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Dynamical Zeta Function for Several
Strictly Convex Obstacles

Vesselin Petkov

Abstract. The behavior of the dynamical zeta function ZD(s) related to several strictly convex disjoint

obstacles is similar to that of the inverse Q(s) =
1
ζ(s)

of the Riemann zeta function ζ(s). Let Π(s) be the

series obtained from ZD(s) summing only over primitive periodic rays. In this paper we examine the

analytic singularities of ZD(s) and Π(s) close to the line ℜs = s2, where s2 is the abscissa of absolute

convergence of the series obtained by the second iterations of the primitive periodic rays. We show

that at least one of the functions ZD(s),Π(s) has a singularity at s = s2.

1 Introduction

Let Ω ⊂ R
n, n = 2, 3, be an open and connected domain with C∞ boundary ∂Ω

having the form Ω = R
n \ K, where

K =

Q
⋃

j=1

K j , Ki ∩ K j = ∅, for i 6= j

and K j are strictly convex compact obstacles for j = 1, . . . ,Q, Q ≥ 3. Throughout

this paper we suppose that K satisfies the following condition introduced by Ikawa

[6]:

(H)
The convex hull of every two connected components of K does not

have common points with any other connected component of K.

Consider the reflecting rays in Ω (see [6] and [19, Ch. 2] for a precise definition).

Under condition (H) every periodic ray is ordinary reflecting, that is, γ has no tan-

gent segments. Given a periodic reflecting ray γ in Ω with mγ reflections, we denote

by Tγ the primitive period (length) of γ, by dγ = lTγ , l ∈ N, the period of γ and by

Pγ the linear Poincaré map related to γ. Setting |det(I − Pγ)| = |I − Pγ |, it is easy to

prove (see [18, Appendix]) that there exist constants b1 > 0, b2 > 0, B0 > 0 so that

(1.1) B0e2b1dγ ≤ |I − Pγ | ≤ e2b2dγ .

Denote by Ξ the set of all reflecting periodic rays in Ω and set

d0 = min disti 6= j(Ki ,K j), D0 = max disti 6= j(Ki ,K j).
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Dynamical Zeta Function for Several Strictly Convex Obstacles 101

For the counting function of the lengths of periodic rays, there exists a constant

a0 > 0 such that

(1.2) ♯{γ ∈ Ξ : dγ ≤ q} ≤ ea0q

(see [6, 22] and [19, Ch. 2]). In this note we examine the dynamical zeta function

(1.3) ZD(s) =

∑

γ∈Ξ

(−1)mγTγ |I − Pγ |
−1/2e−sdγ , s ∈ C,

where the summation is over all periodic rays γ ∈ Ξ. This zeta function is related to

the trace formula for the unitary group associated with the Dirichlet problem for the

wave equation

(1.4)

(∂2
t − ∆x)u = 0 in R × Ω,

u = 0 on R × ∂Ω,

u(0, x) = f1(x), ∂t u(0, x) = f2(x).

The form of ZD(s) is obtained by the Laplace transformation of the distribution

(1.5)
∑

γ∈Ξ

(−1)mγTγ |I − Pγ |
−1/2δ(t − dγ)

which in turn is the sum of the principal singularities of u(t) ∈ D ′(R
+) given by

u(t) =

∑

λ j

eitλ j , t > 0.

Here λ j ∈ C are the poles of the scattering matrix S(z) related to the problem (1.4)

and the summation is over all poles counted with their multiplicities. We refer to

[7, 8, 18, 21] for a more detailed description of this link and to [1, 5, 13, 19, 21, 28] for

the trace formulas leading to (1.5).

Following a result of Ikawa [7, 8], the existence of an analytic singularity of ZD(s)

implies the existence of δ > 0 such that there are an infinite number of poles {z j} j∈N

of the scattering matrix S(z) satisfying

0 < ℑz j ≤ δ, ∀ j ∈ N,

and the last property is known as the modified Lax–Phillips conjecture. Another

motivation for the analysis of ZD(s) is the folklore conjecture that the singularities of

ZD(s) should determine approximatively the scattering poles.

By using (1.1) and (1.2), it is easy to see that there exists s1 ∈ R called abscissa of

absolute convergence such that for ℜs > s1 the series (1.3) is absolutely convergent.

