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1. Introduction. A classical result in potential theory is the Schwarz reflection principle
for solutions of Laplace's equation which vanish on a portion of a spherical boundary. The
question naturally arises whether or not such a property is also true for solutions of the
Helmholtz equation. This has been answered in the affirmative by Diaz and Ludford ([4]; see
also [10]) in the limiting case of the plane. It is the purpose of this paper to show that a
reflection principle is also valid for spheres of finite radius. As an application of this result we
shall study the problem of the analytic continuation of solutions to the Helmholtz equation
defined in the exterior of a bounded domain in three-dimensional Euclidean space U3. We
shall show that through the use of the reflection principle derived in this paper, this problem
can be reduced to the problem of the analytic continuation of an analytic function of two
complex variables, which in turn can be performed through a variety of known methods
(cf. [7]).

2. Integral operators and the reflection principle. We consider solutions of the Helmholtz
equation

ABM+AM = 0 (2.1)

defined in D\S where D is a bounded starlike domain containing the open ball

On the surface r = a we assume that w(r, 8) = w(x) continuously assumes the boundary data

u(a,0) = O, (2.2)

where (r, 9) = (r, Qu..., 0n_,) are spherical coordinates.
We shall obtain a reflection principle for solutions of (2.1), (2.2) through the use of an

integral operator which maps harmonic functions defined in D\S and vanishing on r = a onto
solutions of (2.1), (2.2). In this connection our approach resembles in some way the " method
of ascent" as developed by Gilbert [8], Eichler [5] and Colton and Wendland [3], except that we
are now concerned with solutions defined in a multiply connected domain instead of a simply
connected domain.

We look for a solution of (2.1) in the form

u(r,9) = Kr,6)+ fV 3 K(r , s ; X)h(s,e)dS> (2.3)
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where h(r,d)eC\D\S)nC°(D\S) is a solution of

Anh = 0 (2.4)
such that

h(a,9) = 0. (2.5)

Substituting (2.3) into (2.1) and integrating by parts using (2.5) we can show that (2.3) will be a
solution of (2.1) provided K{r, s; X) satisfies

r2 IK^+^^K.+AK] = S2\KSS+^-^K^\ (2.6)

L r J L 5 J
and the initial data

4

K(r,a;X) = 0. (2.8)
Setting

£ = logr (2_9)

we transform (2.6)-(2.8) into the initial value problem

Mii-Mm+Xe2iM = 0 (2.10)

X) = 0 (2.11)

;X)= —(e2i-a2) (2.12)

for the function

I, r,; X) = exp | ^ - } (^+^)1 K^, e" ; X) (2.13)

defined in the cone {(<!;,»/): ̂  >/, rj ^ logo, or £ ̂  >7,»/ ̂  loga}. (2.10)-(2.12) is a Goursat
problem for a hyperbolic equation and has a unique (analytic) solution in this cone (cf.
[6, pp. 118-119]). Hence we can conclude that the operator (2.3) exists. It is easy to show
(cf. [2]) that if u(r,6)eC\D\S)riC°(D\S) is any solution of (2.1), (2.2), then u(r,0) can be
represented in the form (2.3) for some harmonic function satisfying (2.5).

Before turning to the proof of the reflection principle for solutions u(r, 6) satisfying (2.1),
(2.2), we take this opportunity to construct another integral operator which in a sense is
complementary to (2.3) and which we shall use in the next section of this paper. This operator
is of the form

u(r,6) = h(r,6)+ \ sn-3K(r,s; X)h(s,6)ds, (2.14)
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where h(r,O)eC\D\S)nC1(D\S) is a solution of (2.4) such that

(^Ka,e) = o. (2.15)

In order for u(r, 0) as defined by (2.14) to be a solution of (2.1) we must have that R(r, s ; A) is a
solution of (2.6) satisfying (2.7) and the initial data

^ r , a ; k ) = Q. (2.16)
la

This can be verified directly by substituting (2.14) into (2.1) and integrating by parts using
(2.15). Using the change of variables (2.9) and setting

, »?;*) = e x p ^ - ^ ( g + ij)J£(e«, e"; A) (2.17)

we obtain the initial value problem

0 (2.18)

) = 0 (2.19)

™ ( e 2 « - a 2 ) . (2.20)

To solve (2.18)—(2.20) we introduce the function E(J;,t]; A) defined as the (unique) solution of
the characteristic initial value problem

« , , 0 (2.21)

, £ ; A) = - ^ ( e 2 { - a 2 ) (2.22)

; A) = --(e2i-a2). (2.23)

The existence of a unique (analytic) solution to (2.21)-(2.23) in the cone {(<!;, rf): f g r\,
r\ + t,^ 2 log a, or £~k. r\, 77+ £ ^ 2 log a} follows from standard results on hyperbolic equations
(cf. [6, pp. 118-119]). A solution of (2.18)-(2.20) is now given by

M{l,n ; A) = * [ £ ( & * ; l)+E(t;,-r, + 2\oga ; A)] (2.24)

and we have established the existence of the operator (2.14). It is again easy to show that if
u(r,6)eC2(D\S)nC\D\S) is any solution of (2.1) satisfying

i^9u(a,0) = Q, (2.25)

then u(r, 6) can be represented in the form (2.14) for some harmonic function satisfying (2.15).
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We are now in a position to prove the following reflection principle for solutions of
(2.1), (2.2):

THEOREM 1. Let u(r, 8)eC2(D\S)nC°(D\S) be a solution of (2.1), (2.2) and let D* denote
fa2 \

the set obtained by inverting D\S across dS; i.e. (r, 9)eD* if and only if I —, 9 I e D\S. Then

u(r,8) is a twice continuously differentiable (andhence analytic) solution of (2.1) in D\SuD*.

