Canad. Math. Bull. Vol. 51 (1), 2008 pp. 100-113

Dynamical Zeta Function for Several Strictly Convex Obstacles

Vesselin Petkov

Abstract. The behavior of the dynamical zeta function $Z_D(s)$ related to several strictly convex disjoint obstacles is similar to that of the inverse $Q(s) = \frac{1}{\zeta(s)}$ of the Riemann zeta function $\zeta(s)$. Let $\Pi(s)$ be the series obtained from $Z_D(s)$ summing only over primitive periodic rays. In this paper we examine the analytic singularities of $Z_D(s)$ and $\Pi(s)$ close to the line $\Re s = s_2$, where s_2 is the abscissa of absolute convergence of the series obtained by the second iterations of the primitive periodic rays. We show that at least one of the functions $Z_D(s)$, $\Pi(s)$ has a singularity at $s = s_2$.

1 Introduction

Let $\Omega \subset \mathbb{R}^n$, n = 2, 3, be an open and connected domain with C^{∞} boundary $\partial \Omega$ having the form $\Omega = \mathbb{R}^n \setminus K$, where

$$K = \bigcup_{j=1}^{Q} K_j, \quad K_i \cap K_j = \emptyset, \text{ for } i \neq j$$

and K_j are strictly convex compact obstacles for j = 1, ..., Q, $Q \ge 3$. Throughout this paper we suppose that K satisfies the following condition introduced by Ikawa [6]:

(H) The convex hull of every two connected components of K does not have common points with any other connected component of K.

Consider the reflecting rays in $\overline{\Omega}$ (see [6] and [19, Ch. 2] for a precise definition). Under condition (H) every periodic ray is ordinary reflecting, that is, γ has no tangent segments. Given a *periodic reflecting ray* γ in $\overline{\Omega}$ with m_{γ} reflections, we denote by T_{γ} the primitive period (length) of γ , by $d_{\gamma} = lT_{\gamma}$, $l \in \mathbb{N}$, the period of γ and by P_{γ} the linear Poincaré map related to γ . Setting $|\det(I - P_{\gamma})| = |I - P_{\gamma}|$, it is easy to prove (see [18, Appendix]) that there exist constants $b_1 > 0$, $b_2 > 0$, $B_0 > 0$ so that

(1.1)
$$B_0 e^{2b_1 d_{\gamma}} \le |I - P_{\gamma}| \le e^{2b_2 d_{\gamma}}.$$

Denote by Ξ the set of all reflecting periodic rays in $\overline{\Omega}$ and set

 $d_0 = \min \operatorname{dist}_{i \neq j}(K_i, K_j), \quad D_0 = \max \operatorname{dist}_{i \neq j}(K_i, K_j).$

Received by the editors October 21, 2005; revised December 29, 2005. AMS subject classification: Primary: 11M36; secondary: 58J50. Keywords: dynamical zeta function, periodic rays. ©Canadian Mathematical Society 2008.

For the counting function of the lengths of periodic rays, there exists a constant $a_0 > 0$ such that

(1.2)
$$\sharp\{\gamma \in \Xi : d_{\gamma} \le q\} \le e^{a_0 q}$$

(see [6,22] and [19, Ch. 2]). In this note we examine the dynamical zeta function

(1.3)
$$Z_D(s) = \sum_{\gamma \in \Xi} (-1)^{m_{\gamma}} T_{\gamma} |I - P_{\gamma}|^{-1/2} e^{-sd_{\gamma}}, \quad s \in \mathbb{C},$$

where the summation is over all periodic rays $\gamma \in \Xi$. This zeta function is related to the trace formula for the unitary group associated with the Dirichlet problem for the wave equation

(1.4)
$$(\partial_t^2 - \Delta_x)u = 0 \text{ in } \mathbb{R} \times \Omega,$$
$$u = 0 \text{ on } \mathbb{R} \times \partial\Omega,$$

$$u(0, x) = f_1(x), \quad \partial_t u(0, x) = f_2(x)$$

The form of $Z_D(s)$ is obtained by the Laplace transformation of the distribution

(1.5)
$$\sum_{\gamma \in \Xi} (-1)^{m_{\gamma}} T_{\gamma} |I - P_{\gamma}|^{-1/2} \delta(t - d_{\gamma})$$

which in turn is the sum of the principal singularities of $u(t) \in \mathcal{D}'(\mathbb{R}^+)$ given by

$$u(t) = \sum_{\lambda_j} e^{it\lambda_j}, \quad t > 0.$$

Here $\lambda_j \in \mathbb{C}$ are the poles of the scattering matrix S(z) related to the problem (1.4) and the summation is over all poles counted with their multiplicities. We refer to [7,8,18,21] for a more detailed description of this link and to [1,5,13,19,21,28] for the trace formulas leading to (1.5).

Following a result of Ikawa [7,8], the existence of an analytic singularity of $Z_D(s)$ implies the existence of $\delta > 0$ such that there are an infinite number of poles $\{z_j\}_{j \in \mathbb{N}}$ of the scattering matrix S(z) satisfying

$$0<\Im z_j\leq\delta,\quad\forall j\in\mathbb{N},$$

and the last property is known as the modified Lax–Phillips conjecture. Another motivation for the analysis of $Z_D(s)$ is the folklore conjecture that the singularities of $Z_D(s)$ should determine approximatively the scattering poles.

