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Even if the magnetic field in a stellarator is integrable, phase-space integrability for
energetic particle guiding-center trajectories is not guaranteed. Both trapped and pass-
ing particle trajectories can experience convective losses, caused by wide phase-space
island formation, and diffusive losses, caused by phase-space island overlap. By locat-
ing trajectories that are closed in the angle coordinate but not necessarily closed in the
radial coordinate, we can quantify the magnitude of the perturbation that results in island
formation. We characterize island width and island overlap in quasihelical (QH) and
quasiaxisymmetric (QA) equilibria with finite plasma pressure β for both trapped and
passing energetic particles. For trapped particles in QH, low-shear toroidal precession
frequency profiles near zero result in wide island formation. While QA transit frequen-
cies do not cross through the zero resonance, we observe that island overlap is more likely
since higher shear results in the crossing of more low-order resonances.
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1. Introduction

In stellarator reactor design, confinement of fast particles is crucial for maintain-
ing the temperatures necessary for fusion (White, Gates & Brennan 2015). Rapid
loss of α particles can be detrimental to device walls (Mau et al. 2008). The low colli-
sionality of energetic particles produces heightened sensitivity to resonances for fast
α particles compared with the thermal bulk particles. Resonance occurs when the
characteristic frequency of particles is rational, resulting in closed orbits (Helander
2014; Rodríguez & Mackenbach 2023). Resonant perturbations result in the for-
mation of phase-space islands for energetic particles. Particle energy and magnetic
moment determine the frequency of orbits, and correspondingly the potential for
drift island formation (White, Bierwage & Ethier 2022), which can cause losses via
radial convective transport and radial transport.
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Radial convective transport is caused by either large drift island formation result-
ing in resonant convection, or misalignment between drift surfaces and flux surfaces,
known as drift surface convection (Beidler et al. 2001; Paul et al. 2022). For trapped
particles, radial convective transport is defined by monotonic drift radially outward
of the banana tips (Paul et al. 2022). For passing particles, radial convective trans-
port occurs when a passing trajectory experiences directed radial drift of the guiding
center (Paul et al. 2022). In the case of resonant convection, wide islands result
in radial particle drifts due to island intersections with the boundary. Drift surface
convection for trapped particles, also known as superbanana transport, has been
characterized for stellarators by the bounce-averaged metric �c in KNOSOS defined
in (Velasco et al. 2021). In this case, misalignment of drift surfaces with flux sur-
faces can result in drift surfaces intersecting the boundary (Nemov et al. 2008). For
trapped particles in tokamaks, guiding-center tracing shows rapid outward radial
drifts via banana-harmonic resonances (Kim, Park & Boozer 2013) which have been
shown experimentally to inhibit toroidal rotation in KSTAR (Park et al. 2013), but
the impact of resonant convective transport in stellarators is insufficiently under-
stood. A method compatible with non-axisymmetric geometries to characterize both
types of radial convective transport for trapped and passing particles is necessary to
better analyze radial convective losses in stellarators.

Another significant loss mechanism for energetic particles is diffusive radial trans-
port, which results from chaotic regions in phase space induced by island overlap
(Chirikov 1979). For trapped particles, diffusive radial transport is defined by
chaotic motion of banana tips. For passing particles, chaotic orbits can lead to
radial diffusion. Model map analysis has been used to analyze diffusive transport for
trapped particles in tokamaks (Goldston, White & Boozer 1981). Diffusive trans-
port for passing particles in TFTR has been visualized using Poincaré maps of
guiding-center orbits, demonstrating stochasticity and island overlap (Mynick 1993).
Phase-space Poincaré maps demonstrating chaos for passing particles in stellarators
have been developed, but measures of island overlap and stochasticity are neglected
(White et al. 2022). As with convective transport, these existing methods used for
diffusive transport analysis must be extended to understand the impact of this loss
mechanism in general stellarator geometries.

Evaluation of distance from integrability can be useful for characterizing both con-
vective and diffusive loss mechanisms. Integrability analysis of Hamiltonian systems
in phase space has been conducted for DIII-D subject to Alfvénic perturbations
(White 2011). Detection of non-integrability for surfaces of a given topology was
enabled by rotation of a phase vector defined between adjacent orbits to evalu-
ate the presence of phase-space islands and define stochastic regions (White 2011;
Moges et al. 2024). Integrability analysis was extended to quasiaxisymmetric (QA)
stellarators using NEO-RT, an adapted tokamak code (Albert et al. 2016, 2022).
The integrable Hamiltonian is defined for the underlying exact QA field, while the
field perturbation from QA corresponds to the non-integrable Hamiltonian. The
resonance of the perturbed system is then used to analytically compute island width
using the thin-orbit assumption (Albert et al. 2022). However, application of integra-
bility analysis to other types of quasisymmetry with inclusion of wide orbits would
be useful in guiding design.