Despite an extensive search in the physics and numerical analysis literature concern-

ing n-disk problems (see [3, 12, 28, 29] and the references cited therein), to the best
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102 V. Petkov

of our knowledge, in the general case the problem of the existence of at least one sin-

gularity of ZD(s) is still open. The existence of an analytic non-real singularity has

been proved by Ikawa [9] in the case when K is the union of several balls with radius

r ≤ r0, provided r0 > 0 is sufficiently small. Recently, Stoyanov [25] generalized

the result of Ikawa for several obstacles satisfying some geometrical conditions and

having diameters less than r0. It was proved in [18] that ZD(s) has no singularities on

the line ℜs = s1. In fact, we have a stronger result and following the recent works

of Stoyanov [23, 26], we know that there exists δ0 > 0 such that ZD(s) is analytic for

ℜs > s1 − δ0 (see also [10] for the special case s1 > 0). This means that ZD(s) is

analytic in a domain around ℜs = s1 and this phenomenon of cancellations is typ-

ical for dynamical zeta functions (see [4, 16, 23, 24, 26]). On the other hand, since

ZD(s) is a Dirichlet series with real coefficients changing their signs, the situation is

very similar to that for the inverse Q(s) =
1
ζ(s)

of the classical Riemann zeta function

ζ(s). It is well known that Q(s) is analytic on the line ℜs = 1 and Q(s) has non-real

singularities on the critical line ℜs = 1/2. Moreover, we have the representation

(1.6) log ζ(s) =

∞
∑

m=1

∑

p∈P

1

m

1

pms
, ℜs > 1,

where P denotes the set of prime numbers. Consequently, the analytic behavior of

log ζ(s) for 1/2 < ℜs ≤ 1 is characterized by the continuation of the function

π(s) =

∑

p∈P

1

ps
, ℜs > 1,

and the critical line ℜs = 1/2 is related to m = 2 in the representation (1.6).

Denote by P the set of all primitive periodic rays. In this note we examine the

analytic singularities of ZD(s) close to the line ℜs = s2, where s2 < s1 is the abscissa

of the absolute convergence of the series Π2(s) obtained from ZD(s) when we sum

only over the rays 2γ, γ ∈ P, that is, over the second iteration of primitive rays (see

Section 4 for a precise definition). We show that the line ℜs = s2 plays a role in the

investigation of the singularities of ZD(s). Similarly to π(s), introduce the function

Π(s) =

∑

γ∈P

(−1)mγTγ |I − Pγ |
−1/2e−sTγ , ℜs > s1,

where the summation is over the primitive rays γ ∈ P. Next let hΠ < s1 be the

abscissa of holomorphy of Π(s) given by

hΠ = inf{t ∈ R : Π(s) is analytic for ℜs > t}.

Our main result is the following.

Theorem 1.1 At least one of the functions ZD(s),Π(s) has a singularity at s = s2

and the difference ZD(s) − Π(s) is analytic for s ∈ {z ∈ C : ℜz > s2}. Moreover, if

s2 6= hΠ, then ZD(s) has a singularity at z with ℜz > max{s2, hΠ} − ǫ1, where ǫ1 > 0

is sufficiently small.
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Dynamical Zeta Function for Several Strictly Convex Obstacles 103

In the same way, we may show that if we consider the series obtained by summing

over all iterations of the primitive rays of order (2m−1), the corresponding function

will be singular at s = s2m if ZD(s) is analytic at s = s2m. Here sk is the abscissa of

absolute convergence of the series obtained by summing over all iterations of order

k ≥ 2, and we show that s1 − ht < sk < sk−1, ht > 0 being the topological entropy of

the billiard flow (see Proposition 3.3). Thus if ZD(s) is analytic for ℜs > s1 − ht , for

any fixed M ≥ 2 one obtains a singularity of the sum of series related to the iterations

m ≤ M. This corollary yields some information for the numerical analysis, since in

the numerical experiences one treats series with finite number iterations.

The existence of a singularity z0 of Π(s) such that ℜz0 > s2 − ǫ0, ǫ0 > 0, ℑz0 6= 0,

is an interesting open problem, but it seems that the difficulty of this problem could

be compared with that of the existence or the absence of singularities of π(s) for

1/2 < ℜs < 1. If fact, the dynamics of the periodic orbits is chaotic and the random

change of signs of the coefficients in (1.3) plays some essential role. We conjecture

that in general ZD(s) is not singular at s2 and Theorem 1.1 shows that in this case

Π(s) must be singular at s2. It is expected that there exist non-real singularities z of

Π(s) with ℜz arbitrary close to line of holomorphy ℜs = hΠ of Π(s). This will lead

to singularities of ZD(s). In fact we have two possibilities:

(i) s2 6= hΠ, (ii) s2 = hΠ.