REMARK. The fact that twice continuously differentiable solutions of (2.1) are in fact
analytic follows from classical regularity theorems for solutions of (2.1) (cf. [6]).

Proof of Theorem. From our previous discussion we can represent u(r, 9) in the form (2.3)
where h(r,9) satisfies (2.4) and (2.5). Furthermore u(r,6)eC2(D\5)nC°(D\S) implies that
h(r, 9) e C2(D\S)r\C°(D\S). Hence from the reflection principle for harmonic functions h(r, 9)
is harmonic in D\S<JD*, and so by (2.3) u(r, 9) is twice continuously differentiable in D\S<uD*.

3. An application to the Inverse Scattering Problem.

Suppose an incoming plane acoustic wave of frequency to moving in the direction of the
z-axis is scattered off a " soft" bounded obstacle ft in U3 and that u(r, 9, <l>)eia" is the velocity
potential of the scattered wave, where (r, 9,0) denote spherical coordinates. Then u(r, 9, <j>)

Oi2 ,

will be a solution of (2.1) in the exterior of ft for n = 3, A = — = k , where c is the speed of

sound. At infinity u(r, 9, <j>) has the asymptotic behaviour
eikr

r

where f(9, (j>) is the far field pattern (cf. [13]). The inverse scattering problem is to determine
ft, given the fact that/(0, (p) is known exactly. From the results of Miiller [13] we can determine
u(r, 9,4>) outside the smallest ball S containing ft in its interior, where S can be determined from
a knowledge of f(9, $). In particular if the radius of S is a, one can write ([9], [13])

u(r,9,<f>)= £ £ a^Xk^S^,^) (r^a) (3.2)
n~0 m= —n

where the coefficients anm are determined from the far field pattern f(9, </»), h(
n
1} denotes a

spherical Hankel function, 5nm a spherical harmonic, and the series (3.2) is uniformly con-
vergent for r ^ a, 0 ^ 9 ^ n, 0 ^ $ g 2n. Hence to find ft we must analytically continue
u(r, 9, <j>) as given by (3.2) across the boundary of S and look for the locus of points where
u(r,9, <j))+exp(ikr cos 9) = 0. This problem of analytic continuation has been studied by
many research workers, in particular, Weston, Bowman and Ar [15], Colton [1], Sleeman [14],
Millar [12] and Hartman and Wilcox [9]. In this section we shall contribute to this study by
using the integral operators and reflection principle of section 2 to relate the domain of
regularity of u(r, 9, (f>) to that of an analytic function of two complex variables. The advantage
of such a relationship is that once this has been done there is a number of known methods for
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determining the domain of regularity of analytic functions of several complex variables; in
particular see [7, section 1.3]. We first prove the following theorem. (Compare this result to
that of Millar in the simpler case of two dimensions ([11]).)

THEOREM 2. Let h(r, 9, <j>) be the (unique) harmonic function defined in the exterior of the ball
S such that h(a, 0, (f>) = u(a, 9, (f>) on dS. If h(r, 9, </>) can be continued to a harmonic function
defined in the exterior of a starlike domain D c S, then u(r, 9, (f>) can be continued as a solution of
(2.1) (with n = 3, A = k2) into the exterior of D.

Proof. Let fi(r, 9, <j>) be the harmonic function defined by

= ± lh(r, 9,4>) + (-) h (^\, 9, A\, (3.3)

where we have made use of Kelvin's inversion formula. Then H(r, 9, (j>) is regular in D*vS\D
where D* denotes the set obtained by inverting S\D across dS. Furthermore we have

H,(a,9,<l>) + l-ii(a,9,<t>) = 0. (3.4)
2a

Hence from (2.14) we have that

u(r, 9, <f>) = K(r, 9,0) + f' £(r , s ; k2)R(s, 9, <j>) ds (3.5)

is a solution of

A3« + fc2u = 0 (3.6)
on D*uS\D and

u(a,9,<l>) = u(a,9,<l>). (3.7)
Therefore w(r, 9, <t>) = u(r, 9, <t>)-u(r, 9, <j>) is a solution of (3.6) in D* such that w(a, 9,4>) = 0,
and hence, by Theorem 1, w(r,9, <j>) is an analytic solution of (3.6) in D*vS\D. We can now
conclude that u(r,9,$) is analytic in D*uS\D and since u(r,9,4>) is already known to be
analytic in the exterior of S, the theorem follows.

In order to apply Theorem 2 it is necessary to have a method for determining the location
of the singularities of the harmonic function h(r, 9, (f>). However, this theory has been exten-
sively developed by Gilbert in [7] and [8]. In particular since

Kr,9,<t>)= £ t a^Kka)!-) " ^ ( M ) (3-8)
n=0m=-n \OJ

forr^a,Q$,9^Tt,0<L<l>£2n,v/<i have (cf. [7, chapter 3], or [8, chapter 7]) that the singular
points of h(r, 9, <f>) can be determined from a knowledge of the singular points of the analytic
function of two complex variables

2 ) = £ t anmh?\ka)zlzm
2. (3.9)

n=0m=—n

As previously pointed out, methods for determining the singular points of (3.9) can be found in
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130 DAVID COLTON

[7]. It should be observed that in the case when u(r, 6, (j>) = u{r, 8) is axially symmetric (i.e.
independent of (j>) then g(zl,z2) = g{?\) is an analytic function of a single complex variable,
and all calculations are considerably simplified (cf. [1]).
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