While optimization for proxies of guiding-center confinement such as quasisym-
metry have greatly improved stellarator performance (Garabedian 1996; Landreman
& Paul 2022), symmetry metrics do not account for energetic particle phase-
space island formation. Analytic work defines the bounce-averaged drift frequencies
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for trapped particles using the near-axis expansion in quasisymmetry to evalu-
ate quasisymmetric field stability through analysis of maximum-J (Rodríguez &
Mackenbach 2023), which is related to energetic particle confinement, where J is
the second adiabatic invariant. The large aspect-ratio tokamak approximation can
also be used to compute characteristic frequencies in trapped and passing particle
orbits (Antonenas, Anastassiou & Kominis 2024). Equilibria have been optimized
using metrics that incorporate some energetic particle physics, including �c for QA
(Bader et al. 2019; LeViness et al. 2022) and maximum-J for a quasi-isodynamic
(QI) case (Goodman et al. 2024). In both cases, only the zero crossing is addressed,
although other resonances may still be significant in QI, QA and quasihelical (QH).
Investigation of resonances in general equilibria can inform future optimization for
the avoidance of potentially harmful resonant perturbations.

There have been many different approaches in the literature for characterizing
energetic particle transport mechanisms, but methods have not yet been applied to
general stellarator geometries. Poincaré maps of guiding-center orbits have enabled
analysis of both convective and diffusive transport for both particle classes (Paul
et al. 2022). Distance from integrability has been explored in tokamaks and in QA
stellarators. However, in general stellarator equilibria, distance from integrability
has yet to be evaluated for both convective and diffusive transport mechanisms
for trapped and passing particles. Integrability analysis can be extended to general
stellarator geometries in a way that is robust to island overlap, wide orbits and
regions of phase-space chaos.

Since phase-space chaos can occur for both trapped and passing particles, one can
describe distance from integrability for both systems. For guiding-center trajectories
in a non-integrable system, which may exhibit phase-space chaos, it is useful to define
a nearby integrable map. Motivated by the work of Dewar et al. on quadratic-flux
minimizing surfaces (Dewar, Hudson & Price 1994; Hudson & Dewar 1998, 1999),
this can be achieved by locating pseudo-periodic curves. Given a perturbed system,
these orbits recover the periodic dynamics of the unperturbed system. The pseudo-
periodic curve can then be used to describe the distance from integrability and
evaluate drift island width and overlap.

We define characteristic frequencies for trapped and passing trajectories to com-
pute resonances and examine the impact of resonant perturbations on both QA and
QH configurations. In § 2, we introduce the Hamiltonian for guiding-center motion
to describe particle classes and the role of pitch angle in particle transport. We
present the equilibria used in § 3. We define area-preserving maps for the trapped
and passing classes in § 4, defining pseudo-periodic orbits to characterize distance
from integrability. Computation of characteristic frequencies and an analytic sim-
plification for trapped particle bounce frequency using the near-axis expansion are
provided in § 5. Using our measure of distance from integrability, we produce ana-
lytic expressions for island widths in both cases and compare with the results of our
mapping in § 5.3. A qualitative investigation of island overlap for a QA case far from
integrability is also provided. In § 6 we present our results. We conclude and discuss
potential future investigations and open questions in § 7.

2. The guiding-center Hamiltonian

The Hamiltonian for guiding-center motion is given by (Littlejohn 1983)

H(s, θ, ζ, v‖)= 1
2mv2

‖ +μB, (2.1)
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FIGURE 1. The effective potential at constant s determined by μB. Here, χ− and χ+ are the
mirror points along the χ axis, and μBcrit the total energy for the particle.

where m is particle mass, B is the magnetic field magnitude, v‖ is the velocity of
the particle parallel to the field and μ is the magnetic moment. For particle motion,
H is conserved and equal to total particle energy. This statement shows that μB
acts as an effective potential for a particle in a magnetic field. An illustration of this
effective potential energy attribute is shown in figure 1. For quasisymmetric con-
figurations, field strength is a function of the helical angle χ = θ − Nζ for poloidal
Boozer coordinate θ , toroidal Boozer angle ζ and helicity N , which takes on value
0 for QA configurations and ±N f p for QH configurations, where N f p is the number
of field periods. The helical angle χ is defined such that for quasisymmetric configu-
rations, B(s, χ ), where s is the normalized flux. As a particle encounters varying B
throughout its orbit, Bcrit is the field strength value at which a particle will bounce.
The value of pitch angle λ=μB0/H , where B0 is the normalizing field strength
on-axis, will determine the effective potential and the value of Bcrit.