Our analysis in Section 4 implies that in case (i) the function ZD(s) must be sin-

gular either at s = s2 (s2 > hΠ) or at a point z close to the line ℜs = hΠ (s2 < hΠ)

and we obtain a solution of the modified Lax–Phillips conjecture (see [8, 9, 25]). In

case (ii) we have a phenomenon similar to the famous Riemann conjecture for ζ(s)

and the maximal domain ℜs > t , where Π(s) is analytic, is determined by the line

ℜs = s2. Finally, it is not clear if the singularities found in [9, 25] lie in the domain

ℜs > s2. We will discuss this problem in Section 4.

2 Symbolic Dynamics

We will write ZD(s) as a Selberg zeta function using the argument of [18, §5]. First

assume n = 3 and let λγ,i , i = 1, 2, |λγ,i | > 1, be the eigenvalues of the Poincaré

map Pγ of the ray γ ∈ P. Set

δγ = −
1

2
log(λγ,1λγ,2), νγ = − logλγ,1, µγ = − logλγ,2.

The product λγ,1λγ,2 and the sum λγ,1 + λγ,2 are positive and δγ < 0. Given γ ∈ P,
introduce

rγ =

{

0 if mγ = 2k,

1 if mγ = 2k + 1.

Then for ℜs ≫ s1 we have

ZD(s) =

∞
∑

k=0

∞
∑

p=0

∞
∑

m=1

∑

γ∈P

Tγ(−1)mrγ em(−sTγ+δγ+kνγ+pµγ).
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104 V. Petkov

We refer to [18] for the details of the proof of this representation. For n = 2 we have

a simpler formula since there is only one eigenvalue λγ > 1 and we get

ZD(s) =

∞
∑

k=0

∞
∑

m=1

∑

γ∈P

Tγ(−1)mrγ em(−sTγ+δγ+kνγ ),

where δγ = − 1
2

logλγ, νγ = 2δγ . Consider the leading term of ZD(s) obtained for

k = p = 0 (resp. k = 0 for n = 2) and having the form

Z(s) = −
d

ds
Z0(s), Z0(s) =

∞
∑

m=1

1

m

∑

γ∈P

(−1)mrγ em(−sTγ+δγ).

We will write Z0(s) by using a symbolic model. Let us recall some notations con-

cerning the symbolic dynamics. Given a Q × Q matrix A(i, j)i, j=1,...,Q such that

A(i, j) =

{

1 if i 6= j,

0 if i = j,

introduce the spaces

ΣA = {ξ = {ξi}
∞
i=−∞ : ξi ∈ {1, . . . ,Q}, A(ξi , ξi+1) = 1},

Σ
+
A = {ξ = (ξ0, ξ1, . . . ) : A(ξi , ξi+1) = 1, ∀i ≥ 0}.

Let σA be the shift on ΣA,Σ
+
A given, respectively, by

(σAξ)i = ξi+1, ∀i ∈ Z, (σAξ)i = ξi+1, ∀i ≥ 0.

For every ξ ∈ ΣA there exists a unique ray γ(ξ) with successive reflection points on

. . . , ∂K j−1, ∂K j , ∂K j+1, . . .

(see [6, 19]). Let P j(ξ) be the j-th reflection point of γ(ξ) and let

f (ξ) = ‖P0(ξ) − P1(ξ)‖.

If γ = γ(ξ) ∈ P has m reflections and primitive period Tγ , then

Tγ = f (ξ) + f (σAξ) + · · · + f (σm−1
A ξ) = Sm f (ξ).

Also (See [8, 9]) there exists a function g(ξ) such that

δγ = g(ξ) + g(σAξ) + · · · + g(σm−1
A ξ) = Smg(ξ).

