A NOTE ON AFFINE PAPPUS CONDITIONS

N.D. Lane

Let l, m, n be three mutually distinct lines in the projective plane. The (l, m, n)-Pappus condition can be described as follows.

Let A, B, C, A', B', C' be any six mutually distinct points such that A, B, C lie on l; A', B', C' lie on m; and none of these points lies on $l \cap m$, $m \cap n$, or $n \cap l$. If the points AB' \cap BA' and BC' \cap CB' both lie on n, then the point AC' \cap CA' also lies on n. (cf. Fig. 1, omitting R)

REMARK. The dual of a Pappus configuration is called a Thomsen configuration; cf. [4, p. 134].

G. Pickert has shown in [5] that if we assume the (l, m, n)-Pappus condition for a fixed pair of lines m and n and for every line l which passes through neither m \cap n nor one other fixed point R ϵ n, then the (l, m, n)-Pappus condition holds for all choices of l, m, n in the plane (Fig. 1).

If we designate n as the line at infinity, the above result contains the following affine Pappus condition as a special case:

If the (l, m)-affine Pappus condition holds for a fixed line m, and for every line l which is neither parallel to m nor to a given line r, r $\parallel m$, then the (l, m)-affine Pappus condition also holds for all pairs l and m with $l \neq m$ (Fig. 2, 3).

We discuss a weaker form of the last condition in this note:

If the (l,m)-affine Pappus condition holds for all pairs of lines l,m such that $l \not\mid m$, then it also holds for all pairs l,m with $l \mid m$.

We shall give a proof of the last result using only incidences.

Consider a rudimentary affine plane satisfying only the axioms in [1, p.52-53], namely:

453

AXIOM 1. Two distinct points determine a line.

AXIOM 2. If P is a point and ℓ is a line, then there is a unique line through P which is parallel to ℓ .

AXIOM 3. There exist at least three mutual distinct and non-collinear points.

We restate our conditions.

CONDITION P (for a given point P). Let A, B, C, A', B', C', P be mutually distinct points such that P, A, B, C lie on a line l, and P, A', B', C' lie on a line m; $l \neq m$. If AB' || BA' and BC' || CB' then AC' || CA'.

 $\begin{array}{ccc} \text{CONDITION P}_{a} & \underline{\text{Let}} & A, B, C, A', B', C' & \underline{\text{be mutually}} \\ \underline{\text{distinct points such that}} & A, B, C, & \underline{\text{lie on a line}} & \ell, A', B', C' \\ \underline{\text{lie on a line}} & m, \ell \parallel m, \ell \neq m & \underline{\text{If}} & AB' \parallel BA' & \underline{\text{and}} & BC' \parallel CB', \\ \underline{\text{then}} & AC' \parallel CA' & . \end{array}$

Then we wish to prove the following.

THEOREM. Assume only Axioms 1, 2 and 3. Then Condition P_{D} for each point P implies Condition P.

<u>Proof.</u> Suppose that CA' \parallel AC' in the P configuration. Since AC' is not parallel to AB' or to BA', the line through C parallel to AC' will intersect BA', say at A". As A" \neq A', A" cannot lie on m. Since AC' $\parallel \ell$, A" cannot lie on ℓ . Hence C' and A" define a line m', and m' $\parallel \ell$. Since AB' \parallel BA", the line m' will intersect AB', say at B". Furthermore, C', B" and A" are mutually distinct points on m' and none of them can lie on ℓ . Hence we can apply Condition P to the Pappus hexagon C'AB"CA"B on the intersecting lines ℓ and m'. Since AC' \parallel CA" and AB" \parallel BA", we obtain that BC' \parallel CB". Since BC' \parallel CB' the line CB' must coincide with the line CB". This implies that B' = B" and hence that the line C'B" coincides with the line m. Contradiction.

As is well-known, one can associate a commutative field with an affine geometry which satisfies initially only Axioms 1, 2, 3 and Condition P_P for each point P. The affine Desargues conditions can first be established using only incidences, as in

454

[2, p.100] and [3, p.193], and the method of [1, Chapter 2] can be employed to construct the field.

Figure 4

REFERENCES

- 1. E. Artin, Geometric Algebra. Interscience (1957).
- 2. L.M. Blumenthal, A Modern View of Geometry. Freeman (1961).
- 3. H.S.M. Coxeter, Introduction to Geometry. Wiley (1961).
- 4. G. Pickert, Projektiven Ebenen. Springer (1955).
- 5. G. Pickert, Der Satz von Pappos mit Festelementen. Arch. Math., Vol. X, 1959, pp.56-61.

McMaster University and University of California, Los Angeles