By using (1.1) and (1.2), it is easy to see that there exists $s_1 \in \mathbb{R}$ called abscissa of absolute convergence such that for $\Re s > s_1$ the series (1.3) is absolutely convergent. Despite an extensive search in the physics and numerical analysis literature concerning *n*-disk problems (see [3, 12, 28, 29] and the references cited therein), to the best

of our knowledge, in the general case the problem of the existence of *at least one sin*gularity of $Z_D(s)$ is still open. The existence of an analytic non-real singularity has been proved by Ikawa [9] in the case when *K* is the union of several balls with radius $r \leq r_0$, provided $r_0 > 0$ is sufficiently small. Recently, Stoyanov [25] generalized the result of Ikawa for several obstacles satisfying some geometrical conditions and having diameters less than r_0 . It was proved in [18] that $Z_D(s)$ has no singularities on the line $\Re s = s_1$. In fact, we have a stronger result and following the recent works of Stoyanov [23, 26], we know that there exists $\delta_0 > 0$ such that $Z_D(s)$ is analytic for $\Re s > s_1 - \delta_0$ (see also [10] for the special case $s_1 > 0$). This means that $Z_D(s)$ is analytic in a domain around $\Re s = s_1$ and this phenomenon of cancellations is typical for dynamical zeta functions (see [4, 16, 23, 24, 26]). On the other hand, since $Z_D(s)$ is a Dirichlet series with real coefficients changing their signs, the situation is very similar to that for the inverse $Q(s) = \frac{1}{\zeta(s)}$ of the classical Riemann zeta function $\zeta(s)$. It is well known that Q(s) is analytic on the line $\Re s = 1$ and Q(s) has non-real singularities on the *critical line* $\Re s = 1/2$. Moreover, we have the representation

(1.6)
$$\log \zeta(s) = \sum_{m=1}^{\infty} \sum_{p \in \mathbf{P}} \frac{1}{m} \frac{1}{p^{ms}}, \quad \Re s > 1,$$

where **P** denotes the set of prime numbers. Consequently, the analytic behavior of $\log \zeta(s)$ for $1/2 < \Re s \le 1$ is characterized by the continuation of the function

$$\pi(s) = \sum_{p \in \mathbf{P}} \frac{1}{p^s}, \quad \Re s > 1,$$

and the critical line $\Re s = 1/2$ is related to m = 2 in the representation (1.6).

Denote by \mathcal{P} the set of all primitive periodic rays. In this note we examine the analytic singularities of $Z_D(s)$ close to the line $\Re s = s_2$, where $s_2 < s_1$ is the abscissa of the absolute convergence of the series $\Pi_2(s)$ obtained from $Z_D(s)$ when we sum only over the rays 2γ , $\gamma \in \mathcal{P}$, that is, over the second iteration of primitive rays (see Section 4 for a precise definition). We show that the line $\Re s = s_2$ plays a role in the investigation of the singularities of $Z_D(s)$. Similarly to $\pi(s)$, introduce the function

$$\Pi(s) = \sum_{\gamma \in \mathfrak{P}} (-1)^{m_{\gamma}} T_{\gamma} |I - P_{\gamma}|^{-1/2} e^{-sT_{\gamma}}, \quad \Re s > s_1,$$

where the summation is over the primitive rays $\gamma \in \mathcal{P}$. Next let $h_{\Pi} < s_1$ be the abscissa of holomorphy of $\Pi(s)$ given by

$$h_{\Pi} = \inf\{t \in \mathbb{R} : \Pi(s) \text{ is analytic for } \Re s > t\}.$$

Our main result is the following.

Theorem 1.1 At least one of the functions $Z_D(s)$, $\Pi(s)$ has a singularity at $s = s_2$ and the difference $Z_D(s) - \Pi(s)$ is analytic for $s \in \{z \in \mathbb{C} : \Re z > s_2\}$. Moreover, if $s_2 \neq h_{\Pi}$, then $Z_D(s)$ has a singularity at z with $\Re z > \max\{s_2, h_{\Pi}\} - \epsilon_1$, where $\epsilon_1 > 0$ is sufficiently small.

In the same way, we may show that if we consider the series obtained by summing over all iterations of the primitive rays of order (2m - 1), the corresponding function will be singular at $s = s_{2m}$ if $Z_D(s)$ is analytic at $s = s_{2m}$. Here s_k is the abscissa of absolute convergence of the series obtained by summing over all iterations of order $k \ge 2$, and we show that $s_1 - h_t < s_k < s_{k-1}$, $h_t > 0$ being the topological entropy of the billiard flow (see Proposition 3.3). Thus if $Z_D(s)$ is analytic for $\Re s > s_1 - h_t$, for any fixed $M \ge 2$ one obtains a singularity of the sum of series related to the iterations $m \le M$. This corollary yields some information for the numerical analysis, since in the numerical experiences one treats series with finite number iterations.

The existence of a singularity z_0 of $\Pi(s)$ such that $\Re z_0 > s_2 - \epsilon_0$, $\epsilon_0 > 0$, $\Im z_0 \neq 0$, is an interesting open problem, but it seems that the difficulty of this problem could be compared with that of the existence or the absence of singularities of $\pi(s)$ for $1/2 < \Re s < 1$. If fact, the dynamics of the periodic orbits is chaotic and the random change of signs of the coefficients in (1.3) plays some essential role. We *conjecture* that in general $Z_D(s)$ is not singular at s_2 and Theorem 1.1 shows that in this case $\Pi(s)$ must be singular at s_2 . It is expected that there exist non-real singularities z of $\Pi(s)$ with $\Re z$ arbitrary close to line of holomorphy $\Re s = h_{\Pi}$ of $\Pi(s)$. This will lead to singularities of $Z_D(s)$. In fact we have two possibilities:

(i)
$$s_2 \neq h_{\Pi}$$
, (ii) $s_2 = h_{\Pi}$.

