(𝜃) =
(

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)
.

Let R be an Eichler order in B, that is, an intersection of two maximal orders. We denote by N the
level of R. It is a natural number, coprime to 𝑑𝐵, characterized as follows: For each prime 𝑝 � 𝑑𝐵,
there is an isomorphism 𝐵𝑝 � 𝐵 ⊗ Q𝑝 � Mat2×2(Q𝑝) under which 𝑅𝑝 � 𝑅 ⊗Z Z𝑝 maps to the
order

(
Z𝑝 Z𝑝
𝑁Z𝑝 Z𝑝

)
. We may then identify 𝐺 (Q𝑝) with PGL2(Q𝑝) and the image of 𝑅×𝑝 with a finite index

subgroup of PGL2(Z𝑝). We assume that N is squarefree so that 𝑑𝐵𝑁 is likewise squarefree. We denote
by 𝐾𝑅 the compact open subgroup of 𝐺 (A 𝑓 ) =

∏′
𝑝 𝐺 (Q𝑝) given by the image of

∏
𝑝 𝑅×𝑝 .

Fix 𝑘 ∈ 2Z. Let A denote the set of cusp forms 𝜑 : [𝐺] → C having the following properties:

◦ 𝜑(𝑔𝜅(𝜃)) = 𝑒𝑖𝑘 𝜃𝜑(𝑔) for all 𝜃.
◦ 𝜑 is an eigenfunction for some fixed Casimir operator for 𝐺 (R), with eigenvalue 𝜆𝜑 . For the sake of

concreteness, we scale the Casimir operator such that it agrees with the standard Laplace operator on
the locally symmetric space 𝐺 (R)/𝐾∞, which identifies with either H or 𝑆2.

◦ 𝜑 is 𝐾𝑅-invariant: 𝜑(𝑔𝑘) = 𝜑(𝑔) for 𝑘 ∈ 𝐾𝑅.
◦ 𝜑 belongs to the newspace for R, that is, 𝐾𝑅 is the largest subgroup of 𝐺 (A 𝑓 ) keeping 𝜑 invariant.

Equivalently, 𝜑 is orthogonal the space of 𝐾𝑅′-invariant cusp forms for every Eichler order 𝑅′ strictly
containing R.

◦ 𝜑 is an eigenform for almost all Hecke operators.

If 𝑘 ≥ 2, then we write Ahol ⊆ A for the subspace of automorphic lifts of holomorphic forms or,
equivalently, the kernel of the raising (resp. lowering) operator attached to 𝐾∞ if B is definite (resp.
indefinite).

Denote by F a maximal orthonormal subset of A. Analogously, we define Fhol ⊆ Ahol if 𝑘 ≥ 2.
Because of the multiplicity-one theorem for GL2 and its inner forms, the bases F ,Fhol are unique up to
rescaling each element by a scalar of unit magnitude. We note that the sets A, Ahol, F and Fhol depend
on k; while we suppress this dependence from the notation, k is one of the main parameters of interest.

We will consider several subfamilies of F and Fhol. Here, a minus sign in the exponent signifies the
indefinite case, a plus sign the definite case.

◦ If B is indefinite and 𝑘 = 0, then we take F− � F and let F−
𝜆 (resp. F−

≤𝐿) denote the subsets defined
by taking the Casimir eigenvalue equal to −𝜆 (respectively at most L in magnitude).

◦ If B is indefinite and 𝑘 ≥ 2, then we take F−,hol � Fhol.
◦ If B is definite and 𝑘 = 0, then we let F+

𝑚 ⊂ F be the subset of forms, whose associated automorphic
representation at infinity is isomorphic to the unique irreducible unitary representation of SU2(C) of
degree 𝑚+1. In other words, their eigenvalue with respect to the Casimir operator equals to−𝑚(𝑚+1).

◦ If B is definite and 𝑘 ≥ 2, then we let F+,hol = Fhol.

2.2. The split case

Assume for the moment that B is split. We may suppose then that

𝐵 = Mat2×2(Q), 𝐺 = PGL2, 𝑅 =

(
Z Z

𝑁Z Z

)
, (2.1)

𝐾∞ = PSO2(R), 𝜅(𝜃) =
(

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)
(2.2)
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and may identify

[𝐺]/𝐾∞𝐾𝑅 � Γ0(𝑁)\H.

We define

𝐻 : [𝐺]/𝐾∞𝐾𝑅 → R>0,

as follows. Let 𝐴0(𝑁) < GL2 (Q)+ denote the group generated by Γ0(𝑁) and all Atkin–Lehner operators.
If 𝑔 ∈ [𝐺]/𝐾∞𝐾𝑅 identifies with 𝑧 ∈ Γ0(𝑁)\H, then we set

𝐻 (𝑔) = 𝐻 (𝑧) � max
𝛾∈𝐴0 (𝑁 )

�(𝛾𝑧).

Since the Atkin–Lehner operators constitute scaling matrices for the various cusps of Γ0(𝑁) (cf. §4.3.1),
the function H may be understood as a normalized height or as quantifying closeness to the cusps. Let
𝔞 ∈ 𝑃1 (Z) be a cusp of Γ0(𝑁), and let 𝜎𝔞 ∈ SL2(Z) such that 𝜎𝔞∞ = 𝔞. Then,

𝐻 (𝑧) = max
𝔞

�(𝑧𝔞)
𝑤𝔞

, (2.3)

where 𝔞 runs over all cusps of Γ0(𝑁), 𝑧𝔞 = 𝜎−1
𝔞 𝑧 and 𝑤𝔞 is the cusp width of 𝔞.

2.3. Results on forms

We adopt the following asymptotic notation �:

𝐴1 � 𝐴2 ⇐⇒ 𝐴1 �𝜀 (𝑑𝐵𝑁 (1 + 𝑘) (1 + 𝜇))𝜀 𝐴2,

where 𝜇 is a quantity relating to the eigenvalues with respect to the Casimir operator of the automorphic
forms of relevance to the inequality. Concretely, when talking about the families F−

𝜆 ,F−
≤𝐿 ,F+

𝑚,F±,hol

we mean 𝜇 = |𝜆 |, 𝐿, 𝑚, 𝑘 , respectively.
Theorem 2.1. Let 𝑔1, 𝑔2 ∈ [𝐺]. If B is indefinite, then∑

𝜑∈F−
≤𝐿

(|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2)2 �𝐿 𝑑𝐵𝑁
(
1 + 𝑑𝐵𝑁

[
𝐻 (𝑔1)2 + 𝐻 (𝑔2)2

] )
, (2.4)

for 𝐿 > 0, and∑
𝜑∈F−,hol

(|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2)2

� 𝑑𝐵𝑁𝑘
(
1 + (𝑑𝐵𝑁)

1
2 [𝐻 (𝑔1) + 𝐻 (𝑔2)] + 𝑑𝐵𝑁𝑘−

1
2
[
𝐻 (𝑔1)2 + 𝐻 (𝑔2)2

] )
, (2.5)

for 𝑘 ≥ 2 even. In both cases, the term involving 𝐻 (𝑔1,2) is only present if B is split.
If B is definite, then ∑

𝜑∈F+
𝑚

(|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2)2 � 𝑑𝐵𝑁 (𝑚 + 1)2, (2.6)

for 𝑚 ∈ N0, and ∑
𝜑∈F+,hol

|𝜑(𝑔1) |4 � 𝑑𝐵𝑁𝑘, (2.7)

for 𝑘 ∈ 2N.
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Remark 2.2. In the indefinite holomorphic case (2.5), one may have the same bound for the fourth
moment rather than the squared difference under the assumption that the weight satisfies 𝑘 �𝜂 (𝑑𝐵𝑁)𝜂
for some 𝜂 > 0, in which case the implied constant also depends on 𝜂 and the implied constant in the
assumed lower bound for the weight.

Corollary 2.3. For 𝑘 ≥ 2 and 𝜑 ∈ Fhol, we have

‖𝜑‖∞ � (𝑑𝐵𝑁𝑘)
1
4 .

For 𝑘 = 0 and 𝜑 ∈ F , we have

‖𝜑‖∞ �𝜆𝜑 (𝑑𝐵𝑁)
1
4 .

If B is definite, then we have more precisely

‖𝜑‖∞ � (𝑑𝐵𝑁)
1
4 (1 + |𝜆𝜑 |)

1
4 .

By a well-known procedure, these statements may be translated into the classical language, thus
giving rise to the theorems in the introduction. For further details; see, for example, [Bum97, §3.2 &
§3.6] for the indefinite case and [BM13] for the definite case.

2.4. Counting problems: setup

2.4.1. Lattices locally dual to R
Let ℓ be a divisor of the squarefree number 𝑑𝐵𝑁 . We denote by 𝑅(ℓ) the lattice in B whose local
components 𝑅(ℓ)𝑝 are given

◦ for p dividing ℓ, by the lattice 𝑅∨𝑝 ⊆ 𝐵𝑝 dual to 𝑅𝑝 , and
◦ otherwise, by 𝑅𝑝 .

2.4.2. Reduced trace and norm
We denote by tr and det the reduced trace and reduced norm on B, and also on its completions. We use
a superscripted 0, as in 𝑅0 or 𝑅(ℓ)0, to denote the kernel of the reduced trace.

2.4.3. Coordinates tailored to 𝑲∞
Define 𝐵∞ � 𝐵⊗R. If B is indefinite, then 𝐵∞ � Mat2×2(R) is split; otherwise, 𝐵∞ is isomorphic to the
real Hamilton quaternions. The exponential series identifies 𝐵0

∞ with the Lie algebra of 𝐺 (R). We write
i ∈ 𝐵0

∞ for the derivative at the identity of 𝜅 so that 𝜅(𝜃) = exp(𝜃i). Then, i2 = −1. We may find j ∈ 𝐵0
∞

with j2 = ±1 (+1 if B is indefinite, −1 if B is definite) so that 𝐵∞ = R(i) ⊕ R(i)j. We note that j is not
uniquely determined, but any two choices differ by multiplication by a norm one element of R(i). We
set k = ij. Then, i, j, k give an R-basis of 𝐵0

∞. For real numbers 𝑎, 𝑏, 𝑐, we set [𝑎, 𝑏, 𝑐] � 𝑎i + 𝑏j + 𝑐k.
A general element of 𝐵∞ may then be written [𝑎, 𝑏, 𝑐] + 𝑑, where we identify the real number d with a
scalar element of 𝐵∞. In these coordinates,

tr([𝑎, 𝑏, 𝑐] + 𝑑) = 2𝑑, det([𝑎, 𝑏, 𝑐] + 𝑑) = 𝑎2 ∓ (𝑏2 + 𝑐2) + 𝑑2. (2.8)

Example 2.4. Suppose that 𝐵∞ = Mat2×2(R) and that 𝜅 is as in Equation (2.2). Then, with suitable
choices,

[𝑎, 𝑏, 𝑐] + 𝑑 =

(
𝑑 + 𝑐 𝑏 + 𝑎
𝑏 − 𝑎 𝑑 − 𝑐

)
.
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2.4.4. Archimedean regions
For 𝑇 > 0 and 𝛿 ∈ (0, 1], we denote by Ω(𝛿, 𝑇) the set of all elements [𝑎, 𝑏, 𝑐] + 𝑑 of 𝐵∞ for which

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 ≤ 𝑇2, 𝑏2 + 𝑐2 ≤ 𝛿𝑇2.

With Ω★(𝛿, 𝑇), we denote the subset of nonzero elements of Ω(𝛿, 𝑇). Likewise, for𝑇 > 0 and 𝛿 ∈ (0, 1],
we let Ψ(𝛿, 𝑇) denote the set of all elements [𝑎, 𝑏, 𝑐] + 𝑑 of 𝐵∞ for which

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 ≤ 𝑇2, 𝑎2 + 𝑑2 ≤ 𝛿𝑇2,

and Ψ★(𝛿, 𝑇) its subset consisting of nonzero elements.

2.5. Counting problems: results

We adopt the following asymptotic notation for counting estimates (compare with the notation �
introduced in §2.3):

𝐴1 ≺ 𝐴2 ⇐⇒ 𝐴1 �𝜀 (𝑑𝐵𝑁 (1 + 𝑇)) 𝜀𝐴2.

Recall from §2.2 the height function H defined in the split case. In the nonsplit case, we adopt the
convention in the following results that any terms involving H (in minima or sums) should be omitted.

Theorem 2.5 (Type I estimates). Let 𝑔 ∈ 𝐺 (R). Then, the first successive minima (see Definition 6.1)
of 𝑔−1𝑅(ℓ)0𝑔 with respect to Ω(𝛿, 1) ∩ 𝐵0

∞ is � min
{
ℓ−

1
2 , ℓ−1𝛿−

1
2 𝐻 (𝑔)−1

}
. Furthermore, we have

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 𝑇) | ≺ 1 +
(
ℓ

1
2 + ℓ𝛿

1
2 𝐻 (𝑔)

)
𝑇 +

(
ℓ

3
2 𝛿

1
2

(𝑑𝐵𝑁)
1
2
+ ℓ𝛿𝐻 (𝑔)

)
𝑇2 + ℓ2𝛿

𝑑𝐵𝑁
𝑇3.

If B is nonsplit, we further have that the first successive minima of 𝑔−1𝑅(ℓ)0𝑔 with respect to
Ψ(𝛿, 1) ∩ 𝐵0

∞ is at least � ℓ−
1
2 and

|𝑔−1𝑅(ℓ)0𝑔 ∩ Ψ(𝛿, 𝑇) | ≺ 1 + ℓ
1
2𝑇 + ℓ

3
2

(𝑑𝐵𝑁)
1
2
𝑇2 + ℓ2𝛿

1
2

𝑑𝐵𝑁
𝑇3.

Theorem 2.6 (Type II estimates). Let 𝑔 ∈ 𝐺 (R) and 𝑛 ∈ 1
ℓZ. We have

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 𝑇) ∩ det −1 ({𝑛}) | ≺ 1 + ℓ𝛿
1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2.

The proof of these results occupies §7 onwards. In §3, we explain how these results imply our main
fourth moment bound, Theorem 2.1.

3. Division and reduction of the proof

3.1. Traversing the genus

Recall that 𝐾𝑅 is defined as the image of the subgroup
∏

𝑝 𝑅×𝑝 in 𝐺 (A 𝑓 ); it is a compact open subgroup
of 𝐺 (A 𝑓 ). In due course, we will consider the conjugated sets ℎ 𝑓 𝐾𝑅ℎ

−1
𝑓 , for ℎ 𝑓 ∈ 𝐺 (A 𝑓 ). These are

precisely the compact open subgroups 𝐾𝑅′ associated to the Eichler orders 𝑅′ in the genus of R. We
note that 𝑅′ has the same level as R and may be given explicitly by the following intersection:

𝑅′ = ℎ 𝑓 (𝑅 ⊗ Ẑ)ℎ−1
𝑓 ∩ 𝐵(Q),
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where Ẑ denotes the closure of Z inside A 𝑓 . We further note that the action of 𝐺 (A 𝑓 ) on the genus of
R commutes with partial dualization in the sense that

𝑅′(ℓ) = ℎ 𝑓 (𝑅(ℓ) ⊗ Ẑ)ℎ−1
𝑓 ∩ 𝐵(Q).

This observation permits us to formulate the required 𝐿2-estimates for our differences of theta kernels
in terms of integration over Archimedean, rather than adelic, arguments. To that end, we introduce the
notation

𝑅(ℓ; ℎ) � ℎ−1
∞ 𝑅′(ℓ)ℎ∞ = ℎ−1

∞ (ℎ 𝑓 (𝑅(ℓ) ⊗ Ẑ)ℎ−1
𝑓 ∩ 𝐵(Q))ℎ∞

for ℎ = (ℎ∞, ℎ 𝑓 ) ∈ 𝐺 (A). We note that for ℎ ∈ 𝐺 (R) (i.e., ℎ 𝑓 = 1), the set 𝑅(ℓ; ℎ) is just ℎ−1𝑅(ℓ)ℎ.
Since taking the trace commutes with conjugation, we may extend the notation to kernels of the reduced
trace without concern for confusion regarding the order of operation, that is,

𝑅(ℓ; ℎ)0 = (ℎ−1
∞ 𝑅′(ℓ)ℎ∞)0 = ℎ−1

∞ 𝑅′(ℓ)0ℎ∞ = ℎ−1
∞ (ℎ 𝑓 (𝑅(ℓ)0 ⊗ Ẑ)ℎ−1

𝑓 ∩ 𝐵(Q))ℎ∞.

If B is split, then the class number of R is one and we have fixed the representative as in Equation
(2.1). In this case, we find for ℎ ∈ 𝐺 (A) that ℎ−1𝑅ℎ = ℎ′−1𝑅ℎ′, where ℎ′ ∈ 𝐺 (R) has the same image
under the isomorphism [𝐺]/𝐾∞𝐾𝑅 � Γ0(𝑁)\H as h does. In particular, we have the equality of height
functions (see §2.2) 𝐻 (ℎ) = 𝐻 (ℎ′).
Remark 3.1. By considering a right translate of 𝜑 ∈ F and thereby moving the maximal compact 𝐾∞
and the Eichler order R around, one could reduce the statement of the main Corollary 2.3 to the case that
g is the identity. However, in the split case, our counting arguments do depend on the particular order in
the genus. Moreover, our method relies on a difference of theta kernels defined relative to different g.
Such a reduction would thus be premature.

3.2. Estimating fourth moments via lattice sums

In §5, we introduce certain theta kernels. A spectral expansion of their 𝐿2-norms will yield the fourth
moments of interest, while a ‘geometric’ expansion, using Siegel domains and Fourier expansions,
bounds those 𝐿2-norms in terms of certain lattice sums. We now state the latter bounds.
Proposition 3.2. Suppose B is indefinite. Then, for 𝑔1, 𝑔2 ∈ [𝐺], there exists ℓ |𝑑𝐵𝑁 , 𝑔 ∈ {𝑔1, 𝑔2}, and

0 < 𝑇 � (𝑑𝐵𝑁 (𝑘+1))
1
2

ℓ (here, the notation � is as in §2.3) so that, for 𝑘 = 0,∑
𝜑∈F−

≤𝐿

(|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2)2 �𝐿 1 + 𝑑𝐵𝑁

ℓ𝑇2

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇 ):

det(𝛾1)=det(𝛾2)

1, (3.1)

while for 𝑘 > 0, ∑
𝜑∈F−,hol

(|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2)2 � 1 + 𝑑𝐵𝑁𝑘

ℓ𝑇2

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇 ):

det(𝛾1)=det(𝛾2)

1. (3.2)

Proposition 3.3. Suppose B is indefinite. Let 𝑔 ∈ [𝐺], and assume that 𝑘 � (𝑑𝐵𝑁)𝜂 for some arbitrarily

small 𝜂 > 0. Then, there exists ℓ |𝑑𝐵𝑁 and 0 < 𝑇 � (𝑑𝐵𝑁 𝑘)
1
2

ℓ so that∑
𝜑∈F−,hol

|𝜑(𝑔) |4 �𝜂 1 + 𝑑𝐵𝑁𝑘

ℓ𝑇2

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝑘−1+𝜀 ,𝑇 ):

det(𝛾1)=det(𝛾2)>0

1. (3.3)
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Proposition 3.4. Suppose B is definite and the weight is 𝑘 = 0. Then, for 𝑔1, 𝑔2 ∈ [𝐺] and 𝑚 ∈ N0,

there exists ℓ |𝑑𝐵𝑁 , 0 < 𝑇 � (𝑑𝐵𝑁 (𝑚+1))
1
2

ℓ and 1
𝑚2+1 � 𝛿 ≤ 1 so that∑

𝜑∈F+
𝑚

(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)2
� 1 + 𝑑𝐵𝑁

ℓ𝛿
1
2𝑇2

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)

𝛾1 ,𝛾2∈Ω★ (𝛿,𝑇 )∪Ψ★ (𝛿,𝑇 ):
det(𝛾1)=det(𝛾2)

1. (3.4)

Proposition 3.5. Suppose B is definite. Then, for 𝑔 ∈ [𝐺], there exists ℓ |𝑑𝐵𝑁 and 0 < 𝑇 � (𝑑𝐵𝑁 𝑘)
1
2

ℓ so
that

∑
𝜑∈F+,hol

|𝜑(𝑔) |4 � 1 + 𝑑𝐵𝑁𝑘

ℓ𝑇2

������
∑

𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝑘−1+𝜀 ,𝑇 ):
det(𝛾1)=det(𝛾2)

1 +
∑

𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇 ):
det(𝛾1)=det(𝛾2)

𝑘−2027
������
. (3.5)

3.3. Reduction to ternary lattices

In this section, we reduce the vital counting problem involving quaternary quadratic form to problems
involving only ternary quadratic forms. The key observation is that we may orthogonally decompose the
quaternion algebra 𝐵∞ into its trace part and its traceless part 𝐵0

∞. Thus, for any𝛼 = 1
2 tr(𝛼)+𝛼0 ∈ R⊕𝐵0

∞,
we have

det(𝛼) = 1
4 tr(𝛼)2 + det(𝛼0). (3.6)

We further note that the trace is invariant under conjugation. Hence, we have tr(𝑅(ℓ; 𝑔)) ⊆ Z. We
conclude that

𝑅(ℓ; 𝑔) ⊆ 1
2Z ⊕

1
2 𝑅(ℓ; 𝑔)0 (3.7)

is a sublattice of the direct sum of the lattices 1
2Z in R and 1

2 𝑅(ℓ; 𝑔)0 in 𝐵0
∞. Using this decomposition,

we deduce ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝛿,𝑇 )

det(𝛾1)=det(𝛾2)

1 �𝜀 𝑇 𝜀
��𝑅(ℓ; 𝑔)0 ∩Ω(𝛿, 2𝑇)

�� 2 + 𝑇
∑

𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)0∩Ω(𝛿,2𝑇 )
det(𝛾1)=det(𝛾2)

1 (3.8)

by distinguishing the two cases of equal and nonequal trace and applying the divisor bound to the equality

det(𝛾1) = det(𝛾2) ⇔ 1
4 tr(𝛾1)2 − 1

4 tr(𝛾2)2 = det(𝛾0
2) − det(𝛾0

1).

We remark that we have forfeited the congruence condition det(𝛾0
1) ≡ det(𝛾0

2)mod (1), and this forfeiture
will be reflected in the suboptimality of our final counting estimates on larger scales when ℓ > 1. We
circumnavigate these larger scales by an appropriate choice of a covering domain (cf. Lemma 4.1).

Note that we may further bound the diagonal contribution by considering its largest fiber:∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)0∩Ω(𝛿,2𝑇 )

det(𝛾1)=det(𝛾2)

1 ≤ |𝑅(ℓ; 𝑔)0 ∩Ω(𝛿, 2𝑇) | × max
𝑛∈ 1

ℓ Z

|𝑛 | ≤4𝑇 2

|𝑅(ℓ; 𝑔)0 ∩Ω(𝛿, 2𝑇) ∩ det −1({𝑛}) |. (3.9)
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Arguing along the same lines, we also arrive at∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ψ★ (𝛿,𝑇 )

det(𝛾1)=det(𝛾2)

1 �𝜀 𝑇 𝜀
��𝑅(ℓ; 𝑔)0 ∩ Ψ(𝛿, 2𝑇)

�� 2 + 𝛿
1
2𝑇

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)0∩Ψ(𝛿,2𝑇 )

det(𝛾1)=det(𝛾2)

1 (3.10)

and ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)0∩Ψ(𝛿,2𝑇 )

det(𝛾1)=det(𝛾2)

1 ≤ |𝑅(ℓ; 𝑔)0 ∩ Ψ(𝛿, 2𝑇) | × max
𝑛∈ 1

ℓ Z

|𝑛 | ≤4𝑇 2

|𝑅(ℓ; 𝑔)0 ∩Ω(1, 2𝑇) ∩ det −1({𝑛}) |. (3.11)

Note that in this last inequality, we have passed from Ψ(𝛿, 2𝑇) to the larger set Ω(1, 2𝑇) = Ψ(1, 2𝑇);
the resulting bound remains adequate for us thanks to the additional saving of 𝛿 1

2 in Equation (3.10).