For ℜs large we may write Z0(s) as follows,

Z0(s) =

∞
∑

m=1

(−1)m

m

∑

σm
A ξ=ξ

eSm(−s f (ξ)+g(ξ)).
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Dynamical Zeta Function for Several Strictly Convex Obstacles 105

Given a continuous function F(ξ) ∈ C(ΣA), introduce

varn F = sup
ξ,η∈ΣA

{|F(ξ) − F(η)| : ξi = ηi for |i| ≤ n}

and for 0 < θ < 1 consider the norms

|F|θ = sup
n

varnF

θn
, ‖F‖∞ = sup

ξ∈ΣA

|F(ξ)|, ‖F‖θ = ‖F‖∞ + |F|θ.

Let Fθ(ΣA) ⊂ C(ΣA),Fθ(Σ
+
A) ⊂ C(Σ+

A) be Banach spaces with norm ‖ · ‖θ. It fol-

lows from the exponential instability of the billiard ball map that with some constant

0 < θ < 1, depending on the geometry of K, we have f (ξ), g(ξ) ∈ Fθ(ΣA) (see

[8,9,18,23,25] for more details). We introduce the suspended flow σ f over the space

Σ
f
A = {(ξ, t) : ξ ∈ ΣA, 0 ≤ t ≤ f (ξ)}

with the identification (ξ, f (ξ)) ∼ (σa(ξ), 0) (see [17]) and notice that the topologi-

cal entropy ht > 0 of the suspended flow σ f over Σ
f
A is given by

ht = sup
µ∈M

hµ(σA)
∫

ΣA
f dµ

.

Finally, recall that the pressure P(F) of a function F ∈ C(ΣA) is given by

P(F) = sup
µ∈M

(

hµ(σA) +

∫

ΣA

Fdµ
)

,

where hµ(σA) is the measure entropy of σA and the sup is taken over the set M of all

probabilistic measures on ΣA invariant with respect to σA.

3 Summation over the Iterated Periodic Rays

It is well known [17] that for every function ϕ(ξ) ∈ Fθ(ΣA) there exists h, ψ ∈
Fθ1/2 (ΣA) so that

ϕ(ξ) = h(ξ) + ψ(σA(ξ)) − ψ(ξ),

and the function h(ξ) depends only on the coordinates (ξ0, ξ1, . . . ). In this case we

will write ϕ ∼ h. Obviously, if F ∼ F̃, we have P(F) = P(F̃). Passing to functions

f ∼ f̃ , g ∼ g̃, we get

Z0(s) =

∞
∑

m=1

(−1)m

m

∑

σm
A ξ=ξ

eSm(−s f̃ (ξ)+g̃(ξ)).

The function R ∋ s −→ P(−sk f + kg) is strictly decreasing and given an integer

k ≥ 1 we may introduce the number sk ∈ R determined uniquely by the equality

P(−skk f + kg) = 0.
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It follows easily from the results in [17] that sk is the abscissa of absolute convergence

of the series

Pk(s) =
1

k

∑

γ∈P

(−1)kmγ e−ksTγ+kδγ .

Indeed, sk is the abscissa of absolute convergence of the series

Gk(s) =

∞
∑

m=1

1

m

∑

σm
A ξ=ξ

eSm(−sk f (ξ)+kg(ξ)).

On the other hand, for ℜs > sk we have

Gk(s) =

∑

γ∈P

e−skTγ+kδγ +

∞
∑

m=2

1

m

∑

γ∈P

em(−skTγ+kδγ )

and as in [17, Ch. 6] and [18, §4], we deduce that the series

∞
∑

m=2

1

m

∑

γ∈P

em(−skTγ+kδγ )

is absolutely convergent for ℜs ≥ sk − ǫ for some small ǫ > 0. Next we will prove the

following.

Lemma 3.1 For all k ≥ 1 we have sk+1 < sk.

Proof The pressure of the function −skk f + kg is zero, so we may find a function

h ∈ Fθ1/2 (Σ+
A) so that h ∼ −skk f + kg, P(h) = 0 and we may choose h (for more

details, see [17]) so that
∑

σAη=ξ

eh(η)
= 1, ∀ξ ∈ Σ

+
A.

This implies h(η) ≤ αk < 0 for all η ∈ Σ
+
A and k

∫

ΣA
(−sk f + g) dµ ≤ αk for each

µ ∈ M. It is clear that

hµ(σ) +

∫

ΣA

(−sk(k + 1) f + (k + 1)g) dµ

≤ sup
µ∈M

[

hµ(σ) +

∫

ΣA

(−skk f + kg) dµ
]

+
αk

k
=
αk

k
< 0, ∀µ ∈ M.

