A NOTE ON AFFINE PAPPUS CONDITIONS

N.D. Lane

Let £,m,n be three mutually distinct lines in the pro-
jective plane. The (£, m, n)-Pappus condition can be described
as follows.

Let A, B, C,A',B'", C' be any six mutually distinct points
such that A,B,C lieon £ ; A',B', C' lie on m ; and none of
these points lies on £ Nm, m(n, or n(\f . If the points
AB'MBA' and BC'M CB' both lie on n, then the point
AC'CA' also lies on n . (cf. Fig, 1, omitting R)

REMARK. The dual of a Pappus configuration is called
a Thomsen configuration; cf. [4,p.134].

G. Pickert has shown in [5] that if we assume the (¢, m,n)-
Pappus condition for a fixed pair of lines m and n and for every
line 4 which passes through neither m()n nor one other fixed
point R e n, then the (¢, m, n)-Pappus condition holds for all
choices of ¢, m,n in the plane (Fig. 1).

If we designate n as the line at infinity, the above result
contains the following affine Pappus condition as a special case:

If the (£, m)-affine Pappus condition holds for a fixed line
m, and for every line £ which is neither parallel to m nor to
a given line r, r }fm , then the (¢, m)-affine Pappus condition
also holds for all pairs £ and m with £ # m (Fig. 2, 3).

We discuss a weaker form of the last condition in this note:

If the (¢, m)-affine Pappus condition holds for all pairs of
lines £, m such that ¢ H m , then it also holds for all pairs

4, m with £ [[m .

We shall give a proof of the last result using only incidences.

Consider a rudimentary affine plane satisfying only the
axioms in [1, p.52-53], namely:
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AXIOM 1. Two distinct points determine a line.

AXIOM 2. I P is a point and £ is a line, then there
is a unique line through P which is parallel to ¢ .

AXIOM 3. There exist at least three mutual distinct
and non-collinear points.

We restate our conditions.

CONDITION PP (for a given point P ). Let A, B, C, A',

B', C', P be mutually distinct points such that P, A,B, C lie on
a line 4, and P, A',B',C' lieona line m;{ #m . If AB! l BA!
and BC'| CB' then AC'| CA'.

CONDITION P . Let A,B,C,A"B'" C' be mutuall
a et be mutually

distinct points such that A, B, C, lie on a line ¢, A',B', C!
lieconaline m, £ |m, £ #m . If AB'|[[BA' and BC'| CB!',
then AC'| CA'.

Then we wish to prove the following.

THEOREM. Assume only Axioms 1, 2 and 3. Then
Condition PP for each point P implies Condition P

a
Proof. Suppose that CA' HAC' in the P  configuration.
ZLo0%. a

Since AC' is not parallel to AB' or to BA', the line through

C parallel to AC' will intersect BA', say at A" ., As A" # A',
A" cannot lie on m . Since AC! Mﬂ , A" cannot lie on £ .
Hence C' and A'" define a line m', and m' Hl . Since

AB! ” BA'" , the line m' will intersect AB', say at B' .
Furthermore, C', B" and A" are mutually distinct points on
m' and none of them can lie on £ . Hence we can apply Condition
PP to the Pappus hexagon C'AB'"CA'"B on the intersecting lines

£ and m'. Since AC' | CA" and AB" || BA" , we obtain that

BC' || CB" . Since BC' || CB' the line CB' must coincide with
the line CB'" . This implies that B' = B'" and hence that the line
C'B" coincides with the line m . Contradiction.

As is well-known, one can associate a commutative field
with an affine geometry which satisfies initially only Axioms 1,
2, 3 and Condition PP for each point P . The affine Desargues

conditions can first be established using only incidences, as in
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[2, p.100] and [3, p.193], and the method of [1, Chapter 2] can
be employed to construct the field.

Figure 1

Figure 2
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Figure 3

Figure 4
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