3.4. Proof of Theorem 2.1

Theorem 2.1 is an immediate consequence of the following pair of lemmas together with Propositions
3.2 through 3.5.

Lemma 3.6. We have ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝛿,𝑇 )

det(𝛾1)=det(𝛾2)

1 ≺ ℓ𝑇2
(
1 + ℓ

1
2 𝛿

1
2 𝐻 (𝑔) + ℓ

1
2 𝛿𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2

)

×
(
1 + ℓ

1
2 𝛿

1
2 𝐻 (𝑔) + ℓ

1
2 𝛿

1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2

)
. (3.12)

Proof. Recall, from the discussion of Section §3.1, that we may express 𝑅(ℓ; 𝑔)0, for 𝑔 ∈ 𝐺 (A), as
(𝑔′)−1𝑅′(ℓ)0𝑔′, where 𝑅′ is an Eichler order of the same level and 𝑔′ ∈ 𝐺 (R), with 𝐻 (𝑔) = 𝐻 (𝑔′) in
the case that B is split. We may thus apply the results of Section §2.5.

Since tr(𝑅(ℓ; 𝑔)) ⊆ Z, we find that the first successive minimum of 𝑅(ℓ; 𝑔) with respect to Ω(𝛿, 1)
is at least the minimum of 1 and the first successive minimum of 𝑅(ℓ; 𝑔)0 with respect to Ω(𝛿, 1) ∩ 𝐵0

∞.
The latter is � min{ℓ− 1

2 , ℓ−1𝛿−
1
2 𝐻 (𝑔)−1} =: Λ by Theorem 2.5, where the term involving 𝐻 (𝑔) is to be

omitted if B is nonsplit. Thus, we find that 𝑅(ℓ; 𝑔) ∩Ω★(𝛿, 𝑇) is empty for 𝑇 � Λ, in which case there
is nothing to show. Next, assume instead that 𝑇 � Λ. Then, by Theorem 2.5, we have

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 2𝑇) | ≺ 1 +
(
ℓ

1
2 + ℓ𝛿

1
2 𝐻 (𝑔)

)
𝑇 +

(
ℓ

3
2 𝛿

1
2

(𝑑𝐵𝑁)
1
2
+ ℓ𝛿𝐻 (𝑔)

)
𝑇2 + ℓ2

𝑑𝐵𝑁
𝛿𝑇3

≺ ℓ
1
2𝑇

(
1 + ℓ

1
2 𝛿

1
2 𝐻 (𝑔) + ℓ

(𝑑𝐵𝑁)
1
2
𝛿

1
2𝑇 + ℓ

1
2 𝛿𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2

)
,

(3.13)

where we have used 1 � ℓ
1
2𝑇 + ℓ𝛿 1

2 𝐻 (𝑔)𝑇 and ℓ
3
2 ≤ ℓ2. Further note that the middle term in the bracket

is dominated by the sum of the first and last term in the bracket. We also find by Theorem 2.6 that

max
𝑛∈ 1

ℓ Z

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 2𝑇) ∩ det −1({𝑛}) | ≺ 1 + ℓ𝛿
1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2

≺ ℓ
1
2

(
1 + ℓ

1
2 𝛿

1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2

)
.

(3.14)

We conclude the Lemma by further appealing to the inequalities (3.8) and (3.9). �
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Lemma 3.7. Assume that B is nonsplit. Then

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ψ★ (𝛿,𝑇 )

det(𝛾1)=det(𝛾2)

1 ≺ ℓ𝑇2

(
1 + ℓ

(𝑑𝐵𝑁)
1
2
𝑇 + ℓ2

𝑑𝐵𝑁
𝛿

1
2𝑇2

)2

. (3.15)

Proof. As in the proof of Lemma 3.6, we find that the first successive minimum of 𝑅(ℓ; 𝑔) with respect
to Ψ(𝛿, 1) is at least the minimum of 𝛿−

1
2 and the first successive minimum of 𝑅(ℓ; 𝑔)0 with respect

to Ψ(𝛿, 1) ∩ 𝐵0
∞. The latter is � ℓ−

1
2 by Theorem 2.5. Therefore, 𝑅(ℓ; 𝑔) ∩ Ψ★(𝛿, 𝑇) is empty for

𝑇 � ℓ−
1
2 ≤ 1 ≤ 𝛿−

1
2 , in which case there is nothing to show. If 𝑇 � ℓ−

1
2 , then, by Theorem 2.5, we

have

|𝑔−1𝑅(ℓ)0𝑔 ∩ Ψ(𝛿, 2𝑇) | ≺ 1 + ℓ
1
2𝑇 + ℓ

3
2

(𝑑𝐵𝑁)
1
2
𝑇2 + ℓ2

𝑑𝐵𝑁
𝛿

1
2𝑇3

≺ ℓ
1
2𝑇

(
1 + ℓ

(𝑑𝐵𝑁)
1
2
𝑇 + ℓ2

𝑑𝐵𝑁
𝛿

1
2𝑇2

)
,

(3.16)

where we have used 1 � ℓ
1
2𝑇 and ℓ

3
2 ≤ ℓ2. Furthermore, by Theorem 2.6, we have

max
𝑛∈ 1

ℓ Z

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(1, 2𝑇) ∩ det −1 ({𝑛}) | ≺ 1 + ℓ2

𝑑𝐵𝑁
𝑇2 ≺ ℓ

1
2 𝛿−

1
2

(
1 + ℓ2

𝑑𝐵𝑁
𝛿

1
2𝑇2

)
, (3.17)

where we have used 1 ≤ ℓ
1
2 and 1 ≤ 𝛿−

1
2 . We conclude the lemma by further appealing to the inequalities

(3.10) and (3.11). �

3.5. Proof of Corollary 2.3

Let 𝜑 ∈ F , respectively Fhol, be 𝐿2-normalized. Assume first that B is nonsplit. Then, since [𝐺]/𝐾∞𝐾𝑅

is compact and equipped with a probability measure, we may find 𝑔2 in [𝐺] such that |𝜑(𝑔2) | ≤ 1. Hence,
Corollary 2.3 follows immediately from Theorem 2.1 by positivity and the particular choice of 𝑔2.

We now turn our attention to the case that B is split, in other words when 𝑑𝐵 = 1. Here, we need to
supplement Theorem 2.1 with the additional information that for 𝐻 (𝑔) ≥ 𝑁− 1

2 , we have

|𝜑(𝑔) | �𝜆𝜑 𝑁
1
4 if 𝜑 ∈ F−, (3.18)

|𝜑(𝑔) | � (𝑘𝑁)
1
4 if 𝜑 ∈ F−,hol. (3.19)

The former is recorded in [Tem15, Prop. 3.1 & 3.2], for example, and the latter may be deduced from
the Fourier expansion along the lines of Xia [Xia07]. We include a brief proof here for the sake of
completeness.

Lemma 3.8. Assume B is split, and let 𝜑 ∈ F−,hol be an 𝐿2-normalized holomorphic cuspidal newform
of squarefree level N and even weight 𝑘 ≥ 2. Then, we have for all 𝑔 ∈ [𝐺],

|𝜑(𝑔) | � 𝐻 (𝑔)𝑜 (1)
(
𝑘

1
4 𝐻 (𝑔)−

1
2 + 𝑘−

1
4 𝐻 (𝑔)

1
2

)
. (3.20)

If 𝐻 (𝑔) ≥ 𝑘
2𝜋 , then we have the stronger bound

|𝜑(𝑔) | � 1. (3.21)
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Proof. Suppose that g corresponds to 𝑧 = 𝑥 + 𝑖𝑦 ∈ Γ0(𝑁)\H. As |𝜑(𝑔) | is further invariant under the
Atkin–Lehner operators we may further assume that z has maximal imaginary part under the action
of the group 𝐴0(𝑁) generated by the Atkin–Lehner operators and Γ0(𝑁), thus 𝐻 (𝑔) = 𝑦. We shall
subsequently make use of the Fourier expansion of 𝜑 at ∞:

|𝜑(𝑔) | =

�����𝑦 𝑘
2

∞∑
𝑛=1

𝑎𝑛𝑒(𝑛(𝑥 + 𝑖𝑦))

����� .
We may bound the Fourier coefficients by appealing to Deligne’s bound for the Hecke eigenvalues
[Del71, Del74]. This implies |𝑎𝑛 | �𝜀 𝑛

𝑘−1
2 +𝜀 |𝑎1 |.1 We find

|𝜑(𝑔) | �𝜀 |𝑎1 | (2𝜋)−
𝑘
2 𝑦

1
2−𝜀

∞∑
𝑛=1

(2𝜋𝑛𝑦)
𝑘−1

2 +𝜀𝑒−2𝜋𝑛𝑦 .

The above sum, we may bound by comparison to the corresponding integral. For this manner, we note
that the function 𝑥𝛼𝑒−𝑥 increases up to 𝑥 = 𝛼 and then decreases. We may also bound the first Fourier
coefficient 𝑎1 by a result of Hoffstein–Lockhart [HL94] (cf. [HM06, Eq. (31)]2). The bound reads
|𝑎1 | �𝜀 (𝑁𝑘) 𝜀 (4𝜋) 𝑘

2 Γ(𝑘)− 1
2 . We thus arrive at

|𝜑(𝑔) | �𝜀 (𝑁𝑘) 𝜀𝑦−𝜀 2 𝑘
2 𝑦

1
2

Γ(𝑘) 1
2

(
1
𝑦
Γ

(
𝑘 + 1

2

)
+
(
𝑘 − 1

2

) 𝑘−1
2 +𝜀

𝑒−
𝑘−1

2

)
�𝜀 (𝑁𝑘) 𝜀𝑦−𝜀

(
𝑘

1
4 𝑦−

1
2 + 𝑘−

1
4 𝑦

1
2

)
,

where we have made use of Stirling’s approximation. If 𝑦 ≥ 𝑘
2𝜋 , then the maximum summand occurs

when 𝑛 = 1 and we may derive the improved bound

|𝜑(𝑔) | �𝜀 (𝑁𝑘) 𝜀𝑦−𝜀 2 𝑘
2 𝑦

1
2

Γ(𝑘) 1
2

(
1
𝑦
Γ

(
𝑘 + 1

2

)
+ (2𝜋𝑦)

𝑘−1
2 +𝜀 𝑒−2𝜋𝑦

)
�𝜀 (𝑁𝑘) 𝜀𝑦−𝜀 . �

To deduce Equation (3.19) from the lemma, we consider separately the cases 𝑁− 1
2 ≤ 𝐻 (𝑔) ≤ 𝑘

2𝜋 and
𝐻 (𝑔) ≥ 𝑘

2𝜋 , applying Equation (3.20) in the former case and Equation (3.21) in the latter.
We may now deduce the split case of Corollary 2.3, as follows. Our task is to bound 𝜑(𝑔1) suitably for

𝑔1 ∈ [𝐺]. We may assume that 𝐻 (𝑔1) ≤ 𝑁− 1
2 , as otherwise the estimates (3.18) and (3.19) are adequate.

In that case, we choose another point 𝑔2 ∈ [𝐺] arbitrarily with 𝐻 (𝑔2) = 𝑁− 1
2 such that |𝜑(𝑔2) | �𝜆𝜑 𝑁

1
4 ,

respectively |𝜑(𝑔2) | � (𝑘𝑁)
1
4 , by Equation (3.18), respectively Equation (3.19). We apply Theorem 2.1

with these choices of 𝑔1 and 𝑔2. Upon recalling that 𝑑𝐵 = 1 in the split case, we find by positivity that
Equation (2.4), respectively Equation (2.5), yield��|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

�� �𝜆𝜑 𝑁
1
2 , respectively��|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

�� � (𝑘𝑁) 1
2 .

We conclude by the triangle inequality and taking square roots:

|𝜑(𝑔1) | 2 ≤
��|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

�� + |𝜑(𝑔2) |2 .

1At the ramified primes 𝑝 |𝑁 the stronger bound |𝑎𝑝𝑙 | ≤ (𝑝𝑙)
𝑘
2 −1 |𝑎1 | holds and is a far less deep result (cf. [AL70, Thm. 3]).

2Notice the different normalization of the measure and 𝑎1 in Section §2.
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4. Arithmetic quotients as real manifolds

4.1. Measure normalizations

For indefinite B, we fix an isomorphism 𝐺 (R) � PGL2 (R) sending 𝐾∞ to PSO2(R). We fix the Haar
measure d𝑔 = d𝑦 d𝑥

𝑦2
d𝜃
2𝜋 for 𝑔 =

(
𝑦1/2 𝑥𝑦−1/2

0 𝑦−1/2

)
𝜅(𝜃) on SL2 (R). The push-forward of this measure to the

hyperbolic planeH � SL2(R)/SO2(R) is then the measure d𝑥 d𝑦
𝑦2 . The Haar measure on PGL2(R) is fixed

so that its restriction to PSL2(R) coincides with the push-forward of the Haar measure from SL2(R).
If B is definite, we fix an isomorphism 𝐺 (R) � SO3(R) sending 𝐾∞ to SO2 (R). We fix a Haar

measure on SO3(R) so that the measure of the 2-sphere 𝑆2 � SO3 (R)/SO2(R) is 4𝜋.

4.2. Volumes

Recall, that we fixed the measure on [𝐺] to be the probability Haar measure. Hence, the volume of the
quotient [𝐺]/𝐾𝑅 is 1. In due course, we shall also require the volume of said quotient when viewed as
a real manifold with respect to our fixed Haar measure on 𝐺 (R). More specifically, we will need the
volume with respect to the measure on 𝐺 ′(R), where 𝐺 ′ is the linear algebraic group defined over Q
whose rational points are the proper unit quaternions 𝐵1. There is an obvious isogeny map 𝐺 ′ → 𝐺,
where 𝐺 ′ is the simply connected form and G is the adjoint one. Define 𝑅1

𝑝 = 𝑅𝑝 ∩ 𝐺 ′(Q𝑝) to be the
proper unit quaternions in the local order 𝑅𝑝 , and set 𝐾1

𝑅 =
∏

𝑝 𝑅1
𝑝 . Then, the map [𝐺 ′]/𝐾1

𝑅 → [𝐺]/𝐾𝑅

is a homeomorphism that pushes forward the probability Haar measure on [𝐺 ′]/𝐾1
𝑅 to the probability

Haar measure on [𝐺]/𝐾𝑅; see Lemma A.2. In general, this map is not bijective if 𝐾𝑅 is replaced by a
general compact open subgroup of 𝐺 (A 𝑓 ) and the fact that the map is indeed a homeomorphism is due
to 𝐾𝑅 being the projectivized group of units of an Eichler order.

By Borel’s finiteness of class numbers [Bor63], [𝐺 ′]/𝐾1
𝑅 is a finite collection of 𝐺 ′(R)-orbits with

representatives 𝛿1, . . . , 𝛿ℎ ∈ 𝐺 ′(A). Define Γ𝑖 = 𝐺 ′(Q) ∩ 𝛿𝑖𝐾
1
𝑅𝛿

−1
𝑖 ; the intersection is taken in 𝐺 ′(A 𝑓 )

but regarded as a subset of 𝐺 ′(Q) and hence also of 𝐺 ′(R). In particular, Γ𝑖 is a lattice in 𝐺 ′(R).
It follows that

[𝐺]/𝐾𝑅 � [𝐺 ′]/𝐾1
𝑅 =

ℎ⊔
𝑖=1

Γ𝑖\𝐺 ′(R).

This is a finite disjoint union of finite-volume homogeneous spaces for the real Lie group 𝐺 ′(R). We
define covol(Γ𝑖) to be the measure of a fundamental domain for the action of Γ𝑖 on 𝐺 ′(R) with respect
to the fixed Haar measure on 𝐺 ′(R), either d𝑥 d𝑦

𝑦2
d𝜃
2𝜋 in the indefinite case or the measure giving volume

4𝜋 to SO3(R)/SO2 (R) in the definite case. We finally set

𝑉 = 𝑉𝑑𝐵 ,𝑁 =
ℎ∑
𝑖=1

covol(Γ𝑖).

If B is indefinite, then 𝐺 ′(R) � SL2(R) is noncompact and strong approximation implies that ℎ = 1
and we can write [𝐺]/𝐾𝑅 � Γ\SL2 (R). In this case, V is the volume of the hyperbolic surface Γ\H
with respect to the volume form d𝑥 d𝑦

𝑦2 . If B is definite, then in general h can be large and [𝐺]/𝐾∞𝐾𝑅 is
a finite collection of quotients of 2-spheres by discrete rotation groups.

Recall that we have denoted by 𝑑𝐵 the reduced discriminant of B and by N the squarefree level of
the Eichler order R. The volume is given in both cases by

𝑉 = 𝑉𝑑𝐵 ,𝑁 =
𝜋

3
𝑑𝐵𝑁

∏
𝑝 |𝑑𝐵

(
1 − 1

𝑝

) ∏
𝑝 |𝑁

(
1 + 1

𝑝

)
= (𝑑𝐵𝑁)1+𝑜 (1) . (4.1)
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This follows from a corresponding mass formula; see [Voi18, Thm 39.1.8] in the indefinite case and
[Voi18, Thm 25.1.1 & Thm 25.3.18] in the definite one. The space is furthermore compact if and only
if B nonsplit, that is, 𝑑𝐵 > 1.

4.3. Siegel domains

The main purpose of this section is to provide a specific Siegel-domain covering in order to bound
the 𝐿2-norm of the (difference of) theta kernels in §5.2. Let M be a squarefree natural number and
set 𝑈 =

(
Ẑ Ẑ

𝑀 Ẑ Ẑ

)
∩ SL2 (A 𝑓 ). The theta functions of interest will turn out to be right invariant in the

symplectic variable under U with 𝑀 = 𝑑𝐵𝑁 , but the present discussion applies to any squarefree M.

4.3.1. Cusps and Atkin–Lehner operators
Since M is squarefree, a representative set of cusps for Γ0(𝑀) is given by the ratios ℓ

𝑀 , where ℓ runs
through the positive divisors of M. The width of the cusp ℓ

𝑀 (understood here as with respect to the
group Γ0(𝑀)) is given by ℓ [Iwa97, §2.4]. For each ℓ |𝑀 , we choose an element 𝜏ℓ ∈ SL2 (Z) satisfying

𝜏ℓ ≡
(

0 1
−1 0

)
mod ℓ, 𝜏ℓ ≡

(
1 0
0 1

)
mod 𝑀/ℓ. (4.2)

Then, the cusp 𝜏ℓ∞ is Γ0(𝑀)-equivalent to the cusp ℓ
𝑀 . Hence, writing 𝑛(𝑥) =

( 1 𝑥
1
)
, we see that

the elements 𝜏ℓ𝑛( 𝑗), where 𝑗 = 0, . . . , ℓ − 1 and ℓ |𝑀 , give a complete system of representatives for
Γ0(𝑀)\SL2(Z). The normalized matrices 𝜏ℓ � 𝜏ℓ𝑎(ℓ), where 𝑎(𝑦) = diag(𝑦 1

2 , 𝑦−
1
2 ), are scaling

matrices for the respective cusps. Furthermore, the matrices 𝜏ℓ are Atkin–Lehner operators for Γ0(𝑀)
and give a set of representatives for 𝐴0(𝑀)/Γ0(𝑀) [AL70, Lemma 9].

4.3.2. Coverings
The basic idea of the following lemma is to apply the Fricke involution to the tiling of Γ0(𝑀)\H by
translates of the standard fundamental domain for SL2(Z)\H.
Lemma 4.1. Let 𝐹 : [SL2] → R≥0 be a measurable function that is right U invariant and of weight 0.
Then, ∫

[SL2 ]
𝐹 (𝑔)𝑑𝑔 ≤ 1

𝑉1,𝑀

∑
ℓ |𝑀

∫ ∞
√

3
2

𝑙2
𝑀

∫ ℓ

0
𝐹
(
(𝜏ℓ)∞

(
𝑦1/2 𝑥𝑦−1/2

𝑦−1/2

)
𝐾∞𝑈)

)
𝑑𝑥

𝑑𝑦

𝑦2 .

Here, (𝜏)∞ denotes the image of 𝜏 in the Archimedean coordinate of SL2(A).
Proof. Let 𝑓 : H→ R≥0 be given by

𝑓 (𝑧) = 𝐹
((

𝑦1/2 𝑥𝑦−1/2

𝑦−1/2

)
𝐾∞𝑈

)
.

Then, f is Γ0(𝑀) invariant on the left and we have∫
[SL2 ]

𝐹 (𝑔)𝑑𝑔 =
1

𝑉1,𝑀

∫
Γ0 (𝑀 )\H

𝑓 (𝑧) 𝑑𝑥𝑑𝑦
𝑦2 =

1
𝑉1,𝑀

∫
Γ0 (𝑀 )\H

𝑓 (𝜏𝑀 𝑧) 𝑑𝑥𝑑𝑦
𝑦2 .

The standard Siegel set {𝑧 ∈ H| 0 ≤ �(𝑥) ≤ 1 and �(𝑧) ≥
√

3
2 } contains a fundamental domain for

SL2 (Z). Using that the 𝜏ℓ𝑛( 𝑗), for 𝑗 = 0, . . . , ℓ−1 and ℓ |𝑀 , form a representative set for Γ0(𝑀)\SL2(Z)
and that f is nonnegative, we may bound∫

Γ0 (𝑀 )\H
𝑓 (𝜏𝑀 𝑧) 𝑑𝑥𝑑𝑦

𝑦2 ≤
∑
ℓ |𝑀

∫ ∞
√

3
2

∫ ℓ

0
𝑓 (𝜏𝑀 𝜏ℓ 𝑧)𝑑𝑥

𝑑𝑦

𝑦2 .
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Since 𝜏𝑀 𝜏ℓ = 𝛾𝜏𝑀
ℓ

for some 𝛾 ∈ Γ0(𝑀), we have the identity

𝑓 (𝜏𝑀 𝜏ℓ 𝑧) = 𝑓 (𝜏𝑀
ℓ
𝑎(ℓ)−1𝑧) = 𝑓 (𝜏𝑀

ℓ
𝑎(𝑀ℓ )𝑎(ℓ)

−1𝑧).

Substituting this identity above and applying the change of variables 𝑀
𝑙2
𝑧 ↦→ 𝑧 gives the desired result. �

5. Theta kernels and their 𝑳2-norms

5.1. Theta kernels and lifts

In this section, we summarize the required results on theta kernels and their lifts. The necessary theory
is developed in Appendix A.

5.1.1. Theta functions
The theta kernels constructed in Appendix A are modular functions on Odet (A) × SL2(A). The group
G acts by conjugation on the quadratic space (𝐵, det), preserving the quadratic form. This gives an
embedding 𝐺 ↩→ Odet. We are mainly concerned here with the pullback of the theta kernels to
𝐺 (A) × SL2 (A). We denote that pullback by Θ(𝑔, 𝑠). The function Θ(𝑔, 𝑠) is right 𝐾𝑅 ×𝑈1

𝑅 invariant,
where 𝑈1

𝑅 �
(
Ẑ Ẑ

𝑑𝐵𝑁 Ẑ Ẑ

)
∩ SL2(A 𝑓 ) and of moderate growth. We caution that it is not a theta kernel for

the Howe dual pair of the orthogonal group of the traceless quaternions and SL2.
We shall require several explicit expressions of the theta kernels Θ. Define functions 𝑃, 𝑢, 𝑋 on 𝐵∞

by setting, for 𝛾 = [𝑎, 𝑏, 𝑐] + 𝑑 ∈ 𝐵∞,

𝑃(𝛾) � 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2, 𝑢(𝛾) � 𝑏2 + 𝑐2, 𝑋 (𝛾) � 𝑑 + 𝑖𝑎. (5.1)

In other words, by identifying i ∈ 𝐵∞ with 𝑖 ∈ C, we have that
◦ X is the projection from 𝐵∞ = C ⊕ Cj to the summand C,
◦ u is the squared magnitude of the projection onto the other summand Cj and
◦ P is the sum of the squared magnitudes of the two projections.
Upon recalling the notation 𝑅(ℓ; 𝑔) from Section §3.1, we define for 𝑔 ∈ 𝐺 (A) and 𝑧 = 𝑥 + 𝑖𝑦 ∈ H the
theta functions

𝜃−𝑔,ℓ (𝑧) � 𝑦1+ 𝑘
2

∑
𝛾∈𝑅 (ℓ;𝑔)

𝑋 (𝛾)𝑘𝑒−2𝜋𝑦𝑃 (𝛾)𝑒(𝑥 det(𝛾)), (5.2)

if 𝑘 ≥ 6

𝜃−,hol
𝑔,ℓ (𝑧) � 𝑘 − 1

4𝜋
𝑦𝑘/2

∑
𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)>0

det(𝛾)𝑘−1𝑋 (𝛾)
−𝑘

𝑒(𝑧 det(𝛾)), (5.3)

𝜃+,𝑚𝑔,ℓ (𝑧) � (2𝑚 + 1)𝑦1+𝑚
∑

𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)𝑚𝑃𝑚

(
|𝑋 (𝛾) |2 − 𝑢(𝛾)

det(𝛾)

)
𝑒(𝑧 det(𝛾)), (5.4)

𝜃+,hol
𝑔,ℓ (𝑧) � (𝑘 + 1)𝑦1+ 𝑘

2
∑

𝛾∈𝑅 (ℓ;𝑔)
𝑋 (𝛾)𝑘𝑒(𝑧 det(𝛾)), (5.5)

where 𝑃𝑚 is the m-th Legendre polynomial. When ℓ = 1, we abbreviate by dropping the subscript, for
example, 𝜃−𝑔 � 𝜃−𝑔,1. We are now ready to express Θ by means of strong approximation. Set

𝑠∞ =
(
𝑦1/2 𝑥𝑦−1/2

𝑦−1/2

) (
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)
∈ SL2 (R).
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Table 1. Families and the choice of Θ..