Our analysis in Section 4 implies that in case (i) the function $Z_D(s)$ must be singular either at $s = s_2$ ($s_2 > h_{\Pi}$) or at a point *z* close to the line $\Re s = h_{\Pi}$ ($s_2 < h_{\Pi}$) and we obtain a solution of the modified Lax–Phillips conjecture (see [8, 9, 25]). In case (ii) we have a phenomenon similar to the famous Riemann conjecture for $\zeta(s)$ and the maximal domain $\Re s > t$, where $\Pi(s)$ is analytic, is determined by the line $\Re s = s_2$. Finally, it is not clear if the singularities found in [9, 25] lie in the domain $\Re s > s_2$. We will discuss this problem in Section 4.

2 Symbolic Dynamics

We will write $Z_D(s)$ as a Selberg zeta function using the argument of [18, §5]. First assume n = 3 and let $\lambda_{\gamma,i}$, i = 1, 2, $|\lambda_{\gamma,i}| > 1$, be the eigenvalues of the Poincaré map P_{γ} of the ray $\gamma \in \mathcal{P}$. Set

$$\delta_{\gamma} = -\frac{1}{2}\log(\lambda_{\gamma,1}\lambda_{\gamma,2}), \quad \nu_{\gamma} = -\log\lambda_{\gamma,1}, \quad \mu_{\gamma} = -\log\lambda_{\gamma,2}.$$

The product $\lambda_{\gamma,1}\lambda_{\gamma,2}$ and the sum $\lambda_{\gamma,1} + \lambda_{\gamma,2}$ are positive and $\delta_{\gamma} < 0$. Given $\gamma \in \mathcal{P}$, introduce

$$r_{\gamma} = \begin{cases} 0 & ext{if } m_{\gamma} = 2k, \\ 1 & ext{if } m_{\gamma} = 2k+1. \end{cases}$$

Then for $\Re s \gg s_1$ we have

$$Z_D(s) = \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \sum_{m=1}^{\infty} \sum_{\gamma \in \mathcal{P}} T_{\gamma}(-1)^{mr_{\gamma}} e^{m(-sT_{\gamma}+\delta_{\gamma}+k\nu_{\gamma}+p\mu_{\gamma})}.$$

We refer to [18] for the details of the proof of this representation. For n = 2 we have a simpler formula since there is only one eigenvalue $\lambda_{\gamma} > 1$ and we get

$$Z_D(s) = \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} \sum_{\gamma \in \mathcal{P}} T_{\gamma}(-1)^{mr_{\gamma}} e^{m(-sT_{\gamma}+\delta_{\gamma}+k\nu_{\gamma})},$$

where $\delta_{\gamma} = -\frac{1}{2} \log \lambda_{\gamma}$, $\nu_{\gamma} = 2\delta_{\gamma}$. Consider the leading term of $Z_D(s)$ obtained for k = p = 0 (resp. k = 0 for n = 2) and having the form

$$Z(s) = -\frac{d}{ds}Z_0(s), \quad Z_0(s) = \sum_{m=1}^{\infty} \frac{1}{m} \sum_{\gamma \in \mathcal{P}} (-1)^{mr_{\gamma}} e^{m(-sT_{\gamma}+\delta_{\gamma})}.$$

We will write $Z_0(s)$ by using a symbolic model. Let us recall some notations concerning the symbolic dynamics. Given a $Q \times Q$ matrix $A(i, j)_{i,j=1,...,Q}$ such that

$$A(i, j) = \begin{cases} 1 & \text{if } i \neq j, \\ 0 & \text{if } i = j, \end{cases}$$

introduce the spaces

$$\Sigma_A = \{\xi = \{\xi_i\}_{i=-\infty}^{\infty} : \xi_i \in \{1, \dots, Q\}, A(\xi_i, \xi_{i+1}) = 1\},$$

$$\Sigma_A^+ = \{\xi = (\xi_0, \xi_1, \dots) : A(\xi_i, \xi_{i+1}) = 1, \forall i \ge 0\}.$$

Let σ_A be the shift on Σ_A, Σ_A^+ given, respectively, by

$$(\sigma_A \xi)_i = \xi_{i+1}, \ \forall i \in \mathbb{Z}, \quad (\sigma_A \xi)_i = \xi_{i+1}, \ \forall i \ge 0.$$

For every $\xi \in \Sigma_A$ there exists a unique ray $\gamma(\xi)$ with successive reflection points on

 $\ldots, \partial K_{i-1}, \partial K_i, \partial K_{i+1}, \ldots$

(see [6, 19]). Let $P_j(\xi)$ be the *j*-th reflection point of $\gamma(\xi)$ and let

$$f(\xi) = \|P_0(\xi) - P_1(\xi)\|.$$

If $\gamma = \gamma(\xi) \in \mathcal{P}$ has *m* reflections and primitive period T_{γ} , then

$$T_{\gamma} = f(\xi) + f(\sigma_A \xi) + \dots + f(\sigma_A^{m-1} \xi) = S_m f(\xi).$$

Also (See [8,9]) there exists a function $g(\xi)$ such that

$$\delta_{\gamma} = g(\xi) + g(\sigma_A \xi) + \dots + g(\sigma_A^{m-1} \xi) = S_m g(\xi).$$

For $\Re s$ large we may write $Z_0(s)$ as follows,

$$Z_0(s) = \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \sum_{\sigma_A^m \xi = \xi} e^{S_m(-sf(\xi) + g(\xi))}.$$

Given a continuous function $F(\xi) \in C(\Sigma_A)$, introduce

$$\operatorname{var}_{n} F = \sup_{\xi, \eta \in \Sigma_{A}} \{ |F(\xi) - F(\eta)| : \xi_{i} = \eta_{i} \text{ for } |i| \le n \}$$

and for $0<\theta<1$ consider the norms

$$|F|_{\theta} = \sup_{n} \frac{\operatorname{var}_{n} F}{\theta^{n}}, \ \|F\|_{\infty} = \sup_{\xi \in \Sigma_{A}} |F(\xi)|, \ \|F\|_{\theta} = \|F\|_{\infty} + |F|_{\theta}.$$