3. Equilibria

We perform our analysis on reactor-scale configurations with finite-β for
β = (2μ0〈p〉/B2), where 〈p〉 is the mean plasma pressure and μ0 is the vacuum
magnetic permeability constant. We use QA and QH configurations with β = 2.5 %
(Landreman, Buller & Drevlak 2022). These equilibria were produced with VMEC
(Hirshman & Whitson 1983), and therefore have no magnetic islands. Distance
from quasisymmetry for these configurations can be evaluated by summing the
symmetry-breaking Fourier modes (Landreman & Paul 2022)

fQS =
∑

m,n �=Nm/N f p

(
Bm,n

B0,0

)2

, (3.1)

for integers n,m. Field strength is defined such that

B(s, θ, ζ )=
∑
m,n

Bm,n(s) cos (mθ − nN f pζ ). (3.2)
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FIGURE 2. Quasisymmetry error fQS for VMEC equilibria used. For the two configurations
with β = 2.5 %, we see similar magnitudes of fQS, but very different transport and resonance
sensitivities will be demonstrated.

The quasisymmetry metrics for these configurations are shown in figure 2. Despite
both finite-β equilibria possessing similar fQS magnitudes, we demonstrate in later
sections that resonances of fast particle drift frequencies and resulting perturbation-
induced transport differ significantly for these configurations.

4. Map computations

To visualize drift islands and guiding-center transport in these equilibria, we can
construct area-preserving phase-space maps for trapped and passing particles. For
a chosen pitch, each guiding-center trajectory has four dimensions: parallel veloc-
ity v‖, as well as three spatial dimensions in (s, χ, ζ ). For each particle class, this
four-dimensional problem must be reduced to two dimensions for visualization.
Dimension reduction depends on particle class. Energy H and pitch λ are fixed
for each trajectory. A map can be produced for each pitch value. Particles are lost
when their trajectory leaves the boundary, and trajectories that travel too close to
the magnetic axis are eliminated to avoid a coordinate singularity.

4.1. Passing particles
For passing particles, we define particle initial points in phase space at a chosen

(s0, χ0, v‖) at ζ0 = 0. We define the mapping

Mp(s0, χ0)−→ (s ′, χ ′), (4.1)

that advances a particle trajectory from its initial location to the resulting (s ′, χ ′)
point in the ζ = 0 plane. Through asserting that v‖ does not change sign, we eliminate
bouncing particles and use H -conservation and λ to determine v‖ given (s, χ, ζ ),
enabling the two-dimensional expression of (4.1). This v‖ condition ensures that we
capture each trajectory in unidirectional motion only, analogous to field-line flow
Poincaré plots.
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4.2. Trapped particles
For trapped particles, λ is chosen and particles are initialized at the bounce point

where B = Bcrit = B0/λ. Under the assumption that particles remain trapped in a
single well, the mirror point in χ is determined given s and ζ by seeking the value
of χ where B = Bcrit. The mapping is thus defined

Mt(s0, ζ0)−→ (s ′, ζ ′). (4.2)

We apply (4.2) by following guiding-center trajectories until v‖ has passed through
zero for both v′

‖ > 0 and v′
‖ < 0, isolating a full bounce period. The second v‖ = 0

crossing corresponds to the (s, χ, ζ ) point along a trajectory where B = Bcrit, defined
as (s ′, χ ′, ζ ′). The single-well assumption is used to further reduce dimensionality.
This eliminates consideration of ripple-trapped and transitioning particles. These
mirror points are then plotted in the (s, ζ )-plane.

5. Characteristic frequencies

To determine the resonance conditions for both particle classes, we must first
define the frequencies associated with particle motion for both trapped and passing
particles. For passing particles, effective helicity is given by ωχ , the displacement
in χ per displacement in ζ averaged over many toroidal transits. For the mapping
in (4.1)

ωχ = 1
2π

〈∮
χ̇dt

〉
, (5.1)

since passing trajectories travel a full rotation of 2π in ζ after one map application.
The average over many transits is indicated by 〈〉 and

∮
denotes integration over

one toroidal transit. For the mapping in (4.2), trapped trajectories have toroidal
precession frequency ωζ . This is given by the normalized change in toroidal angle ζ
after a full bounce period, defined as

ωζ = 1
2π

〈∮
ζ̇dt

〉
, (5.2)

for integration over the full bounce period in ζ . The average over many bounce
periods is denoted by 〈〉.

5.1. Resonances
For these characteristic frequencies, resonance conditions must be considered

to evaluate relevant transport mechanisms associated with potential resonant
perturbations. The resonance condition for trapped or passing particle orbits is

ωφ = p/q, (5.3)

for ωφ =ωχ or ωζ . In other words, a particle orbit close to a resonance will nearly
close on itself after q map applications. When the frequency of a particle orbit
meets (5.3), the orbit will be highly susceptible even to small perturbations in
quasisymmetry, and is more likely to be subject to convective or diffusive losses,
particularly for low-order resonances.