B indefinite definite

G F− F−,hol F+
𝑚 F+,hol

𝜃𝑔 𝜃−𝑔 (𝑘 = 0) 𝜃−𝑔 𝜃−,hol
𝑔 𝜃+,𝑚𝑔 𝜃+,hol

𝑔

𝜅 0 k k 2𝑚 + 2 𝑘 + 2

Then, Θ(𝑔, 𝑠∞𝑈1
𝑅) = 𝜃𝑔 (𝑧)𝑒𝑖𝜅 𝜃 for some 𝜅 ∈ 2Z and a choice of 𝜃𝑔 from Equations (5.2)–(5.5). The

precise choice and value of 𝜅 depends on the family G under consideration and may be read off Table 1.
(For our study of F−,hol, the precise choice of Θ depends upon the size of k.)

Antipating the application of Lemma 4.1, we further require Fourier–Whittaker expansions of Θ at
all of the cusps. They are expressable in terms of the 𝜃𝑔,ℓ from Equations (5.2)–(5.5) and a weight 𝜅,
the choice of which are given by the Table 1 as before. We have

Θ(𝑔, (𝜏ℓ)∞𝑠∞𝑈
1
𝑅) =

𝜇(gcd(ℓ, 𝑑𝐵))
ℓ

𝜃𝑔,ℓ (𝑧)𝑒𝑖𝜅 𝜃 , (5.6)

for ℓ |𝑑𝐵𝑁 with 𝜇 the Möbius function, 𝜏ℓ as in Equation (4.2), and where (𝜏ℓ)∞ denotes the image of
𝜏ℓ in the Archimedean coordinate of SL2 (A).

5.1.2. Jacquet–Langlands lifts
Set 𝑈𝑅 to be the image of {

𝑔 ∈
(
Ẑ Ẑ

𝑑𝐵𝑁 Ẑ Ẑ

)
: det 𝑔 ∈ Ẑ×

}
in PGL2(A 𝑓 ). This is a compact open subgroup of PGL2 (A 𝑓 ). For each 𝜑 in the families
F−,F−,hol,F+

𝑚,F+,hol, we consider the Jacquet–Langlands transfer 𝜋JL to [PGL2] of the represen-
tation 𝜋 generated by 𝜑. In the case that G is split, we let 𝜋JL = 𝜋. The space of vectors in 𝜋JL

that are 𝑈𝑅-invariant and 𝐾∞-isotypical of minimal nonnegative weight is one-dimensional [JL70,
Cas73]. We define the arithmetically normalized Jacquet–Langlands lift 𝜑JL ∈ 𝐿2 ([SL2]) of 𝜑 to be the
𝑈1
𝑅-invariant restriction3 to [SL2] of a vector in this one-dimensional space, that has a Whittaker func-

tion at
(
𝑦1/2 𝑥𝑦−1/2

𝑦−1/2

)
∈ SL2 (R) ↩→ SL2(A)given by

◦ 2√𝑦𝐾𝑖𝑡 (2𝜋𝑦)𝑒(𝑥) if 𝜑 ∈ F−
1
4+𝑡2 , and

◦ 𝑦
𝜅
2 𝑒(𝑥 + 𝑖𝑦) if 𝜑 is in either of the families F−,hol, F+

𝑚, F+,hol, where 𝜅 = 𝑘 , 2𝑚 + 2, 𝑘 + 2 depends
on the family as before.

The bounds by Hoffstein–Lockhart [HL94] and Iwaniec [Iwa90] then imply the following bounds for
the 𝐿2-norm of the arithmetically normalized Jacquet–Langlands lift (cf. [HM06, (30), (31)]4). One may
also compare with the geometric normalization in [PY19, Thm. 6.1]. If B is indefinite and 𝜑 ∈ F−

1
4+𝑡2 ,

we have

‖𝜑JL‖2
2 = (𝑑𝐵𝑁 (1 + |𝑡 |))𝑜 (1) cosh(𝜋𝑡)−1. (5.7)

In the other cases, that is, when 𝜑 lies in either of the families F−,hol, F+
𝑚 or F+,hol, we have

‖𝜑JL‖2
2 = (𝑑𝐵𝑁𝜅)𝑜 (1) Γ(𝜅)(4𝜋)𝜅 , (5.8)

where 𝜅 depends on the family in accord with Table 1.

3It is more natural to consider 𝜑JL as a function on [PGL2 ], but we allow ourselves to reduce to the restriction because the
map [SL2 ]/𝑈1

𝑅 → [PGL2 ]/𝑈𝑅 is a homeomorphism; see Appendix A.
4Notice the different normalization of the measure and 𝑎1 in Section §2.
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5.1.3. Explicit theta lifting
The key identity is summarized in the following proposition.

Proposition 5.1. Let 𝑔 ∈ [𝐺]. Let G, Θ and 𝜅 according to Table 1. Then, for 𝜑 ∈ G, we have

〈Θ(𝑔, ·), 𝜑JL〉
〈𝜑JL, 𝜑JL〉

=
|𝜑(𝑔) |2
𝑉𝑑𝐵 ,𝑁

. (5.9)

Proof. The proof is carried out in the appendix. In short, Proposition A.16 implies that for 𝜑 ∈ G,
the theta lift 𝜑Φ of 𝜑 – defined in Equation (A.5), depending upon the precise family G – satisfies
𝜑Φ = (𝑉𝑑𝐵 ,𝑁 )−1𝜑JL. The claim then follows from Propositions A.15 and A.12. �

5.2. 𝑳2-norms of theta kernels

5.2.1. Proofs of Propositions 3.2 through 3.5
The proofs are similar, so we discuss the first in detail and then explain the nonoverlapping parts of the
rest. Recall the notation � from §2.3. We denote by Θ−,Θ−,hol,Θ+,𝑚,Θ+,hol the various functions ‘Θ’
defined as in §5.1.1.

Proof of Proposition 3.2. Let G denote either F−
≤𝐿 or F−,hol according to whether 𝑘 = 0 or 𝑘 ≥ 2. By

Proposition 5.1, we may write

‖𝜑JL‖2

𝑉𝑑𝐵 ,𝑁

(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)
= 〈Θ−(𝑔1, ·) − Θ−(𝑔2, ·), 𝜑JL〉.

By Bessel’s inequality, it follows that∑
𝜑∈G

‖𝜑JL‖2

(𝑉𝑑𝐵 ,𝑁 )2
(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)2
≤ ‖Θ−(𝑔1, ·) − Θ−(𝑔2, ·)‖2

2 . (5.10)

We now bound the right-hand side of Equation (5.10) (and in particular, verify that it is finite). Since
Θ−(𝑔, ·) is 𝐾∞-isotypical, Lemma 4.1 and Equation (5.6) give the bound

� 1
𝑉1,𝑑𝐵𝑁

∑
ℓ |𝑑𝐵𝑁

∫ ∞
√

3
2

ℓ2
𝑑𝐵𝑁

∫ ℓ

0

1
ℓ2 |𝜃

−
𝑔1 ,ℓ

(𝑧) − 𝜃−𝑔2 ,ℓ
(𝑧) |2𝑑𝑥 𝑑𝑦

𝑦2 . (5.11)

We insert the definition (5.2) into the inner integral and evaluate, giving

1
ℓ2

∫ ℓ

0
|𝜃−𝑔1 ,ℓ

(𝑧) − 𝜃−𝑔2 ,ℓ
(𝑧) |2𝑑𝑥 =

1
ℓ
𝑦2+𝑘

∑
𝑛∈ 1

ℓ Z

��������
2∑
𝑖=1
(−1)𝑖

∑
𝛾∈𝑅 (ℓ;𝑔𝑖)
det(𝛾)=𝑛

𝑋 (𝛾)𝑘𝑒−2𝜋𝑦𝑃 (𝛾)

��������
2

.

Note that the sum over i kills the contribution from 𝛾 = 0, so we may omit that contribution in what
follows. We separate the two sums by Cauchy–Schwarz and bound 𝑋 (𝛼) by 𝑃(𝛼) 1

2 , giving

1
ℓ2

∫ ℓ

0
|𝜃−𝑔1 ,ℓ

(𝑧) − 𝜃−𝑔2 ,ℓ
(𝑧) |2𝑑𝑥 �

2∑
𝑖=1

1
ℓ

∑
𝑛∈ 1

ℓ Z

��������
∑

0≠𝛾∈𝑅 (ℓ;𝑔𝑖)
det(𝛾)=𝑛

𝑃(𝛾)
𝑘
2 𝑒−2𝜋𝑦𝑃 (𝛾)

��������
2

𝑦2+𝑘 . (5.12)
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We now treat the contributions from 𝑖 = 1, 2 individually. We commence with the integral in the
variable y. Let

𝑄(𝑠, 𝑥) = 1
Γ(𝑠)

∫ ∞

𝑥
𝑡𝑠𝑒−𝑡

𝑑𝑡

𝑡
≤ 1

denote the normalized incomplete gamma function. Setting 𝑔 � 𝑔𝑖 , we find

(4𝜋)𝑘+1

Γ(𝑘 + 1)

∫ ∞

𝑌

��������
∑

0≠𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)=𝑛

𝑃(𝛾)
𝑘
2 𝑒−2𝜋𝑦𝑃 (𝛾)

��������
2

𝑦2+𝑘 𝑑𝑦

𝑦2

=
∑

0≠𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)
det(𝛾1)=det(𝛾2)=𝑛

2
𝑃(𝛾1) + 𝑃(𝛾2)

(
2
√
𝑃(𝛾1)𝑃(𝛾2)

𝑃(𝛾1) + 𝑃(𝛾2)

) 𝑘
𝑄 (𝑘 + 1, 2𝜋𝑌 (𝑃(𝛾1) + 𝑃(𝛾2)))

≤
∑

0≠𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)
det(𝛾1)=det(𝛾2)=𝑛

2
𝑃(𝛾1) + 𝑃(𝛾2)

𝑄 (𝑘 + 1, 2𝜋𝑌 (𝑃(𝛾1) + 𝑃(𝛾2))) . (5.13)

Since 𝑄(𝑠, 𝑥) is superpolynomially small in both s and x as soon as 𝑥 � 𝑠, we see by dyadically
partitioning max𝑖{𝑃(𝛾𝑖)

1
2 } that Equation (5.13) is further bounded by

�𝐴

∑
𝑗

1
𝑇2
𝑗

(
1 +

𝑇2
𝑗 𝑌

𝑘 + 1

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇𝑗 )

det(𝛾1)=det(𝛾2)=𝑛

1

for any 𝐴 ≥ 0, where 𝑇𝑗 = 2 𝑗 , 𝑗 ∈ Z. By putting all of these estimates together, we arrive at

1
(𝑉𝑑𝐵 ,𝑁 )2

∑
𝜑∈G

‖𝜑JL‖2
(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)2

�𝐴
Γ(𝑘 + 1) (4𝜋)−𝑘

𝑉1,𝑑𝐵𝑁

2∑
𝑖=1

∑
ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘 + 1

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔𝑖)∩Ω★ (1,𝑇𝑗 )

det(𝛾1)=det(𝛾2)

1

for any 𝐴 ≥ 0. Let us recall from Equation (4.1) that𝑉𝑑𝐵 ,𝑁 , 𝑉1,𝑑𝐵𝑁 = (𝑑𝐵𝑁)1+𝑜 (1) and that for 𝜑 ∈ F−
≤𝐿

we have ‖𝜑JL‖ �𝐿 1 (see Equation (5.7)). In order to conclude the first part of the proposition, we note
that the range of T may be limited from above to � (𝑑𝐵𝑁)

1
2 ℓ−1 by the superpolynomial decay and any

polynomial bound on the second moment matrix count, which was noted in §3.4 and is the subject of
the remaining sections §6 through §10. The second part of the proposition follows along the same lines,
but we need to use the bound ‖𝜑JL‖2 � Γ(𝑘) (4𝜋)−𝑘 for 𝜑 ∈ F−,hol instead (see Equation (5.8)). �

Proof of Proposition 3.3. We follow the recipe of the previous proof, only this time for the family
F−,hol to which the theta function Θ−,hol corresponds. As we shall see, the latter already possesses a
finite 𝐿2-norm. Hence, we need not consider a difference of theta functions. After the initial steps, we
arrive at
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∑
𝜑∈F−,hol

‖𝜑JL‖2

(𝑉𝑑𝐵 ,𝑁 )2
|𝜑(𝑔) |4 � 1

𝑉1,𝑑𝐵𝑁

𝑘2Γ(𝑘 − 1)
(4𝜋)𝑘

×
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

��������
∑

𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)=𝑛

(
det(𝛾) 1

2

𝑋 (𝛾)

) 𝑘 ��������
2

𝑄(𝑘 − 1, 2
√

3𝜋𝑛 ℓ2

𝑑𝐵𝑁
). (5.14)

We further simplify using the lower bound ‖𝜑JL‖2 � Γ(𝑘) (4𝜋)−𝑘 (see Equation (5.8)), the ap-
proximations 𝑉𝑑𝐵 ,𝑁 , 𝑉1,𝑑𝐵𝑁 = (𝑑𝐵𝑁)1+𝑜 (1) and the superpolynomial decay of normalized incomplete
gamma function, as well as the identities

|𝑋 (𝛾) |2 = det(𝛾) + 𝑢(𝛾) and 2𝑢(𝛾) + det(𝛾) = 𝑃(𝛾).

We obtain

1
𝑑𝐵𝑁𝑘

∑
𝜑∈F−,hol

|𝜑(𝑔) |4 �𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

(
1 + ℓ2

𝑑𝐵𝑁

𝑛

𝑘

)−𝐴 ��������
∑

𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)=𝑛

(
1 + 𝑢(𝛾)

𝑛

)− 𝑘
2

��������
2

, (5.15)

for any 𝐴 ≥ 0. By the triangle inequality, we reduce to estimating similar expressions but with the sum
over 𝛾 restricted by one of the following conditions:

(i) 𝑢(𝛾) ≤ 𝑘−1+𝜀 det(𝛾),
(ii) 𝑘−1+𝜀 det(𝛾) ≤ 𝑢(𝛾) ≤ det(𝛾) or

(iii) det(𝛾) ≤ 𝑢(𝛾).

In Case (i), we bound (1 + 𝑢(𝛾)/𝑛)− 𝑘
2 ≤ 1. Furthermore, we have det(𝛾)  𝑃(𝛾) and 𝑢(𝛾) �

𝑘−1+𝜖 𝑃(𝛾). Hence, after dyadically partitioning the range of 𝑃(𝛾) 1
2 , we arrive at

�𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝑘−1+𝜀 ,𝑇𝑗 )

det(𝛾1)=det(𝛾2)>0

1.

In Case (ii), we use that (1 + 𝑢(𝛾)/𝑛)− 𝑘
2 ≤ (1 + 𝑘 𝜀−1)− 𝑘

2 has superpolynomial decay in k (and hence
also in (𝑑𝐵𝑁) as 𝑘 �𝜂 (𝑑𝐵𝑁)𝜂 by assumption). As in Case (i), we have det(𝛾)  𝑃(𝛾), but this time
only 𝑢(𝛾) ≤ 𝑃(𝛾). We arrive at a contribution of

�𝐴,𝜂 (𝑘𝑑𝐵𝑁)−𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇𝑗 )

det(𝛾1)=det(𝛾2)>0

1.

In Case (iii), we bound (
1 + 𝑢(𝛾)

𝑛

)− 𝑘
2

≤ 2−
𝑘
4

(
1 + 𝑢(𝛾)

𝑛

)− 𝑘
4

.

The factor 2− 𝑘
4 we use for superpolynomial decay in (𝑘𝑑𝐵𝑁) as before. The other factor we use as

follows
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1
𝑛

(
1 + 𝑢(𝛾)

𝑛

)−1 (
1 + ℓ2

𝑑𝐵𝑁

𝑛

𝑘

)− 𝑘
4 +1 (

1 + 𝑢(𝛾)
𝑛

)− 𝑘
4 +1

≤ 1
𝑢(𝛾)

(
1 + ℓ2

𝑑𝐵𝑁

𝑢(𝛾)
𝑘

)− 𝑘
4 +1

.

Hence, Equation (5.15) is bounded by

�𝐴,𝜂 (𝑘𝑑𝐵𝑁)−𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)

det(𝛾1)=det(𝛾2)

1
𝑢(𝛾1) + 𝑢(𝛾2)

(
1 + ℓ2

𝑑𝐵𝑁

𝑢(𝛾1) + 𝑢(𝛾2)
𝑘

)− 𝑘
4 +1

�𝐴,𝜂 (𝑘𝑑𝐵𝑁)−𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘

)− 𝑘
4 +1 ∑

𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇𝑗 )
det(𝛾1)=det(𝛾2)>0

1,

where we have dyadically partitioned max𝑖{𝑃(𝛾𝑖)
1
2 }  

√
𝑢(𝛾1) + 𝑢(𝛾2). The proof of the proposition is

now concluded as in the previous case. �

Proof of Proposition 3.4. We treat the definite spherical case in the same spirit as the indefinite spherical
case. We readily arrive at the estimate∑

𝜑∈F+
𝑚

‖𝜑JL‖2

(𝑉𝑑𝐵 ,𝑁 )2
(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)2
� 1

𝑉1,𝑑𝐵𝑁

(2𝑚 + 1)2Γ(2𝑚 + 1)
(4𝜋)2𝑚+2

×
2∑
𝑖=1

∑
ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

��������
∑

𝛾∈𝑅 (ℓ;𝑔𝑖)
det(𝛾)=𝑛

𝑃𝑚

(
|𝑋 (𝛾) |2 − 𝑢(𝛾)

𝑛

)��������
2

𝑄(2𝑚 + 1, 2
√

3𝜋𝑛 ℓ2

𝑑𝐵𝑁
). (5.16)

We simplify the inequality by using the lower bound ‖𝜑JL‖2 � Γ(2𝑚 + 2) (4𝜋)−2𝑚−2 (see Equa-
tion (5.8)), the approximations 𝑉𝑑𝐵 ,𝑁 , 𝑉1,𝑑𝐵𝑁 = (𝑑𝐵𝑁)1+𝑜 (1) and the superpolynomial decay of the
normalized incomplete Gamma function Q. We obtain

1
𝑑𝐵𝑁 (𝑚 + 1)

∑
𝜑∈F+

𝑚

(
|𝜑(𝑔1) |2 − |𝜑(𝑔2) |2

)2

�𝐴
2∑
𝑖=1

∑
ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

(
1 + ℓ2

𝑑𝐵𝑁

𝑛

𝑚 + 1

)−𝐴 ��������
∑

𝛾∈𝑅 (ℓ;𝑔𝑖)
det(𝛾)=𝑛

𝑃𝑚

(
|𝑋 (𝛾) |2 − 𝑢(𝛾)

𝑛

)��������
2

, (5.17)

for any 𝐴 ≥ 0. We proceed further by appealing to the Bernstein inequality [Ber31] for the Legendre
polynomials:

𝑃𝑚 (𝑡) ≤ min

{
1,
√

2
𝜋𝑚

1
(1 − 𝑡2) 1

4

}
, for |𝑡 | ≤ 1. (5.18)

We recall that det(𝛾) = |𝑋 (𝛾) |2 + 𝑢(𝛾) so that, with 𝛾 and n as in the above sum,

𝑡 :=
|𝑋 (𝛾) |2 − 𝑢(𝛾)

𝑛
=
|𝑋 (𝛾) |2 − 𝑢(𝛾)
|𝑋 (𝛾) |2 + 𝑢(𝛾)

, 1 − 𝑡2 =
4|𝑋 (𝛾) |2 · 𝑢(𝛾)

𝑛2 ≥ 0.
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Dyadically partitioning 𝑃(𝛾) 1
2 = det(𝛾) 1

2 , we conclude that Equation (5.17) is bounded by

�𝐴
2∑
𝑖=1

∑
ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑚 + 1

)−𝐴

×
∑

𝑇 2
𝑗 ≤𝑛<4𝑇 2

𝑗

��������
∑

𝛾∈𝑅 (ℓ;𝑔𝑖)
𝛾∈Ω★ (1,2𝑇𝑗 )−Ω★ (1,𝑇𝑗 )

det(𝛾)=𝑛

min

{
1,

1
(𝑚 + 1) 1

2

𝑇𝑗

(|𝑋 (𝛾) |2 · 𝑢(𝛾)) 1
4

}��������

2

, (5.19)

where 𝑇𝑗 = 2 𝑗 as before. The minimum in Equation (5.19) lies between  (𝑚 + 1)− 1
2 and 1. Let us

consider the 𝛾 ∈ Ω★(1, 2𝑇𝑗 ) −Ω★(1, 𝑇𝑗 ) for which

min

{
1,

1
(𝑚 + 1) 1

2

𝑇𝑗

(|𝑋 (𝛾) |2 · 𝑢(𝛾)) 1
4

}
 1
(𝑚 + 1) 1

2

1
𝛿

1
4
, (5.20)

for some given 𝛿 with 1/(𝑚 + 1)2 � 𝛿 ≤ 1. In particular, |𝑋 (𝛾) |2 · 𝑢(𝛾) � 𝛿𝑇4
𝑗 . Since |𝑋 (𝛾) |2 +𝑢(𝛾) =

𝑃(𝛾)  𝑇2
𝑗 , both cannot be simultaneously small. Hence,

min{|𝑋 (𝛾) |2, 𝑢(𝛾)} = |𝑋 (𝛾) |2 · 𝑢(𝛾)
max{|𝑋 (𝛾) |2, 𝑢(𝛾)}

� 𝛿𝑇2
𝑗 .

Thus, after replacing 𝛿 with its multiple by a scalar of the form  1 if needed (which has no affect
on Equation (5.20)), we may assume that min{|𝑋 (𝛾) |2, 𝑢(𝛾)} ≤ 𝛿(2𝑇𝑗 )2, that is, that 𝛾 lies in either
Ω★(𝛿, 2𝑇𝑗 ) or Ψ★(𝛿, 2𝑇𝑗 ). We now consider dyadic scales 𝛿𝑎 of 𝛿’s between  1/(𝑚2 + 1) and 1. The
just mentioned arguments then allow us to bound second line in Equation (5.19) by

∑
𝑇 2
𝑗 ≤𝑛<4𝑇 2

𝑗

(∑
𝑎

∑
𝛾∈𝑅 (ℓ;𝑔𝑖)

𝛾∈Ω★ (𝛿𝑎 ,2𝑇𝑗 )∪Ψ★ (𝛿𝑎 ,2𝑇𝑗 )
det(𝛾)=𝑛

(𝑚 + 1)−
1
2 𝛿

− 1
4

𝑎

)2

.