Let $\mathcal{F}_{\theta}(\Sigma_A) \subset C(\Sigma_A), \mathcal{F}_{\theta}(\Sigma_A^+) \subset C(\Sigma_A^+)$ be Banach spaces with norm $\|\cdot\|_{\theta}$. It follows from the exponential instability of the billiard ball map that with some constant $0 < \theta < 1$, depending on the geometry of *K*, we have $f(\xi), g(\xi) \in \mathcal{F}_{\theta}(\Sigma_A)$ (see [8,9,18,23,25] for more details). We introduce the suspended flow σ^f over the space

$$\Sigma_A^f = \{(\xi, t) : \xi \in \Sigma_A, 0 \le t \le f(\xi)\}$$

with the identification $(\xi, f(\xi)) \sim (\sigma_a(\xi), 0)$ (see [17]) and notice that the topological entropy $h_t > 0$ of the suspended flow σ^f over Σ_A^f is given by

$$h_t = \sup_{\mu \in \mathcal{M}} \frac{h_\mu(\sigma_A)}{\int_{\Sigma_A} f d\mu}$$

Finally, recall that the pressure P(F) of a function $F \in C(\Sigma_A)$ is given by

$$P(F) = \sup_{\mu \in \mathcal{M}} \left(h_{\mu}(\sigma_A) + \int_{\Sigma_A} F d\mu \right),$$

where $h_{\mu}(\sigma_A)$ is the measure entropy of σ_A and the sup is taken over the set \mathcal{M} of all probabilistic measures on Σ_A invariant with respect to σ_A .

3 Summation over the Iterated Periodic Rays

It is well known [17] that for every function $\varphi(\xi) \in \mathfrak{F}_{\theta}(\Sigma_A)$ there exists $h, \psi \in \mathfrak{F}_{\theta^{1/2}}(\Sigma_A)$ so that

$$\varphi(\xi) = h(\xi) + \psi(\sigma_A(\xi)) - \psi(\xi),$$

and the function $h(\xi)$ depends only on the coordinates $(\xi_0, \xi_1, ...)$. In this case we will write $\varphi \sim h$. Obviously, if $F \sim \tilde{F}$, we have $P(F) = P(\tilde{F})$. Passing to functions $f \sim \tilde{f}, g \sim \tilde{g}$, we get

$$Z_0(s) = \sum_{m=1}^{\infty} \frac{(-1)^m}{m} \sum_{\sigma_A^m \xi = \xi} e^{S_m(-s\tilde{f}(\xi) + \tilde{g}(\xi))}.$$

The function $\mathbb{R} \ni s \longrightarrow P(-skf + kg)$ is strictly decreasing and given an integer $k \ge 1$ we may introduce the number $s_k \in \mathbb{R}$ determined uniquely by the equality

$$P(-s_kkf + kg) = 0.$$

It follows easily from the results in [17] that s_k is the abscissa of absolute convergence of the series

$$P_k(s) = \frac{1}{k} \sum_{\gamma \in \mathcal{P}} (-1)^{km_{\gamma}} e^{-ksT_{\gamma}+k\delta_{\gamma}}.$$

Indeed, s_k is the abscissa of absolute convergence of the series

$$G_k(s) = \sum_{m=1}^{\infty} \frac{1}{m} \sum_{\sigma_A^m \xi = \xi} e^{S_m(-skf(\xi) + kg(\xi))}.$$

On the other hand, for $\Re s > s_k$ we have

$$G_k(s) = \sum_{\gamma \in \mathcal{P}} e^{-skT_{\gamma} + k\delta_{\gamma}} + \sum_{m=2}^{\infty} \frac{1}{m} \sum_{\gamma \in \mathcal{P}} e^{m(-skT_{\gamma} + k\delta_{\gamma})}$$

and as in [17, Ch. 6] and [18, §4], we deduce that the series

$$\sum_{m=2}^{\infty} \frac{1}{m} \sum_{\gamma \in \mathcal{P}} e^{m(-skT_{\gamma}+k\delta_{\gamma})}$$

is absolutely convergent for $\Re s \ge s_k - \epsilon$ for some small $\epsilon > 0$. Next we will prove the following.

Lemma 3.1 For all $k \ge 1$ we have $s_{k+1} < s_k$.

Proof The pressure of the function $-s_k kf + kg$ is zero, so we may find a function $h \in \mathcal{F}_{\theta^{1/2}}(\Sigma_A^+)$ so that $h \sim -s_k kf + kg$, P(h) = 0 and we may choose h (for more details, see [17]) so that

$$\sum_{\sigma_A\eta=\xi}e^{h(\eta)}=1,\quad \forall\xi\in\Sigma^+_A.$$

This implies $h(\eta) \leq \alpha_k < 0$ for all $\eta \in \Sigma_A^+$ and $k \int_{\Sigma_A} (-s_k f + g) d\mu \leq \alpha_k$ for each $\mu \in \mathcal{M}$. It is clear that

$$\begin{split} h_{\mu}(\sigma) &+ \int_{\Sigma_{A}} (-s_{k}(k+1)f + (k+1)g) \, d\mu \\ &\leq \sup_{\mu \in \mathcal{M}} \left[h_{\mu}(\sigma) + \int_{\Sigma_{A}} (-s_{k}kf + kg) \, d\mu \right] + \frac{\alpha_{k}}{k} = \frac{\alpha_{k}}{k} < 0, \quad \forall \mu \in \mathcal{M}. \end{split}$$

This implies

$$P(-s_k(k+1)f + (k+1)g) = \sup_{\mu \in \mathcal{M}} \left[h_{\mu}(\sigma) + \int_{\Sigma_A} (-s_k(k+1)f + (k+1)g) \, d\mu \right] \le \frac{\alpha_k}{k}.$$

On the other hand, $P(-s_{k+1}(k+1)f + (k+1)g) = 0$ and since the function

$$\mathbb{R} \ni s \longrightarrow P(-s(k+1)f + (k+1)g)$$

is strictly decreasing, we get $s_{k+1} < s_k$.