Numerical results for ωζ and ωχ are shown for trapped and passing par-
ticles in QA and QH equilibria at representative values of pitch in figure 3,
with low-order resonance crossings. A guiding-center tracing routine in SIMSOPT
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(c) (d)

(a) (b)

FIGURE 3. Frequency profiles for trapped and passing trajectories for representative values of
pitch in QH β = 2.5 % and QA β = 2.5 % equilibria. The range of frequency profiles is deter-
mined by upper and lower bounds of the pitch range for each equilibrium. Low-order resonances
are plotted as dashed gray lines for each case. For passing particles, comparison with the ι profile
is provided. For passing particles in QH, ωθ is shown for comparison with ι.

(Landreman et al. 2021) is used for fusion-born α particles in the reactor-scale equi-
libria shown in figure 2 (Paul et al. 2022). We initialize particles at equidistant s
values at a constant angle φ = χ or ζ depending on particle class. Frequencies are
averaged over the guiding-center motion and symmetry-breaking modes are filtered
out to isolate the frequencies of the unperturbed motion. For a perfect quasisym-
metric case, the canonical momentum Pζ (s, χ) is conserved. Since trajectories are
initialized at χ = 0, characteristic frequencies can be expressed as functions of s. For
trapped trajectories, profiles were produced for pitch values close to the trapped–
passing boundary and the deeply trapped limit to demonstrate the range of frequency
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(a) (b)

FIGURE 4. Passing particle trajectories close to resonance in QA and QH stellarator VMEC
equilibria. Field strength on the last closed flux surface is indicated in color.

(a) (b)

FIGURE 5. Trapped particle trajectories close to resonance in QA and QH stellarator VMEC
equilibria. Field strength on the last closed flux surface is indicated in color. Bounce points are
shown in green.

profiles present for the equilibrium. For passing trajectories, co-propagating and
counter-propagating frequency profiles are shown with comparison with the rota-
tional transform ι. At low energies in QA, we expect agreement between |ωχ | and
|ι|, but variation is observed since drifts enable deviation of passing trajectories from
field-line flow. As a result, when optimizing for a desirable ι, passing particle flow
resonances can differ from those of the field structure. Resonant orbits in three
dimensions are shown in figures 4 and 5. For passing particles, the orbit visibly
closes on itself, while for trapped particles, bounce points return to the nearly the
same location after q bounce periods.

5.2. Near-axis approximation
These frequency expressions can be simplified using the near-axis approximation

for the field structure. This is analogous to the large aspect-ratio tokamak assump-
tion (Helander & Sigmar 2005; Shaing, Ida & Sabbagh 2015). In near-axis theory,
the magnetic field strength to first order in the distance from the magnetic axis
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FIGURE 6. Comparison between the analytic form for ωζ given by (5.5) and numerical results
from guiding-center tracing for ωζ for a near-axis field.

r = √
2ψ/B0 for flux ψ is given by (Landreman & Sengupta 2018)

B = B0 [1 − r η̄ cos(χ)] , (5.4)

where η̄ is a constant. To lowest order, rotational transform is constant, ι= ι0. For
a configuration with helicity N , the toroidal transit frequency after one full bounce
period (Rodríguez & Mackenbach 2023) is then proportional to

ωζ ∝ 1
(ι0 − N )2

[
2E(k2)− K (k2)

]
, (5.5)

where

k2 = 1 − λ+ λr η̄

2λr η̄
. (5.6)

More detail is provided in Appendix A. In figure 6, (5.5) is compared with the fre-
quency profile produced by tracing particles in a near-axis field geometry given in
(5.4), indicating good agreement. Note that this near-axis field is not a VMEC equi-
librium. This comparison is performed for particles at 0.1 eV, and deviation from the
analytic form given by near axis occurs at higher energies. This occurs because (5.5)
is produced by averaging over a field line, which exhibits agreement for small gyro-
radii, but gyroradius increases at higher energies. Figure 7 demonstrates the pitch
for which 2E(k2)− K (k2) crosses through zero. Heightened sensitivity to the ωζ = 0
crossing for trapped particles is suggested. This implies that additional care should
be taken to reduce symmetry-breaking modes for trajectories that resonate with the
zero crossing. The 1/(ι0 − N )2 scaling results in a larger magnitude of ωζ for QA
than for QH configurations, suggesting a higher shear for QA and a heightened
sensitivity to the zero crossing for QH due to comparatively lower shear.

We observe the impact of the ωζ = 0 crossing on particles in a QH equilibrium in
figure 8. Three zero crossings result in the formation of large islands, which can lead
to substantial convective radial transport. This suggests that quasisymmetry error
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FIGURE 7. The value of (5.5) versus pitch. The resonance at zero is indicated by the dashed line.

(a) (b)

Poincaré map. Frequency profile.

FIGURE 8. Poincaré map and frequency profile for trapped particles in QH equilibrium with
2.5 %β at λ= 0.95. Multiple zero crossings in the frequency profile correspond to island struc-
tures that appear distinctly at three different radii, resulting in a definitively non-twist map
structure (del Castillo-Negrete, Greene & Morrison 1996).

should be reduced for pitches such that the toroidal precession frequency exhibits
resonance with the zero crossing.