This implies

P(−sk(k + 1) f + (k + 1)g) = sup
µ∈M

[

hµ(σ) +

∫

ΣA

(−sk(k + 1) f + (k + 1)g) dµ
]

≤
αk

k
.

On the other hand, P(−sk+1(k + 1) f + (k + 1)g) = 0 and since the function

R ∋ s −→ P(−s(k + 1) f + (k + 1)g)

is strictly decreasing, we get sk+1 < sk.
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To study the convergence of the series over the iterated rays we need the following.

Proposition 3.2 For every k ≥ 1 there exists ǫo(k) > 0, depending on k, such that the

series
∞
∑

m=k+1

Pm(s) =

∞
∑

m=k+1

∑

γ∈P

(−1)mrγ

m
em(−sTγ+δγ)

is absolutely convergent for ℜs ≥ sk − ǫo(k).

Proof As in the proof of Lemma 3.1, we choose h so that h ∼ −ksk f + kg, h(η) <
0, for all η ∈ Σ

+
A. First, assume that sk < 0. We choose ǫ = ǫ(k) > 0 small

enough in order to arrange the inequality supη∈Σ+
A

h(η) = αk ≤ (k+1)kǫsk‖ f ‖∞. Let

η ∈ Σ
+
A correspond to a primitive periodic ray γ ∈ P with m reflections as explained

in Section 2. We obtain Sm(−ksk f + kg)(η) = −kskTγ + kδγ . On the other hand, it is

clear that Tγ ≤ m‖ f ‖∞ and we get

Smh(η) ≤ m(k + 1)kǫsk‖ f ‖∞ ≤ (k + 1)kǫskTγ .

From the equality Sm(−ksk f + kg)(η) = Smh(η), we deduce

−skTγ + δγ ≤ (k + 1)ǫskTγ , ∀γ ∈ P.

Now let 0 ≤ u ≤ ǫ
k+1

. Then

−sk(1 + u)Tγ + δγ ≤ (k + 1)ǫskTγ − skuTγ ≤
(

(k + 1)ǫ−
ǫ

k + 1

)

skTγ ≤ ǫskTγ

and we get the lower bound

1 > 1 − e−sk(1+u)Tγ+δγ ≥ 1 − eǫskTγ ≥ 1 − e2skǫd0 =
1

Cǫ,k
> 0.

Thus for 0 ≤ u ≤ ǫ
k+1

, the series

∞
∑

m=k+1

em(−sk(1+u)Tγ+δγ)
=

e(k+1)(−sk(1+u)Tγ+δγ)

1 − e−sk(1+u)Tγ+δγ
≤ Cǫ,ke(k+1)(−sk(1+u)Tγ+δγ)

is convergent.

Next we obtain

− (k + 1)sk(1 + u)Tγ + (k + 1)δγ

≤ −skkTγ + kδγ + (k + 1)ǫskTγ − (k + 1)uskTγ ≤ −sk(1 − ǫ)kTγ + kδγ .

Since sk is the abscissa of absolute convergence of the series of k iterated rays, we

deduce
∑

γ∈P

e−sk(1−ǫ)kTγ+kδγ <∞.
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Thus we conclude that

∞
∑

m=k+1

∑

γ∈P

em(−sk(1+u)Tγ+δγ) <∞,

and the series
∞
∑

m=k+1

∑

γ∈P

(−1)mrγ

m
em(−sTγ+δγ)

is absolutely convergent for ℜs ≥ sk −
ǫ

k+1
. Setting ǫo(k) =

ǫ
k+1

, we obtain the result

in this case.

Passing to the case sk > 0, choose ǫ = ǫ(k) > 0 to arrange the inequalities

sup
η∈Σ+

A

h(η) ≤ −(k + 1)kǫsk‖ f ‖∞,

−skTγ + δγ ≤ −(k + 1)ǫskTγ , ∀Tγ ∈ P.

For 0 ≤ u ≤ ǫ
k+1

we deduce −sk(1 − u)Tγ + δγ ≤ −(k + 1)ǫskTγ + skuTγ ≤ −ǫskTγ ,
which yields

∞
∑

m=k+1

em(−sk(1−u)Tγ+δγ ) ≤ Cǫ,ke(k+1)(−sk(1−u)Tγ+δγ).