To study the convergence of the series over the iterated rays we need the following.

Proposition 3.2 For every $k \ge 1$ there exists $\epsilon_o(k) > 0$, depending on k, such that the series

$$\sum_{m=k+1}^{\infty} P_m(s) = \sum_{m=k+1}^{\infty} \sum_{\gamma \in \mathcal{P}} \frac{(-1)^{mr_{\gamma}}}{m} e^{m(-sT_{\gamma}+\delta_{\gamma})}$$

is absolutely convergent for $\Re s \ge s_k - \epsilon_o(k)$ *.*

Proof As in the proof of Lemma 3.1, we choose *h* so that $h \sim -ks_k f + kg, h(\eta) < 0$, for all $\eta \in \Sigma_A^+$. First, assume that $s_k < 0$. We choose $\epsilon = \epsilon(k) > 0$ small enough in order to arrange the inequality $\sup_{\eta \in \Sigma_A^+} h(\eta) = \alpha_k \leq (k+1)k\epsilon s_k ||f||_{\infty}$. Let $\eta \in \Sigma_A^+$ correspond to a primitive periodic ray $\gamma \in \mathcal{P}$ with *m* reflections as explained in Section 2. We obtain $S_m(-ks_k f + kg)(\eta) = -ks_k T_{\gamma} + k\delta_{\gamma}$. On the other hand, it is clear that $T_{\gamma} \leq m ||f||_{\infty}$ and we get

$$S_m h(\eta) \le m(k+1)k\epsilon s_k \|f\|_{\infty} \le (k+1)k\epsilon s_k T_{\gamma}.$$

From the equality $S_m(-ks_kf + kg)(\eta) = S_mh(\eta)$, we deduce

$$-s_k T_{\gamma} + \delta_{\gamma} \leq (k+1)\epsilon s_k T_{\gamma}, \forall \gamma \in \mathcal{P}.$$

Now let $0 \le u \le \frac{\epsilon}{k+1}$. Then

$$-s_k(1+u)T_{\gamma} + \delta_{\gamma} \le (k+1)\epsilon s_k T_{\gamma} - s_k u T_{\gamma} \le \left((k+1)\epsilon - \frac{\epsilon}{k+1}\right)s_k T_{\gamma} \le \epsilon s_k T_{\gamma}$$

and we get the lower bound

$$1 > 1 - e^{-s_k(1+u)T_\gamma + \delta_\gamma} \ge 1 - e^{\epsilon s_k T_\gamma} \ge 1 - e^{2s_k \epsilon d_0} = \frac{1}{C_{\epsilon,k}} > 0.$$

Thus for $0 \le u \le \frac{\epsilon}{k+1}$, the series

$$\sum_{m=k+1}^{\infty} e^{m(-s_k(1+u)T_{\gamma}+\delta_{\gamma})} = \frac{e^{(k+1)(-s_k(1+u)T_{\gamma}+\delta_{\gamma})}}{1-e^{-s_k(1+u)T_{\gamma}+\delta_{\gamma}}} \le C_{\epsilon,k} e^{(k+1)(-s_k(1+u)T_{\gamma}+\delta_{\gamma})}$$

is convergent.

Next we obtain

$$- (k+1)s_k(1+u)T_{\gamma} + (k+1)\delta_{\gamma} \leq -s_kkT_{\gamma} + k\delta_{\gamma} + (k+1)\epsilon s_kT_{\gamma} - (k+1)us_kT_{\gamma} \leq -s_k(1-\epsilon)kT_{\gamma} + k\delta_{\gamma}.$$

Since s_k is the abscissa of absolute convergence of the series of k iterated rays, we deduce

$$\sum_{\gamma\in\mathfrak{P}}e^{-\mathfrak{s}_k(1-\epsilon)kT_\gamma+k\delta_\gamma}<\infty.$$

and this completes the proof.

https://doi.org/10.4153/CMB-2008-012-8 Published online by Cambridge University Press

Thus we conclude that

$$\sum_{m=k+1}^{\infty}\sum_{\gamma\in\mathfrak{P}}e^{m(-s_k(1+u)T_{\gamma}+\delta_{\gamma})}<\infty,$$

and the series

$$\sum_{m=k+1}^{\infty}\sum_{\gamma\in\mathfrak{P}}\frac{(-1)^{mr_{\gamma}}}{m}e^{m(-sT_{\gamma}+\delta_{\gamma})}$$

is absolutely convergent for $\Re s \ge s_k - \frac{\epsilon}{k+1}$. Setting $\epsilon_o(k) = \frac{\epsilon}{k+1}$, we obtain the result in this case.