There are at most � 1 dyadic scales in the range 1/(𝑚2 + 1) � 𝛿 ≤ 1. Thus, after applying Cauchy–
Schwarz in order to pull out the sum over 𝛿𝑎, we bound Equation (5.19) by

�𝐴
2∑
𝑖=1

∑
ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑚 + 1

)−𝐴∑
𝑎

∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔𝑖)

𝛾1 ,𝛾2∈Ω★ (𝛿𝑎 ,2𝑇𝑗 )∪Ψ★ (𝛿𝑎 ,2𝑇𝑗 ))
det(𝛾1)=det(𝛾2)

(𝑚 + 1)−1𝛿
− 1

2
𝑎 . (5.21)

The proof is once more concluded as it was for the first proposition. �

Proof of Proposition 3.5. One final time we iterate the initial steps for the holomorphic family Fhol in
the definite case. We are again in the situation where the theta kernel Θ+,hol has finite 𝐿2-norm, so we
obtain, without having to take differences,
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∑
𝜑∈F+,hol

‖𝜑JL‖2

(𝑉𝑑𝐵 ,𝑁 )2
|𝜑(𝑔) |4 � 1

𝑉1,𝑑𝐵𝑁

(𝑘 + 1)2Γ(𝑘 + 1)
(4𝜋)𝑘+2

×
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

��������
∑

𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)=𝑛

(
𝑋 (𝛾)2

𝑛

) 𝑘
2

��������
2

𝑄(𝑘 + 1, 2
√

3𝜋𝑛 ℓ2

𝑑𝐵𝑁
). (5.22)

We simplify this estimate using the lower bound ‖𝜑JL‖2 � Γ(𝑘 + 2) (4𝜋)−𝑘−2 (see Equation (5.8)), the
approximations𝑉𝑑𝐵 ,𝑁 , 𝑉1,𝑑𝐵𝑁 = (𝑑𝐵𝑁)1+𝑜 (1) , the superpolynomial decay of the normalized incomplete
gamma function Q and the identity |𝑋 (𝛾) |2 = det(𝛾) − 𝑢(𝛾). We thereby obtain

1
𝑑𝐵𝑁𝑘

∑
𝜑∈F+,hol

|𝜑(𝑔) |4 �𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑛∈ 1

ℓN

1
𝑛

(
1 + ℓ2

𝑑𝐵𝑁

𝑛

𝑘

)−𝐴 ��������
∑

𝛾∈𝑅 (ℓ;𝑔)
det(𝛾)=𝑛

(
1 − 𝑢(𝛾)

𝑛

) 𝑘
2

��������
2

, (5.23)

for any 𝐴 ≥ 0. We dyadically partition 𝑃(𝛾) 1
2 = det(𝛾) 1

2 and distinguish the two cases:

(i) 𝑢(𝛾) ≤ 𝑘−1+𝜀 det(𝛾), and
(ii) 𝑘−1+𝜀 det(𝛾) ≤ 𝑢(𝛾).

We separate them by the triangle inequality. Using the inequality (1 − 𝑢(𝛾)/𝑛) ≤ 1, we see that the
contribution of the first case is bounded by

�𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (𝑘−1+𝜀 ,𝑇𝑗 )

det(𝛾1)=det(𝛾2)

1,

where 𝑇𝑗 = 2 𝑗 , 𝑗 ∈ Z. In the second case, we see that (1 − 𝑘 𝜀−1) 𝑘
2 enjoys superpolynomial decay in k.

The contribution of the second case is thus bounded by

�𝐴 𝑘−𝐴
∑

ℓ |𝑑𝐵𝑁

1
ℓ

∑
𝑗

1
𝑇2
𝑗

(
1 + ℓ2

𝑑𝐵𝑁

𝑇2
𝑗

𝑘

)−𝐴 ∑
𝛾1 ,𝛾2∈𝑅 (ℓ;𝑔)∩Ω★ (1,𝑇𝑗 )

det(𝛾1)=det(𝛾2)

1.

The proof is now concluded as it was for the previous propositions. �

6. Preliminaries on the geometry of numbers

6.1. Bounds on successive minima

Definition 6.1. Let V be an n-dimensional real vector space. Let 𝐿 ⊆ 𝑉 be a lattice (i.e., a cocompact
discrete subgroup). Given a compact convex 0-symmetric subset K of V with nonempty interior, we
define a function 𝑁 : 𝑉 → R≥0 by 𝑁 (𝑣) := inf{𝑡 > 0 : 𝑣 ∈ 𝑡K}. Given a positive-definite quadratic
form Q on V, we define such a function by 𝑁 (𝑣) := 𝑄(𝑣)1/2, or equivalently, by applying the previous
definition with K the unit ball for Q. In either case, we define the successive minima 𝜆1 ≤ · · · ≤ 𝜆𝑛 of
K on L (or of Q on L) as: 𝜆𝑘 is the smallest positive real for which there is a linearly independent subset
{𝑣1, . . . , 𝑣𝑘 } of L for which 𝑁 (𝑣 𝑗 ) ≤ 𝜆𝑘 for each 1 ≤ 𝑗 ≤ 𝑘 .
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Lemma 6.2. Let 𝑧 ∈ H with maximal imaginary part under the orbit of the Atkin–Lehner operators
𝐴0 (𝑁) of Γ0(𝑁) with N squarefree. Then, we have

�(𝑧) ≥
√

3
2𝑁

and |𝑐𝑧 + 𝑑 |2 ≥ (𝑐, 𝑁)
𝑁

for any (𝑐, 𝑑) ∈ Z2 distinct from (0, 0).

Proof. This is essentially [HT12, Lemma 1]. That reference gives the slightly weaker bound obtained by
omitting the factor (𝑐, 𝑁), but the stronger bound that we have stated follows from their proof, keeping
track of (𝑐, 𝑁) at each step rather than bounding it from below by 1. �

6.2. Lattice counting

Lemma 6.3. Let 𝑓K be the distance function of a closed convex 0-symmetric set K ⊆ R𝑛 of positive
volume. Let Λ ⊂ R𝑛 be a lattice, and let 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 denote the successive minima (see
Definition 6.1) of K on Λ. Then, there is a basis 𝑣1, . . . , 𝑣𝑛 of Λ such that 𝑓K (𝑣𝑖)  𝑛 𝜆𝑖 .

Proof. This is [GL87, Thm. 2, p. 66]. �

Lemma 6.4. Let K ⊆ R𝑛 be a closed convex 0-symmetric set of positive volume. Let Λ ⊂ R𝑛 be a
lattice, and let 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛 denote the successive minima of K on Λ. Then

|K ∩ Λ|  𝑛
𝑛∏
𝑖=1

(
1 + 1

𝜆𝑖

)
.

Proof. The lower bound follows from van der Corput’s generalization of Minkowski’s first theorem
[vdC36]. It states that for K′ ⊂ R𝑑 a closed convex 0-symmetric set and Λ ⊂ R𝑑 a lattice, one has

|K′ ∩ Λ′ | + 1 ≥ |intK′ ∩ Λ′ | + 1 ≥ 21−𝑑 vol(K′)
vol(R𝑑/Λ′)

. (6.1)

Let d be the largest integer such that 𝜆𝑑 ≤ 1. Let 𝑣𝑖 ∈ Λ, for 𝑖 = 1, . . . , 𝑑, be a set of linearly independent
vectors such that 𝜆−1

𝑖 𝑣𝑖 ∈ K. Let K′ be the convex hull of the vectors ±𝜆−1
𝑖 𝑣𝑖 and Λ′ the span of the

vectors 𝑣𝑖 . In particular, K′ is nonempty, hence 0 ∈ K′ ∩ Λ′, and so

2|K′ ∩ Λ′ | ≥ |K′ ∩ Λ′ | + 1.

Using Equation (6.1), it follows now that

|K ∩ Λ| ≥ |K′ ∩ Λ′ | ≥ 2−𝑑
vol(K′)

vol(R𝑑/Λ′)
=

1
𝑑!

𝑑∏
𝑖=1

1
𝜆𝑖

.

For the upper bound, we refer to [BHW93, Prop. 2.1]. �

Lemma 6.5. Let Λ ⊂ R2 be a lattice of rank 2 and 𝐵 ⊆ R2 a ball of radius R (not necessarily centred
at 0). If 𝜆1 ≤ 𝜆2 are the successive minima of Λ, then

|𝐵 ∩ Λ| � 1 + 𝑅

𝜆1
+ 𝑅2

𝜆1𝜆2
.

Proof. See [HT13, Lemma 2.1]. �
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7. Local preliminaries on orders

7.1. Quadratic preliminaries

Let F be a non-Archimedean local field of characteristic≠ 2. Let 𝐸/𝐹 be a separable quadratic extension,
thus E is either the split quadratic extension 𝐹 ⊕ 𝐹 or a quadratic field extension. We write 𝔬 (resp. 𝔬𝐸 )
for the ring of integers in F (resp. E), 𝑥 ↦→ 𝑥 for the canonical involution on E and

nr(𝑥) = 𝑥𝑥, tr(𝑥) = 𝑥 + 𝑥

for the norm and trace. Recall that the different ideal 𝔡 for this extension is the smallest 𝔬𝐸 -ideal for
which tr(𝔡−1) ⊆ 𝔬, and in fact 𝔡−1 = {𝑥 ∈ 𝐸 : tr(𝑥𝔬𝐸 ) ⊆ 𝔬}. If 𝐸/𝐹 is split or unramified, then 𝔡 = 𝔬𝐸 .

We may regard E as a two-dimensional vector space over F.
Let 𝑞 : 𝐸 → 𝐹 be a nondegenerate binary quadratic form with the property that for all 𝑒, 𝑥 ∈ 𝐸 , we

have 𝑞(𝑒𝑥) = nr(𝑒)𝑞(𝑥). In other words, q is an F-multiple of nr, specifically 𝑞 = 𝑞(1) nr.
For 𝑥, 𝑦 ∈ 𝐸 , we set 〈𝑥, 𝑦〉 � 𝑞(𝑥 + 𝑦) − 𝑞(𝑥) − 𝑞(𝑦) = 𝑞(1) tr(𝑥�̄�) so that 𝑞(𝑥) = 〈𝑥, 𝑥〉/2.
Let 𝔞 ⊂ 𝐸 be a fractional 𝔬𝐸 -ideal. Write 𝔞∨ for the dual of 𝔞 with respect to the quadratic form q,

that is, 𝔞∨ � {𝑥 ∈ 𝐸 : 〈𝑥, 𝔞〉 ⊆ 𝔬}.
Let 𝔫 denote the fractional 𝔬-ideal generated by 𝑞(𝔞).

Lemma 7.1. We have 𝔞 = 𝔡𝔫𝔞∨.

Proof. Let 𝛼 be a generator of 𝔞. Then 𝔫 = 𝑞(1) nr(𝔞) = 𝔬𝑞(1)𝛼�̄�, 𝔞∨ = {𝑞(1)−1𝑥 : 𝑥 ∈ 𝐸, tr(𝑥�̄�) ⊆
𝔬} = 𝑞(1)−1�̄�−1𝔡−1. Multiplying through, the conclusion follows. �

Corollary 7.2. Suppose that 𝐸/𝐹 is unramified and that q is integral on 𝔞 so that 𝔞 ⊆ 𝔞∨. Then the
elementary divisors for the 𝔬-module inclusion 𝔞 ↩→ 𝔞∨ are (𝔫, 𝔫).

Proof. Our hypotheses imply that 𝔡 = 𝔬 and that 𝔫 is an integral ideal. The lemma implies that there
is an isomorphism (first of 𝔬𝐸 -modules, then of 𝔬-modules) 𝔞∨/𝔞 � 𝔬𝐸/𝔫𝔬𝐸 � (𝔬/𝔫)2, whence the
conclusion. �

Remark 7.3. Under the hypotheses of the corollary, the discriminant ideal of the binary quadratic form
(𝑞, 𝔞) is 𝔫2. More generally, under the hypotheses of the lemma, the discriminant ideal is 𝔇𝔫2, with
𝔇 = nr(𝔡). Conversely, given the discriminant ideal, we may compute 𝔫 as its square root.

7.2. Quaternionic preliminaries: general case

Let F be a non-Archimedean local field, let B be a quaternion F-algebra and let E be a separable
quadratic F-subalgebra of B. We equip B with the quadratic form 𝑞 : 𝐵 → 𝐹 given by the reduced
norm, whose bilinearization 〈 , 〉 as above is described by the reduced trace and the main involution
on B via the formula 〈𝑥, 𝑦〉 = tr(𝑥�̄�). We have a canonical decomposition 𝐵 = 𝐸 ⊕ 𝐸⊥, where
𝐸⊥ = {𝑥 ∈ 𝐵 : 〈𝑥, 𝑦〉 = 0 for all 𝑦 ∈ 𝐸}.

Let 𝔬 and 𝔬𝐸 denote the respective maximal orders of F and E. We write 𝔡 for the different ideal, as
before.

Let us say that an order R in B is E-adapted if it is of the form 𝑅 = 𝔬𝐸 ⊕ 𝔞 for some 𝔬𝐸 -submodule
𝔞 of 𝐸⊥ (for the action by either left or right multiplication – it doesn’t matter which because they are
conjugates of each other).

Consider such an order R. Its traceless submodule is given by

𝑅0 = 𝔬0
𝐸 ⊕ 𝔞.

We aim to compute the dual lattice (𝑅0)∨ with respect to q. To that end, it suffices to dual-
ize each summand in the above decomposition because (𝑅0)∨ = (𝔬0

𝐸 )
∨ ⊕ 𝔞∨. We generally have
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(𝔡−1)0 ⊆ (𝔬0
𝐸 )

∨ ⊆ 1
2 (𝔡

−1)0. If E is unramified or split, then (𝔬0
𝐸 )

∨ = 1
2𝔬

0
𝐸 = 1

2 (𝔡
−1)0. On the other hand,

we can compute 𝔞∨ using the results of the previous section. Indeed, the choice of any invertible ele-
ment 𝑗 ∈ 𝐸⊥ defines an isomorphism 𝐸 → 𝐸⊥, 𝑥 ↦→ 𝑥 𝑗 . Transporting q and 𝔞 via the inverse of this
isomorphism gives us a fractional ideal in E and a quadratic form on E that satisfy the hypotheses of
that section. We obtain

𝔞∨ = 𝔡−1𝔫−1𝔞,

where 𝔫 is the integral 𝔬-ideal characterized by either of the following properties:

◦ 𝔫 is generated by 𝑞(𝔞).
◦ 𝔇𝔫2 is the discriminant ideal of (𝑞, 𝔞).

Let D denote the discriminant ideal of R. The discriminant ideal of the summand (𝑞,𝔬𝐸 ) is 𝔇. Since
the discriminant ideal is multiplicative with respect to direct sums, we obtain

D = 𝔇2𝔫2. (7.1)

We may regard this last identity as a formula for 𝔫.

7.3. Quaternionic preliminaries: unramified case

Let us restrict henceforth to the case that 𝐸/𝐹 is unramified. (The ramified case would be relevant for
studying, for example, the ‘minimal vectors’ considered in [HNS19, HN18, Sah20].)

The above formula then simplifies to

𝔫2 = D,

and we obtain

𝔞∨/𝔞 � (𝔬/𝔫)2.

There are three possibilities for 𝐹 ⊂ 𝐸 ⊂ 𝐵, up to isomorphism:

(i) B is split and 𝐸 � 𝐹 ⊕ 𝐹. We may then find an isomorphism 𝐵 � Mat2×2(𝐹) under which E
identifies with the diagonal subalgebra.

(ii) B is split and 𝐸/𝐹 is the unique unramified quadratic field extension.
(iii) B is nonsplit and 𝐸/𝐹 is the unique unramified quadratic field extension.

In Case (i), the E-adapted orders R are just the Eichler orders. An Eichler order of level 𝔮 has
discriminant 𝔮2 (cf. [Voi18, §23.4]), hence the ideal 𝔫 defined above is 𝔮.

Case (ii) corresponds to another type of ‘minimal vectors’, which we do not consider in this paper.
In Case (iii), the maximal order R is E-adapted and has discriminant ideal 𝔭2 (cf. [Voi18, §15.2.11,

§23.4]), hence 𝔫 = 𝔭.

7.4. Bounds for commutators of elements of 𝑹0

Lemma 7.4. Let 𝐸/𝐹 unramified and R be an E-adapted order. Let [𝛾1, 𝛾2] = 𝛾1𝛾2 − 𝛾2𝛾1 denote the
commutator for two elements 𝛾1, 𝛾2 in B. Then, we have

(i) 𝑞([𝛾1, 𝛾2]) ∈ 𝔫 for all 𝛾1, 𝛾2 ∈ 𝑅,
(ii) [𝛾1, 𝛾2] ∈ 𝔫−1𝑅 for all 𝛾1, 𝛾2 ∈ 𝑅∨,

(iii) 𝑞([𝛾1, 𝛾2]) ∈ 𝔫−2 for all 𝛾1, 𝛾2 ∈ 𝑅∨.
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Proof. By the previous discussion, we may write 𝛾𝑖 = 𝛼𝑖 + 𝛽𝑖 with 𝛼𝑖 ∈ 𝔬𝐸 and 𝛽𝑖 ∈ 𝔞 if 𝛾𝑖 ∈ 𝑅,
respectively 𝔫−1𝔞 if 𝛾𝑖 ∈ 𝑅∨. We have [𝛼1, 𝛼2] = 0 and [𝛼1, 𝛽2] = 2𝛼1𝛽2 ∈ 𝔞, respectively ∈ 𝔫−1𝔞.
Lastly, we have 𝔞2 = 𝔫𝔞∨𝔞 = 𝔫 and (𝔞∨)2 = 𝔫−1𝔞𝔞∨ = 𝔫−1. Hence,

[𝛽1, 𝛽2] = 𝛽1𝛽2 − 𝛽2𝛽1 ∈ 𝔫, respectively 𝔫−1.

By the bilinearity of the commutator, we obtain Claim (ii) and subsequently Claim (iii). Similarly, we
have 𝑞([𝛽1, 𝛽2]) ∈ 𝔫2 for 𝛽𝑖 ∈ 𝔞. Thus, by orthogonality, we have

𝑞([𝛾1, 𝛾2]) = 𝑞(2𝛼1𝛽2 − 2𝛼2𝛽1 + [𝛽1, 𝛽2]) = 𝑞(2𝛼1𝛽2 − 2𝛼2𝛽1) + 𝑞([𝛽1, 𝛽2]) ∈ 𝔫,

for 𝛾𝑖 ∈ 𝑅, which gives Claim (i). �

8. Invariants of rational quadratic forms

Let V be an n-dimensionalQ-vector space and 𝑞 : 𝑉 → Q a nondegenerate quadratic form. We normalize
the polarization 〈 , 〉 of q such that 〈𝑥, 𝑥〉 = 2𝑞(𝑥).

Given a lattice 𝐿 ⊆ 𝑉 and a positive-definite quadratic form Q on𝑉⊗QR, one can define the successive
minima of the pair (𝐿,𝑄). Our aim in this section is to provide certain estimates for those successive
minima in terms of other invariants of (𝐿, 𝑄). Our results may be understood as a generalization of
those of Blomer–Michel [BM13, §3, §4], who treated the special case that q is definite and 𝑄 = 𝑞. We
mention also the work of Saha [Sah20, §2].

8.1. Non-Archimedean invariants

Let 𝐿 ⊆ 𝑉 be a lattice, that is, a Z-submodule whose rank is the dimension of V. Define

◦ the content C of L to be the greatest common divisor of 𝑞(𝐿),
◦ the level N of L to be the reciprocal of the content of the dual lattice 𝐿∨ and
◦ the (unsigned) discriminant Δ of L to be the absolute value of the determinant of the Gram matrix of

q on L. (The discriminant of a quadratic form is traditionally defined without taking absolute values,
but the sign will not matter for us.)

Remark 8.1. In general, the content of L does not agree with the content of the Gram matrix of q on
L, that is, the greatest common divisor of the entries. However, if q is integral on L, then the level of L
agrees with the level of the Gram matrix of q.

Remark 8.2. For our purposes, the content, respectively level, may be replaced by the first, respectively
last, elementary divisor of the Gram matrix of q as these quantities differ by a bounded power of 2.

To get acquainted with these quantities, consider for instance the case that L admits a basis 𝑒1, . . . , 𝑒𝑛
with respect to which q is given by the diagonal quadratic form 𝑞(

∑
𝑥𝑖𝑒𝑖) = 1

2
∑

𝑎𝑖𝑥
2
𝑖 for some nonzero

rational numbers 𝑎1, . . . , 𝑎𝑛. Then

𝐶 = 1
2 gcd(𝑎1, . . . , 𝑎𝑛),

𝑁 = 2/gcd(1/𝑎1, . . . , 1/𝑎𝑛) = 2 · lcm(𝑎1, . . . , 𝑎𝑛),

Δ = |𝑎1 · · · 𝑎𝑛 |.

We may relate the invariants attached to homothetic lattices: the effect of the substitution 𝐿 ↦→ 𝑚𝐿
for a nonzero rational scalar m is

𝐶 ↦→ 𝑚2𝐶, 𝑁 ↦→ 𝑚2𝑁, Δ ↦→ 𝑚2𝑛𝑁.
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8.2. Archimedean invariants

Next, write 𝑉R := 𝑉 ⊗Q R and let 𝑄 : 𝑉R → R be a positive-definite quadratic form. We may find
a basis 𝑒1, . . . , 𝑒𝑛 of 𝑉R so that, writing 𝑥 =

∑
𝑥𝑖𝑒𝑖 , we have 𝑄(𝑥) = 1

2
∑

𝑥2
𝑖 and 𝑞(𝑥) = 1

2
∑

𝑎𝑖𝑥
2
𝑖

for some nonzero real numbers 𝑎1, . . . , 𝑎𝑛. The dual 𝑄∨ of Q with respect to q may be defined by
𝑄∨(𝑥) = 1

2
∑

𝑎2
𝑖 𝑥

2
𝑖 . We note that in the scaled coordinates 𝑦 =

∑
𝑎−1
𝑖 𝑦𝑖𝑒𝑖 , we have 𝑄∨(𝑦) = 1

2
∑

𝑦2
𝑖 and

𝑞(𝑦) = 1
2
∑

𝑎−1
𝑖 𝑦2

𝑖 . The Gram matrix relative to q of Q is defined to be the diagonal matrix with entries
(𝑎1, . . . , 𝑎𝑛).

Define

◦ the content C of Q to be the infimum of the ratio 𝑄/|𝑞 | over the set where 𝑞 ≠ 0,
◦ the level N of Q to be the reciprocal of the content of the dual 𝑄∨ of Q and
◦ the discriminant Δ of Q to be the absolute value of the reciprocal of the determinant of the Gram

matrix relative to q of Q.

The invariants of Q may be described in terms of coordinates as above by

𝐶 = 1/max(|𝑎1 |, . . . , |𝑎𝑛 |) = min(1/|𝑎1 |, . . . , 1/|𝑎𝑛 |),

𝑁 = max(1/|𝑎1 |, . . . , 1/|𝑎𝑛 |) = 1/min(|𝑎1 |, . . . , |𝑎𝑛 |).

Δ = 1/|𝑎1 · · · 𝑎𝑛 |.

These again behave predictably under homotheties: If we substitute 𝑄 ↦→ 𝑄𝑚 � [𝑥 ↦→ 𝑄(𝑚−1𝑥)]
for some nonzero real scalar m (which has the effect of multiplying the Q-unit ball by m), then the
coefficients transform like 𝑎𝑖 ↦→ 𝑚2𝑎𝑖 and hence the invariants like

𝐶 ↦→ 𝑚−2𝐶, 𝑁 ↦→ 𝑚−2𝑁, Δ ↦→ 𝑚−2𝑛Δ .