5.3. Pseudo-periodic trajectories
Once perturbations are introduced, particle orbits are likely to become non-

integrable, in that their orbits no longer lie on invariant surfaces in phase space. For
the non-integrable Hamiltonian system, it is useful to construct a nearby integrable
Hamiltonian system, which can be used to decompose the given non-integrable
Hamiltonian as an integrable Hamiltonian plus a small perturbation. Building on
work by Dewar and co-workers (Dewar et al. 1994; Dewar & Khorev 1995; Hudson
& Dewar 1996; Dewar, Hudson & Gibson 2012), we can construct a mapping that
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FIGURE 9. Schematic of the pseudo-periodic curve root solve.

allows us to construct periodic orbits of the nearby integrable system. These orbits
will pass through the X- and O-points of resonant perturbations, since they are sta-
tionary points of the action for this Hamiltonian system (Dewar & Khorev 1995).
Beginning with an initial guess for the radial location of the p/q resonance at some
angle φ0, the map is applied q times. During these map applications, a root solve is
performed to recover a pseudo-periodic orbit that closes in φ but not in s, arriving
at (s0, φ0). The radial difference ν = sq − s0 is a measure of the resonant perturba-
tion that results in the island formation. This is performed for uniformly spaced
values of φ. The pseudocode in Algorithm 1 describes this process, also illustrated
in figure 9. Radial distance ν(φ) is a constant along each trajectory, and varies sinu-
soidally across the angle coordinate. This radial difference is related to the distance
from integrability and can be used to evaluate island width.

Algorithm 1 Pseudocode for the discovery of pseudo-periodic curves

1: for p, q do
2: for φi in [φ0, φn ] do
3: Find s0 such that:
4: Mq

ν (s0, φi )= (sq , φi )

5: νi = sq − s0
6: end for
7: end for

For the passing map, our characteristic frequency is ωχ . For a resonance ωχ(s)=
p/q, the island width is

�s = 4

√
max |ν|
ω′
χ(s)2πq

, (5.7)
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FIGURE 10. Comparison of theoretical island width with numerically determined result for co-
propagating passing particles in QH. Theoretical island width is produced from (5.7) using the
corresponding value of ν output by the pseudo-periodic curve routine.

where max |ν| refers to the maximum value of |ν| among all pseudo-orbits equally
spaced in φ at the resonance p/q. For trapped particles with a resonance ωζ (s)=
p/q, the island width is

�s = 4

√
max |ν|
ω′
ζ (s)2πq

. (5.8)

The details of this derivation from the Hamiltonian in action-angle coordinates is
provided in Appendix A.3, and application to guiding-center motion is shown in
Appendix B. Note that this derivation relies on the linearized Hamiltonian, which
uses the small island assumption, and is therefore not valid for wide islands. This
expression also does not take into account non-twist map topologies.

6. Results

We investigated characteristic frequencies and resonances crossings for fusion-
born α-particles in QA and QH equilibria. For trapped trajectories in the QH
β = 2.5 % case shown in figure 8, multiple zero crossings of the low-shear toroidal
precession frequency profile result in three distinct island structures. The resulting
non-twist map (del Castillo-Negrete et al. 1996) caused by the low shear and non-
monotonic behavior in ωζ is shown in figure 8(b). Multiple island chains appear
at different radial locations sharing the same X-points. These perturbations demon-
strate the significant impact of the zero crossing on wide island formation, supported
by the analytic result presented in (5.5). The shearless curve characteristic of non-
twist maps is robust to perturbations (Mugnaine et al. 2024), preventing stochasticity
even for this wide island case. Equation (5.5) shows that QH toroidal precession fre-
quencies will be more sensitive to the zero crossing than QA frequencies due to the
inverse scaling with the square of effective helicity.

For passing particles, agreement with (5.7) is investigated using the QH β = 2.5 %
map for a p = −1, q = 2 island chain shown in figure 10. A set of pseudo-periodic
curves is produced for the (p, q)= (−1, 2) resonance, shown in figure 10. Given
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FIGURE 11. Poincaré map for co-propagating passing particles in QA β = 2.5 %. The map
demonstrates a structure characteristic of low shear in the region 0.6< s < 0.9.

ν from the root solve, we observe favorable agreement between the resulting island
width and (5.7). This island chain is the only sizeable island structure for this case.
The pseudo-periodic curve defined in Algorithm 1 successfully resolves the nearby
integrable Hamiltonian system, passing through the X- and O-points of phase-space
islands in the true map as expected. This demonstrates both the success of our
pseudo-periodic curve construction and applicability of our analytic form for island
width to characterize island formation.