Passing to the case $s_k > 0$, choose $\epsilon = \epsilon(k) > 0$ to arrange the inequalities

$$\begin{split} \sup_{\eta \in \Sigma_A^+} h(\eta) &\leq -(k+1)k\epsilon s_k \|f\|_{\infty}, \\ -s_k T_{\gamma} + \delta_{\gamma} &\leq -(k+1)\epsilon s_k T_{\gamma}, \quad \forall T_{\gamma} \in \mathcal{P}. \end{split}$$

For $0 \le u \le \frac{\epsilon}{k+1}$ we deduce $-s_k(1-u)T_\gamma + \delta_\gamma \le -(k+1)\epsilon s_k T_\gamma + s_k u T_\gamma \le -\epsilon s_k T_\gamma$, which yields

$$\sum_{m=k+1}^{\infty} e^{m(-s_k(1-u)T_{\gamma}+\delta_{\gamma})} \leq C_{\epsilon,k} e^{(k+1)(-s_k(1-u)T_{\gamma}+\delta_{\gamma})}.$$

On the other hand,

$$-(k+1)s_k(1-u)T_{\gamma}+(k+1)\delta_{\gamma} \leq -s_k(1+\epsilon)kT_{\gamma}+k\delta_{\gamma}$$

and this leads to

$$\sum_{m=k+1}^{\infty}\sum_{\gamma\in\mathcal{P}}e^{m(-s_k(1-u)T_{\gamma}+\delta_{\gamma})}<\infty$$

Finally, in the case $s_k = 0$, we arrange

$$\begin{split} \sup_{\eta \in \Sigma_A^+} h(\eta) &\leq -(k+1)k\epsilon \|f\|_{\infty}, \\ \delta_{\gamma} &\leq -(k+1)\epsilon T_{\gamma}, \forall T_{\gamma} \in \mathcal{P}. \end{split}$$

Repeating the above argument, we establish for $0 \le u \le \frac{\epsilon}{k+1}$ the convergence of the series

$$\sum_{m=k+1}^{\infty}\sum_{\gamma\in\mathcal{P}}e^{m(uT_{\gamma}+\delta_{\gamma})}<\infty,$$

V. Petkov

To compare s_k and s_1 , consider the measure $\nu \in \mathcal{M}$ for which we have

$$P(-s_1 f + g) = h_{\nu}(\sigma_A) + \int_{\Sigma_A} (-s_1 f + g) \, d\nu = 0.$$

This measure is called the *equilibrium state* of $-s_1 f + g$ (see [17]). Then we obtain

$$P\left(-k\left(s_{1}-\frac{k-1}{k}h_{t}\right)f+kg\right) \geq h_{\nu}(\sigma_{A})+k\int_{\Sigma_{A}}\left(-s_{1}f+g\right)d\nu+(k-1)h_{t}\int_{\Sigma_{A}}f\,d\nu$$
$$=(k-1)\left[h_{t}\int_{\Sigma_{A}}f\,d\nu-h_{\nu}(\sigma_{A})\right]\geq0.$$

Comparing this with $P(-ks_k f + kg) = 0$, we deduce

$$(3.1) s_k \ge s_1 - \frac{k-1}{k}h_t.$$

Thus we have proved the following.

Proposition 3.3 The sequence s_k is convergent and $\lim_{k\to\infty} s_k \ge s_1 - h_t$.

It is interesting to note that the abscissa c_0 of simple convergence of the Dirichlet series $Z_0(s)$ satisfies the estimate $c_0 \ge s_1 - h_t$, but it is difficult to compare c_0 with s_k .

4 Singularities on the Line $\Re s = s_2$

Consider the Dirichlet series $P_2(s) = \frac{1}{2} \sum_{\gamma \in \mathcal{P}} e^{-2sT_{\gamma}+2\delta_{\gamma}}$, with positive coefficients. According to a classical result, this series has an analytic singularity at $s = s_2$. On the other hand, Proposition 3.2 implies that the sum over all iterated rays $k\gamma, \gamma \in \mathcal{P}$, $k \geq 3$, given by $\sum_{k=3}^{\infty} P_k(s)$, is analytic for $\Re s \geq s_2 - \epsilon_o(2)$ for some $\epsilon_o(2) > 0$. It is clear that the singularities of $Z_0(s)$ for $\Re s > s_2$ are related to those of the series obtained by summing only over the primitive rays

$$P_1(s) = \sum_{\gamma \in \mathcal{P}} (-1)^{r_{\gamma}} e^{-sT_{\gamma}+\delta_{\gamma}}.$$

Let h_p be the abscissa of *holomorphy* of the Dirichlet series $P_1(s)$. More precisely, h_p is the *minimal* real number t such that $P_1(s)$ is analytic for $\Re s > t$. We have three possibilities:

(i)
$$h_p > s_2$$
, (ii) $h_p = s_2$, (iii) $h_p < s_2$.

In case (i), the function $P_1(s)$, and hence $Z_0(s)$, has either a singularity on the line $\Re s = h_p$ or there exists a sequence of singularities z_j with $\Re z_j \rightarrow h_p$, $|\Im z_j| \rightarrow \infty$. In case (iii), the function $P_2(s)$ produces a singularity of $Z_0(s)$ at $s = s_2$. In case (ii), we must examine the singularities of the sum $P_1(s) + P_2(s)$. Of course, if $P_1(s)$ is analytic at $s = s_2$, we have the same situation as in case (iii). Thus a cancellation of the singularities of $P_1(s) + P_2(s)$ at the point s_2 is possible only if $P_1(s)$ is singular at $s = s_2$. Thus we have the following.

Theorem 4.1 At least one of the functions $Z_0(s)$, $P_1(s)$ has a singularity at $s = s_2$. Moreover, the difference $Z_0(s) - P_1(s)$ is analytic for $s \in \{z \in \mathbb{C} : \Re z > s_2\}$.