For later reference, it will be convenient to explicate the definition of ‘level’ in terms of matrices.
To that end, we note first that for any basis 𝑒1, . . . , 𝑒𝑛 of V, we may find symmetric matrices S and P
that represent q and Q in the sense that, for example, 𝑞(

∑
𝑥𝑖𝑒𝑖) = 1

2
∑∑

𝑥𝑖𝑆𝑖 𝑗𝑥 𝑗 . By singular value
decomposition, we may find nonsingular matrices A and D, with D diagonal, so that

𝑃 = 𝐴𝑡 𝐴 and 𝑆 = 𝐴𝑡𝐷𝐴. (8.1)

The level of Q is then the operator norm of the matrix 𝐷−1. For instance, if we choose our basis so that
𝑄(

∑
𝑥𝑖𝑒𝑖) = 1

2
∑

𝑥2
𝑖 and 𝑞(

∑
𝑥𝑖𝑒𝑖) = 1

2
∑

𝑑𝑖𝑥
2
𝑖 , then the level of Q is max |𝑑𝑖 |−1.

Remark 8.3. We may relate the above definition of level to more standard notions. We recall that the
form Q is a majorant of q if 𝑃𝑆−1𝑃 = 𝑆, or equivalently, if 𝐷2 = 1. Suppose that |𝑞 | ≤ 𝑄. Then the level
of Q is always at least 1, and it is equal to 1 if and only if Q is a majorant of q. Indeed, the assumption
|𝑞 | ≤ 𝑄 implies that |𝑑𝑖 | ≤ 1 for each i, with equality precisely when 𝐷2 = 1.

8.3. Duality

We note that replacing L (resp. Q) with its dual 𝐿∨ (resp. 𝑄∨) has the following effect on the invariants:

(𝐶, 𝑁,Δ) ↦→ (1/𝑁, 1/𝐶, 1/Δ). (8.2)

In what follows, this relation allows us to reduce slightly the number of computations required. For
instance, we can read off the invariants of the dual of an Eichler order (or its traceless submodule) from
those of the Eichler order itself.
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8.4. Adelic invariants

Let (𝑄, 𝐿) be a pair consisting of a positive-definite quadratic form Q and a lattice L as above. We define
the content (resp. level, discriminant) of the pair to be the product of the corresponding invariants of Q
and L.

We note that the invariants 𝐶, 𝑁,Δ assigned to the pair (𝑄, 𝐿) are invariant by rational homotheties,
that is, replacing L by 𝑚𝐿 and Q by 𝑄𝑚 for the same nonzero rational scalar m, and also under
automorphisms of V that preserve q.

Furthermore, the discriminant of the pair (𝑄, 𝐿) is the same as the determinant of the Gram matrix
of Q with respect to a Z-basis of L, as the discriminant of Q is nothing but the inverse of the determinant
of the matrix D in the singular value decomposition (8.1).

8.5. Statement of result

Proposition 8.4. Let V be an n-dimensionalQ-vector space. Let 𝑞 : 𝑉 → Q be an anisotropic quadratic
form. Let 𝐿 ⊂ 𝑉 be a lattice. Let 𝑄 : 𝑉R → R be a positive-definite quadratic form. Let 𝜆1 ≤ · · · ≤ 𝜆𝑛
denote the successive minima of Q on L (see Definition 6.1). Let 𝐶, 𝑁,Δ denote the content, level and
discriminant of the pair (𝑄, 𝐿). Then,

(i) 𝜆1 ≥ 𝐶1/2,
(ii) 𝜆1 · · · 𝜆𝑛  Δ1/2 and

(iii) 𝜆1 · · · 𝜆𝑛−1 � (Δ/𝑁)1/2.

In particular, for 𝑛 = 3, we have for all 𝑋 > 0 that

|{𝑣 ∈ 𝐿 : 𝑄(𝑣) ≤ 𝑋2}| � 1 + 𝑋
√
𝐶
+ 𝑋2√

Δ/𝑁
+ 𝑋3
√
Δ
.

Remark 8.5. This last estimate is scale-invariant in the sense that replacing (𝑄, 𝐿) with (𝑄𝑚, 𝑚𝐿) for
a positive rational scalar m has no effect on the right-hand side. This feature is not surprising in view
of the multiplication-by-m bijection {𝑣 ∈ 𝐿 : 𝑄(𝑣) ≤ 𝑋2} � {𝑣 ∈ 𝑚𝐿 : 𝑄𝑚(𝑣) ≤ 𝑋2}. The estimate
is likewise invariant under replacing (𝑄, 𝑋) by (𝑄𝑚, 𝑋/𝑚2) for some nonzero real number m, as one
might expect for similar reasons.

Proof. We follow the basic strategy of Blomer–Michel [BM13, §3, §4], who established the corre-
sponding result for q positive-definite and 𝑄 = 𝑞.

Let v be a nonzero element of L. Since L is anisotropic, we have 𝑞(𝑣) ≠ 0. Let 𝐶𝑄, 𝐶𝐿 denote the
content of Q, respectively L. By the definition of the content, we have 𝐶𝐿 |𝑞(𝑣) and 𝑄 ≥ 𝐶𝑄 |𝑞 |. Thus,
𝑄(𝑣) ≥ 𝐶𝑄 |𝑞(𝑣) | ≥ 𝐶𝑄𝐶𝐿 = 𝐶, giving Claim (i).

By Lemma 6.3, we may find a basis 𝑒1, . . . , 𝑒𝑛 of L so that the submodules 𝐿𝑚 �
∑

𝑗≤𝑚 Z𝑒 𝑗 have
covolume  

∏
𝑗≤𝑚 𝜆 𝑗 in their real span, with volume defined using the restriction of Q. On the other

hand, that covolume is the square root of the Gram determinant of Q on 𝐿𝑚. Write det(𝑄, 𝐿𝑚) and
det(𝑞, 𝐿𝑚) for the respective Gram determinants of Q and q. Then∏

𝑗≤𝑚
𝜆 𝑗  det(𝑄, 𝐿𝑚)

1
2 . (8.3)

Since det(𝑄, 𝐿𝑛) = Δ by the remark in §8.4, the case 𝑚 = 𝑛 of this estimate gives Claim (ii).
For the proof of Claim (iii), observe first that in view of Claim (ii), it is equivalent to check that

𝜆𝑛 � (𝑁𝐿𝑁𝑄)1/2, where 𝑁𝐿 , respectively 𝑁𝑄, is the level of L, respectively Q. To that end, write
𝑃 = 𝐴𝑡 𝐴 and 𝑆 = 𝐴𝑡𝐷𝐴 for the matrices of Q and q, as in §8.2, and consider the final matrix entry
(𝑃−1)𝑛𝑛 of the inverse of P. Cramer’s rule expresses (𝑃−1)𝑛𝑛 = det(𝑄, 𝐿𝑛−1)/det(𝑄, 𝐿𝑛), so by the
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cases 𝑚 = 𝑛 − 1, 𝑛 of Equation (8.3), we have (𝑃−1)𝑛𝑛  1/𝜆2
𝑛. On the other hand, since 𝑁𝑄 bounds the

operator norm of 𝐷−1, we have

| (𝑆−1)𝑛𝑛 | = | 〈𝐴−𝑡𝑒𝑛, 𝐷−1𝐴−𝑡𝑒𝑛〉 | ≤ 𝑁𝑄 〈𝐴−𝑡𝑒𝑛, 𝐴−𝑡𝑒𝑛〉 = 𝑁𝑄 (𝑃−1)𝑛𝑛.

Cramer’s rule likewise expresses (𝑆−1)𝑛𝑛 = det(𝑞, 𝐿𝑛−1)/det(𝑞, 𝐿𝑛) as a ratio of Gram determinants.
Since q is anisotropic, both determinants are nonzero. Since 2𝑁𝐿 (𝑆−1)𝑛𝑛 ∈ Z, it follows that 1/(2𝑁𝐿) ≤
|(𝑆−1)𝑛𝑛 |. Thus, 1/𝜆2

𝑛  (𝑃−1)𝑛𝑛 ≥ 1/(2𝑁𝐿𝑁𝑄), giving the required estimate. �

9. Type I estimates

The local computations of Section §7, together with the behavior of invariants under duality recorded
in §8.2, imply that the elementary divisors of the Gram matrix of the reduced trace form on 𝑔−1𝑅(ℓ)0𝑔
are given by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1
ℓ ,

𝑑𝐵𝑁
ℓ2 , 2𝑑𝐵𝑁

ℓ

)
, 2 � 𝑑𝐵𝑁,(

2
ℓ ,

𝑑𝐵𝑁
ℓ2 , 𝑑𝐵𝑁ℓ

)
, 2|𝑑𝐵𝑁, 2 � ℓ,(

1
ℓ ,

𝑑𝐵𝑁
ℓ2 , 𝑑𝐵𝑁2ℓ

)
, 2|𝑑𝐵𝑁, 2|ℓ.

(9.1)

Hence, the content, level and discriminant of 𝑔−1𝑅(ℓ)0𝑔 with respect to the reduced norm are comparable
to 1/ℓ, 𝑑𝐵𝑁/ℓ and (𝑑𝐵𝑁)2/ℓ4 respectively. Here, ‘comparable to’ means the ratios are bounded from
above and below by positive constants. Suppose that the reduced norm on R is anisotropic. In this case,
we wish to apply Proposition 8.4 to the lattice 𝑔−1𝑅(ℓ)0𝑔 with q given by the reduced norm. Recall the
notation P, u and X from Equation (5.1). As a first choice, we let 𝑄 = 𝑃 + 𝛿−1𝑢, whose content, level
and discriminant are comparable to 1, 𝛿−1 and 𝛿−2, respectively. This yields that the first successive
minima of 𝑔−1𝑅(ℓ)0𝑔 with respect to 𝑃 + 𝛿−1𝑢 is � ℓ−

1
2 , and hence also with respect to Ω(𝛿, 1) ∩ 𝐵0

∞.
Furthermore,

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 𝑇) | ≺ 1 + ℓ
1
2𝑇 + ℓ

3
2 𝛿

1
2

(𝑑𝐵𝑁)
1
2
𝑇2 + ℓ2𝛿

𝑑𝐵𝑁
𝑇3.

This proves the first half of Theorem 2.5. Similarly, we have for the choice 𝑄 = 𝑃 + 𝛿−1 |𝑋 |2 that
the content, level and discriminant Q are comparable to 1, 𝛿−1 and 𝛿−1, respectively. Thus, the first
successive minima of 𝑔−1𝑅(ℓ)0𝑔 with respect to Ψ(𝛿, 1) ∩ 𝐵0

∞ is � ℓ−
1
2 and

|𝑔−1𝑅(ℓ)0𝑔 ∩ Ψ(𝛿, 𝑇) | ≺ 1 + ℓ
1
2𝑇 + ℓ

3
2

(𝑑𝐵𝑁)
1
2
𝑇2 + ℓ2𝛿

1
2

𝑑𝐵𝑁
𝑇3,

which is the second half of Theorem 2.5.
We now turn to the case that the quaternion algebra B is split. Here, we proceed in a more ad

hoc manner. First, we note that 𝑅(ℓ)0 is normalized by the Atkin–Lehner operators. Thus, we need
only consider 𝑔 ∈ 𝐺 (R) such that 𝑔 · 𝑖 = 𝑥 + 𝑖𝑦 has maximal imaginary part under the action of the
Atkin–Lehner operators. In particular, we have 𝐻 (𝑔) = 𝑦. Let 𝜆1 ≤ 𝜆2 ≤ 𝜆3 be the successive minima
(Definition 6.1) of the closed convex 0-symmetric set Ω(𝛿, 1)∩𝐵0

∞ with respect to the lattice 𝑔−1𝑅(ℓ)0𝑔.
Since Ω(𝛿, 1) is both left and right 𝐾∞-invariant, we may further assume that 𝑔 =

( 1 𝑥
1
)

diag(𝑦 1
2 , 𝑦−

1
2 ).

By Lemma 6.4, we have

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 𝑇) | = |𝑔−1𝑅(ℓ)0𝑔 ∩ 𝑇Ω(𝛿, 1) |  1 + 𝑇

𝜆1
+ 𝑇2

𝜆1𝜆2
+ 𝑇3

𝜆1𝜆2𝜆3
.
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Let 𝛽0 =
(
𝑎 𝑏
𝑐 −𝑎

)
∈ 𝑅(ℓ)0, thus 𝑎 ∈ Z, 𝑏 ∈ 1

ℓZ, 𝑐 ∈
𝑁
ℓ Z. Let

𝛼0 = 𝑔−1𝛽0𝑔 =

(
𝑎 − 𝑐𝑥 1

𝑦 (2𝑎𝑥 + 𝑏 − 𝑐𝑥2)
𝑐𝑦 𝑐𝑥 − 𝑎

)
.

Suppose 𝛽0 ≠ 0. If (𝑎, 𝑐) ≠ (0, 0), then by Lemma 6.2 we have 𝑃(𝛼0) ≥ 1
2 |𝑐𝑧−𝑎 |2 ≥ 1

2ℓ . Otherwise, we
have 𝑢(𝛼0) = ( 𝑏𝑦 )

2 ≥ 1
2(ℓ𝑦)2 . Hence, we have 𝜆1 � min{ℓ− 1

2 , ℓ−1𝑦−1𝛿−
1
2 }. In order to get a lower bound

on 𝜆1𝜆2 and 𝜆1𝜆2𝜆3, we shall give an upper bound on |𝑔−1𝑅(ℓ)0𝑔∩Ω(𝛿, 𝑇) | along the lines of Harcos–
Templier [HT13]. First, we bound the number of choices of c by � 1 + ℓ𝑇

𝑁 𝑦 as |𝑐𝑦 | ≤ 𝑃(𝛼0)
1
2 ≤ 𝑇 . For

each such choice of c, the equation

1
𝑦2

��−𝑐𝑧2 + 2𝑎𝑧 + 𝑏
��2 = 𝑢(𝛼0) ≤ 𝛿𝑇2

defines a circle of radius 𝛿
1
2𝑇𝑦 and center 𝑐𝑧2 in which we need to count lattice points of the lattice

generated by 2𝑧 and 1
ℓ . This lattice has covolume 2𝑦/ℓ and first successive minima ≥ (ℓ𝑁)− 1

2 by Lemma
6.2. We may thus apply Lemma 6.5 to bound the number of (𝑎, 𝑏) by � 1 + ℓ

1
2 𝑁

1
2 𝛿

1
2𝑇𝑦 + ℓ𝛿𝑇2𝑦. We

obtain

𝑇2

𝜆1𝜆2
+ 𝑇3

𝜆1𝜆2𝜆3
�

(
1 + ℓ𝑇

𝑁𝑦

) (
1 + ℓ

1
2 𝑁

1
2 𝛿

1
2𝑇𝑦 + ℓ𝛿𝑇2𝑦

)
.

By letting T tend to ∞, it follows that 𝜆1𝜆2𝜆3 � 𝑁ℓ−2𝛿−1. By taking 𝑇 = 𝑁
1
2 /(ℓ𝛿) 1

2 , we obtain

1
𝜆1𝜆2

� ℓ𝛿

𝑁
+ ℓ

3
2 𝛿

1
2

𝑁
3
2 𝑦

+ ℓ𝛿𝑦 + ℓ
3
2 𝛿

1
2

𝑁
1
2
� ℓ

3
2 𝛿

1
2

𝑁
1
2
+ ℓ𝛿𝑦.

We thereby conclude the proof of the final case of Theorem 2.5.

10. Type II estimates

10.1. Bounds for representation numbers of binary quadratic forms

Lemma 10.1. Let M be a free Z-module of rank 2. Let 𝑞 : 𝑀 → Z be a nondegenerate integral binary
quadratic form. Let Q be a positive-definite quadratic form on 𝑀 ⊗ R such that |𝑞 | ≤ 𝑄. Let n be a
nonzero integer and let 𝑋 ≥ 1. Set

𝑆 � {𝛽 ∈ 𝑀 : 𝑞(𝛽) = 𝑛, 𝑄(𝛽) ≤ 𝑋2}.

Then,

|𝑆 | �𝜀 (𝑋 |𝑛|) 𝜀 .

Proof. We begin with a preliminary reduction. Suppose we can find a lattice 𝑀 ′ in 𝑀⊗Q that contains M
and on which theQ-bilinear extension of q is integral. It suffices then to verify the lemma after replacing
M with 𝑀 ′. Indeed, doing so enlarges the set S. In particular, we may assume that the quadratic form M
is primitive.

Suppose now that M is primitive and anisotropic. Without loss of generality, M is either positive-
definite or indefinite. By the form-ideal correspondence, we may assume then that M is an invertible

https://doi.org/10.1017/fmp.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.9


36 I. Khayutin, P. D. Nelson and R. S. Steiner

ideal of an order 𝔬 in a quadratic field, with q given by the element norm 𝜈 divided by the ideal norm
𝜈(𝑀) of M:

𝑞(𝛽) = 𝜈(𝛽)/𝜈(𝑀).

We will establish the estimate

|𝑆 | � log(2 + 𝑋2/|𝑛|)𝜏(𝑛), (10.1)

which suffices in view of the divisor bound. Let 𝔬max denote the maximal order in the quadratic field
containing 𝔬. For each 𝛽 ∈ 𝑆, the 𝔬-ideal 𝑀−1𝛽 has norm |𝑛|, as does the 𝔬max-ideal 𝔬max𝑀

−1𝛽. The
number of 𝔬max-ideals of norm |𝑛| is at most 𝜏(𝑛). Suppose two elements 𝛽0, 𝛽 ∈ 𝑆 give rise to the
same 𝔬max-ideal. Then, 𝛽/𝛽0 is a norm one unit in 𝔬×max. The required estimate follows in the imaginary
quadratic case (without the logarithmic factor) because |𝔬×max | ≤ 6. In the real quadratic case, we fix a
positive generator 𝜂 for the group � Z of non-root-of-unity norm one units in 𝔬max and write 𝛽 = ±𝛽0𝜂

ℓ

for some ℓ ∈ Z. It will suffice then to verify that ℓ � log(2+ 𝑋2/|𝑛|). To that end, we estimate 𝑞(𝛽0 + 𝛽)
in two ways. On the one hand, the triangle inequality for the Euclidean norm defined by Q gives the
upper bound |𝑞(𝛽0 + 𝛽) | ≤ 𝑄(𝛽0 + 𝛽) � 𝑄(𝛽0) +𝑄(𝛽) � 𝑋2. On the other hand, the multiplicativity
of 𝜈 gives the identity 𝑞(𝛽0 + 𝛽) = 𝑛𝜈(1± 𝜂ℓ ). The lower bound 𝜈(1± 𝜂ℓ) ≥ 1

4 · 1.618ℓ for fundamental
units now yields the required estimate for ℓ.

It remains to consider the case that M is isotropic and q nondegenerate. In that case, after applying
our preliminary reduction to enlarge M if necessary, we may assume that 𝑀 = Z2 and 𝑞(𝑥, 𝑦) = 𝑥𝑦.
Indeed, we may choose a basis 𝑒1, 𝑒2 for M with 𝑒1 isotropic. Then, q is given with respect to the
coordinates 𝑥𝑒1 + 𝑦𝑒2 by 𝑞(𝑥, 𝑦) = 𝑎𝑥𝑦 + 𝑏𝑦2 for some 𝑎, 𝑏 ∈ Z, with 𝑎 ≠ 0. Then 𝑞( 𝑥−𝑏𝑦𝑎 , 𝑦) = 𝑥𝑦 and
𝑀 ⊆ 𝑀 ′ := { 𝑥−𝑏𝑦𝑎 𝑒1 + 𝑦𝑒2 : 𝑥, 𝑦 ∈ Z}, so (𝑀 ′, 𝑞) gives the required enlargement. Now, since 𝑛 ≠ 0,
the divisor bound gives |𝑆 | = 2𝜏(𝑛) �𝜀 |𝑛|𝜀 . �

10.2. Local quaternionic preliminaries

Let B be a quaternion algebra over the rationals. We write 𝑑𝐵 for its reduced discriminant and q for its
reduced norm.

10.2.1. Non-Archimedean preliminaries
Let 𝑅 ⊂ 𝐵 be an Eichler order of level N, with N coprime to 𝑑𝐵.

Lemma 10.2. For 𝑥, 𝑦 ∈ 𝑅(ℓ)0, we have [𝑥, 𝑦] ∈ 1
ℓ 𝑅

0 and 𝑞([𝑥, 𝑦]) ∈ 𝑑𝐵𝑁
ℓ3 Z.

Proof. This follows from the local computations in Lemma 7.4 together with the fact that the trace of a
commutator is zero. �

10.2.2. Archimedean preliminaries
Recall the notation ‘Ω’ from §2.4.4 and ‘P’ from Equation (5.1).

Lemma 10.3. For 0 < 𝛿 ≤ 1 and 𝑥, 𝑦 ∈ Ω(𝛿, 𝑇), we have

𝑞([𝑥, 𝑦]) � 𝛿𝑇4

and

𝑃([𝑥, 𝑦]) � 𝛿𝑇4.

Proof. For 𝛿 = 1, the required estimates reduce via homogeneity to the compactness of the unit ball
and the continuity of multiplication. We turn to the case 0 < 𝛿 < 1. We embed 𝐵∞ ↩→ Mat2×2(C) by
i ↦→

(
𝑖 0
0 −𝑖

)
, j ↦→

( 0 1
±1 0

)
. Then, P is asymptotic to the restriction of the squared Euclidean norm on the
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matrix entries, while q is the restriction of the determinant. We may assume that 𝑥 = [𝑎1, 𝑏1, 𝑐1] and
𝑦 = [𝑎2, 𝑏2, 𝑐2] are nonzero. We may assume (by the known 𝛿 = 1 case) that 𝛿 is sufficiently small. The
required conclusion then reduces via homogeneity to the following assertion: The commutator of any
two matrices of the form (

𝑎1𝑖 𝑂 (𝛿1/2)
𝑂 (𝛿1/2) −𝑎1𝑖

)
and

(
𝑎2𝑖 𝑂 (𝛿1/2)

𝑂 (𝛿1/2) −𝑎2𝑖

)
is of the form

(
𝑂 (𝛿) 𝑂 (𝛿1/2)
𝑂 (𝛿1/2) 𝑂 (𝛿)

)
, and in particular has Euclidean norm 𝑂 (𝛿1/2) and determinant 𝑂 (𝛿).

Indeed, the product of any two matrices of the indicated form is readily computed to be of the form(
−𝑎1𝑎2+𝑂 (𝛿) 𝑂 (𝛿1/2)
𝑂 (𝛿1/2) −𝑎1𝑎2+𝑂 (𝛿)

)
, hence the commutator of two such matrices, being a difference of such

products, has the required form. �

10.3. The nonsplit case

We retain the above setting and further assume that B is nonsplit and that the level N of the Eichler order
R is squarefree.

The following estimate is, in some sense, the most intricate one in the paper. It requires us to bound
certain matrix counts in the critical range (see Remark 10.5 below) by essentially 𝑂 (1), uniformly in
the discriminant and level. To achieve such uniformity seems to require the delicate argument involving
commutators recorded below.

Proposition 10.4. Let n be a nonzero integer, let 0 < 𝛿 ≤ 1 and let 𝑇 ≥ ℓ−
1
2 . Then the set

𝑆 � 𝑅(ℓ)0 ∩Ω(𝛿, 𝑇) ∩ 𝑞−1 ({𝑛}) has cardinality

|𝑆 | �𝜀 (ℓ𝑇) 𝜀𝜏(𝑑𝐵𝑁)
(
1 + ℓ2

𝑑𝐵𝑁
min

{
𝛿

1
2𝑇2,

𝛿𝑇4

|𝑛|

})
.

Remark 10.5. The critical range is when 𝑛  𝑇2  𝑑𝐵𝑁 (1 + 𝑘)/ℓ2 and 𝛿  (1 + 𝑘)−1; in that range, we
obtain |𝑆 | �𝜀 (𝑑𝐵𝑁 (1 + 𝑘)) 𝜀 .

Proof. Suppose S is not empty, and let 𝛾1, 𝛾2 ∈ 𝑆. Our strategy will be to bound for each 𝛾1 the number
of possibilities for 𝛾2.