On the other hand,

−(k + 1)sk(1 − u)Tγ + (k + 1)δγ ≤ −sk(1 + ǫ)kTγ + kδγ

and this leads to
∞
∑

m=k+1

∑

γ∈P

em(−sk(1−u)Tγ+δγ) <∞.

Finally, in the case sk = 0, we arrange

sup
η∈Σ+

A

h(η) ≤ −(k + 1)kǫ‖ f ‖∞,

δγ ≤ −(k + 1)ǫTγ , ∀Tγ ∈ P.

Repeating the above argument, we establish for 0 ≤ u ≤ ǫ
k+1

the convergence of the

series
∞
∑

m=k+1

∑

γ∈P

em(uTγ+δγ) <∞,

and this completes the proof.
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To compare sk and s1, consider the measure ν ∈ M for which we have

P(−s1 f + g) = hν(σA) +

∫

ΣA

(−s1 f + g) dν = 0.

This measure is called the equilibrium state of −s1 f + g (see [17]). Then we obtain

P
(

−k
(

s1 −
k − 1

k
ht

)

f + kg
)

≥ hν(σA) + k

∫

ΣA

(−s1 f + g) dν + (k − 1)ht

∫

ΣA

f dν

= (k − 1)
[

ht

∫

ΣA

f dν − hν(σA)
]

≥ 0.

Comparing this with P(−ksk f + kg) = 0, we deduce

(3.1) sk ≥ s1 −
k − 1

k
ht .

Thus we have proved the following.

Proposition 3.3 The sequence sk is convergent and limk→∞ sk ≥ s1 − ht .

It is interesting to note that the abscissa c0 of simple convergence of the Dirichlet

series Z0(s) satisfies the estimate c0 ≥ s1 − ht , but it is difficult to compare c0 with sk.

4 Singularities on the Line ℜs = s2

Consider the Dirichlet series P2(s) =
1
2

∑

γ∈P
e−2sTγ+2δγ , with positive coefficients.

According to a classical result, this series has an analytic singularity at s = s2. On

the other hand, Proposition 3.2 implies that the sum over all iterated rays kγ, γ ∈ P,
k ≥ 3, given by

∑∞
k=3 Pk(s), is analytic for ℜs ≥ s2 − ǫo(2) for some ǫo(2) > 0. It

is clear that the singularities of Z0(s) for ℜs > s2 are related to those of the series

obtained by summing only over the primitive rays

P1(s) =

∑

γ∈P

(−1)rγ e−sTγ+δγ .

Let hp be the abscissa of holomorphy of the Dirichlet series P1(s). More precisely, hp

is the minimal real number t such that P1(s) is analytic for ℜs > t . We have three

possibilities:

(i) hp > s2, (ii) hp = s2, (iii) hp < s2.

In case (i), the function P1(s), and hence Z0(s), has either a singularity on the line

ℜs = hp or there exists a sequence of singularities z j with ℜz j → hp, |ℑz j | → ∞.

In case (iii), the function P2(s) produces a singularity of Z0(s) at s = s2. In case (ii),

we must examine the singularities of the sum P1(s) + P2(s). Of course, if P1(s) is

analytic at s = s2, we have the same situation as in case (iii). Thus a cancellation of

the singularities of P1(s) + P2(s) at the point s2 is possible only if P1(s) is singular at

s = s2. Thus we have the following.
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Theorem 4.1 At least one of the functions Z0(s), P1(s) has a singularity at s = s2.

Moreover, the difference Z0(s) − P1(s) is analytic for s ∈ {z ∈ C : ℜz > s2}.

We may compare the functions Z0(s) and ZD(s). As was shown in [8, 18, 25] there

exists µ1 > 0 such that ZD(s) − Z0(s) is analytic for ℜs > s1 − µ1. The number µ1

depends on the geometry of obstacles (see [18, Appendix] and [25]). In some cases

we may show that s2 > s1 − µ1. For example, this is true if n = 2 and s2 < 0.

Nevertheless, it is more natural to deal with the function Π(s) introduced in Sec-

tion 1. As above, let hΠ be the abscissa of the holomorphy of the Dirichlet series Π(s)

introduced in Section 1. We consider again three cases:

(i) hΠ > s2, (ii) hΠ = s2, (iii) hΠ < s2.