The Poincaré map for passing particles in QA is shown in figure 11. A distinctive
non-twist map structure is again observed. The topology of this case is indicated by
the main island chain oscillating in radial position, as the X- and O-points are not
collinear. Frequency behavior for this case is shown in figure 3(b), with low shear
in the radial range 0.6< s < 0.8. The pseudo-periodic curve method is not robust to
cases with large regions of low shear at a resonance, since degeneracy of resonance
locations inhibits the radial root solve.

In contrast, the map for the trapped case in this QA equilibrium is highly stochas-
tic, shown in figure 12(a). The pseudo-periodic curves found indicate the presence
of a number of low-order resonant perturbations in this configuration, implying sus-
ceptibility to large island formation. A high level of stochasticity is observed over
the full domain, indicating diffusive transport for trapped particles in this config-
uration. The pseudo-periodic curves are used to quantify island width for each of
these low-order resonances, and these widths are used to assess island overlap for
this case. In figure 12(b) we compare the phase-space map with (5.8) to determine
regions of island overlap for each low-order resonance. This extensive overlap results
from this QA equilibrium having higher shear, as ωζ crosses through several lower-
order resonances over a short radial distance and causes phase-space stochasticity.
This suggests that minimizing the number of resonances crossed by energetic parti-
cle frequency profiles should be conducted for QA configurations. Additionally, the
contribution of the perturbation from QA to the bounce-averaged radial drift over a
resonant trajectory should be suppressed.
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(a) (b)

FIGURE 12. True map and set of pseudo-periodic curves for trapped particles in QA β = 2.5 %
equilibrium, compared with island overlap for λ= 0.949. Significant stochasticity in the trapped
map is confirmed to be a result of island overlap, shown in figure 12(b) plotted with the toroidal
transit frequency as a function of radius, shown in black. Island widths are computed from (5.8).
The radial location of each resonance is indicated by the dashed lines, while the width is given
by the band in the corresponding color. The high degree of stochasticity is indicated by the many
regions of island overlap across the domain.

Comparison between trapped and passing cases for both QA and QH reveals
the difference in impact of resonances for each particle class. The map for passing
trajectories in QA in figure 10 shows one significant resonance, while in contrast
the trapped map in figure 12(a) demonstrates significant resonant overlap and the
presence of several low-order resonances. For QH, the co-propagating passing map
demonstrates a single resonance crossing with a fairly small island chain, while the
trapped particle map at λ= 0.95 demonstrates several large islands due to zero-
crossing sensitivity. These representative cases indicate that the passing trajectories
are less impacted by resonances than trapped trajectories. This is likely a result of
the fact that equilibria are optimized to have few resonances for ι, which is similar
to ωχ , as shown in figure 3.

7. Conclusion

With phase-space Poincaré maps and quadratic flux minimization, we use dis-
tance from integrability to characterize both diffusive and convective transport for
trapped and passing guiding-center trajectories in both QA and QH equilibria with
β = 2.5 %. We have shown that, even in cases with low quasisymmetry error and
where the magnetic field is integrable, phase-space integrability is not guaranteed.
Characterization of island widths and island overlap agree favorably with numerical
guiding-center tracing results from SIMSOPT. We observe that the QH equilibrium
had characteristic frequency profiles with lower shear than the QA equilibrium for
both particle classes. Our expression for trapped particle toroidal precession fre-
quency (5.5) using the near-axis formulation supports this result due to an inverse
scaling with the square of effective helicity. The heightened sensitivity of trapped
trajectories in QH to the zero crossing of the precession frequency was indicated.
As a result of lower shear, QH precession frequency profiles crossed through fewer
low-order resonances than QA profiles. Correspondingly, the QH trapped particle

https://doi.org/10.1017/S0022377825000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000431


Journal of Plasma Physics 15

toroidal precession frequency profile exhibited multiple zero crossings and the result-
ing formation of large drift islands. Since this profile has low shear near zero, the
zero crossing is a more significant factor in convective transport than for the QA
case considered. For trapped particles in QA, while this case had no zero cross-
ing, higher shear of the frequency profile contributed to several low-order resonance
crossings, leading to wide overlapping islands forming, causing diffusive transport.
Since QA equilibria tend to have higher precession frequency shear than QH equi-
libria, we conclude that island overlap and diffusive transport are more likely in
QA than in QH equilibria. Additionally, the co-propagating passing map for finite-β
QA illustrated a characteristic non-twist map, corroborated by the non-monotonic
frequency profile. Overall, we found that passing particle trajectories are less subject
to resonances than trapped particle trajectories. This is likely a result of the fact
that optimization to minimize resonances in ι can help reduce resonances in passing
particle frequencies, although drifts can have some impact.