Set 𝛽 � [𝛾1, 𝛾2] ∈ 1
ℓ 𝑅

0 and 𝑎 � tr(𝛾1𝛾2) ∈ 1
ℓZ. Then, 2𝛾1𝛾2 = 𝑎+ 𝛽, 4𝑛2 = 𝑎2+𝑞(𝛽). In particular,

𝛾2 = (𝑎 + 𝛽)/2𝛾1, so it suffices to bound the number of possibilities for a and 𝛽.
Lemmas 10.2 and 10.3 give 𝑞(𝛽) � 𝛿𝑇4 and 𝑞(𝛽) ∈ 𝑑𝐵𝑁

ℓ3 Z, that is,

𝑎2 = 4𝑛2 +𝑂 (𝛿𝑇4),

𝑎2 ≡ 4𝑛2 ( 𝑑𝐵𝑁
ℓ3 ),

thus

𝑎 = ±2𝑛 +𝑂

(
min

{
𝛿

1
2𝑇2,

𝛿𝑇4

|𝑛|

})
,

𝑎 ≡ 𝑎0 ( 𝑑𝐵𝑁
ℓ2 )

for some sign ± and some residue class 𝑎0 modulo 𝑑𝐵𝑁/ℓ2 with 𝑎2
0 ≡ 4𝑛2 ( 𝑑𝐵𝑁

ℓ2 ). Since 𝑑𝐵𝑁 is
squarefree, there are at most 𝜏(𝑑𝐵𝑁) such classes. For each 𝑎0, the number of possibilities for a is
𝑂 (1 + (ℓ2/𝑑𝐵𝑁) · min{𝛿 1

2𝑇2, 𝛿𝑇4/|𝑛|}).
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We now bound for each a the number of possibilities for 𝛽. Let M denote the orthogonal complement
in 1

ℓ 𝑅
0 of 𝛾1, thus 𝑀 = {𝛾 ∈ 1

ℓ 𝑅
0 : tr(𝛾𝛾1) = 0}. By restricting q to M, we obtain an integral binary

quadratic form. Since B is nonsplit, M is anisotropic. Since tr(𝛾1𝛾2𝛾1) = tr(𝛾2𝛾1𝛾1), we have 𝛽 ∈ 𝑀 .
From Lemma 10.3, we obtain 𝑃(𝛽) � 𝑇4. Thus, 𝛽 satisfies the system

𝛽 ∈ 𝑀, 𝑞(𝛽) = 4𝑛2 − 𝑎2, 𝑃(𝛽) � 𝑇4.

Since 𝑞(𝑀) ⊆ 1
ℓ2Z and 4𝑛2 − 𝑎2 � 𝛿𝑇4, we see by Lemma 10.1 that the number of possibilities for 𝛽

is �𝜀 (ℓ𝑇) 𝜀 .
By multiplying together the number of possibilities for ±, 𝑎0, 𝑎 and 𝛽, we achieve the required

bound. �

10.4. Extension to the split case

Recall from §2.2, that we may assume our Eichler order of level N in the split quaternion algebra
𝐵 = Mat2×2(Q) to be of the shape 𝑔−1𝑅𝑔, where 𝑅 =

(
Z Z
𝑁Z Z

)
and 𝑔 ∈ 𝐺 (R). Our aim is to bound the

cardinality of the set

𝑆 � 𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿, 𝑇) ∩ det −1({𝑛}).

In the nonsplit case, we had verified that

|𝑆 | �𝜀 𝐶,

where

𝐶 � 1 + (ℓ𝑇) 𝜀𝜏(𝑑𝐵𝑁)
(
1 + ℓ2

𝑑𝐵𝑁
min

{
𝛿

1
2𝑇2,

𝛿𝑇4

|𝑛|

})
.

We extend this to the split case as follows.

Proposition 10.6. Let n be an integer. If −𝑛 is not a square, then |𝑆 | �𝜀 𝐶. If −𝑛 is a square, then
|𝑆 | �𝜀 𝐶 + 𝛿1/2𝑇ℓ𝐻 (𝑔), where H denotes the normalized height function defined in §2.2.

Proof. We proceed as in the original argument, aiming to bound for fixed 𝛾1 ∈ 𝑔𝑆𝑔−1 the number of
possible 𝛾2 ∈ 𝑔𝑆𝑔−1. As before, we write

𝛼 = tr(𝛾1𝛾2) = 𝛾1𝛾2 + 𝛾2𝛾1 ∈ 1
ℓZ,

𝛽 = [𝛾1, 𝛾2] = 𝛾1𝛾2 − 𝛾2𝛾1 ∈ 1
ℓ 𝑅

0 (10.2)

so that

2𝛾1𝛾2 = 𝛼 + 𝛽,

4𝑛2 = 𝑞(𝛾1𝛾2) = 𝛼2 + 𝑞(𝛽).

Since 𝛾1 = (𝛼+ 𝛽)/2𝛾2, it suffices to count the number of possible pairs (𝛼, 𝛽). The pairs with 𝑞(𝛽) ≠ 0
may be counted as before after noting that the restriction of q to the orthogonal complement of 𝛾1 is
nondegenerate. There are at most two pairs with 𝛽 = 0, since then 𝛼 = ±2𝑛. We thereby reduce to
counting the number of pairs for which

𝑞(𝛽) = 0, 𝛽 ≠ 0.
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Recall the notation of §4.3.1. We note that for each cusp 𝔞, we may and shall choose 𝜎𝔞 ∈ Γ0(𝑁)𝜏𝑡
for some 𝑡 |𝑁 . With this choice, we have

𝜎−1
𝔞 𝑅𝜎𝔞 =

(
Z 𝑤𝔞Z
𝑁
𝑤𝔞
Z Z

)
, (10.3)

where 𝑤𝔞 is the cusp width of the cusp 𝔞. This is easily verified locally. We further introduce the
following notation: For 𝔞 ∈ P1 (Z) and 𝜅 ∈ 𝐵0, we set 𝜅𝔞 � 𝜎−1

𝔞 𝜅𝜎𝔞 .
We observe, by Equation (10.2), that ℓ𝛽 is a nonzero element of 𝑅0 ⊆ Mat2×2(Z)0. There is thus a

unique (up to sign) primitive element 𝛽0 of Mat2×2 (Z)0 that generates Qℓ𝛽∩Mat2×2(Z)0. We then have
𝛽 ∈ 1

ℓZ𝛽0.
We may and shall choose 𝔞 so that 𝛽𝔞0 =

( 0 ±1
0 0

)
. Note that 𝛽 (equivalently, 𝛽0) is orthogonal not only

to 𝛾1 (as was used in the original argument), but also to 𝛾2. From this, we deduce that

𝛾𝔞2 =

(
𝑎 𝑏
0 −𝑎

)
for some 𝑎 ∈ Z and 𝑏 ∈ 1

ℓZ. We have 𝑛 = 𝑞(𝛾2) = −𝑎2, which shows that −𝑛 must be a square and also
that there are at most two possibilities for a. It remains to verify that the number of possibilities for b is
𝑂 (1 + 𝛿1/2𝑇ℓ𝐻 (𝑔)). We will show in fact that the number of b is

𝑂 (1 + 𝛿1/2𝑇ℓ𝑦𝔞/𝑤𝔞),

where 𝜎−1
𝔞 𝑧 = 𝑧𝔞 = 𝑥𝔞 + 𝑖𝑦𝔞 . To see this, observe first that the condition 𝛾2 ∈ 𝑅(ℓ)0 ⊆ 1

ℓ 𝑅
0 ⇔ 𝛾𝔞2 ∈

𝜎−1
𝔞 𝑅(ℓ)0𝜎𝔞 ⊆ 1

ℓ𝜎
−1
𝔞 𝑅0𝜎𝔞 yields the congruence 𝑏 ≡ 0 ( 𝑤𝔞

ℓ ); see Equation (10.3). The condition
𝛾2 ∈ 𝑔Ω(𝛿, 𝑇)𝑔−1 may be restated as

𝛾𝔞2 ∈ 𝜎−1
𝔞 𝑔Ω(𝛿, 𝑇) (𝜎−1

𝔞 𝑔)−1.

Let 𝑔′ be an upper-triangular element of 𝐺 (R) for which 𝑔′ · 𝑖 = 𝜎−1
𝔞 𝑔𝑖 = 𝜎−1

𝔞 𝑧 = 𝑧𝔞 . Then, by the 𝐾∞
invariance of Ω(𝛿, 𝑇) on the left and right, we have 𝛾𝔞2 ∈ 𝑔′Ω(𝛿, 𝑇) (𝑔′)−1. We compute

(𝑔′)−1𝛾𝔞2𝑔
′ =

(
𝑎 𝑦−1

𝔞 (𝑏 + 2𝑎𝑥𝔞)
0 −𝑎

)
∈ Ω(𝛿, 𝑇).

This last condition forces b to lie in an interval of length 𝑂 (𝛿1/2𝑇𝑦𝔞). We thereby obtain the required
bound for the number of possible b’s. �

10.5. Proof of Theorem 2.6

We may split the set Ω(𝛿, 𝑇) into Ω(1/16, 4𝛿 1
2𝑇) and the dyadic sets which are comprised of the

elements [𝑎, 𝑏, 𝑐] + 𝑑 ∈ 𝐵∞ for which

1
2𝛿 𝑗𝑇

2 ≤ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 ≤ 𝛿 𝑗𝑇
2, 𝑏2 + 𝑐2 ≤ 𝛿𝑇2,

for some 16𝛿 ≤ 𝛿 𝑗 ≤ 1. We note that these are contained in Ω(𝛿𝛿−1
𝑗 , 𝛿

1
2
𝑗 𝑇). In order for the dyadic

sets to contain an element of trace 0 and norm n, one must have |𝑛|  𝑎2  𝛿 𝑗𝑇
2. Hence, if we apply

Propositions 10.4 and 10.6, we get

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω(𝛿𝛿−1
𝑗 , 𝛿

1
2
𝑗 𝑇) ∩ det −1({𝑛}) | ≺ 1 + ℓ𝛿

1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2,
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where we used |𝑛|  𝛿 𝑗𝑇
2, and

|𝑔−1𝑅(ℓ)0𝑔 ∩Ω( 1
16 , 4𝛿

1
2𝑇) ∩ det −1({𝑛}) | ≺ 1 + ℓ𝛿

1
2 𝐻 (𝑔)𝑇 + ℓ2

𝑑𝐵𝑁
𝛿𝑇2.

If 𝛿 happens to be very small, say, if 𝛿 ≤ (16𝑑𝐵𝑁𝑇2)−1, then it suffices to consider only 𝛿 𝑗 ≥ (𝑑𝐵𝑁𝑇2)−1

and the final set Ω(𝛿𝑑𝐵𝑁𝑇2, (𝑑𝐵𝑁)−
1
2 ). This avoids a factor 𝛿−𝑜 (1) for a too small 𝛿. We conclude

Theorem 2.6.

A. The theta lift

In this section, we use the theta correspondence for the reductive dual pair (Odet, SL2) to derive the
necessary properties of the theta kernels in use. The group Odet is the affine algebraic group over Q
representing the orthogonal group of (𝐵, det). Recall that G is the linear algebraic group defined over
Q satisfying 𝐺 (𝐿) = 𝐿×\(𝐵 ⊗ 𝐿)× for any Q-algebra L. Denote by M the algebraic group representing
the functor

𝑀 (𝐿) = Δ (𝐿×)\
{
(𝑔1, 𝑔2) ∈ (𝐵 ⊗ 𝐿)× × (𝐵 ⊗ 𝐿)× : det 𝑔1 = det 𝑔2

}
,

for any Q-algebra L. Then, M is defined over Q and it is isomorphic to the special orthogonal group
SOdet via the action (𝑔1, 𝑔2).𝑥 = 𝑔1𝑥𝑔

−1
2 . We also define the algebraic group 𝐺 ′ over Q to be the simply

connected form of G, that is, 𝐺 ′(𝐿) = SL1(𝐵 ⊗ 𝐿) for any Q-algebra L. The natural map 𝐺 ′ ×𝐺 ′ → 𝑀
is an isogeny. The left-hand side is the simply connected form, that is, the Spin group, and the right-hand
side the adjoint one.

The determinant map provides two exact sequences

1 →
∏
𝑣≤∞

〈(𝐼,−𝐼)〉 → 𝑀 (A) 𝜄 (1)−−−→ (𝐺 × 𝐺) (A)
det( •• )−−−−−→

A×2\A
×
→ 1,

1 →
∏
𝑣≤∞

〈(−𝐼,−𝐼)〉 → (𝐺 ′ × 𝐺 ′) (A) 𝜄′−→ 𝑀 (A) det−−→
A×2\A

×
→ 1.

A.1. Restriction of automorphic representations

We would like to understand the behavior of irreducible cuspidal representation under pull-back by 𝜄(1)

and 𝜄′. We proceed to discuss some generalities that apply to these isogenies. Let H be a semisimple
algebraic group defined over Q, and fix a maximal compact open subgroup 𝐾 𝑓 =

∏
𝑣<∞ 𝐾𝑣 < 𝐻 (A 𝑓 ).

Let 𝐾∞ < 𝐻 (R) a maximal compact real subgroup and set 𝐾 = 𝐾∞𝐾 𝑓 . For an automorphic represen-
tation Π of 𝐻 (A), we denote by Π∞ ⊂ Π the dense subset of K-finite vectors. That is, every 𝑣 ∈ Π∞

is invariant under a finite-index subgroup of 𝐾 𝑓 and its 𝐾∞-orbit spans a finite-dimensional subspace.
Then, Π∞ is an admissible 𝐻 (A) representation.

Assume 𝚥 : 𝐻 ′ → 𝐻 is a homomorphism of algebraic groups satisfying the following conditions:

(i) ker 𝚥 is a finite central subgroup of 𝐻 ′,
(ii) � 𝚥 is a normal subgroup of H and coker 𝚥 is a finite abelian group.

(iii) 𝐻 (Q𝑝) = 𝐾𝑝 𝑗 (𝐻 ′(Q𝑝)) for almost all primes p.

In particular, the Lie algebras of H and 𝐻 ′ are isomorphic, hence 𝐻 ′ is semisimple. These assumptions
are satisfied when 𝚥 is an isogeny of semisimple algebraic groups and for the inclusion map SOdet → Odet.
The group 𝐻char = 𝐻 (Q)\𝐻 (A)/ 𝑗 (𝐻 ′(A)) is a compact abelian group, that is often infinite. In particular,
𝑗 (𝐻 ′(A))-orbits on [𝐻] can have measure zero and the operation of restricting a function in 𝐿2 ([𝐻])
to an orbit of 𝑗 (𝐻 ′(A)) is ill-defined. Nevertheless, we have the following.
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Lemma A.1. The pullback 𝚥∗ : Res𝐻 (A)
𝐻 ′ (A) 𝐿

2 ([𝐻])∞ → 𝐿2 ([𝐻 ′])∞ is a well-defined operator that re-
stricts to an intertwining operator of the cuspidal spectrum 𝚥∗ : Res𝐻 (A)

𝐻 ′ (A) 𝐿
2
cusp ([𝐻])∞ → 𝐿2

cusp ([𝐻 ′])∞.
Moreover, 𝑓 ∈ 𝐿2 ([𝐻])∞ is cuspidal if and only if for any class [ℎ] ∈ 𝐻char, the vector 𝚥∗𝑅ℎ 𝑓 is cuspi-
dal for some representative ℎ ∈ [ℎ] ⊂ 𝐻 (A).

Remark. Notice that 𝚥∗ does not preserve inner products.

Proof. Restricting to a 𝑗 (𝐻 ′(A))-orbit is a well-defined operation on 𝐿2 ([𝐻])∞ because every vector
𝑣0 ∈ 𝐿2 ([𝐻])∞ is invariant under some compact-open subgoup 𝐾0 < 𝐻 (A 𝑓 ) and 𝐻char/𝐾0 is finite.
We now show that the 𝐿2-norm of 𝚥∗𝑣0 is finite. The push-forward of the probability Haar measure on
[𝐻] to 𝐻char is invariant under the action of 𝐻 (A), hence it is the probability Haar measure on 𝐻char. If
we disintegrate the Haar measure on [𝐻] under the factor map [𝐻] → 𝐻char, then the atoms are exactly
the 𝚥 (𝐻 ′(A))-orbits and the conditional measure on a.e. atom is 𝚥 (𝐻 ′(A))-invariant, hence it is the
push-forward of the probability Haar measure on [𝐻 ′] to the atom. We can now deduce that

‖𝑣0‖2
2 = |𝐻char/𝐾0 |−1

∑
ℎ∈𝐻char/𝐾0

‖ 𝚥∗(𝑅ℎ𝑣0)‖2
2, [𝐻 ′ ] .

Hence, ‖ 𝚥∗(𝑣0)‖2, [𝐻 ′ ] ≤
√
|𝐻char/𝐾0 |‖𝑣0‖2 < ∞.

We show next that the image of a cuspidal vector is cuspidal. Fix 𝑣0 ∈ 𝐿2 ([𝐻])∞. Let 𝑃 < 𝐻 ′ be
a parabolic subgroup defined over Q, and let 𝑁𝑃 be its unipotent radical. The kernel ker 𝚥 is a central
subgroup, hence it is diagonalizable and its intersection with 𝑁𝑃 is trivial. Then, 𝚥�𝑁𝑃 is an isomorphism
onto its image 𝑁�̃� , which is the unipotent radical of a parabolic �̃� < 𝐻. Specifically, �̃� is the parabolic
associated to the same root data as P. For every 𝑔 ∈ 𝐻 ′(A), we have, writing 𝑐𝑃 and 𝑐 �̃� for the maps
assigning to a function its corresponding constant term,

𝑐𝑃 𝚥∗𝑣0(𝑔) =
∫
[𝑁𝑃 ]

𝚥∗(𝑣0) (𝑛𝑔) d𝑛 =
∫
[𝑁�̃� ]

𝑣0 (𝑛 𝚥 (𝑔)) d𝑛 = 𝑐 �̃�𝑣0 ( 𝚥 (𝑔)).

Hence, the constant term of the push-forward of a cuspidal vector vanishes. This formula also establishes
the last claim. �

Next, we describe the transformation of the Haar measure. If 𝐾 < 𝐻 (A) is a compact subgroup, we
denote by [𝐻]𝐾 the double quotient 𝐻 (Q)\𝐻 (A)/𝐾 .

Lemma A.2. Fix compact open subgroups 𝐾 ′
𝑓 < 𝐻 ′(A 𝑓 ) and 𝐾 𝑓 < 𝐻 (A 𝑓 ) satisfying 𝚥−1(𝐾 𝑓 ) = 𝐾 ′

𝑓 .
Assume the following conditions:

(i) 𝐻char/𝐾 𝑓 = 1.
(ii) The preimage of 𝐾 𝑓 mod 𝚥 (𝐻 ′(A)) under the map coker 𝚥 (Q) → coker 𝚥 (A) is trivial.

(iii) ker 𝚥 �𝐻 ′ (A)< Z𝐻 ′ (Q) · 𝐾 ′
𝑓 .

Then, the induced map 𝚥 : [𝐻 ′]𝐾 ′
𝑓
→ [𝐻]𝐾 𝑓 is a homeomorphism and an isomorphism of Borel measure

spaces when each space is endowed with the respective probability Haar measure.

Proof. To show the map [𝐻 ′]𝐾 ′
𝑓
→ [𝐻]𝐾 𝑓 is surjective, we need to find for every 𝑥 ∈ 𝐻 (A) elements

𝛾 ∈ 𝐻 (Q), 𝑘 ∈ 𝐾 𝑓 and 𝑥 ′ ∈ 𝐻 ′(A) such that 𝑥 = 𝛾 𝚥 (𝑥 ′)𝑘 . Equivalently, we need the class of
[𝛾−1𝑥𝑘−1] = [𝑥𝑘−1] in 𝐻char to be trivial and this follows from the assumption that 𝐻char/𝐾 𝑓 = 1.

To verify the map is injective, we consider 𝑥 ′1, 𝑥
′
2 ∈ 𝐻 ′(A) satisfying 𝚥 (𝑥 ′1) = 𝛾 𝚥 (𝑥 ′2)𝑘 , with 𝛾 ∈ 𝐻 (Q)

and 𝑘 ∈ 𝐾 𝑓 . We first demonstrate that 𝛾 ∈ 𝚥 (𝐻 ′(Q)). Because 𝛾 = 𝚥 (𝑥 ′1,∞)𝑘
−1 𝚥 (𝑥 ′2,∞

−1) and coker 𝚥
is abelian, we see that the class of 𝛾 in coker 𝚥 (A) = 𝚥 (𝐻 ′(A))\𝐻 (A) is the same as the class of k.
The second assumption then implies that the class of 𝛾 in coker 𝚥 (Q) = 𝚥 (𝐻 ′(Q))\𝐻 (Q) is trivial as
claimed. Hence, 𝛾 = 𝚥 (𝛾0) for some 𝛾0 ∈ 𝐻 ′(Q). We can now write 𝑘 = 𝚥 (𝑥 ′2

−1𝛾−1
0 𝑥 ′1) ∈ 𝚥 (𝐻 ′(A))∩𝐾 𝑓 .

Because we assumed 𝚥−1(𝐾 𝑓 ) = 𝐾 ′
𝑓 , we can write 𝑘 = 𝚥 (𝑘 ′) for 𝑘 ′ ∈ 𝐾 ′

𝑓 and 𝚥 (𝑥 ′1
−1𝛾0𝑥

′
2𝑘

′) = 1.
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Thus, 𝑥 ′1
−1𝛾0𝑥

′
2𝑘

′ = 𝑧𝑘 ′0 for some z in the center of 𝐻 ′(Q) and 𝑘 ′0 ∈ 𝐾 ′
𝑓 . Because the center of 𝐻 ′(Q)

is contained in the center of 𝐻 ′(A), we deduce 𝑥 ′1 = 𝑧−1𝛾0𝑥
′
2𝑘

′𝑘 ′0
−1 ∈ 𝐻 ′(Q)𝑥 ′2𝐾

′
𝑓 as required.

We have established that 𝚥 : [𝐻 ′]𝐾 ′
𝑓
→ [𝐻]𝐾 𝑓 is a continuous bijection. It is a homeomorphism

because it is also a smooth function between two real manifolds with everywhere nonvanishing differ-
ential. The probability Haar measure on [𝐻]𝐾 𝑓 is the unique 𝐻 (R)-invariant Borel probability measure
that gives equal mass to each of the finitely many 𝐻 (R)-orbits. The same holds for [𝐻 ′]𝐾 ′

𝑓
and 𝐻 ′(R).

Using this characterization, it is easy to check that the push-forward of the probability Haar measure
from [𝐻]𝐾 𝑓 to [𝐻 ′]𝐾 ′

𝑓
under 𝚥−1 is the probability Haar measure. �

A.2. The theta transfer

We now revert to our setting of interest, as described at the start of §A. Recall that 𝑅 ⊂ 𝐵 is an Eichler
order. For a finite rational place v, we define 𝑅𝑣 = 𝑅 ⊗Z Z𝑣 and 𝐾𝑅𝑣 = 𝑅×𝑣 . Define 𝐾𝑅𝑣 to be the image
of �̃�𝑅𝑣 under the map 𝐵×𝑣 → 𝐺 (Q𝑣 ). Finally, set 𝐾𝑅 =

∏
𝑣<∞ 𝐾𝑅𝑣 , 𝐾𝑅 =

∏
𝑣<∞ 𝐾𝑅𝑣 , and let 𝐾𝑀

denote the preimage of 𝐾𝑅 × 𝐾𝑅 under 𝜄(1) . Then, 𝐾𝑅 is a compact and open subgroup of 𝐺 (A 𝑓 ). We
also assume that R is of squarefree level N (see §2.1).

We verify now that the hypotheses of Lemma A.2 hold for both of the maps

𝐺 ′ × 𝐺 ′ 𝜄′−→ 𝑀
𝜄 (1)−−−→ 𝐺 × 𝐺.

Indeed:
(i) We have det

( •
•
)
(𝐾𝑅 × 𝐾𝑅) = Ẑ× and det (𝐾𝑀 ) = Ẑ×. Because Q×A×2\A×/Ẑ× � 1 the equality

(𝐺 × 𝐺)char/(𝐾𝑅 × 𝐾𝑅) = 𝑀char/𝐾𝑀 = 1 holds.
(ii) This condition is easy to verify by applying the maps det

( •
•
)

and det, and the fact that a rational
number is a square if and only if it is positive and has even valuation at each finite place.