We may compare the functions $Z_0(s)$ and $Z_D(s)$. As was shown in [8, 18, 25] there exists $\mu_1 > 0$ such that $Z_D(s) - Z_0(s)$ is analytic for $\Re s > s_1 - \mu_1$. The number μ_1 depends on the geometry of obstacles (see [18, Appendix] and [25]). In some cases we may show that $s_2 > s_1 - \mu_1$. For example, this is true if n = 2 and $s_2 < 0$. Nevertheless, it is more natural to deal with the function $\Pi(s)$ introduced in Section 1. As above, let h_{Π} be the abscissa of the holomorphy of the Dirichlet series $\Pi(s)$ introduced in Section 1. We consider again three cases:

(i)
$$h_{\Pi} > s_2$$
, (ii) $h_{\Pi} = s_2$, (iii) $h_{\Pi} < s_2$.

For $m \ge 2$ and n = 3, the analysis of the series

$$\Pi_m(s) = \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \sum_{\gamma \in \mathcal{P}} \frac{1}{m} (-1)^{mr_{\gamma}} e^{m(-sT_{\gamma} + \delta_{\gamma} + k\nu_{\gamma} + p\mu_{\gamma})}, \Re s > s_1$$

is completely similar to that of $P_m(s)$. In fact the abscissa of absolute convergence of $\Pi_m(s)$ coincides with that of $P_m(s)$ and we may apply Proposition 3.2 for the series

$$\sum_{m=j+1}^{\infty} \prod_m(s) = \sum_{m=j+1}^{\infty} \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \sum_{\gamma \in \mathcal{P}} \frac{1}{m} (-1)^{mr_{\gamma}} e^{m(-sT_{\gamma}+\delta_{\gamma}+k\nu_{\gamma}+p\mu_{\gamma})},$$

assuming $j \ge 1$. Case n = 2 is treated in a similar way and repeating the argument of the proof of Theorem 4.1, we obtain Theorem 1.1.

In the same way, we may consider the function

$$\Pi_3(s) = \Pi(s) + \Pi_2(s) + \Pi_3(s) = \sum_{\gamma \in \Xi_3} (-1)^{m_\gamma} T_\gamma |I - P_\gamma|^{-1/2} e^{-sd_\gamma}, \Re s > s_1,$$

where the summation is over all rays $\gamma \in \Xi_3 \subset \Xi$, which are either primitive or are obtained by two or three iterations of primitive periodic rays. Then at least one of the functions $Z_D(s)$, $\Pi_3(s)$ has a singularity at $s = s_4$ and it is possible to iterate this argument.

Let us mention that from our results it is not clear if the analytic singularity z of $\Pi(s)$ or $Z_D(s)$ given by Theorem 1.1 is a pole. In fact, it is known that the function $Z_0(s)$ is meromorphic for

$$\Re s \ge s_1 - \frac{|\log \theta|}{2 \|f\|_{\infty}},$$

 $0 < \theta < 1$ being the constant introduced in Section 2. On the other hand, we have $s_2 \ge h_t/2$ and s_2 lies in the above domain if $h_t ||f||_{\infty} \le |\log \theta|$. It is expected that $Z_0(s)$ and $Z_D(s)$ are meromorphic in a larger domain or in the whole complex plan. For n = 2 some results in this direction are obtained by Morita [15].

It is interesting to mention that for all $k \in \mathbb{N}$, we have

(4.1)
$$s_k > b_0 = \sup_{\gamma \in \mathcal{P}} \frac{\delta_{\gamma}}{T_{\gamma}}.$$

In [18] it was established that $b_0 < 0$, so we need to check (4.1) only for $s_k < 0$. In this case the argument of the proof of Proposition 3.2 shows that

$$-s_k T_{\gamma} + \delta_{\gamma} \le \epsilon_k T_{\gamma}, \, \forall \gamma \in \mathcal{P},$$

with some $\epsilon_k < 0$ and we obtain (4.1). The number b_0 has been introduced in [18] and it is related to the sequence of poles

$$s_{m,\gamma} = rac{\delta_{\gamma}}{T_{\gamma}} + rac{2m\pi}{T_{\gamma}}\mathbf{i}, \quad r_{m,\gamma} = rac{\delta_{\gamma}}{T_{\gamma}} + rac{(2m+1)\pi}{T_{\gamma}}\mathbf{i}, \quad m \in \mathbb{Z},$$

obtained from the series formed by all iterations of a *fixed* periodic primitive ray γ .

For several strictly convex small obstacles, Ikawa [9] and Stoyanov [25] established the existence of a non-real singularity

$$z_0 = \alpha + \mathbf{i} \frac{\pi}{d_1}, \quad \alpha \in \mathbb{R},$$

of $Z_D(s)$ with d_1 sufficiently close to D_0 . Following the analysis in [25, Section 7], we conclude that $s_1 - b_K \le \alpha < s_1$ with

$$b_K \geq rac{1}{D_0} \ln \left(1 + rac{\kappa_{\min}}{
u_0} D_0
ight).$$

Here $\kappa_{\min} > 0$ is the minimal normal curvature of ∂K and $\nu_0 > 0$ is a constant depending on d_0 , the diameter of *K* and

 $\chi_0 = \min\{\operatorname{dist}(K_i, \operatorname{convex} \operatorname{hull}(K_i \cup K_l)) : j \neq i, i \neq l, l \neq j\} > 0.$

For obstacles having sufficiently small diameters, we may arrange the inequality $b_K \ge h_t$. Indeed, it is sufficient to have

$$h_{\mu}(\sigma_A) \leq \frac{d_0}{D_0} \ln\left(1 + \frac{\kappa_{\min}}{\nu_0} D_0\right) \leq b_K \int_{\Sigma_A} f \, d\mu$$

for every σ_A invariant measure $\mu \in \mathcal{M}$. If the diameters of the obstacles are sufficiently small, then κ_{\min} is large enough, while $\frac{d_0}{D_0}$ and χ_0 remain bounded from below. Thus in this case we have

$$\sup_{\mu \in \mathcal{M}} h_{\mu}(\sigma_{A}) \leq \frac{d_{0}}{D_{0}} \ln \left(1 + \frac{\kappa_{\min}}{\nu_{0}} D_{0} \right)$$

which implies $b_K \ge h_t$. Combining this with (3.1), we obtain immediately

$$s_1 - b_K \leq s_1 - h_t < s_k, \forall k \in \mathbb{N}.$$

Consequently, the line $\Re s = s_k$ lies in the domain where we have complex singularities and this agrees with the conjecture that we must have complex singularities of $Z_D(s)$ close to the line $\Re s = h_{\Pi}$ or close to the line $\Re s = s_2$.