These methods can be used to evaluate equilibria at reactor scale. Future work
could extend the pseudo-periodic curve approach to be robust to non-twist map
topologies. Evaluations of distance from integrability, island width, and island over-
lap could be used to inform equilibrium optimization. In particular, optimization of
the drift-averaged frequency profiles over a range of pitch angles can be performed
to alter shear profiles favorably (Mackenbach et al. 2023). For example, for QA,
optimization could be performed to ensure the toroidal transit frequency profiles
have lower shear to reduce the number of crossings through lower-order resonances,
which could prevent overlap. For QH, the range of pitch angles for which the zero
crossing is present can be reduced. Optimization to reduce resonance with the zero
crossing conducted for QI using �c (Velasco et al. 2023) could be applied to QH
for the same purpose. For both symmetries, careful quasisymmetry error reduction
could be conducted for particles over a range of pitch angles that resonate with
low-order modes, and island width can be targeted. Using �c, trapped particle reso-
nances with small drift precession can be targeted during optimization, but this does
not address island width directly (Velasco et al. 2021). By avoiding significant res-
onances through optimization, we expect to be less sensitive to non-quasisymmetric
perturbations. This can be verified using sensitivity analysis with the shape gradient
(Landreman & Paul 2018) and Hessian matrix methods (Zhu et al. 2019).

There are many possible extensions of these methods. The non-conservation of
the second adiabatic invariant, J‖, can be shown to be correlated to stochastic loss
mechanisms (Paul et al. 2022; Albert et al. 2022). Non-conservation of J‖ could be
investigated for cases with island overlap (Albert et al. 2023). The QFM method
could also be applied to configurations further from quasisymmetry like NCSX and
ARIES-CS (Isaev et al. 1999; Ku et al. 2008). The pseudo-periodic curve routine
fails for these equilibria further from quasisymmetry, so additional work can adapt
these methods for cases with more quasisymmetry error. In addition, these methods
could be adapted to investigate the impact of resonances on QI and quasi-poloidal
configurations.
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Appendix A. Characteristic frequency derivations

A.1 Near-axis model overview
The near-axis expansion can be used to provide an analytic form for the magnetic

field from which we can produce an expression for trapped particle frequencies.
This can provide insight into the behavior of trapped particles and their sensitivity
to resonances. In the near-axis expansion, the magnetic field strength to first order
in the distance from the magnetic axis r = √

2ψ/B0 is given by (Jorge, Sengupta &
Landreman 2020)

B = B0(1 − r η̄ cos(χ)), (A.1)

where χ = θ − Nζ is the angle such that B(r, χ), N is an integer which denotes the
symmetry helicity, and B0 and η̄ are constants representing field strength on-axis
and field strength variation, respectively. The Boozer covariant components and
rotational transform are approximated as

G(r)= G0 +O(r 2), (A.2)

I (r)= I2r
2 +O(r 4), (A.3)

ι(r)= ι0 +O(r 2), (A.4)

such that the field can be written as B = I (r)∇θ + G(r)∇ζ .

A.2 Characteristic frequencies
To gain further insight into the sensitivity of trapped particles to different reso-

nances, it is useful to develop an analytic expression for trapped particle precession
frequency ωζ . Between bounce points, we average the precession over lowest-order
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motion along the field line in ρ∗, so α = θ − ιζ is fixed to be constant over a
trajectory. The precession frequency can then be related to change in poloidal
angle by

ωζ = − 1
2π(ι0 − N )

�θ. (A.5)

For drift velocity vd and unit field vector b̂ = B/B, the change in poloidal angle
during one toroidal transit is

�θ =
∮

dl

v‖
θ̇ = 1

ι0 − N

∮
dχ

b̂ · ∇χv‖

(
v‖ b̂ + vd

)
· ∇θ, (A.6)

for integration performed in χ over a full bounce period. We can express v‖ in terms
of B using the pitch angle λ

v‖ = ±v0

√
1 − λB

B0
.

Using the contravariant form B = ∇ψ × ∇θ − ι(ψ)∇ψ × ∇ζ in (A.6) gives

�θ = 2G0

ι0 − N

∫ χ+

χ−

dχ
B0

vd,θ

v‖
, (A.7)

for integration between bounce points χ− and χ+, since the sign of v‖ changes
depending on bounce direction, and the b̂ · ∇θ term integrates to zero. We can
determine vd,θ , the poloidal component of drift velocity, in the following way:

vd · ∇θ =
(
v2

0 + v2
‖
)

2�B2
(B × ∇ B) · ∇θ = −η̄ (

v2
0 + v2

‖
)

2�r
cos χ,

for �= q B0/m, the gyrofrequency. Substituting (A.8) into (A.7)

�θ = −η̄G0v0

�B0r

1
ι− N

[∫ χ+

χ−
dχ

cos χ√
1 − λ+ λr η̄

+
∫ χ+

χ−
dχ cos χ

√
1 − λ+ λr η̄

]
.