(iii) Consider the case 𝚥 = 𝜄(1) . The last condition can be checked locally at each finite place to see
that (𝐼,−𝐼)𝑣 ∈ (𝐾𝑅𝑣 × 𝐾𝑅𝑣 ) (1) for all 𝑣 < ∞. At the Archimedean place, we use the diagonal
embedding of (𝐼,−𝐼) in 𝑀 (A) to arrive at (𝐼,−𝐼)∞ ∈ 𝑍𝑀 (Q) · 𝐾𝑀 . The argument for 𝚥 = 𝜄′

follows mutatis mutandis.
Lemma A.2 now implies that the following maps are measure preserving homeomorphisms.

[𝐺 ′ × 𝐺 ′]𝐾 1
𝑅×𝐾

1
𝑅

𝜄′−→ [𝑀]𝐾𝑀

𝜄 (1)−−−→ [𝐺 × 𝐺]𝐾𝑅×𝐾𝑅
. (A.1)

We get isomorphisms of Hilbert spaces

𝐿2 ( [𝐺 ′ × 𝐺 ′])𝐾
1
𝑅×𝐾

1
𝑅

𝜄′∗←−−
∼

𝐿2 ([𝑀])𝐾𝑀
𝜄 (1)

∗

←−−−
∼

𝐿2 ( [𝐺 × 𝐺])𝐾𝑅×𝐾𝑅 . (A.2)

By Lemma A.1, these restrict to isomorphisms of the respective spaces of cusp forms.
Set 𝑈0 (𝑝𝑛) =

(
Z𝑝 Z𝑝
𝑝𝑛Z𝑝 Z𝑝

)
∩ GL2 (Z𝑝) – a compact and open subgroup of GL2(Q𝑝). Let

�̃�𝑅 =
∏

𝑝 �̃�𝑝 < GL2 (A 𝑓 ) to be defined by �̃�𝑝 = 𝑈0 (1) = GL2(Z𝑝) for all primes p where G is unram-
ified and 𝑅𝑝 is maximal. If G ramifies at p or 𝑅𝑝 is not maximal, then define �̃�𝑝 = �̃�0(𝑝). Note that
we assume that R has squarefree level. Finally, set 𝑈1

𝑅 = �̃�𝑅 ∩ SL2(A 𝑓 ) and let 𝑈𝑅 be the projection of
�̃�𝑅 to PGL2(A 𝑓 ). Similarly to the previous discussion, the natural map 𝜄0 : [SL2]𝑈1

𝑅
→ [PGL2]𝑈𝑅 is a

homeomorphism that sends the probability Haar measure on the left-hand side to the probability Haar
measure on the right-hand side. This induces an isomorphism of Hilbert spaces

𝐿2 ([SL2])𝑈
1
𝑅

𝜄∗0←−
∼

𝐿2 ([PGL2])𝑈𝑅 , (A.3)

that descends to an isomorphism of the cuspidal subspaces.
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Recall that 𝐵𝑝 = 𝐵 ⊗ Q𝑝 . We also denote 𝐵∞ � 𝐵 ⊗ R. We denote by 𝜌 the Weil representation
of the reductive dual pair (Odet, SL2) associated to the quadratic space (𝐵, det). We refrain at the
moment from specifying the exact space of test functions on 𝐵A � 𝐵∞ ×

∏′
𝑝 𝐵𝑝 on which we let 𝜌

act. If Φ : 𝐵A → C is a test function, then the group 𝑀 (A) � SOdet acts by determinant preserving
transformations, 𝜌(𝑙, 𝑟; 𝑒).Φ(𝑥) = Φ(𝑙−1𝑥𝑟) and the action of the group SL2(A) is described in [Wei64,
Shi72]. Specifically, the definition of the SL2 (A)-action depends on a global character 𝜓 : Q\A → C.
We fix 𝜓 =

∏
𝑣 𝜓𝑣 with 𝜓𝑣 everywhere unramified and 𝜓∞(𝑥) = exp(2𝜋𝑖𝑥).

Let Φ =
∏

𝑣 Φ𝑣 : 𝐵A → C be a test function with Φ∞ : 𝐵∞ → C the Bergman test function from
[KS20, §6] or a Schwartz function. Assume for 𝑣 < ∞ that Φ𝑣 is Schwartz–Bruhat and that Φ𝑣 = 1𝑅𝑣

for almost all v. If Φ∞ is the Bergman test function, we let 𝜌 act on the space of functions defined in
[KS20, §3], otherwise we let 𝜌 act on the space of Schwartz–Bruhat functions as usual. The theta kernel
associated to Φ is the function ΘΦ : 𝑀 (A) × SL2 (A) → C defined by

ΘΦ (𝑙, 𝑟; 𝑠) =
∑
𝜉 ∈𝐵

(𝜌(𝑙, 𝑟; 𝑠).Φ) (𝜉). (A.4)

The series defining ΘΦ(𝑙, 𝑟; 𝑠) is absolutely convergent, [KS20, §3.6], and is of moderate growth on
𝑀 (A) × SL2(A), [RS75]. Moreover, it is 𝑀 (Q) × SL2(Q) invariant on the left, cf. [Wei64], [Shi72,
Proposition 1], [KS20, §3.6].

Definition A.3. Let 𝜑, 𝜑′ ∈ 𝐿2
cusp ([𝐺])∞ and 𝜑∗ ∈ 𝐿2

cusp ([SL2])∞. Fix a test function Φ as above.
Then, the theta transfer of 𝜑 ⊗ 𝜑′ and 𝜑∗ relative to Φ is defined by

(𝜑 ⊗ 𝜑′)Φ(𝑠) =
∫
[𝑀 ]

ΘΦ(𝑙, 𝑟; 𝑠)𝜑(𝑙)𝜑′(𝑟) d(𝑙, 𝑟)

=
∫
[𝑀 ]

ΘΦ(𝑙, 𝑟; 𝑠)𝜄(1) ∗ (𝜑 ⊗ 𝜑′) (𝑙, 𝑟) d(𝑙, 𝑟),

𝜑∗Φ(𝑙, 𝑟) =
∫
[SL2 ]

ΘΦ(𝑙, 𝑟; 𝑠)𝜑∗(𝑠) d𝑠.

The former is a complex-valued function on SL2(A), and the latter is a function on 𝑀 (A). Both integrals
converge absolutely because ΘΦ is of moderate growth and 𝜑,𝜑′, 𝜑∗ are of rapid decay. By abuse of
notation, we will also denote

𝜑Φ = (𝜑 ⊗ 𝜑)Φ.

Note also that the modularity of the theta kernel ΘΦ implies that (𝜑 ⊗ 𝜑′)Φ is left SL2(Q)-invariant, and
𝜑∗Φ is left 𝑀 (Q)-invariant.

If, moreover, 𝜑 is 𝐾𝑅-invariant and Φ is both left and right 𝐾𝑅-invariant then, because the maps in
Equation (A.1) are isomorphisms of measure spaces, we have

𝜑Φ(𝑠) =
∫
[𝐺′ ]

∫
[𝐺′ ]

ΘΦ(𝑙, 𝑟; 𝑠)𝜑(𝑙)𝜑(𝑟) d𝑙 d𝑟. (A.5)

We will need the following lemma. It is mostly a corollary of [Ral84, Mœg97, KR94].

Lemma A.4. Let 𝜑, 𝜑′ ∈ 𝐿2
cusp ([𝐺])∞ and 𝜑∗ ∈ 𝐿2

cusp ([SL2])∞. Assume that 𝜑, 𝜑′ are 𝐾𝑅-invariant
and that Φ is both left and right 𝐾𝑅-invariant. Then, (𝜑⊗ 𝜑′)Φ ∈ 𝐿2

cusp ([SL2]) and 𝜑∗Φ ∈ 𝐿2
cusp ([𝑀]).

Proof. The fact that 𝜑∗Φ is square-integrable and cuspidal is trivial whenever G is anisotropic. If
𝐺 � PGL2 is split, then this follows from Rallis’ tower property [Ral84, Mœg97] and the fact that the
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theta transfer of any cuspidal automorphic representation of SL2 � Sp2 to the orthogonal group of the
hyperbolic plane O(1, 1) vanishes.5

That the lift of 𝜑 ⊗ 𝜑′ is cuspidal follows similarly, except that we need to use the theta transfer
from Odet to SL2, that is, we need first to lift 𝜄(1)

∗
𝜑 ⊗ 𝜑′ to Odet. For that purpose, we use the

homomorphism 𝜄 : 𝑀 → Odet, which is the composition of the isomorphism 𝑀 � SOdet with the
embedding SOdet ↩→ Odet. This map satisfies the assumptions of §A.1. For every finite place v,
let Odet (𝑅𝑣 ) to be the group of orthogonal transformations of 𝐵𝑣 that send 𝑅𝑣 to itself and define
Odet(�̂�) =

∏
𝑣<∞ Odet(𝑅𝑣 ). Then, the conditions of Lemma A.2 are easily verified and we deduce that

the pull-back 𝜄∗ induces an isomorphism of 𝐿2 ([Odet])Odet (�̂�) and 𝐿2 ([𝑀])𝐾𝑀 . We deduce from Lemma
A.1 that (𝜄∗)−1𝜄(1)

∗
𝜑 ⊗ 𝜑′ is cuspidal and

(𝜑 ⊗ 𝜑′)Φ(𝑠) =
∫
[Odet ]

ΘΦ(•; 𝑠) (𝜄∗)−1𝜄(1)
∗
𝜑 ⊗ 𝜑′ d𝑚Odet . (A.6)

Here, we have extended the definition of ΘΦ in Equation (A.4) to Odet (A) ×SL2 (A) in the obvious way.
The integral in Equation (A.6) is a theta lift of a cuspidal function in 𝐿2 ([Odet])∞ to 𝐿2 ([SL2])∞. In
this case, [Ral84] verifies that the theta lift of a cuspidal function to SL2 is cuspidal. �

Lemma A.5. Let 𝜑∗ ∈ 𝐿2
cusp ([SL2])∞ and 𝜑, 𝜑′ ∈ 𝐿2

cusp ([𝐺])∞. Assume that 𝜑, 𝜑′ are 𝐾𝑅-invariant
and that Φ is both left and right 𝐾𝑅-invariant. Then〈

𝜑∗Φ, 𝜄(1)
∗ (𝜑 ⊗ 𝜑′)

〉
=
〈
𝜑∗, (𝜑 ⊗ 𝜑′)Φ

〉
.

Proof. This follows from Fubini and the fact that cusp forms are of rapid decay. �

Proposition A.6. Assume 𝜑, 𝜑′ ∈ 𝐿2
cusp ([𝐺])∞ are 𝐾𝑅-invariant and that Φ is both left and right 𝐾𝑅-

invariant. For 𝑠 ∈ GL2 (A), define 𝑠1 =
(
(det 𝑠)−1 0

0 1

)
𝑠. The Whittaker function of the theta lift satisfies

𝑊 𝜄∗0
−1 (𝜑⊗𝜑′)Φ (𝑠) = | det 𝑠 |A〈𝑇Φ

𝑠 𝜑, 𝜑′(•𝛼det 𝑠)〉[𝐺′ ] ,

where (
𝑇Φ
𝑠 𝜑

)
(𝑟) =

{∫
𝐺′ (A) 𝜑(𝑟𝑙

−1) (𝜌 (𝑠1) .Φ) (𝑙𝛼det 𝑠) d𝑙 det 𝑠 ∈ det 𝐵A
0 det 𝑠 ∉ det 𝐵A

and 𝛼det 𝑠 ∈ 𝐵A is any element satisfying det 𝛼det 𝑠 = det 𝑠. Moreover, we can replace the inner product
in 𝐿2 ([𝐺 ′]) in the formula above by an inner product in 𝐿2 ([𝐺]).

Proof. First, observe

𝜄∗0
−1(𝜑 ⊗ 𝜑′)Φ(𝑠) = | det 𝑠 |A

∫
[𝐺′ ]

∫
[𝐺′ ]

∑
𝜉 ∈𝐵

(𝜌(𝑠1).Φ) (𝑙−1𝜉𝑟𝛼det 𝑠)𝜑(𝑙)𝜑′(𝑟𝛼det 𝑠) d𝑙 d𝑟.

Consider both sides of the first equality as functions on GL2 (A)† = {𝑥 ∈ GL2(A) : det 𝑥 ∈ det 𝐵A}.
Set GL2(Q)† = {𝑥 ∈ GL2(Q) : det 𝑥 ∈ det 𝐵} and note that GL2(Q)†\GL2 (A)† � GL2(Q)\GL2(A)
because GL2(Q)GL2 (A)† = GL2 (A). The first equality then follows from Equation (A.5) by noticing
that both sides are GL2 (Q)†-invariant on the left, 𝑍GL2 (A)-invariant, 𝑈𝑅-invariant on the right and
coincide on SL2(A). A standard unfolding argument in the l variable (see [Shi72, KS20]) applied to the
last expression shows for det 𝑠 ∈ det 𝐵A

5This is simple to deduce from the fact that a theta series arising from the two-dimensional isotropic quadratic form is a
pseudo-Eisenstein series; see, for example, [Nel21].
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𝑊 𝜄∗0
−1 (𝜑⊗𝜑′)Φ (𝑠) = | det 𝑠 |A

∫
[𝐺′ ]

∫
𝐺′ (A)

(𝜌 (𝑠1) .Φ) (𝑙−1𝑟𝛼det 𝑠)𝜑(𝑙)𝜑′(𝑟𝛼det 𝑠) d𝑙 d𝑟,

and 𝑊 𝜄∗0
−1 (𝜑⊗𝜑′)Φ (𝑠) = 0 if det 𝑠 ∉ det 𝐵A. Using the change of variables 𝑙−1𝑟 ↦→ 𝑙, we can write

𝑇Φ
𝑠 𝜑(𝑟) =

∫
𝐺′ (A)

(𝜌 (𝑠1) .Φ) (𝑙−1𝑟𝛼det 𝑠)𝜑(𝑙) d𝑙 =
∫
𝐺′ (A)

𝜑(𝑟𝑙−1) (𝜌 (𝑠1) .Φ) (𝑙𝛼det 𝑠) d𝑙.

This establishes the first formula.
The last formula extends naturally to any 𝑟 ∈ 𝐺 (A), and the result is left 𝐺 (Q)-invariant. If

det 𝑠 ∉ det𝐺 (A), then we extend 𝑇Φ
𝑠 𝜑 by zero to 𝐺 (A). For any 𝑘 ∈ 𝐾𝑅, using the invariance properties

of Φ and 𝜑, we can apply the change of variables 𝑘𝑙𝛼−1
det 𝑠𝑘

−1𝛼det 𝑠 ↦→ 𝑙 to see that 𝑇Φ
𝑠 𝜑 is right

𝛼−1
det 𝑠𝐾𝑅𝛼det 𝑠-invariant. The same holds for 𝜑′(•𝛼det 𝑠). Because the groups 𝛼det 𝑠𝐾𝑅𝛼

−1
det 𝑠 , 𝛼det 𝑠𝐾

1
𝑅𝛼

−1
det 𝑠

and the isogeny 𝐺 ′ → 𝐺 satisfy the assumptions of Lemma A.2, we see that we can replace the inner
product in [𝐺 ′] by an inner product in [𝐺]. �

Corollary A.7. Assume Φ is both left and right 𝐾𝑅-invariant. Let 𝜑, 𝜑′ ∈ 𝐿2
cusp ([𝐺])∞ be 𝐾𝑅-invariant,

and denote by 𝜋 and 𝜋′ the cuspidal automorphic representations generated by 𝜑 and 𝜑′, respectively.
If 𝜋 is disjoint from 𝜋′∨, then (𝜑 ⊗ 𝜑′)Φ = 0.

Proof. In this case, we see that 𝜄∗0
−1(𝜑 ⊗ 𝜑′)Φ is cuspidal with a vanishing Whittaker function. �

Corollary A.8. Assume Φ is invariant under the conjugation action of 𝐾𝑅. Let 𝜋 ⊂ 𝐿2
cusp ([𝐺])∞

be an irreducible representation. Assume 𝜑, 𝜑′ ∈ 𝜋 are 𝐾𝑅-invariant decomposable vectors, that is,
𝜑, 𝜑′ ↦→ ⊗𝜑𝑣 , ⊗𝜑′𝑣 in 𝜋 �

⊗′
𝜋𝑣 . Then

𝑊 𝜄∗0
−1 (𝜑⊗𝜑′)Φ (𝑠) = 𝑉−1 | det 𝑠 |A

∏
𝑣

〈
𝜑𝑣 ★𝐺′ (Q𝑣 )

(
𝜌(𝑠𝑣,1).Φ𝑣

)
(•𝛼det 𝑠,𝑣 ), 𝜋𝑣 (𝛼det 𝑠,𝑣 ).𝜑′𝑣

〉
,

where V is the volume of the (possibly disconnected) real manifold 𝐺 ′(Q)\𝐺 ′(A)/𝐾1
𝑓 with respect to

the Haar measure of 𝐺 ′(R) (see §4.2), and we normalize the Haar measure on 𝐺 ′(Q𝑝) so that 𝑅1
𝑝 has

unit volume.

Proof. This follows directly from Proposition A.6. The constant 𝑉−1 arises as a measure normalization
constant. Specifically, denote by 𝑚𝐺′ (Q𝑝) the Haar measure on 𝐺 ′(Q𝑝) satisfying 𝑚𝐺′ (Q)𝑝 (𝑅1

𝑝) = 1.
The Haar measure on 𝐺 ′(A) satisfies 𝑚𝐺′ = 𝑐

⊗
𝑣 𝑚𝐺′ (Q𝑣 ) with some measure normalization constant

𝑐 > 0. Specifically, this equality holds for linear combinations of standard test functions
∏

𝑣 𝑓𝑣 with
𝑓𝑝 = 1𝑅1

𝑝
for a.e. p. To compute c, we write 𝐺 ′(Q)\𝐺 ′(A)/𝐺 ′(R)𝐾1

𝑓 = {𝛿1, . . . , 𝛿ℎ} and denote by
F𝑖 ⊂ 𝐺 ′(R) a fundamental domain for the right action of Γ𝑖 = 𝐺 (Q) ∩ 𝛿𝑖𝐾

1
𝑅𝛿

−1
𝑖 on 𝐺 ′(R). Then⊔ℎ

𝑖=1 𝛿𝑖F𝑖𝐾
1
𝑅 ⊂ 𝐺 (A) is a fundamental domain for the left action of 𝐺 (Q) on 𝐺 (A), and we deduce

1 = 𝑚𝐺

(
ℎ⊔
𝑖=1

𝛿𝑖F𝑖𝐾
1
𝑅

)
= 𝑐

ℎ∑
𝑖=1

𝑚𝐺′ (R) (F𝑖) = 𝑐𝑉. �

Lemma A.9. Fix Φ𝑣 = 1𝑅𝑣 for all finite places 𝑣 < ∞, and let Φ∞ be a Schwartz function or the
Bergman test function from [KS20]. Fix 𝑠 = (𝜄0 (𝑠∞), 𝑢 𝑓 ) with 𝑠∞ ∈ SL2(R) and 𝑢 𝑓 ∈ 𝑈𝑅. Assume that
𝜑 ∈ 𝐿2

cusp ([𝐺])∞ has weight m and is a 𝐾𝑅-invariant newvector in an irreducible cuspidal automorphic
representation 𝜋. If 𝜌(•, •; 𝑠)Φ∞ is 𝐾∞ × 𝐾∞-isotypical of weight (−𝑚, 𝑚), then

𝑊 𝜄∗0
−1𝜑Φ

(𝑠) =
‖𝜑‖2

2
𝑉

Tr
(
Res𝐺 (R)

𝐺′ (R) 𝜋∞
) (

𝜌(𝑠∞).Φ∞ �𝐺′ (R)
)

=
‖𝜑‖2

2
𝑉

〈
𝑓𝜑∞ ,𝜑∞ , (𝜌(𝑠∞).Φ∞)

〉
𝐺′ (R) ,
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where 𝑓𝜑∞ ,𝜑∞ (𝑔) = 〈𝜋(𝑔).𝜑∞, 𝜑∞〉 is the matrix coefficient attached to the Archimedean component of
𝜑 in

⊗′
𝑣 𝜋𝑣 , normalized so that ‖𝜑∞‖2 = 1.

Proof. It is sufficient to establish the claim when ‖𝜑‖2 = 1. By [KS20, §4], the theta transfer 𝜑Φ is
𝑈1
𝑅-invariant, thus 𝜄∗0

−1𝜑Φ is 𝑈𝑅-invariant and we can assume without loss of generality that 𝑢 𝑓 = 𝑒.
Then det 𝑠 = 1 and we take 𝛼det 𝑠 = 𝑒.

The newvector 𝜑 decomposes as 𝜑 ↦→ ⊗𝜑𝑣 in 𝜋 �
⊗′

𝜋𝑣 . We normalize 𝜑∞ to have norm 1, then∏
𝑝 ‖𝜑𝑝 ‖2 = 1 as well. We also normalize the measure on 𝐺 ′(Q𝑝) so that 𝑅1

𝑝 = 𝐾1
𝑝 has unit volume.

Corollary A.8 now implies 𝑊 𝜄∗0
−1𝜑Φ

(𝑠) = 𝑉−1 ∏
𝑣

〈
𝜑𝑣 ★𝐺′ (Q𝑣 ) (𝜌(𝑠𝑣 ).Φ𝑣 ) , 𝜑𝑣

〉
. For a finite place p,

we have 𝑠𝑝 = 𝑒 and 𝜑𝑝 is 𝐾𝑝-invariant, hence 𝜑𝑝 ★1𝐾 1
𝑝
= 𝜑𝑝 . We conclude

𝑊 𝜄∗0
−1𝜑Φ

(𝑠) = 𝑉−1〈𝜑∞ ★ (𝜌(𝑠∞).Φ∞) �𝐺′ (R) , 𝜑∞〉.

This expression coincides with the trace if the convolution operator ★𝐺′ (R) (𝜌(𝑠∞).Φ∞) annihilates the
orthogonal complement to 𝜑∞ in 𝜋∞. This follows from the facts that every 𝐾∞-isotypical compo-
nent of the admissible unitary representation 𝜋∞ is at most one-dimensional and the assumption that
𝜌(•, •; 𝑠)Φ∞ is 𝐾∞ × 𝐾∞-isotypical.

To show the formula in terms of a matrix coefficient, we use Fubini to deduce

〈𝜑∞ ★ (𝜌(𝑠∞).Φ∞) �𝐺′ (R) , 𝜑∞〉 =
∫
𝐺′ (R)

∫
𝐺 (R)

𝜑∞(𝑔ℎ−1) (𝜌(𝑠∞).Φ∞)(ℎ)𝜑∞(𝑔) dℎ d𝑔

=
∫
𝐺′ (R)

∫
𝐺 (R)

𝜑∞(𝑔)𝜑∞(𝑔ℎ) (𝜌(𝑠∞).Φ∞)(ℎ) d𝑔 dℎ

=
〈
𝑓𝜑∞ ,𝜑∞ , 𝜌(𝑠∞).Φ∞

〉
𝐺′ (R)

.

The conditions of Fubini’s theorem are satisfied because the test function Φ∞ �𝐺′ (R) is in 𝐿𝑞 (𝐺 ′(R))
for all 𝑞 ≥ 1 and 𝑓𝜑∞ ,𝜑∞ ∈ 𝐿 𝑝 (𝐺 ′(R)) for some 𝑝 ≥ 2. �

Proposition A.10. FixΦ𝑣 = 1𝑅𝑣 for all finite places 𝑣 < ∞. Let 𝜋 ⊂ 𝐿2
cusp ([𝐺])∞ be an irreducible cus-

pidal automorphic representation, and denote by 𝜋JL its Jacquet–Langlands transfer to 𝐿2
cusp ([PGL2])∞.