Acknowledgments The author is grateful to Lachezar Stoyanov for many helpful discussions and comments.

V. Petkov

References

- C. Bardos, J. C. Guillot and J. Ralston, *La relation de Poisson pour l'équation des ondes dans un ouvert non-borné*. Comm. Partial Differantial Equations 7(1982), no. 8905–958.
- [2] N. Burq, Controle de l'équation des plaques en présence d'obstacles strictement convexes. Suppl. Bull. Soc. Math. France, 121(1993), Mémoire 55.
- [3] P. Cvitanović, G. Vattay and A. Wirzba, *Quantum fluids and classical determinants*. In: Classical, Semiclassical and Quantum Dynamics in Atoms, Lecture Notes in Physics 487, Springer, Berlin, pp. 29–62.
- [4] D. Dolgopyat, On decay of correlations of Anosov flows. Ann. of Math. 147(1998), no. 2, 357–390.
- [5] V. Guillemin and R. Melrose, *The Poisson summation formula for manifolds with boundary*. Adv. in Math. **32**(1979), no. 3, 204–232.
- [6] M. Ikawa, Decay of solutions of the wave equation in the exterior of several strictly convex bodies. Ann. Inst. Fourier (Grenoble), 38(1988), no. 2, 113–146.
- [7] _____, On the existence of poles of the scattering matrix for several convex bodies. Proc. Japan Acad. Ser. A Math. Sci. **64**(1988), no. 4, 91–93.
- [8] _____, On the distribution of poles of the scattering matrix for several convex bodies. In: Functional-Analytic Methods for Partial Differential Equations, Lecture Notes in Math. 1450, Springer, Berlin, 1990, pp. 210–225.
- [9] _____, Singular perturbation of symbolic flows and poles of the zeta functions. Osaka J. Math. 27(1990), no. 2, 281–300; Addendum, Osaka J. Math. 29(1992), 161–174.
- [10] _____, On scattering by several convex bodies. J. Korean Math. Soc. 37(2000), no. 6, 991–1005.
- [11] P. Lax and R. Phillips, *Scattering Theory*, 2nd Edition, Pure and Applied Mathematics 26. Academic Press, New York, 1989.
- [12] K. Lin and M. Zworski, Quantum resonances in chaotic scattering. Chem. Phys. Lett. 355(2002), no. 1-2, 201–205.
- [13] R. Melrose, Polynomial bound on the distribution of scattering poles. J. Funct. Anal. 53(1983), no.3, 287–303.
- [14] T. Morita, The symbolic representation of billiards without boundary condition. Trans. Amer. Math. Soc. 325(1991), no.2, 819–828.
- [15] _____, Construction of K-stable foliations for two-dimensional dispersing billiards without eclipse. J. Math. Soc. Japan 56(2004), no. 3, 803–831.
- [16] F. Naud, Analytic continuation of a dynamical zeta function under a Diophantine condition. Nonlinearity, 14(2001), no. 5, 995–1009.
- [17] W. Parry and M. Pollicot, *Zeta functions and the periodic orbit structure of hyperbolic dynamics*. Astérique, no. 187–188, 1990.
- [18] V. Petkov, Analytic singularities of the dynamical zeta function. Nonlinearity, 12(1999), no. 6, 1663–1681.
- [19] V. Petkov and L. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems. Chichester, John Wiley, 1992.
- [20] J. Sjöstrand, A trace formula and review of some estimates for resonances. In: Microlocal Analysis and Spectral Theory. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490, Kluwer, Dordrecht, 1997, 377–437.
- [21] J. Sjöstrand and M. Zworski, *Lower bounds on the number of scattering poles*. Comm. Partial Differential Equations 18(1993), no. 5-6, 847–857.
- [22] L. Stoyanov, *Exponential instability for a class of dispersing billiards*. Ergodic Theory Dynam. Systems **19**(1999), no. 1, 201–226.
- [23] _____, Spectrum of the Ruelle operator and exponential decay of correlation flow for open billiard flows. Amer. J. Math. **123** (2001), 715–759.
- [24] _____, Ruelle zeta functions and spectra of transfer operators for some Axiom A flows. Preprint. http://www.maths.uwa.edu.au/~stoyanov
- [25] _____, Scattering resonances for several small convex bodies and the Lax-Phillips conjecture. To appear in Mem. Amer. Math. Soc. http://www.maths.uwa.edu.au/~stoyanov
- [26] _____, Spectra of Ruelle transfer operators for contact flows on basic sets. Preprint, 2007. http://www.maths.uwa.edu.au/~stoyanov
- [27] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian. Comm. Math. Phys. 146(1992), no. 1, 205–216.

- [28] A. Voros, Spectral functions, special functions and the Selberg zeta function. Commun. Math. Phys. 110(1987), no. 3, 437–465.
- [29] A. Wirzba, *Quantum mechanics and semi-classics of hyperbolic n-disk scattering systems*. Phys. Rep. **309**(1999), no. 1-2, 1–116.

Département de Mathématiques Appliquées Université Bordeaux I 351, Cours de la Libération 33405 Talence France e-mail: petkov@math.u-bordeaux1.fr