(A.8)

Through re-expression in terms of k from (5.6), it becomes apparent that the second
term is higher order in r . By bounce-point symmetry, to first order we have

�θ = 2η̄G0v0

�B0r

1√
2λr η̄

1
ι0 − N

∫ χ+

0
dχ

2 sin2 χ

2 − 1√
k2 − sin2 χ

2

, (A.9)

for

k2 = 1 − λ+ λr η̄

2λr η̄
. (A.10)

Using the variable substitution φ = χ/2, followed by letting sin φ = k sin x and
integrating over x gives us our final expression for poloidal displacement

�θ = 4η̄G0v0

�B0r

1√
2λr η̄

1
ι0 − N

[
2E(k2)− K (k2)

]
. (A.11)
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Here, K (k2) and E(k2) are elliptic integrals of the first and second kinds,
respectively. Using (A.5), we then have toroidal displacement

ωζ = −2η̄G0v0

π�B0r

1√
2λr η̄

1
(ι0 − N )2

[
2E(k2)− K (k2)

]
. (A.12)

A.3 Island width in Hamiltonian systems
In order to obtain expressions for island width in general action-angle coordinates

for guiding-center motion, we will make use of Hamiltonian formalism. This can be
achieved if we treat the mapping integration angle ρ as a time-like coordinate. For
trapped particles, �ρ = 2π is the change in bounce angle after a bounce period,
while for passing particles �ρ = 2π is the change in ζ after a toroidal transit. We
can then define the linear increase in canonical angle φ =ωφρ for φ = {χ, ζ } in
terms of characteristic frequencies ωφ = {ωχ, ωζ } from (5.1) and (5.2) (Lichtenberg
& Lieberman 1983). This can be used to develop an expression for drift island
width. Consider a general one-dimensional Hamiltonian in action-angle coordinates
(J, φ), where the unperturbed Hamiltonian reads H0(J ). The unperturbed frequency
is defined by ωφ = ∂H0(J )/∂ J . The perturbed Hamiltonian is then expressed in
the action-angle coordinates of the unperturbed Hamiltonian as (Lichtenberg &
Lieberman 1983)

H(J, φ)= H0(J )+
∑
p,q

Hp,q(J ) cos(qφ − pρ). (A.13)

A resonance will occur if the following condition is satisfied:

qωφ(J0)− p = 0. (A.14)

Assume that J0 satisfies such a resonance condition. We can consider the trans-
formed coordinates, �= φ −ωφ(J0)t , for which the equations of motion read

�̇=ωφ(J )−ωφ(J0), (A.15)

J̇ =
∑
p,q

Hp,q(J )q sin
(
q

(
�+ωφ(J0)ρ

))
. (A.16)

For such a resonance, the island width in the J action can then be evaluated as
(Lichtenberg & Lieberman 1983)

�J = 4

√
Hp,q(J0)

∂ωφ(J0)/∂ J
. (A.17)

In the computation of ωφ , trajectories are initialized at the intersection of J with
constant φ, enabling a one-to-one mapping from (J, φ)→ (s, φ).

Appendix B. Poincaré map from Hamiltonian
We can adapt the island width calculation in action-angle coordinates provided in

Appendix A.3 to the Poincaré maps we develop for this problem for island width
analysis. In order to visualize the resonances in our system, we can make use of
Poincaré maps defined for the different particle classes. In action-angle coordinates
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for the nth mapping, the Poincaré map is defined as M(J n, φ
n
)→ (J n+1, φ

n+1
). In

the integrable case

J n+1 = J n, (B.1)

φ
n+1 = φ

n +�ρ(J
n+1), (B.2)

where action-angle displacement �ρ(J n+1)=ωφ(J n+1)�ρ. Here, ωφ(J n+1) is the
unperturbed frequency and �ρ is the displacement in ρ between successive map-
pings for integration angle ρ. For the resonance condition (A.14), the orbit will
close after q applications of the map. In the near-integrable case, the twist mapping
will be perturbed

J n+q = J n + f (J n+q, φ
n
), (B.3)

φ
n+q = φ

n + q�ρ(J
n+q)+ g(J n+q, φ

n
), (B.4)

for some periodic functions f and g. In the pseudo-periodic curve construction,
we seek orbits that close in angle, so g = 0 and f only depends on φ and can be
computed from the linearized Hamiltonian. After q map applications

f =
∫ ρn+1

ρn
dρ

d Hp,q(J0)

dρ
= q Hp,q(J0) sin

(
qφ

n − pρn
)
�ρ.

The distance between the periodic curve and the pseudo-periodic curve is quantified
by the parameter ν = − f (J n+q, φ

n
), as discussed in § 5.3. We can then use ν to

quantify island width in the following way:

�J = 4

√
max |ν|
ω′
φ(J )2πq

,

where max |ν| is the maximum value of f taken over all trajectories in φ. Since
we initialize all particles at a constant angle φ, J can be approximated as the flux
function s. For the passing map analysis, ωφ →ωχ .
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