For m ≥ 2 and n = 3, the analysis of the series

Πm(s) =

∞
∑

k=0

∞
∑

p=0

∑

γ∈P

1

m
(−1)mrγ em(−sTγ+δγ+kνγ+pµγ),ℜs > s1

is completely similar to that of Pm(s). In fact the abscissa of absolute convergence of

Πm(s) coincides with that of Pm(s) and we may apply Proposition 3.2 for the series

∞
∑

m= j+1

Πm(s) =

∞
∑

m= j+1

∞
∑

k=0

∞
∑

p=0

∑

γ∈P

1

m
(−1)mrγ em(−sTγ+δγ+kνγ+pµγ ),

assuming j ≥ 1. Case n = 2 is treated in a similar way and repeating the argument

of the proof of Theorem 4.1, we obtain Theorem 1.1.

In the same way, we may consider the function

Π3(s) = Π(s) + Π2(s) + Π3(s) =

∑

γ∈Ξ3

(−1)mγTγ |I − Pγ |
−1/2e−sdγ ,ℜs > s1,

where the summation is over all rays γ ∈ Ξ3 ⊂ Ξ, which are either primitive or are

obtained by two or three iterations of primitive periodic rays. Then at least one of

the functions ZD(s), Π3(s) has a singularity at s = s4 and it is possible to iterate this

argument.

Let us mention that from our results it is not clear if the analytic singularity z of

Π(s) or ZD(s) given by Theorem 1.1 is a pole. In fact, it is known that the function

Z0(s) is meromorphic for

ℜs ≥ s1 −
| log θ|

2‖ f ‖∞
,

0 < θ < 1 being the constant introduced in Section 2. On the other hand, we have

s2 ≥ ht/2 and s2 lies in the above domain if ht‖ f ‖∞ ≤ | log θ|. It is expected that

Z0(s) and ZD(s) are meromorphic in a larger domain or in the whole complex plan.

For n = 2 some results in this direction are obtained by Morita [15].
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It is interesting to mention that for all k ∈ N, we have

(4.1) sk > b0 = sup
γ∈P

δγ
Tγ
.

In [18] it was established that b0 < 0, so we need to check (4.1) only for sk < 0. In

this case the argument of the proof of Proposition 3.2 shows that

−skTγ + δγ ≤ ǫkTγ , ∀γ ∈ P,

with some ǫk < 0 and we obtain (4.1). The number b0 has been introduced in [18]

and it is related to the sequence of poles

sm,γ =
δγ
Tγ

+
2mπ

Tγ
i, rm,γ =

δγ
Tγ

+
(2m + 1)π

Tγ
i, m ∈ Z,

obtained from the series formed by all iterations of a fixed periodic primitive ray γ.

For several strictly convex small obstacles, Ikawa [9] and Stoyanov [25] established

the existence of a non-real singularity

z0 = α + i
π

d1

, α ∈ R,

of ZD(s) with d1 sufficiently close to D0. Following the analysis in [25, Section 7], we

conclude that s1 − bK ≤ α < s1 with

bK ≥
1

D0

ln
(

1 +
κmin

ν0

D0

)

.

Here κmin > 0 is the minimal normal curvature of ∂K and ν0 > 0 is a constant

depending on d0, the diameter of K and

χ0 = min{dist(K j , convex hull (Ki ∪ Kl)) : j 6= i, i 6= l, l 6= j} > 0.

For obstacles having sufficiently small diameters, we may arrange the inequality

bK ≥ ht . Indeed, it is sufficient to have

hµ(σA) ≤
d0

D0

ln
(

1 +
κmin

ν0

D0

)

≤ bK

∫

ΣA

f dµ

for every σA invariant measure µ ∈ M. If the diameters of the obstacles are suf-

ficiently small, then κmin is large enough, while d0

D0
and χ0 remain bounded from

below. Thus in this case we have

sup
µ∈M

hµ(σA) ≤
d0

D0

ln
(

1 +
κmin

ν0

D0

)

which implies bK ≥ ht . Combining this with (3.1), we obtain immediately

s1 − bK ≤ s1 − ht < sk, ∀k ∈ N.

Consequently, the line ℜs = sk lies in the domain where we have complex singu-

larities and this agrees with the conjecture that we must have complex singularities

of ZD(s) close to the line ℜs = hΠ or close to the line ℜs = s2.
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