In case G is split, we define 𝜋JL = 𝜋. Assume 𝜑 ∈ 𝜋, 𝜑′ ∈ 𝜋∨ are nonvanishing 𝐾𝑅-invariant vectors,
then 𝜄∗0

−1 (𝜑 ⊗ 𝜑′)Φ ∈ 𝜋JL.
Moreover, if Φ∞ is 𝜌 (𝐾∞, 𝐾∞; SO2(R))-isotypical with weight (−𝑚, 𝑚, 𝜅), 𝜋 has conductor 𝐾𝑅 and

𝜑 is a newvector of weight m, then either 𝜑Φ vanishes or 𝜄∗0
−1𝜑Φ is a newvector of weight 𝜅 in the

Jacquet–Langlands transfer 𝜋JL.

Proof. Any smooth vector in 𝜋𝐾𝑅 is a linear combination of 𝐾𝑅-invariant factorizable vectors in the
representation 𝜋 �

⊗′
𝑣 𝜋𝑣 . Thus, we assume without loss of generality that 𝜑 and 𝜑′ are factorizable

in 𝜋 and 𝜋∨, respectively.
The function 𝜄∗0

−1 (𝜑 ⊗ 𝜑′)Φ is cuspidal by Lemma A.4. Because 𝜑 ↦→ ⊗𝑣𝜑𝑣 and 𝜑′ ↦→ ⊗𝑣𝜑′𝑣 are
factorizable, Corollary A.8 implies that the Whittaker function of 𝜄∗0

−1(𝜑 ⊗ 𝜑′)Φ decomposes into a
product.

Assume (𝜑⊗𝜑′)Φ does not vanish. Let S be a finite set of rational places containing the Archimedean
place, all places where G ramifies, all places where 𝜋 ramifies and all places where either 𝜑𝑣 or
𝜑′𝑣 is not spherical. Shimizu [Shi72] computes the local Whittaker function | det 𝑠 |𝑣 〈𝜑𝑣 ★𝐺′ (Q𝑣 )
Φ𝑣 (•𝛼det 𝑠,𝑣 ), 𝜋𝑣 (𝛼det 𝑠,𝑣 ).𝜑′𝑣〉𝜋𝑣 for every place 𝑣 ∉ 𝑆 and it coincides with the Whittaker function
of a spherical newvector in 𝜋JL

𝑣 . Hence, every irreducible component 𝜎 �
⊗′

𝑣 𝜎𝑣 of the representation
generated by 𝜄∗0

−1(𝜑⊗𝜑′)Φ satisfies 𝜎𝑣 � 𝜋JL
𝑣 for all 𝑣 ∉ 𝑆. Using the strong multiplicity one property for

PGL2, we deduce that 𝜎 = 𝜋JL for every irreducible component 𝜎 as above. Hence, the representation
generated by 𝜄∗0

−1(𝜑 ⊗ 𝜑′)Φ is 𝜋JL.
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Assume next that 𝜋 has conductor 𝐾𝑅 and that 𝜑 is a newvector of weight m. Then, the assumption
that Φ∞ has weight (−𝑚, 𝑚, 𝜅) implies that 𝜑Φ has weight 𝜅. By [KS20, §4], the theta transfer 𝜑Φ is
𝑈1
𝑅-invariant. Because the conductor of the Jacquet–Langlands transfer is exactly 𝑈𝑅 and 𝜄∗0

−1𝜑Φ =
𝜄∗0
−1 (𝜑 ⊗ 𝜑)Φ ∈ 𝜋JL, we deduce that 𝜄∗0

−1𝜑Φ is a newvector as claimed. �

Corollary A.11. Assume 𝜑, 𝜑′ ∈ 𝐿2
cusp ([𝐺])∞ are 𝐾𝑅-invariant and generate disjoint automorphic

cuspidal representations, then 〈𝜑Φ, 𝜑
′
Φ〉 = 0.

Proof. The Jacquet–Langlands transfers of disjoint automorphic representations are disjoint. Hence,
Proposition A.10 above implies that 𝜄∗0

−1𝜑Φ, 𝜄∗0
−1𝜑′Φ generate mutually orthogonal subrepresentations

of 𝐿2
cusp ([PGL2])∞. �

Proposition A.12. Fix Φ𝑣 = 1𝑅𝑣 for all finite places 𝑣 < ∞, and assume that Φ∞ is
𝜌 (𝐾∞, 𝐾∞; SO2(R))-isotypical with weight (−𝑚, 𝑚, 𝜅). Let 𝜋 ⊂ 𝐿2

cusp ([𝐺])∞ be an irreducible cusp-
idal automorphic representation with conductor 𝐾𝑅. Assume 0 ≠ 𝜑 ∈ 𝜋 is a newvector of weight m.
Then

(𝜑Φ)Φ =

(
‖𝜑Φ‖2

‖𝜑‖2
2

)2

𝜄(1)
∗ (𝜑 ⊗ 𝜑) . (A.7)

Proof. Assume that

(𝜑Φ)Φ = 𝛼𝜄(1)
∗ (𝜑 ⊗ 𝜑) , (A.8)

for some 𝛼 ∈ C. Then, 𝛼‖𝜑‖4
2 = 〈(𝜑Φ)Φ , 𝜄(1)

∗ (𝜑 ⊗ 𝜑)〉 and Lemma A.5 implies that 𝛼 = ‖𝜑Φ‖2
2/‖𝜑‖

4
2 .

Because (𝜑Φ)Φ is continuous and cuspidal by Lemma A.4, to establish Equation (A.8) it is enough
to show that 𝜄(1)

∗−1 (𝜑Φ)Φ is orthogonal to the orthogonal complement of C (𝜑 ⊗ 𝜑) in 𝐿2
cusp ([𝐺 ×

𝐺])𝐾𝑅×𝐾𝑅 . Both (𝜑 ⊗ 𝜑) and 𝜄(1)
∗−1 (𝜑Φ)Φ transform with weight (𝑚,−𝑚) under 𝐾∞ × 𝐾∞. Hence, it

is enough to check orthogonality in the (𝑚,−𝑚) isotypical subspace

𝑉𝑚 = 𝐿2
cusp ([𝐺 × 𝐺]) ( (𝐾∞ ,𝑚) ·𝐾𝑅)×( (𝐾∞ ,−𝑚) ·𝐾𝑅) .

Denote by 𝑉0
𝑚 the orthogonal compliment of C (𝜑 ⊗ 𝜑) in 𝑉𝑚. We can choose an orthonormal ba-

sis for 𝑉0
𝑚 consisting of vectors 𝜓 ⊗ 𝜓 ′ with 𝜓, 𝜓 ′ ∈ 𝐿2

cusp ([𝐺]) (𝐾∞ ,𝑚) ·𝐾𝑅 and 𝜓, 𝜓 ′ generate irre-
ducible cuspidal automorphic representations of 𝐺 (A). Because 𝜋 has conductor 𝐾𝑅, either the rep-
resentation generated by 𝜓 is disjoint from 𝜋 or the representation generated by 𝜓 ′ is disjoint from
𝜋∨. Fix 𝜓, 𝜓 ′ as above. We need to show

〈
𝜄(1)

∗−1 (𝜑Φ)Φ , 𝜓 ⊗ 𝜓 ′
〉
= 0. Denote by 𝜎, 𝜎′ the irre-

ducible automorphic representations generated by 𝜓, 𝜓 ′, respectively. We apply Lemma A.5 to deduce〈
𝜄(1)

∗−1 (𝜑Φ)Φ , 𝜓 ⊗ 𝜓 ′
〉
= 〈𝜑Φ, (𝜓 ⊗ 𝜓 ′)Φ〉. If 𝜎′ ≠ 𝜎∨, then (𝜓 ⊗ 𝜓 ′)Φ = 0 by Corollary A.7. If

𝜎′ = 𝜎∨, then 𝜎 is disjoint from 𝜋, and (𝜄∗0)
−1 (𝜓 ⊗ 𝜓 ′)Φ ∈ 𝜎JL by Proposition A.10. The Jacquet–

Langlands transfers of disjoint representations are disjoint. Hence, 𝜋JL ⊥ 𝜎JL and 〈𝜑Φ, (𝜓 ⊗ 𝜓 ′)Φ〉 = 0
as claimed. �

A.3. Explicit theta kernels

Definition A.13. We now define the Archimedean test functions on 𝐵∞ that give rise to the theta series
from §5.1.1.
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Φ−,𝑘
∞ (𝑔) = 𝑋 (𝑔)𝑘𝑒−2𝜋𝑃 (𝑔) ,

Φ−,hol
∞ (𝑔) = 𝑘 − 1

4𝜋

{
(det 𝑔)𝑘−1𝑋 (𝑔)

(−𝑘)
𝑒−2𝜋 det 𝑔 det 𝑔 > 0

0 det 𝑔 ≤ 0
,

Φ+,𝑚
∞ (𝑔) = (2𝑚 + 1) (det 𝑔)𝑚𝑃𝑚

(
|𝑋 (𝑔) |2 − 𝑢(𝑔)

det 𝑔

)
𝑒−2𝜋 det 𝑔,

Φ+,hol
∞ (𝑔) = (𝑘 + 1)𝑋 (𝑔)𝑘𝑒−2𝜋 det 𝑔 .

The first two test functions are defined when 𝐺 (R) is split, and the last two are defined when 𝐺 (R) is
ramified.

Lemma A.14. Let Φ∞ be one of the kernels in Definition A.13 above, and set 𝜅 = 𝑘, 𝑘, 2𝑚 + 2, 𝑘 + 2 for
the different kernels respectively. Then, 𝜌(𝑘 𝜃 ).Φ∞ = 𝑒𝑖𝜅 𝜃Φ∞ for all 𝑘 𝜃 ∈ SO2(R).

Proof. This is verified by Vignéras’ method [Vig77]. In all cases under consideration except Φ−,hol
∞ , the

test function is Schwartz, hence it is enough to check that Φ∞ satisfies the partial differential equation in
[KS20, §3.3] and then use Lemma 3.4, op. cit.. In caseΦ∞ = Φ−,hol

∞ , the test function is not Schwartz and
a technical argument is required to circumvent this issue. This case is treated [KS20, §6]. We proceed
to verify the three other cases.

Recall the notation 𝑥 = [𝑎, 𝑏, 𝑐] + 𝑑 ∈ 𝐵∞ from §2.4.3. The Laplace operator with Fourier multiplier
−4𝜋2 det(𝑥) is then given by Δ = 1

4 (
𝜕2

𝜕𝑎2 ∓ ( 𝜕2

𝜕𝑏2 + 𝜕2

𝜕𝑐2 ) + 𝜕2

𝜕𝑑2 ), where the sign is − if B is indefinite and
+ otherwise. The differential equation in §3.3 of [KS20] for the test function Φ∞ is equivalent to

−ΔΦ(𝑥) + (2𝜋)2 det(𝑥)Φ(𝑥) = 2𝜋𝜅Φ(𝑥). (A.9)

We note that for each of the remaining test functions, we may write Φ∞(𝑥) = 𝑄(𝑥)𝑒−2𝜋𝑃 (𝑥) , where
𝑃(𝑥) = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 and Q a harmonic polynomial of homogeneous degree. For the first and last
test function, this may be seen by a well-known criteria (c.f. [Iwa97, Thm 9.1]) noting that [𝑖, 0, 0] +1 ∈
𝐵∞ ⊗ C is an isotropic vector. For the third test function, this follows from [LPS87, p. 405]. With this in
mind, we have Δ𝑄 = 0 and (𝑎 𝜕

𝜕𝑎 + 𝑏 𝜕
𝜕𝑏 + 𝑐 𝜕

𝜕𝑐 + 𝑑 𝜕
𝜕𝑑 )𝑄 = deg(𝑄)𝑄, which allows one to easily verify

that Φ∞ satisfies Equation (A.9) in the remaining cases. �

Proposition A.15. Let Φ = Φ∞ ·
∏

𝑣<∞ 1𝑅𝑣 , where Φ∞ is any one of the test functions in Definition
A.13 above. Set 𝜅 = 𝑘, 𝑘, 2𝑚 + 2, 𝑘 + 2 for the different kernels, respectively. Denote by 𝜃𝑔 the matching
classical theta function from §5.1.1. For 𝜏 ∈ SL2(Q), we denote by (𝜏)∞ the image of 𝜏 in the
Archimedean coordinate of SL2(A). Then, for every 𝑙 | 𝑑𝐵𝑁 and 𝑔 ∈ 𝐺 (A)

ΘΦ(𝑔, 𝑔; (𝜏ℓ)∞𝑠∞𝑈
1
𝑅) =

𝜇(gcd(ℓ, 𝑑𝐵))
ℓ

𝜃𝑔,ℓ (𝑧)𝑒𝑖𝜅 𝜃 ,

where 𝜇 is the Möbius function, 𝑠∞ =
(
𝑦1/2 𝑥𝑦−1/2

0 𝑦−1/2

) ( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)
and 𝑧 = 𝑥 + 𝑖𝑦, that is, 𝑠∞.𝑖 = 𝑧.

Moreover, 𝜃𝑔,ℓ (𝑧) is a Γ0(𝑑𝐵𝑁)-invariant function on H of moderate growth at the cusps.

Proof. We already know ΘΦ has weight 𝜅 in the Archimedean symplectic variable 𝑠∞. Moreover, in
[KS20, §3.5] it is shown that ΘΦ is 𝑈1

𝑅 invariant. Denote by (𝜏ℓ) 𝑓 the diagonal image of 𝜏ℓ in SL2(A 𝑓 ).
The left SL2 (Q)-invariance of the theta kernel implies ΘΦ(𝑔, 𝑔; (𝜏ℓ)∞𝑠∞) = ΘΦ(𝑔, 𝑔; 𝑠∞(𝜏ℓ)−1

𝑓 ). For
every prime 𝑝 � 𝑑𝐵𝑁 , we have 𝜏ℓ ∈ SL2 (Z) ⊂ SL(Z𝑝) = 𝑈1

𝑝 . If 𝑝 | 𝑙, then 𝜏ℓ ≡ 𝑤 mod 𝑝,
where 𝑤 =

( 0 1
−1 0

)
, hence 𝜏ℓ ∈ 𝑤𝑈1

𝑝 . If 𝑝 | 𝑑𝐵𝑁
𝑙 , then 𝜏ℓ ≡ 𝑒 mod 𝑝, hence 𝜏ℓ ∈ 𝑈1

𝑝 . Because
𝜌(𝑈1

𝑝).1𝑅𝑝 = 1𝑅𝑝 , we can write

𝜌
(
𝑔, 𝑔; 𝑠∞(𝜏ℓ)−1

𝑓

)
.Φ = 𝜌(𝑠∞).Φ∞(𝑔−1

∞ • 𝑔∞)
∏
𝑝�𝑙

1𝑔𝑝𝑅𝑝𝑔
−1
𝑝

∏
𝑝 |𝑙

𝜌(𝑤).1𝑔𝑝𝑅𝑝𝑔
−1
𝑝
.
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The Weil action of w is by the Fourier transform for 𝑝 � 𝑑𝐵 and it is by the negative of the Fourier
transform for 𝑝 | 𝑑𝐵. Specifically, it is shown in [KS20, Section §4] that for 𝑝 | 𝑑𝐵𝑁

𝜌(𝑤).1𝑅𝑝 = 𝛾𝑝 𝑝
−11𝑅∨𝑝 ,

where 𝛾𝑝 = 1 if 𝐵𝑝 is split and 𝛾𝑝 = −1 if 𝐵𝑝 is ramified. We conclude that

𝜌
(
𝑔, 𝑔, 𝑠∞(𝜏ℓ)−1

𝑓

)
.Φ =

𝜇(gcd(𝑙, 𝑑𝐵))
ℓ

𝜌(𝑠∞).Φ∞(𝑔−1
∞ • 𝑔∞)

∏
𝑝�ℓ

1𝑔𝑝𝑅𝑝𝑔
−1
𝑝

∏
𝑝 |ℓ

1𝑔𝑝𝑅
∨
𝑝𝑔

−1
𝑝
.

Because
⋂

𝑝�ℓ 𝑔𝑝𝑅𝑝𝑔
−1
𝑝

⋂
𝑝 |ℓ 𝑔𝑝𝑅

∨
𝑝𝑔

−1
𝑝 = 𝑅(ℓ; 𝑔 𝑓 ), we have for 𝜉 ∈ 𝐵 that

���
∏
𝑝�ℓ

1𝑔𝑝𝑅𝑝𝑔
−1
𝑝

∏
𝑝 |ℓ

1𝑔𝑝𝑅
∨
𝑝𝑔

−1
𝑝

��� (𝜉) = 1𝑅 (ℓ;𝑔 𝑓 ) (𝜉),

and we can write

ΘΦ(𝑔, 𝑔; (𝜏ℓ)∞𝑠∞𝑈
1
𝑅) =

𝜇(gcd(𝑙, 𝑑𝐵))
ℓ

∑
𝜉 ∈𝑅 (ℓ;𝑔 𝑓 )

(𝜌(𝑠∞).Φ∞) (𝑔−1
∞ 𝜉𝑔∞)

=
𝜇(gcd(𝑙, 𝑑𝐵))

ℓ

∑
𝑥∈𝑅 (ℓ;𝑔)

(𝜌(𝑠∞).Φ∞) (𝑥).

The last equality holds because 𝑔−1
∞ 𝑅(ℓ; 𝑔 𝑓 )𝑔∞ = 𝑅(ℓ; 𝑔). The claim now follows from Lemma A.14

above and the formulæ for the Weil action of the diagonal and unipotent subgroups. The moderate
growth of 𝜃𝑔,ℓ now follows from the moderate growth of ΘΦ in the symplectic variable s. The Γ0(𝑑𝐵𝑁)-
modularity of 𝜃𝑔,ℓ follows from the left SL2(Q)-invariance and right 𝑈1

𝑅-invariance of ΘΦ in the
symplectic variable, and the fact that 𝜏ℓ normalizes Γ0(𝑑𝐵𝑁). �

Proposition A.16. Let Φ = Φ∞ ·
∏

𝑣<∞ 1𝑅𝑣 , with Φ∞ given by any of test functions listed in Defini-
tion A.13. Let G be any of the families of automorphic forms corresponding to ΘΦ according to Table 1.
Then, for any 𝜑 ∈ G ⊆ 𝐿2 ([𝐺])∞, a 𝐾𝑅-invariant Hecke eigenform, we have 𝜑Φ = 𝑉−1𝜑JL, where 𝜑JL

is the arithmetically normalized Jacquet–Langlands lift of 𝜑, as defined in §5.1.2.

Proof. Let 𝜅 be the entry of Table 1 corresponding to G and ΘΦ. Lemma A.14 shows that 𝜑Φ is of
weight 𝜅 and Proposition A.10 that 𝜄∗0

−1𝜑Φ is newvector (or zero) of level 𝑈𝑅 of the Jacquet–Langlands
transfer 𝜋JL of the representation 𝜋 generated by 𝜑. The subspace of vectors in 𝜋JL satisfying these two
properties is one-dimensional. This implies that 𝜑Φ is proportional to 𝜑JL. In order to find the constant
of proportionality 𝜌1, we compute and compare the Whittaker functions at the identity. The Whittaker
function of 𝜑JL is recorded in §5.1.2 and those of 𝜑Φ we shall compute with the aid of Lemma A.9.

The case G = F−,𝚽∞ = 𝚽−,0
∞ , 𝜿 = 0 :

Suppose that 𝜑 ∈ F−
1
4+𝑡2 ⊆ F−. Then, the representation 𝜋∞ is a principal series representation

obtained by normalized induction of the character
(
𝜆 ∗
0 𝜇

)
↦→ sgn(𝜆/𝜇)𝛼 |𝜆/𝜇 |𝑖𝑡 for some 𝛼 ∈ {0, 1}. The

equality of Whittaker functions yields the following equation for the constant of proportionality 𝜌1:

2𝜌1𝐾𝑖𝑡 (2𝜋) = 𝑉−1 Tr
(
ResPGL2 (R)

SL2 (R) 𝜋∞
)
(Φ−,0

∞ �𝐺′ (R) ).
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Because Φ−,0
∞ �𝐺′ (R) is bi-𝐾∞-invariant, the trace is the Fourier transform of the Abel–Satake transform

of Φ−,0
∞ �𝐺′ (R) . Compute first the Abel–Satake transform

SΦ−,0
∞ �𝐺′ (R) (𝜏) = 𝑒𝜏/2

∫ ∞

−∞
Φ−,0
∞

((
𝑒𝜏/2 0

0 𝑒−𝜏/2

) (
1 𝑛
0 1

))
d𝑛

= 𝑒𝜏/2
∫ ∞

−∞
𝑒−𝜋 (2 cosh 𝜏+𝑒𝜏𝑛2) d𝑛 = 𝑒−2𝜋 cosh 𝜏 .

The trace is proportional to the Fourier transform of SΦ−,0
∞ �𝐺′ (R) . Using our measure normalization

this becomes

Tr
(
ResPGL2 (R)

SL2 (R) 𝜋∞
)
(Φ−,0

∞ �𝐺′ (R) ) =
∫ ∞

−∞
𝑒−2𝜋 cosh 𝜏𝑒𝑖𝑡 𝜏 d𝜏 = 2𝐾𝑖𝑡 (2𝜋).

Hence, 𝜌1 = 𝑉−1.

The case G = F−,hol,𝚽∞ = 𝚽−,𝒌
∞ , 𝜿 = 𝒌:

The equality of Whittaker functions, yields the following equation for the constant of proportional-
ity 𝜌1:

𝜌1𝑒
−2𝜋 = 𝑉−1

〈
𝑓𝜑∞ ,𝜑∞ ,Φ

−,𝑘
∞

〉
𝐺′ (R)

.

The representation 𝜋∞ is the discrete series representation with parameter k, and 𝜑∞ ∈ 𝜋∞ is the 𝐿2-
normalized minimal weight vector. The matrix coefficient in this case is exactly6 𝑓𝜑∞ ,𝜑∞ (𝑔) = 𝑋 (𝑔)

(−𝑘)

and we compute

𝜌1𝑒
−2𝜋 = 𝑉−1

∫
𝐺′ (R)

𝑒−2𝜋𝑃 (𝑔) d𝑔 = 𝑉−12𝜋
∫ ∞

0
𝑒−2𝜋 cosh 𝜏 sinh 𝜏 d𝜏

= 𝑉−12𝜋
∫ ∞

1
𝑒−2𝜋 𝜉 d𝜉 = 𝑉−1𝑒−2𝜋 .

The remaining cases:
Here, we verify7 that the matrix coefficient satisfies 𝑓𝜑∞ ,𝜑∞ = 𝑒2𝜋𝑑−1

𝜋∞Φ∞, where 𝜑∞ ∈ 𝜋∞ is the
Archimedean component of 𝜑, 𝐿2-normalized and 𝑑𝜋∞ the (formal) degree of 𝜋∞. The equality of
Whittaker functions, then yields the following equation for the constant of proportionality 𝜌1:

𝜌1𝑒
−2𝜋 = 𝑉−1〈 𝑓𝜑∞ ,𝜑∞ ,Φ∞

〉
𝐺′ (R) = 𝑉−1𝑒−2𝜋𝑑𝜋∞

〈
𝑓𝜑∞ ,𝜑∞ , 𝑓𝜑∞ ,𝜑∞

〉
𝐺′ (R)

= 𝑉−1𝑒−2𝜋 ‖𝜑∞‖4
2 = 𝑉−1𝑒−2𝜋 ,

where we have used Schur–Weyl orthogonality for matrix coefficients. �
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6This can be computed succinctly using the model of the discrete series as a subrepresentation of 𝐿2 (𝐺 (R)) .
7For 𝜑 ∈ F+

𝑚, this can be computed easily from the model of the representation spanned by spherical harmonics, using the
identity 𝑃𝑚 ( 〈v, v′ 〉) = 4𝜋

2𝑚+1
∑𝑚

𝑛=−𝑚𝑌𝑚𝑛 (v)𝑌𝑚𝑛 (v′) , and the orthogonality of spherical harmonics. For 𝜑 ∈ F+,hol, this can
be computed easily from the model of the representation on the space of homogeneous binary complex polynomials of degree k.
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